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Abstract

Valiant’s theory of holographic algorithms is a novel methodology to achieve exponential speed-
ups in computation. A fundamental parameter in holographic algorithms is the dimension of the
linear basis vectors. We completely resolve the problem of the power of higher dimensional bases.
We prove that 2-dimensional bases are universal for holographic algorithms.

1 Introduction

Complexity theory has learned a great deal about the nature of efficient computation. However if the
ultimate goal is to gain a fundamental understanding such as what differentiates polynomial time from
exponential time, we are still a way off. In fact, in the last 20 years, the most spectacular advances in
the field have come from discovering new and surprising ways to do efficient computations. The theory
of holographic algorithms introduced recently by Valiant [17] is one such new methodology which gives
polynomial time algorithms to some problems which seem to require exponential time.

To describe this theory requires some background. At the top level it is a method to represent com-
putational information in a superposition of linear vectors, somewhat analogous to quantum computing.
This information is manipulated algebraically, but in a purely classical way. Then via a beautiful the-
orem called the Holant Theorem [17], which expresses essentially an invariance of tensor contraction
under basis transformations [2], this computation is reduced to the computation of perfect matchings
in planar graphs. It so happens that counting perfect matchings for planar graphs is computable in
polynomial time by the elegant FKT method [10, 11, 14]. Thus we obtain a polynomial time algorithm.
The whole exercise can be thought of as an elaborate scheme to introduce a custom made process of
exponential cancellations. The end result is a polynomial time evaluation of an exponential sum which
expresses the desired computation.

On a more technical level, there are two main ingredients in the design of a holographic algorithm.
First, a collection of planar matchgates. Second, a choice of linear basis vectors, through which the
computation is expressed and interpreted. Typically there are two basis vectors n and p in dimension 2,
which represent the bit values 0 and 1 respectively, and their tensor product will represent a combination
of 0-1 bits. It is the superpositions of these vectors in the tensor product space that are manipulated
by a holographic algorithm in the computation. This superposition gives arise to exponential sized
aggregates with which massive cancellations take place. In this sense holographic algorithms are more
akin to quantum algorithms than to classical algorithms in their design and operation.

No polynomial time algorithms were known previously for any of the problems in [17, 2, 1, 20], and
some minor variations are NP-hard. These problems may also appear quite restricted. Here is a case
in point. Valiant showed [20] that the problem #7Pl-Rtw-Mon-3CNF is solvable in P by this method.
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This problem is a restrictive Satisfiability counting problem. Given a planar read-twice monotone 3CNF
formula, it counts the number of satisfying assignments, modulo 7. However, it is known that even for
this restricted class of Boolean formulae, the counting problem without the modulo 7 is #P-complete.
Also, the counting problem modulo 2 (denoted as #2Pl-Rtw-Mon-3CNF) is ⊕P-complete (thus NP-hard
by randomized reductions). The ultimate power of this theory is unclear.

It is then natural to ask, whether holographic algorithms will bring about a collapse of complex-
ity classes. Regarding conjectures such as P 6= NP undogmatically, it is incumbent for us to gain a
systematic understanding of the capabilities of holographic algorithms. This brings us closer to the
fundamental reason why these algorithms are fascinating—its implication for complexity theory. The
fact that some of these problems such as #7Pl-Rtw-Mon-3CNF might appear a little contrived is beside
the point. When potential algorithmic approaches to P vs. NP were surveyed, these algorithms were
not part of the repertoire; presumably the same “intuition” for P 6= NP would have applied equally to
#7Pl-Rtw-Mon-3CNF and to #2Pl-Rtw-Mon-3CNF.

In holographic algorithms, since the underlying computation is ultimately reduced to perfect match-
ings, the linear basis vectors which express the computation are necessarily of dimension 2k, for some
integer k. This k is called the size of the basis. Most holographic algorithms so far [17, 2, 1, 20] use bases
of size 1. Surprisingly Valiant’s algorithm for #7Pl-Rtw-Mon-3CNF used a basis of size 2. Utilizing
bases of a higher dimension has always been a theoretical possibility, which may further extend the
reach of holographic algorithms. Valiant’s algorithm makes it realistic.

It turns out that for #7Pl-Rtw-Mon-3CNF one can design another holographic algorithm with a
basis of size 1 [4]. Subsequently we have proved [6] the surprising result that any basis of size 2 can
always be replaced by a suitable basis of size 1 in a holographic algorithm. In this paper we completely
resolve the problem of whether bases of higher dimensions are more powerful. They are not.

Our starting point is a theorem from [6] concerning degenerate tensors of matchgates. For bases of
size 2 we were able to find explicit constructions of certain gadgets from scratch. But this approach
encountered major difficulties for arbitrary size k. The underlying reason for this is that for larger
matchgates there is a set of exponential sized algebraic constraints called matchgate identities [16, 1, 3]
which control their realizability. This additional constraint is absent for small matchgates. The difficulty
is finally overcome by deriving a tensor theoretic decomposition. This reveals an internal structure for
non-degenerate matchgate tensors. We discover that for any basis of size k, except in a degenerate case,
there is an embedded basis of size 1. To overcome the difficulty of realizability, we make use of the given
matchgates on a basis of size k, and “fold” these matchgates onto themselves to get new matchgates
on the embedded basis of size 1. These give geometric realizations, by planar graphs, of those tensors
in the decomposition which were defined purely algebraically. Thus we are able to completely bypass
matchgate identities here. In the process, we gain a substantial understanding of the structure of a
general holographic algorithm on a basis of size k.

This paper is organized as follows. In Section 2, we give a brief summary of background information.
In Section 3, we give a structural theorem for valid bases, the tensor theoretic decomposition, and prove
two key theorems for the realizability of generators. In Section 4, we prove a realizability theorem for
recognizers. This leads to the main theorem. In Section 5, we give an overall picture of the landscape
of holographic algorithms after the structural understanding from this work.

2 Background

Let G = (V,E,W ) be a weighted undirected planar graph. A generator matchgate Γ is a tuple (G,X)
where X ⊆ V is a set of external output nodes. A recognizer matchgate Γ′ is a tuple (G,Y ) where Y ⊆ V
is a set of external input nodes. The external nodes are ordered counter-clockwise on the external face.
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Γ (or Γ′) is called an odd (resp. even) matchgate if it has an odd (resp. even) number of nodes.
Each matchgate is assigned a signature tensor. A generator Γ with n output nodes is assigned a

contravariant tensor G of type
(
n
0

)
. Under the standard basis, it takes the form G with 2n entries, where

Gi1i2...in = PerfMatch(G − Z).

Here PerfMatch is the sum of all weighted perfect matchings, and Z is the subset of the output nodes
having the characteristic sequence χZ = i1i2 . . . in. G is called the standard signature of the generator
Γ. We can view G as a column vector (whose entries are ordered lexicographically according to χZ).

Similarly a recognizer Γ′ = (G′, Y ) with n input nodes is assigned a covariant tensor R of type
(0
n

)
.

Under the standard basis, it takes the form R with 2n entries, where

Ri1i2...in
= PerfMatch(G′ − Z),

where Z is the subset of the input nodes having χZ = i1i2 . . . in. R is called the standard signature of
the recognizer Γ′. We can view R as a row vector (again with entries ordered lexicographically).

Because of the parity constraint of perfect matchings, half of all entries of a standard signature G (or
R) are zero. Therefore, we can use a tensor in V n−1

0 (or V 0
n−1 ) to represent all the information contained

in G (or R). More precisely, we have the following definition (we only need for the generators).

Definition 2.1. If a generator matchgate Γ with arity n is even (resp. odd), a condensed standard

signature G
e

of Γ is a tensor in V n−1
0 , and G

e

α = Gαb (resp. G
e

α = Gαb), where G is the standard

signature of Γ, α ∈ {0, 1}n−1 and b = ⊕α is the sum of the bits of α mod 2, i.e., the parity of the
Hamming weight of α.

A basis T contains 2 vectors (t0, t1) (also denoted as (n, p)), each of them has dimension 2k (size
k). We use the following notation: T = (tαi ) = [nα, pα], where i ∈ {0, 1} and α ∈ {0, 1}k . We follow
the convention that upper index α is for row and lower index i is for column (see [7]). We assume
rank(T ) = 2 in the following discussion because a basis of rank(T ) ≤ 1 is useless. Under a basis T , we
can talk about non-standard signatures (or simply signatures).

Definition 2.2. The contravariant tensor G of a generator Γ has signature G under basis T iff G =
T⊗nG is the standard signature of the generator Γ.

Definition 2.3. The covariant tensor R of a recognizer Γ′ has signature R under basis T iff R = RT⊗n,
where R is the standard signature of the recognizer Γ′.

We have

Gα1α2···αn =
∑

i1,i2,...,in∈{0,1}

Gi1i2···intα1

i1
tα2

i2
· · · tαn

in
(where αj ∈ {0, 1}k , for j = 1, 2, . . . , n). (1)

Ri1i2···in =
∑

α1,α2,...,αn∈{0,1}k

Rα1α2···αn
tα1

i1
tα2

i2
· · · tαn

in
(where ij ∈ {0, 1} for j = 1, 2, . . . , n). (2)

Definition 2.4. A contravariant tensor G ∈ V n
0 (resp. a covariant tensor R ∈ V 0

n ) is realizable on a
basis T iff there exists a generator Γ (resp. a recognizer Γ′) such that G (resp. R) is the signature of Γ
(resp. Γ′) under basis T .
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A matchgrid Ω = (A,B,C) is a weighted planar graph consisting of a disjoint union of: a set of g
generators A = (A1, . . . , Ag), a set of r recognizers B = (B1, . . . , Br), and a set of f connecting edges
C = (C1, . . . , Cf ), where each Ci edge has weight 1 and joins an output node of a generator with a input
node of a recognizer, so that every input and output node in every constituent matchgate has exactly
one such incident connecting edge.

Let G(Ai, T ) be the signature of generator Ai under the basis T and R(Bj, T ) be the signature of
recognizer Bj under the basis T . And Let G =

⊗g
i=1 G(Ai, T ) and R =

⊗r
j=1 R(Bj , T ). Then Holant(Ω)

is defined to be the contraction of these two product tensors, where the corresponding indices match
up according to the f connecting edges in C. We note that for a holographic algorithm to use a basis
of size k > 1, each matchgate of arity n in the matchgrid has kn external nodes, grouped in blocks
of k nodes each. These k nodes are connected in a block-wise fashion between matchgates, where the
combinations of tensor products of the 2k-dimensional basis vectors are interpreted as truth values.

Valiant’s Holant Theorem is

Theorem 2.1 (Valiant). For any matchgrid Ω over any basis T , let G be its underlying weighted graph,
then

Holant(Ω) = PerfMatch(G).

We illustrate these concepts by the problem #Pl-Rtw-Mon-3CNF (counting without mod) from
Section 1. Given a planar 3CNF formula ϕ as a planar graph Gϕ where variables and clauses are
represented by vertices. For each variable x we try to find a generator G with signature G00 = 1, G01 =
0, G10 = 0, G11 = 1, or (1, 0, 0, 1)T for short. This is indeed realizable as the standard signature of a
matchgate which consists of a path of length 3 and all weights 1. Note that when we remove exactly
one of the two external nodes we have 3 vertices left and therefore the value of PerfMatch is 0. If we
remove both or none of the two external nodes we get the value 1. We can replace the vertex for x,
which is read-twice in the planar formula, by this generator G. This signature (1, 0, 0, 1)T corresponds
to a truth assignment: its outputs will be a consistent assignment of either 0 or 1. We also wish to
find a recognizer R with 3 inputs having signature (0, 1, 1, 1, 1, 1, 1, 1)T . This signature corresponds to
a Boolean OR. The matchgrid is formed by connecting the generator outputs to the recognizer inputs
as given in Gϕ. If this recognizer exists, we would have shown #Pl-Rtw-Mon-3CNF ∈ P, and therefore
P#P = P.

It turns out that a recognizer with the standard signature (0, 1, 1, 1, 1, 1, 1, 1)T does not exist. How-
ever, under a suitable basis this signature is in fact realizable by a recognizer. Indeed it is simultane-
ously realizable together with a generator having the signature (1, 0, 0, 1)T , over the field Z7 (but not
Q). This gives the surprising result that #7Pl-Rtw-Mon-3CNF ∈ P. The basis of size 2 used by Valiant
in [20] is n = (1, 1, 2, 1)T , p = (2, 3, 6, 2)T . Written in this basis, the signature (1, 0, 0, 1)T stands for
1n⊗n + 0n⊗ p + 0p⊗n + 1p⊗ p which has dimension 42 = 16. The one for (0, 1, 1, 1, 1, 1, 1, 1)T has di-
mension 43 = 64. They happen to be realizable by matchgates with 4 and 6 external nodes respectively.
The external nodes are grouped in blocks of size 2.

There is a subtlety for the universal bases collapse theorem. It turns out that if we only focus on
the recognizers, bases of size k > 1 are in fact provably more powerful than bases of size 1. It is only in
the context of simultaneous realizability of both generators and recognizers that we are able to achieve
this universal bases collapse. The first crucial insight is to isolate certain degenerate bases.

Definition 2.5. A basis T is degenerate iff tα = (tα0 , tα1 ) = 0 for all wt(α) even (or for all wt(α) odd).

Definition 2.6. A generator tensor G ∈ V n
0 (dim(V ) = 2) is degenerate iff it has the following form

(where Gi ∈ V is a arity 1 tensor):

G = G1 ⊗ G2 ⊗ · · · ⊗ Gn. (3)
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Degenerate generators can be completely decoupled. A holographic algorithm that uses only degen-
erate generators has no connections between its various components and hence is essentially trivial.

In [6], we proved the following theorem. The proof uses matchgate identities.

Theorem 2.2. If a basis T is degenerate and rank(T ) = 2, then every generator G ∈ V n
0 realizable on

the basis T is degenerate.

3 Valid Bases

Definition 3.1. A basis T is valid iff there exists some non-degenerate generator realizable on T .

Our starting point is a careful study of the structure of high dimensional valid bases. From Theo-
rem 2.2 we have

Corollary 3.1. A valid basis is non-degenerate.

Theorem 3.1. For every valid basis T = [n, p], (nα, pα) and (nβ, pβ) are linearly dependent, for all
wt(α),wt(β) having the same parity.

Proof: Since T = [n, p] is valid, by definition, there exists a non-degenerate generator G which is
realizable on T . From Corollary 3.1, we know that T = [n, p] is non-degenerate.

Let α0, β0 be two arbitrary indices of even weight and α1, β1 be two arbitrary indices of odd weight.

Let T0 =

[(
nα0

nβ0

)
,

(
pα0

pβ0

)]
and T1 =

[(
nα1

nβ1

)
,

(
pα1

pβ1

)]
. Then we need to prove det(T0) = det(T1) = 0.

According to the parity of the arity n and the parity of the matchgate realizing G, we have 4 cases:
Case 1: even n and odd matchgate

From the parity constraint, we have T⊗n
0 G = 0 and T⊗n

1 G = 0. Since G 6≡ 0 (i.e., G is not identically

0), we have det(T0) = det(T1) = 0. Note that det(T⊗n) = (det(T ))n2n−1

.
Case 2: odd n and odd matchgate

From the parity constraint, we have T⊗n
0 G = 0. Since G 6≡ 0, we have det(T0) = 0. Since the basis is

non-degenerate, from the definition, there exists a α such that wt(α) is even and (nα, pα) 6= (0, 0).
From the parity constraint, for all t ∈ [n] = {1, . . . , n}, we have

(T
⊗(t−1)
1 ⊗ (nα, pα) ⊗ T

⊗(n−t)
1 )G = 0. (4)

Let Gt be the tensor of type V n−1
0 defined by

G
i1i2...in−1

t = nαGi1i2...it−10itit+1...in−1 + pαGi1i2...it−11itit+1...in−1 ,

where i1, i2, . . . , in−1 = 0, 1. Then equation (4) translates to T
⊗(n−1)
1 Gt = 0.

If ∀t ∈ [n] we have Gt ≡ 0, then we claim G is symmetric and degenerate. To see this, first suppose
pα 6= 0. Then for all i1, i2, . . . , in = 0, 1, Gi1i2...in = G00...0(−nα/pα)wt(i1i2...in). This is clearly symmetric,
and degenerate by (3). The proof is similar if nα 6= 0. Since by assumption (nα, pα) 6= (0, 0), it follows
that G is degenerate. This is a contradiction.

Therefore there exists some t ∈ [n] such that Gt 6≡ 0. Then from T
⊗(n−1)
1 Gt = 0, we have det(T1) = 0.

Case 3: odd n and even matchgate

This is similar to Case 2. We apply the argument for T0 to T1, and apply the argument for T1 to T0.
Case 4: even n and even matchgate

This case is also similar to Case 2 and Case 3. We simply apply the same argument for T1 as in Case 2
and the same argument for T0 as in Case 3.
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From this theorem, we know that for any valid basis T = [nα, pα] (where α ∈ {0, 1}k), there exist
non-zero vectors (nα0 , pα0), and (nα1 , pα1), where α0, α1 ∈ {0, 1}k , and wt(α0) is even and wt(α1) is
odd, such that every other (nα, pα) is a scalar multiple of one of these two vectors (the one with the
same parity). More precisely, we define n̂b = nαb and p̂b = pαb for b = 0, 1, then there exist λα for all
α ∈ {0, 1}k, such that (nα, pα) = λα(n̂⊕α, p̂⊕α), where ⊕α is the parity of wt(α).

Note that (n̂0, p̂0), (n̂1, p̂1) are linearly independent, otherwise rank(T ) < 2. Therefore each is
determined up to a scalar multiplier. This justifies the following definition:

Definition 3.2. We call T̂ =

[(
n̂0

n̂1

)
,

(
p̂0

p̂1

)]
an embedded size 1 basis of T .

Now suppose a non-degenerate generator G is realizable on a valid basis T = [nα, pα], (where
α ∈ {0, 1}k), and T̂ = (t̂αi ) is an embedded size 1 basis of T .

Substituting (tα0 , tα1 ) = λα(t̂⊕α
0 , t̂⊕α

1 ) in (1), we have

Gα1α2···αn =
∑

i1,i2,··· ,in∈{0,1}

Gi1i2···intα1

i1
tα2

i2
· · · tαn

in

=
∑

i1,i2,··· ,in∈{0,1}

Gi1i2···inλα1 t̂⊕α1

i1
λα2 t̂⊕α2

i2
· · ·λαn t̂⊕αn

in

= λα1λα2 · · ·λαn

∑

i1,i2,··· ,in∈{0,1}

Gi1i2···in t̂⊕α1

i1
t̂⊕α2

i2
· · · t̂⊕αn

in
.

We define a tensor Ĝ ∈ V n
0 as follows: For j1, j2, . . . , jn = 0, 1,

Ĝj1j2···jn =
∑

i1,i2,··· ,in∈{0,1}

Gi1i2···in t̂j1i1 t̂
j2
i2
· · · t̂jn

in
. (5)

Then we have
Gα1α2···αn = λα1λα2 · · ·λαnĜ⊕α1⊕α2···⊕αn . (6)

Starting with any non-degenerate G which is realizable on a valid basis T , we defined its embedded
size 1 basis T̂ , (λα) and Ĝ by (5). But we note that (5) and (6) are satisfied for every generator (we only
need one non-degenerate G to establish T̂ ). Then regarding (6) we have the following key theorems:

Theorem 3.2. (λα) (where α ∈ {0, 1}k) is a condensed signature of some generator matchgate with
arity k + 1.

Theorem 3.3. Ĝ is a standard signature of some generator matchgate with arity n.

Put Theorems 3.1, 3.2 and 3.3 together, we have both a necessary and sufficient condition for a basis
to be valid.

The proofs of Theorems 3.2 and 3.3 are both constructive. We make one more definition. Since the
basis T is non-degenerate, there exist β0 and β1, such that wt(β0) is even, wt(β1) is odd, and λβ0λβ1 6= 0.
We also assume β0 and β1 is such a pair with minimum Hamming distance. To simplify notations in
the following proof, we assume β0 = 00 · · · 0 and β1 = 11 · · · 100 · · · 0 (where there are a 1s, a is odd).
This simplifying assumption is without loss of generality; see the remarks after the proof.

Let c0 = λβ0 = λ00···000···0 and c1 = λβ1 = λ11···100···0. In this setting, for any pattern γ strictly
between β0 and β1 (if any), if αr = γ for some r ∈ [n], then by (6)

Gα1α2···αn = 0. (7)
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Since G is realizable on T , G is the standard signature of some matchgate Γ with arity nk. For
convenience, we label its ((i−1)k+j)-th external node by a pair of integers (i, j), (where i ∈ [n], j ∈ [k])
(see Figure 1.) Our constructions for Theorems 3.2 and 3.3 both start from Γ. In Figure 1, we omit
all internal structures of Γ (edges and internal nodes). We use dashed rectangle to group a block of
k external nodes and the following modifications will be done block-wise. But note that these dashed
rectangles are not necessarily separate parts geometrically. The modifications preserve planarity because
these external nodes are all in the outer face and in the given order.

Proof of Theorem 3.3:

For every i ∈ [n], do the following modifications to the k nodes (i, j) of the i-th block of external
nodes in Γ, where j ∈ [k] (see Figure 3):

• Connect (i, l) with (i, l + 1) by an edge of weight 1, for l = 2, 4, . . . , a − 1.

• Add two new nodes i′ and i′′.

• Connect (i, 1) and i′′ by an edge of weight 1/c1.

• Connect i′′ and i′ by an edge of weight 1/c0.

After all these modifications, viewing the n nodes i′ (one node stemming from each block, i ∈ [n])
as external nodes and all other nodes as internal nodes, we have a matchgate Γ̂ with arity n. Now we
prove that Ĝ is the standard signature of this matchgate Γ̂.

Denote the standard signature of Γ̂ temporarily as (Γ̂j1j2···jn). For an arbitrary pattern j1j2 · · · jn ∈
{0, 1}n, we consider the value Γ̂j1j2···jn . For r ∈ [n], there are two cases:

• Case 1: jr = 0. In this case, we keep the external node r′. Any perfect matching will take the edge
(r′′, r′), this contributes a factor of 1/c0. As a result, the node (r, 1) must match with some node in
the original Γ. And from (7), the only possible non-zero pattern of this block of G is β0 = 00 . . . 0.
(This means that the perfect matchings will not take any of the new weight 1 edges.)

• Case 2: jr = 1. In this case, we remove the external node r′. Any perfect matching will take the
edge between (r, 1) and r′′, this contributes a factor of 1/c1. As a result, the node (r, 1) will be
removed from the original Γ. And from (7), the only possible non-zero pattern of this block of G
is β1. (This means that the perfect matchings will take all of the new weight 1 edges.)

To sum up,

Γ̂j1j2···jn =
1

cj1

1

cj2

· · ·
1

cjn

Gβj1
βj2

···βjn .

Together with (6), we know this is exactly Ĝ. This completes the proof.
Remark: Now we justify the simplifying assumption regarding the forms of β0 and β1. One can always
add an extra edge at an external node to flip the bit from 1 to 0 to “move” β0 to the all 0 vector. Also
if the 1s in β1 are not at the first a bit positions, the proof can still go through in the same way, except
in the Figures we need to connect (a − 1)/2 pairs of external nodes where the bit 1 occurs in a planar
fashion. This can be done easily from top to bottom, two nodes at a time. As the remaining external
nodes of the original matchgate Γ are no longer considered external nodes, the fact that they may no
longer be placed on the outer face of the planar embedding of the matchgate constitutes no difficulty.

Before we prove Theorem 3.2, we have the following claim.

Claim 1. For any standard signature with more than one non-zero entries, there exist two non-zero
entries Gα and Gβ such that the Hamming distance between α and β is 2.
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This claim follows easily from the equivalence theorems of planar matchgate signatures and general
matchgate characters [1, 3]. Basically, by flipping bits we may assume one of the non-zero entry is at
11 . . . 1. The bit flippings preserve Hamming distances. Then it was proved in [1, 3] that in this case, a
planar matchgate signature can be realized by the Pfaffians of various submatrices of a skew-symmetric
matrix of a weighted (not necessarily planar) graph. This graph serves as a (not necessarily planar)
matchgate whose character [15], which is defined by Pfaffians, is equal to the signature of the planar
matchgate. By normalizing one non-zero entry at 11 . . . 1, this signature entry corresponds to the 0-
order Pfaffian. Then another signature entry being non-zero implies that there is some submatrix with
a non-zero Pfaffian, which implies that the matrix is non-zero. matrix entry is equal to a 2× 2 Pfaffian,
which corresponds to non-zero signature entry with Hamming weight n − 2.

Proof of Theorem 3.2: Here we start with a non-degenerate G. By Claim 1, for notational simplicity
we assume G0 = Ĝ00j3j4···jn 6= 0 and G1 = Ĝ11j3j4···jn 6= 0. Other cases can be proved similarly. We are
given the planar matchgate Γ with standard signature G. We carry out the following transformations
of Γ:

• Do nothing to the first block. However, for convenience, we rename the first k nodes as 1′, 2′, . . . , k′.

• Change the second block as in Figure 4, where g0 = G0λ
β0λβj3 · · ·λβjn and g1 = G1λ

β1λβj3 · · ·λβjn .
Note that g0, g1 6= 0. It has a new external node (k + 1)′.

• For i ≥ 3 and ji = 0, do nothing to the i-th block.

• For i ≥ 3 and ji = 1, change the i-th block as in Figure 5.

After all these changes, we will consider the k + 1 nodes i′ (where i ∈ [k + 1], the first k nodes all
stem from the first block, and (k + 1)′ stems from the second block) as the new external nodes and all
other nodes as internal nodes. In this way we obtain a planar matchgate Γλ with arity k + 1. Now we
prove that λα is the condensed standard signature of Γλ.

First we show that Γλ is an even matchgate. Let x be the number of nodes in Γ and y =
wt(j3j4 · · · jn). Since

Gβ0β0βj3
βj4

···βjn = λβ0λβ0λβj3λβj4 · · ·λβjn Ĝ00j3...jn 6= 0,

we know x−ya is even. Given that a is odd, we can count mod 2, and get x+y +2 ≡ x−ya ≡ 0 mod 2.
Since x + y + 2 is exactly the number of nodes in Γλ, we know Γλ is an even matchgate.

For α ∈ {0, 1}k and wt(α) is even, we consider Γα0
λ at the (k+1)-bit pattern α0. Consider each block

in turn in Γ. The first block clearly should be given the k-bit pattern α. The only possible non-zero
value concerning the second block is to take the edge (2′′, (k+1)′) with weight 1/g0, and assign the all-0
pattern β0 to (2, 1), (2, 2), . . . , (2, k). This follows from (7). Similarly for the i-th block, where i ≥ 3,
we must assign the pattern βji

. Hence, applying (6) we get,

Γα0
λ =

1

g0
Gαβ0βj3

βj4
···βjn =

1

g0
λαλβ0λβj3λβj4 · · ·λβjn G0 = λα.

Similarly, for α ∈ {0, 1}k and wt(α) is odd,

Γα1
λ =

1

g1
Gαβ1βj3

βj4
···βjn =

1

g1
λαλβ1λβj3λβj4 · · ·λβjn G1 = λα.

This completes the proof.
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4 Collapse Theorem

By (5) and Theorem 3.3, we have

Theorem 4.1. If a generator is realizable on a valid basis T , then it is also realizable on its embedded
size 1 basis T̂ .

Now we prove the collapse result on the recognizer side.

Theorem 4.2. If a recognizer R is realizable on a valid basis T , then it is also realizable on its embedded
size 1 basis T̂ .

Proof: Since T is a valid basis, from Section 3, we have its embedded size 1 basis T̂ , and the tensor
(λα). By the proof of Theorem 3.2 we have an even matchgate Γλ whose condensed signature is λα.

Let Γ′ be a matchgate realizing R, where R = RT⊗n. Γ′ has kn external nodes (see Figture 2).
For every block of k nodes in Γ′, we use the matchgate Γλ from Section 3 to extend Γ′ to get a new

matchgate Γ̂′ of arity n (see Figure 6).
The idea is that, for each block of k external nodes in Γ′, we take one copy of Γλ and fold it around

so that in a planar fashion its first k external nodes are connected to the k external nodes in Γ′ in this
block. The (k + 1)-st external node of this copy of Γλ becomes a new external node of Γ̂′. Altogether
Γ̂′ has n external nodes 1∗, 2∗, . . . , n∗.

Since Γλ is an even matchgate, when the node i∗ is either left in (set to 0) or taken out (set to 1),
the only possible non-zero patterns within the i-th copy of Γλ are all αi ∈ {0, 1}k with the same parity.

It follows that the following exponential sum holds, for all i1, i2, . . . , in = 0, 1:

R̂i1i2...in =
∑

⊕αr=ir

Rα1α2···αn
λα1λα2 · · ·λαn .

where R̂ is the standard signature of Γ̂′, and R is the standard signature of Γ′.

We want to prove that R̂ in the basis T̂ = (t̂il) =

[(
n̂0

n̂1

)
,

(
p̂0

p̂1

)]
and R in the basis T = (tαl ) give

the same recognizer R.
Recall that tαl = λαt̂⊕α

l . Now from (2) we have

Rl1l2···ln =
∑

αr∈{0,1}k

Rα1α2···αn
tα1

l1
tα2

l2
· · · tαn

ln

=
∑

ir∈{0,1}

∑

⊕αr=ir

Rα1α2···αn
tα1

l1
tα2

l2
· · · tαn

ln

=
∑

ir∈{0,1}

∑

⊕αr=ir

Rα1α2···αn
λα1 t̂⊕α1

l1
λα2 t̂⊕α2

l2
· · · λαn t̂⊕αn

ln

=
∑

ir∈{0,1}

t̂i1l1 t̂
i2
l2
· · · t̂inln

∑

⊕αr=ir

Rα1α2···αn
λα1λα2 · · ·λαn

=
∑

ir∈{0,1}

t̂i1l1 t̂
i2
l2
· · · t̂inln R̂i1i2···in .

The last equation shows that R is also the signature of Γ̂′ under basis T̂ . This completes the proof.

Together from Theorems 4.1 and 4.2, we have the following main theorem:
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Theorem 4.3. (Bases Collapse Theorem) Any holographic algorithm on a basis of any size which
employs at least one non-degenerate generator can be efficiently transformed to an holographic algorithm
in a basis of size 1. More precisely, if generators G1, G2, . . . , Gs and recognizers R1, R2, . . . , Rt are
simultaneously realizable on a basis T of any size, and not all generators are degenerate, then all the
generators and recognizers are simultaneously realizable on a basis T̂ of size 1, which is the embedded
basis of T .

Proof: Suppose generators G1, G2, . . . , Gs and recognizers R1, R2, . . . , Rt are simultaneously realizable
on the size k basis T . Since some Gi is not degenerate, we know that T is valid. Let T̂ be the embedded
size 1 basis of T . From Theorem 4.1, all the generators G1, G2, . . . , Gs are realizable on T̂ . From
Theorem 4.2, all the recognizers R1, R2, . . . , Rt are also realizable on T̂ . This completes the proof.

We remark that a holographic algorithm which only uses degenerate generators is trivial.

5 Conclusion and Discussion

In this section, we give an overall picture of our collapse theorem. The decomposition (6) is pregnant
with structural information. In Theorems 3.3 and 3.2, we modified the original generator matchgate
Γ to obtain Γ̂ and Γλ respectively. These are the geometric realizations of the individual components
in (6). The information of each generator Γ is now contained in Γ̂. If we extend every external node
of Γ̂ by a copy of Γλ to encompass everything to the left of the dashed line in Figure 7, and view the
remaining k external nodes of each copy of Γλ as external (overall we have nk external nodes), we will
have a matchgate with exactly the same signature as the original Γ. Therefore we used n + 1 copies of
the modified Γ to reconstruct a functionally equivalent Γ. It may be a little more complicated than the
original one, but it has a clear structure.

When we connect to the recognizer Γ′ as in Figure 7 (we only draw one generator and one recognizer),
we can compute the Holant across the interface represented by the dashed line. This is functionally
equivalent to the original matchgrid. In the size k basis T , the generator Γ and the recognizer Γ′

have signatures G and R, which have some combinatorial interpretations. Instead the new matchgrid
computes the Holant across the interface represented by the dashdotted line. We view all the Γλ’s as part
of recognizers rather than generators. Note that every generator undergoes the same transformation.
The embedded basis T̂ is defined from T , and (λα) is the same for every generator (we only need one
non-degenerate generator to prove the existence of T̂ and define (λα) and Γλ).

The new recognizers Γ̂′ are constructed by “folding” copies of Γλ and then connecting to the given
recognizers Γ′. This is done in Theorem 4.2. After that we can compute the Holant in the interface
represented by the dashdotted line, where every bundle has only one edge. The value of the Holant
will not change by the Holant Theorem. More importantly, each new generator Γ̂ and recognizer Γ̂′ in
the size 1 basis T̂ will also have the same signatures G and R respectively, which preserve the original
combinatorial interpretations.

By our construction, the size of each new matchgate will increase by at most a factor of n + 1.
Actually the new overall matchgrid may have smaller size because they have fewer external nodes. This
follows from the general realizability theorems of [1, 3]. More importantly, our result shows that what
can be computed in P-time by holographic algorithms in arbitrary dimensional bases can also be done
with bases of size 1. This rules out infinitely many theoretical possibilities. Regarding holographic
algorithms over size 1 basis, we have already built a substantial theory, e.g., a polynomial time decision
procedure for the realizability question of desired signatures [5]. Therefore we believe the resolution of
the power of arbitrary bases is an important step towards the understanding of the ultimate capability
of holographic algorithms.
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Appendix

Some Figures:
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Figure 1: Generator Matchgate Γ. We omit
all the internal structures. All the kn external
nodes are labeled by a pair of integers and they
are all on the outer face.
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Figure 2: Recognizer matchgate Γ′. We omit
all the internal structures. All the kn external
nodes are labeled by a pair of integers and they
are all on the outer face.
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Figure 3: Modify the i-th block of Γ to get the i-th external node of Γ̂
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Figure 4: Modify the second block of Γ to get
the (k + 1)-th external node of Γλ

1

1

1

)1,(i

)2,(i

)3,(i

)4,(i

)5,(i

)1,( ai

),( ai

)1,( +ai

)2,( +ai

),( ki

''i

1

Figure 5: Modify the i-th block of Γ when ji =
1. All the nodes are viewed as internal in Γλ

Figure 6: Extend the i-th block of recognizer Γ′ by a copy of Γλ. We rename the (k + 1)-th node of this
copy of Γλ as i∗, which is the i-th external node of the new recognizer Γ̂′.
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Figure 7: This figure gives an overall picture of our collapse result. When separate the graph from the
dashed line (− −−), we have the original generator Γ (left) and recognizer Γ′ (right) in a size k basis.
When separate the graph from the dashdotted line (− · − · −) we have the new generator Γ̂ (left) and
recognizer Γ̂′ (right) in a size 1 basis.

15  
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



