
Public Key Encryption Which is Simultaneously a

Locally-Decodable Error-Correcting Code

Brett Hemenway∗ Rafail Ostrovsky†

March 4, 2007

Abstract

In this paper, we introduce the notion of a Public-Key Encryption (PKE) Scheme that is

also a Locally-Decodable Error-Correcting Code. In particular, our construction simultaneously

satisfies all of the following properties:

• Our Public-Key Encryption is semantically secure under a certain number-theoretic hard-

ness assumption (a specific variant of the Φ-hiding assumption).

• Our Public-Key Encryption function has constant expansion: it maps plaintexts of length

n (for any n polynomial in k, where k is a security parameter) to ciphertexts of size

O(n + k). The size of our Public Key is also linear in n and k.

• Our Public-Key Encryption is also a constant rate binary error-correcting code against

any polynomial-time Adversary. That is, we allow a polynomial-time Adversary to read

the entire ciphertext, perform any polynomial-time computation and change an arbitrary

(i.e. adversarially chosen) constant fraction of all bits of the ciphertext. The goal of the

Adversary is to cause error in decoding any bit of the plaintext. Nevertheless, the decoding

algorithm can decode all bits of the plaintext (given the corrupted ciphertext) while making

a mistake on any bit of the plaintext with only a negligible in k error probability.

• Our Decoding algorithm has a Local Decodability property. That is, given a corrupted

ciphertext of E(x) the decryption algorithm, for any 1 ≤ i ≤ n can recover the i’th bit of

x (i.e., xi) with overwhelming probability reading at most O(k2) bits of the corrupted ci-

phertext and performing computation polynomial in k. Thus, for large plaintext messages,

out Public Key Decryption algorithm can decode and error-correct any xi with sublinear

(in |x|) computation.

We believe that the tools and techniques developed in this paper will be of independent interest

in other settings.
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1 Introduction

Error correction has been an important field of research since Shannon laid the groundwork for a

mathematical theory of communication in the forties. An error correcting code is thus a pair of

algorithms C and D such that given a message x, C(x) is a codeword such that, given a string

y, if the Hamming Distance between d(C(x), y) is “small”, then D(C(x)) = x. When speaking

of an error correcting code, two of the most important characteristics are the information rate,

which is the ratio of the message size to the codeword size |C(x)|
|x| , and the error rate which is the

smallest ε such that if d(C(x), y) > ε|C(x)| then D(C(x)) fails to recover x uniquely. Since the

field’s inception, many codes have been found that exhibit both constant information rate, and

constant error rate, which, in a sense, is optimal. These codes all share the property that to recover

even a small portion of the message x from the codeword y, you must decrypt the entire codeword.

In [14], Katz and Trevisan posed the question: can codes be found in which a single bit of the

message can be recovered by decrypting only a small number of bits from the codeword? Codes of

this type are called locally-decodable, and would be immensely useful in encoding large amounts of

data which only needs to be recovered in small portions, such as any kind of database or archive.

Currently the best known locally-decodable codes are due to Yekhanin [25] and that can tolerate a

constant error rate, have exponentially small information rates.

It was shown by Katz and Trevisan [14], that any information-theoretic Private Information

Retrieval (PIR) scheme can be transformed into a locally-decodable code. While this provides a

new approach to the problem of constructing efficient locally-decodable codes, so far it has not

lead to any codes with sub-exponential size codewords, as we are still unable to construct efficient

information-theoretic Private Information Retrieval schemes.

Recently, Micali, Peikert, Sudan and Wilson [24] showed that by changing the model of how

errors are introduced, existing error correcting codes could be significantly improved. Their work

used the Computationally Bounded Channel Model, first proposed by Lipton [15]. In this model,

errors are not introduced in codewords at random, but in a worst case fashion by a computationally

bounded adversary. This realistic restriction on the power of the channel allowed for the introduction

of cryptographic tools into the problem of error correction. After seeing the dramatic improvement

of error-correcting codes in this model, a natural question then becomes whether locally-decodable

codes can be improved in the computationally bounded channel model.

The first real progress in this setting was recently accomplished by Ostrovsky, Pandey and

Sahai [21], where they showed how to construct a constant information-rate, constant error-rate

locally-decodable code in the case where the sender and receiver share a private key. This left

open the question whether the same can be accomplished in the Public-Key setting, which does

not follow from their results. Indeed, a näıve proposal (that does not work) would be to encrypt

the key needed by [21] separately and then switch to the private-key model already solved by

[21]. This however leaves unresolved the following question: how do you encrypt the [21] key in

a locally-decodable fashion? Clearly, if we allow the adversary to corrupt a constant fraction of

all the bits (including encryption of the key and the message), and we encrypt the key separately,

then the encryption of the key must consume a constant fraction of the message, otherwise it can

be totally corrupted by an Adversary. But if this is the case all hope for local decodability is lost.

Another suggestion is to somehow hide the encryption of the key inside the encryption of the actual

message. It is not clear how this can be achieved. Thus, a new, and completely different, approach

must be taken. Indeed, in this paper, we show a Public-Key Encryption which achieves constant

information-rate and constant error-rate code with local decodability.
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High Level Idea of Our Construction. At a very high level, our approach is as follows:

Gentry and Ramzan [7] described a computational PIR scheme that allows the sender to retrieve

remainders of the database modulo hidden moduli. Our approach is to build upon the Gentry and

Ramzan machinery and to encrypt the message by computing it over multiple hidden moduli, then

doing Chinese Remaindering over the hidden moduli, and using the fact that we can error-correct

individual blocks using the Chinese Remainder Error Correcting Code Theorem (CRT-ECC), see

for example [8]. This introduces a large alphabet error-correcting code, however using the ideas of

concatenated-codes we reduce this to a binary alphabet (by applying standard error correcting codes

inside the CRT-ECC Code) to obtain binary error-correcting code with asymptotically optimal rate

which is also a semantically secure public key cryptosystem.

1.1 Previous Work

While the notion of a computationally bounded channel has existed for over ten years, it was only

comparatively recently that it was shown to have substantial benefits. The first real success in the

computationally bounded channel model was not until 2005. In [24], Micali et al demonstrated a

class of binary error correcting codes with positive information rate, that can uniquely decode from
1
2 − ε error rate, under the assumption that one-way functions exist. These codes decode from an

error rate above the proven upper bound of 1
4−ε in the the (unbounded) adversarial channel model.

Here, again, we emphasize the reasonableness of the computationally bounded channel model, since

under the assumption that one-way functions exist, Micali et al show that all channels (that don’t

hold the messages for an exponential amount of time) must be computationally bounded, or they

could be used as inverters of the one-way function.

In [21], Ostrovsky, Pandey and Sahai applied the computationally bounded channel model to

locally-decodable codes, and were able to produce private locally decodable codes with constant

information rate, and able to recover from a constant error rate, a significant improvement over

the best known locally-decodable codes in the unbounded adversarial channel model, which require

exponential size codewords to recover from constant error rate.

In this paper, we also consider locally-decodable codes, in the computationally bounded channel

model but in the public key setting. Specifically we show that our cryptosystem has constant

ciphertext expansion, i.e. constant information rate, and is locally decodable from constant error

rate in the computationally bounded channel model.

2 Preliminaries

2.1 Notation

This paper brings together a number of different cryptographic building blocks, which, unfortu-

nately, have conflicting names and notations. To minimize confusion we use the following naming

conventions for our variables.

• x will denote a plaintext message, which will usually be n bits in length.

• πi = pci

i will denote a prime-power modulus used for Chinese Remaindering.

• m will denote an RSA modulus, which, i.e. a product of two approximately equal size primes,

and m will usually be k bits in length.
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• k will denote our security parameter.

• ν(k) will denote a function which is negligible in k.

• Gm will denote the largest cyclic subgroup of (Z/mZ)∗. Since m will always be an RSA

modulus, this gives |Gm| = ϕ(m)/2.

2.2 The Small Primes Φ-Hiding Assumption

The Φ-Hiding Assumption is a relatively new computational hardness assumption, which relates

to the difficulty of finding small prime factors of ϕ(m), where ϕ is the Euler Totient Function. If

a prime p divides ϕ(m), we say that m Φ-hides p. The Φ-Hiding assumption was first proposed by

Cachin, Micali and Stadler in [3], and a variant was proposed by Gentry and Ramzan in [7]. Our

constructions require only the security of the Gentry-Ramzan PIR scheme, and so we make the

following variant of the Φ-Hiding Assumption

Let Pk denote the set of primes of bit-length k
2 , Hk be the set of products of two primes in Pk,

and let Hπ
k ⊂ Hk denote the set of composite moduli that Φ-hide π, i.e.

Hπ
k = {m : m = pq, {p, q} ⊂ Pk, p ≡ 1 mod π}.

Small Primes Φ-Hiding Assumption. For all small prime powers, π0, π1 such that 3 < π0 <

π1 < 2
k
4
−1, given b ∈ {0, 1} and m ∈ Hπb

k , for all probabilistic polynomial-time algorithms A, we

have

Pr [A(π0, π1,m) = b] ≤ 1

2
+ ν(k),

for some negligible function ν(k), where the probability is taken over all m ∈ Hπb

k , b ∈ {0, 1}, and

the internal randomness of A.

Thus we are asserting that no probabilistic polynomial-time adversary can determine which

prime power a given modulus Φ-hides. We will sometimes find it convenient to use a slightly

different form. Specifically, we assert that given two moduli m0,m1 which Φ-hide two prime powers

π0, π1, no probabilistic polynomial-time adversary can tell whether π0 = π1 with probability better

than one half.

Lemma 1. Under the Small Primes Φ-Hiding Assumption, if 3 < π0 ≤ π1 < 2
k
4
−1, b ∈ {0, 1} and

m0 ∈ Hπb

k and m1 ∈ Hπ1−b

k Then for all probabilistic polynomial-time adversaries A,

Pr

[

A(m0,m1) =

{

0 if π0 = π1

1 if π0 6= π1

]

≤ 1

2
+ ν(k),

for some negligible function ν(k), where the probability is taken over the internal randomness of A.

Proof. Assume there exists a polynomial-time adversary A which can correctly determine whether

π0 = π1 with probability 1
2 + ε(k) for some non-negligible function ε(k). Given π0, π1 and m such

that πb | ϕ(m), we wish to construct an algorithm A′ that guesses b, as follows: Pick a random

b′ ∈ {0, 1}, and generate m′ ∈ Hπb′

k . Then run A on (m,m′). If A returns 0 then A′ returns b′,

otherwise A′ returns 1−b′. Since A succeeds with probability 1
2 +ε(k), A′ succeeds with probability

1
2 + ε(k) which is still non-negligible in k, and thus a violation of the Φ-Hiding assumption �
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In particular, we are asserting that there is no efficient algorithm which can match the πi to

the moduli mi significantly better than by guessing randomly. There are a few caveats. First, the

pi must be greater than 3, since every odd number Φ-hides 2, and m ≡ 2 mod 3, only if m Φ-hides

3. Second, the πi cannot be greater than 4
√

mi, this is to prevent the lattice based attack described

in [5], [4]. When the pi’s and the πi’s are chosen subject to these restrictions, there are no efficient

algorithms known for breaking the Φ-Hiding assumption.

3 Computationally Locally Decodable Codes

3.1 Modelling Noisy Channels

When discussing error correcting, or locally-decodable codes, it is important to consider how the

errors are introduced by the channel. While it may be natural to assume the errors are introduced

“at random”, small changes in the exact nature of these errors can result in substantial changes

in the bounds on the best possible codes. The first definition of a noisy channel is due to Claude

Shannon [23]. Shannon defined the symmetric channel where each message symbol is independently

changed to a random different symbol with some fixed probability, called the error rate. An

alternative definition of a noisy channel is Hamming’s adversarial channel, where one imagines an

adversary corrupting bits of the message in a worst-case fashion, subject only to the total number

of bits that can be corrupted per block. Most error correcting and locally-decodable codes were

designed for this model. Lipton [15] observed in 1994 that the adversarial channel model assumes

that the adversarial channel itself is computationally unbounded. In that paper, Lipton proposed

a new model of computationally bounded noise, which is similar to Hamming’s adversarial channel,

except the adversary is restricted to computation which is polynomial in the block length of the

code. This restriction on the channel’s ability to introduce error is a natural one. In fact, this is

implied by our hardness assumption, since we show that any channel which introduces noise in a

strictly worst-case fashion could be used to break the Φ-hiding assumption.

3.2 Definitions

We extend the standard definition of computational indistinguishability for public key encryption

to include the size of the plaintext as a function of the security parameter. That is, we set the

plaintext x to be of length kα, where k is the security parameter and α > 1. To make our definition

more robust, we allow the adversary A to pass some state information γ, which could include

information about the plaintexts x0, x1, which might be of use in determining which plaintext is

encrypted by E(PK,xb, r).

The primary difference between this definition and the standard definition of semantic-security,

see Appendix A, is that this definition includes the local decodability property of the cryptosystem.

Roughly, this says that given an encryption c of a message x, and a corrupted encryption c′ such

that the hamming distance of c and c′ is less than δ|c|, the decoder can decode any bit xi of the

plaintext x from c′ in time significantly less than O(kα).

Definition 1. We call Public Key Cryptosystem semantically secure (in the sense of indistinguisha-

bility) and δ-computationally locally-decodable if for all k and for all α sufficiently large; there is a

triple of probabilistic polynomial-time algorithms (G,E,D), where

• (PK,SK)← G(1k, α),
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• c ← E(PK,x, r) (where |x| = kα is a plaintext message of length polynomial in k, and r is

the randomness of the encryption algorithm);

• b′ ← D(SK, c′, i)

so that for all probabilistic polynomial-time adversaries A:

Pr[(PK,SK)← G(1k, α); {x0, x1} ← A(PK);A(E(PK,xb , r)) = b] <
1

2
+ ν(k),

where x0 and x1 must both be of length kα, and the probability is taken over the key generation

algorithm’s randomness, b, randomness r used in the encryption algorithm E and the internal ran-

domness of A. Furthermore, it is computationally, locally-decodable. That is, for all probabilistic

polynomial-time adversaries A′ and A′′,

Pr[(PK,SK)← G(1k, α);

(m,γ)← A′(PK);

c← E(PK,x, r);

{c′, i} ← A′′(c, γ) :

D(SK, c′, i) = xi] > 1− ν(k),

where xi denotes the ith bit of x, x must be of the length kα, c′ and c must be of the same length

and the hamming distance between c′ and c is at most δ|c|, and where the probability is taken over

the key generation algorithm’s randomness, r used in the encryption algorithm E and the internal

randomness of both A′ and A′′. The information-rate is |m|
|c| and we call the decryption algorithm

locally-decodable if its running time is o(kα), and the efficiency of the local decodability is measured

as a function of k and α.

4 Construction

4.1 A Φ-hiding based Semantically Secure Encryption Protocol

Here, we describe a simple semantically-secure public key encryption scheme, that will be an es-

sential building block of our construction. The encryption protocol consists of three algorithms,

G,E,D described below.

To generate the keys, G(1k) first selects a small prime-power π, then generates m ∈ Hπ
k , i.e.

m = pq, where p, q ∈ Pk, and π | p − 1. The public key will be PK = (g,m, π) where g is a

generator for the cyclic group Gm, and SK = ϕ(m)
π .

To encrypt a message x ∈ Z/πZ, we have

E(x) = gx+πr mod m,

for a random r ∈ Z/mZ. To decrypt, we do

D(y) = yϕ(m)/π = gxϕ(m)/π mod ϕ(m) mod m =
(

gϕ(m)/π
)x

mod m,

then, using the Pohlig-Hellman algorithm to compute the discrete logarithm in the group 〈gϕ(m)/π〉,
we can recover x mod π = x. If π = pc, the Pohlig-Hellman algorithm runs in time c

√
p. Thus
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the decryption requires O(log(m/π) + c
√

p) group operations in Gm which is acceptable for small

primes p. It is worth noticing that this scheme is additively homomorphic over the group Z/πZ,

although we do not have an explicit use for this property. When π = 2, this is just Goldwasser-

Micali Encryption [9], for larger π it was described in [2] and [1]. An extension of this scheme is

described in [20].

While this protocol is not new, none of the previous descriptions of this protocol make use of the

Φ-hiding assumption, and instead their security is based on a composite residuousity assumption,

i.e. it is impossible to tell whether a random group element h belongs to the subgroup of order π in

Gm. We are able to prove security under the Φ-hiding assumption because the Φ-hiding assumption

is strictly stronger than these other assumptions. The reduction is simple, for suppose there exists

an adversary A which can determine whether a group element h ∈ Gm is a πth power. Noticing

that if π | ϕ(m) exactly 1 in π elements will be πth powers, while if gcd(π, ϕ(m)) = 1, then every

element is a πth power, by simply sending random group elements hi to A, and measuring the

probability which A says that hi is a πth power, we can distinguish whether π | ϕ(m). Our proof

essentially follows this reduction.

We now prove the semantic security of this protocol under the Φ-hiding assumption. For clarity

we have broken the proof of security into lemmas 2-5.

Lemma 2. For any adversary A, which, given m ∈ Hπ
k , can determine whether h ∈ Gm is πth

power with probability at least 1
2 , must reply that h is not a πth power with probability at least 3

8

when h is selected uniformly at random from Gm.

Proof. Since exactly 1
π of the elements in Gm are πth powers, a simple counting argument shows

that if A guesses correctly with probability greater than 1
2 , then A must guess that at least a

1 − π
2π+2 fraction of the elements are not πth powers. Since we require π ≥ 5, we conclude that

A must guess that a uniformly chosen group element is not a πth power with at least probability
3
8 . �

Now, we notice that even if A is given an element from an “impostor” group, it must behave in

almost the same manner.

Lemma 3. For any probabilistic polynomial-time adversary A, such that A that guesses whether

h ∈ Gm is a πth power with probability at least 1
2 , then for a uniformly chosen h′ ∈ Gm′ where

m′ ∈ Hk \ Hπ
k , i.e. π - ϕ(m′), A must guess that h is not a πth power with probability at least

3
8 − ν(k) for some negligible function ν.

Proof. Assume A guesses that a uniformly chosen h′ ∈ Gm′ is not a πth residue with probability

less than 3
8 − ε(k) for some non-negligible function ε. Then we can use A to break the Φ-hiding

assumption. Given a modulus m where we wish to determine if π | ϕ(m), we simply choose a

random element in h ∈ Gm, and run A on h. If A says that h is a πth power in Gm, i.e. A(h) = 1,

we say that π - ϕ(m). We denote the output of A on the input h by

A(h) =

{

0 if h is a πth power,

1 if h is not a πth power.

Then, calculating the probabilities, we have

π - ϕ(m) π|ϕ(m)

A(h) = 1 5
8 + ε < 5

8

A(h) = 0 3
8 − ε > 3

8
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From this, we can calculate the conditional probabilities,

Pr[π - ϕ(m) : A(h) = 0] ≥
5
8 + ε

5
8 + 5

8 + ε

≥
5
8 + ε

2 + ε
4 + ε

5
5
4 + ε

≥
5
8 + ε

2 + ε
4 + ε2

5
5
4 + ε

=

(

5
4 + ε

) (

1
2 + ε

5

)

5
4 + ε

=
1

2
+

ε

5
.

A similar calculation holds in the other case, and since ε(k) is non-negligible, we conclude that we

break the Φ-hiding assumption with non-negligible probability. �

Lemma 4. If there exists a probabilistic polynomial-time adversary A that can guess whether

h ∈ Gm is a πth power with probability 1
2 + ε, where ε(k) is non-negligible, then there exists a

probabilistic polynomial-time adversary A′ that guesses correctly with probability greater than 3
4 .

Proof. This is clear, since we can amplify A’s probability of success by running A a polynomial

number of times on hrπ for randomly chosen r ∈ Gm. �

We are now ready to prove the semantic security of our encryption scheme.

Lemma 5. This protocol is semantically secure under the Small Primes Φ-Hiding Assumption.

Proof. Since this cryptosystem is additively homomorphic, to show that no polynomial-time adver-

sary can distinguish E(x0) from E(x1) it suffices to show that no polynomial-time adversary can

distinguish E(x) from E(0), for any 0 6= x ∈ Z/πZ. Now, notice that E(0) = gπr = (gr)π is a ran-

dom πth power in Gm. We now proceed by contradiction. Suppose there exists a polynomial-time

adversary A such that

Pr

[

A(E(x)) =

{

0 if x = 0,

1 otherwise

]

>
3

4

We can use A to construct an algorithm A′ which breaks the Φ-hiding assumption. Suppose A′

wishes to determine whether some m ∈ Hπ
k , i.e. whether π | ϕ(m). Then, A′ chooses an h ∈ Gm

at random, and computes hπ. If π - ϕ(m), then h will still be a uniformly chosen element from Gm.

On the other hand, if π | ϕ(m) then hπ will be a πth power. By Lemma 3, in the first case A must

say that hπ is not a πth power with probability at least 3
8 − ν(k), while in the second case, by the

definition of A, A must say that hπ is not a πth power with probability at most 1
4 . The conditional

probabilities become
π - ϕ(m) π|ϕ(m)

A(h) = 0 > 3
4 < 5

8 + ν

A(h) = 1 < 1
4 > 3

8 − ν
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Then we have

Pr[π|ϕ(m) : A(h) = 0] ≥
3
4

3
4 + 5

8 − ν

≥
3
4 − ν

(

11
8 − 6

11 + ν
)

11
8 + ν

=

(

6
11 − ν

) (

11
8 + ν

)

11
8 + ν

=
6

11
− ν

=
1

2
+

1

22
− ν.

Since ν is negligible, we see that we are correct with probability significantly greater than 1
2 . A

similar calculation holds in the other case, so we can break the Φ-hiding assumption with non-

negligible probability. �

The protocol described above requires the user to know π to encrypt a message x, which is

clearly contrary to the spirit of the Φ-hiding assumption. The key fact that will use is that given

π0, π1 and m0 ∈ Hπb

k , m1 ∈ H
π(1−b)

k , we can encrypt x modulo both π0, π1 by calculating

gx+rπ0π1
0 mod m0 and gx+rπ0π1

1 mod m1.

Thus we have two encryptions, E(x mod π0) and E(x mod π1), but the sender cannot distinguish

between them. It is exactly this property that allows the Gentry-Ramzan PIR scheme to function,

and it will be this property that prevents any adversarial channel from destroying any bit of the

message in our encryption scheme.

4.2 Binary Error Correction

A drawback of many error-correcting codes, and locally-decodable codes is that they are defined

over large alphabets. In practice, all these codes are implemented on computers, where the natural

alphabet is {0, 1}. Thus when we say that a code like the CRT ECC or Reed-Solomon codes

can tolerate a constant fraction of errors, we mean a constant fraction of errors in their natural

alphabet. In the CRT ECC, if one bit of each remainder corrupted, there are no guarantees that

the message will not be corrupted. Binary error correcting codes do exist, but they are generally

not as efficient as codes over larger alphabets.

To allow our code to tolerate a constant fraction of errors in the bits of the ciphertext, we will

make use of a binary error correcting code ECC, with two properties

• |ECC(x)| = c|x| for some constant c,

• ECC can recover from an error-rate of 1
2 − δ in the bits of ECC(x).

Such codes exist, for δ > 1
4 in the unbounded adversarial channel model, and δ > 0 in the

computationally bounded channel model. See Appendix B for a more in-depth discussion.
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4.3 Error Correcting Public Key Encryption

We are now ready to describe our construction. Given a message X ∈ {0, 1}n, we first divide X

into blocks Xi of size `k. As in the Gentry-Ramzan PIR scheme, we view each block as a number

in the range
{

0 . . . 2`k
}

. Our public key will be ρn
k RSA moduli mα such that each moduli Φ-hides

a prime power πij for 1 ≤ i ≤
⌈

n
`k

⌉

and 1 ≤ j ≤
⌈

ρ`
d

⌉

. Exactly which prime is hidden by which

moduli will be chosen at random at the time of key generation, and is part of the receiver’s secret

key. Then, for each block Xi, the sender encrypts Xi mod πij for j = 1 . . . dρ`
d e where each πij

is roughly of size dk. Notice here that we have used ρ times as many moduli as necessary, thus

for each block Xi we have effectively calculated an encoding of Xi under the CRT ECC which

can tolerate
(

1
2 − 1

2ρ

)

`
d corrupted moduli, see Appendix C. We do this for each block, and thus

the resulting encryption is ρ`
d · n

`k residues. Since each residue is of size k, the the encryption of

the whole message is now of n
`k

ρ`
d = ρn

dk encryptions of size k. Finally, we encode each of the ρn
kd

encryptions independently using the error correcting code in §4.2. So our final encryption is of size
ρcn
d bits, which is a constant multiple of n. This encryption is error correcting because as long as

no more than 1
2 − 1

2ρ of the residues that encode a given block are corrupted, the block can be

recovered correctly by first decrypting each residue, and then reconstructing the CRT ECC. This

cryptosystem is also locally-decodable since to decrypt a given block, it suffices to decrypt the ρ`
d

encryptions that encode it. We now define a triple of algorithms G,E,D for our encryption scheme.

First, we describe key generation G(1k, α)

• Let p1, . . . , pt be primes with 5 ≤ p1 < p2 < · · · < pt, and choose ci =
⌊

k
4 log pi

⌋

, thus ci is

the largest integer such that log (pci

i ) < dk, for some d < 1
4 . Set πi = pci

i . To encrypt n-bit

messages, we will need to choose t = ρn
dk . Since n = kα, this becomes t = ρkα−1

d .

• Generate a random permutation σ ∈ St, the symmetric group on t elements.

• Generate moduli m1, . . . ,mt such that mi ∈ H
πσ(i)

k , i.e. mi Φ-hides πσ(i).

• Find generators gi of the cyclic groups Gmi
.

The public key will then be

PK = ((g1,m1, π1), . . . , (gt,mt, πt)),

and the secret key will be

SK =

(

σ,
ϕ(m1)

πσ(1)
, . . . ,

ϕ(mt)

πσ(t)

)

.

Encryption then works as follows, given an n-bit message X,

• Break X into n
`k blocks Xi of size `k, and treat each Xi as an integer in the range {0 . . . 2`k}.

• For block Xi, we will use the s prime powers π(i−1)s, . . . , πis−1 to encode Xi. To do this, using

the Chinese Remainder Theorem, generate X̃ such that X̃ = Xi mod (π(i−1)s+1 · · · πis). To

recover from error-rate 1
2 − 1

2ρ , we set s = ρ`
d .

• Generate a random r ∈ {0, . . . , π1 · · · πt}.

9



• Then calculate hi = gX̃+rπ1···πt

i mod mi for each i ∈ {1, . . . , t}. Thus

hi = E
(

X̃ mod πσ(i)

)

= E(Xj mod πσ(i)),

where (j − 1)s + 1 ≤ σ(i) ≤ js, and E is the encryption protocol described in §4.1.

• Apply the binary Error Correcting Code ECC to each hi individually.

• The encryption is then the t-tuple (ECC(h1),ECC(h2), . . . ,ECC(ht)).

To decrypt the ith block, of a message X from the t-tuple (h1, . . . , ht)

• Select the s encryptions that encode Xi, {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}.

• Decode each ECC(hj) to find obtain {hσ−1((i−1)s+1), . . . , hσ−1(is)}.

• Decrypt each of the s encryptions using the decryption algorithm from §4.1. This gives

a1, . . . , as where aj = Xi mod (π(i−1)s+j).

• Using the Chinese Remainder Code Decoding Algorithm, reconstruct Xi from the s remain-

ders a1, . . . , as. Note that if there are no errors introduced, this step can be replaced by

simple Chinese Remaindering.

We have introduced many parameters in the definition of this scheme, and their roles can be

summarized as follows

n the number of bits in the message X.

k the security parameter.

t the total number of moduli used. We will set t = ρn
dk .

d the fraction of bits that can be Φ-hidden, d is a fixed constant d < 1
4 .

` a parameter which affects the “spread” of the code. We will choose ` ≈ k.

s the number of πi encoding each block, for us s = ρ`
d .

c is the expansion factor of the error correcting code ECC.

ρ is the expansion factor of the CRT ECC we set ρ = 1
2δ , to recover from error-rate 1

2 − δ.

There is an unfortunate tradeoff between the public key size, which is proportional to the

message size, and the usefulness of the local-decodability. If the message X is very long, the local-

decodability of this code makes it significantly more robust against concentrated errors than a

simple error-correcting code, while if X is very short, the public key remains short, but the local-

decodability becomes meaningless if |X| < `k. If ` ≈ k, this means that we need α > 2 to achieve

local decodability.

4.4 Local-Decodability

One of the most interesting features of our construction is the local-decodability. To recover a

small portion of the message X, only a small portion of the ciphertext (ECC(h1), . . . ,ECC(ht))

needs to be decoded. During encryption the message X is broken into blocks of length `k bits,

and this is the smallest number of bits that can be recovered at a time. To recover a single bit

of X, or equivalently the entire block Xi that contains it, we must read s blocks of the ciphertext
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{ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}. Since |hj | = k and |ECC(hj)| = ck, we must read a

total of sck = ρc`k
d . Since the probability of error will be negligible in `, we set ` ≈ k, and

since d < 1
4 , we find that we need to read 5c`k2 bits of the ciphertext to recover one bit of the

plaintext, where c and ρ are parameters that determine the error-rate of our code. Thus our

system only achieves local-decodability for n = O(k2+ε). For n ≈ k3, our system already offers a

significant improvement over standard error-correcting codes. It should also be noted, that for any

semantically-secure cryptosystem, to recover one bit of the plaintext, you must read at least O(k)

bits of the ciphertext. It is an interesting question whether the locality of such a scheme can be

improved from O(k2) to O(k).

4.5 Running Time

We now show that the three algorithms G,E,D probabilistic polynomial-time algorithms in the

security parameter k.

We begin by analyzing G. Choosing the πi and the permutation σ, can clearly be done in

polynomial-time, so it only remains to show that generating mi ∈ Hπi

k can be done in polynomial-

time. We can find primes p ∈ Pk in polynomial-time, by simply choosing random numbers and

testing them for primality using an algorithm like the Rabin-Miller primality test [22] or the de-

terministic algorithm presented in [19]. The Prime Number Theorem tells us that the density of

primes of length k
2 is asymptotic to 2

k , so we expect to find a prime after only a polynomial number

of guesses. A similar theorem, also proven by de la Valée Poussin, gives the density of primes of

length k
2 in the arithmetic progression 1+πn to be asymptotic to 2

ϕ(π)k , so, in either case we expect

to find a prime p such that p ≡ 1 mod π after O(k) guesses. This allows us to generate m ∈ Hπ
k .

The encryption algorithm E will be polynomial-time in k, X̃ can be computed in polynomial-

time using the Chinese Remainder Theorem, and log X̃ ≈ 2 log X. Thus the encryptions can

gX̃+rπ1···πt can be done in polynomial time using the square-and-multiply algorithm.

Finally, the decryption will be polynomial-time because decrypting each hi to X̃ mod πσ(i)

involves a single exponentiation, which can be done in polynomial-time via the square-and-multiply

algorithm. Then recovering the block Xi is done via the polynomial-time CRT-ECC algorithm

described in [11].

4.6 Proof of Security

The semantic security of our system follows immediately from the semantic security of the under-

lying cryptosystem. So here, we only show correctness, i.e. that the system is computationally

locally-decodable up to a constant fraction of errors. By an encryption of a message X, we mean a

t-tuple (ECC(h1), . . . ,ECC(ht)) where t = 2n
dk , and each hi is an element of Gmi

. We show that our

decoding algorithm decodes correctly with all but negligible probability, at most a 1
4 − δ fraction of

the bits of the encryption have been corrupted by a polynomial-time adversary A. Notice that our

algorithm will decode a block Xi correctly whenever no more than 1
4

2`
d of the hi that encode it are

corrupted. Thus we will show that any polynomial-time adversary that corrupts a 1
4 − δ fraction

of the bits, only corrupts more than 1
4 of the hi that encode a given block of the message with

negligible probability. We prove this through a series of lemmas.

We begin by noticing that any adversary A that corrupts at most 1
4 − δ fraction of the bits of

the message, can only corrupt at most a 1
2 − δ − δ2 fraction of the hi.
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Lemma 6. Given (ECC(h1), . . . ,ECC(ht)), where ECC recovers from a binary error-rate of 1
2 − δ,

any adversary A that corrupts at most 1
4 − δ bits of the entire codeword, can corrupt no more than

1
2 − δ + δ2 of the hi

Proof. This is simply counting. A can corrupt a total of (1
4 − δ)ct|hi| bits, and to corrupt one hi A

needs to spend (1
2 − δ)c|hi|, thus A can corrupt at most (1

2 − δ − δ2)t of the hi since

(

1
4 − δ

)

ct|hi|
(

1
2 − δ

)

c|hi|
≤

1
4 − δ

2 − δ
2 + δ2 − δ2

2 + δ3

1
2 − δ

t

=

(

1
2 − δ − δ2

) (

1
2 − δ

)

1
2 − δ

t

=

(

1

2
− δ − δ2

)

t.

�

For the rest of the proof of correctness, we assume that A is restricted to corrupting a 1
2 − δ− δ2

fraction of the hi, rather than 1
4 − δ bits of the message.

Now, we show that any such corrupting adversary cannot detect whether inputs are “well-

formed”, i.e. A behaves in an indistinguishable manner whether the t-tuple (h1, . . . , ht) is a valid

encryption or not.

Lemma 7. For all probabilistic polynomial-time adversaries A, such that A introduces errors in

t-tuples (h1, . . . , ht), where each hi ∈ Gmi
and each mi Φ-hides a distinct prime-power πi, then A

will also introduce errors in t-tuples (h1, . . . , ht) where each mi Φ-hides the same prime-power πi.

Proof. Instead of running A on a t-tuple where each modulus mi Φ-hides a distinct πi, we provide

A with t-tuple in which each modulus mi Φ hides the same π. If A fails to introduce errors on this

malformed input with non-negligible probability ε. Now we proceed via hybrid argument. Since

the probability the A fails on t moduli Φ-hiding the same π, is ε greater than when each mi Φ-hides

a different prime, then triangle inequality tells us that there must be some t∗ < t such that,

|Pr[A fails when t∗ mi Φ-hide the same π ]− Pr[A fails when t∗ + 1 mi Φ-hide the same π ]| > ε

t
.

We can now use A to break the Φ-hiding assumption. Given a modulus m∗ such that m∗ Φ-hides

π∗ where π∗ equals π0 or π1, we construct t∗ moduli m1, . . . ,mt∗ that Φ-hide π0, and t − t∗ − 1

moduli mt∗+1, . . . ,mt−1 that Φ-hide primes other than π0, π1. We then run A, on the t-tuple

(h1, . . . , ht−1, h
∗) where hi ∈ Gmi

for 1 ≤ i < t, and h∗ ∈ Gm∗ . If A fails to introduce errors on this

t-tuple, we say that m∗ Φ-hides π0. This algorithm correctly distinguishes whether m∗ Φ-hides π0

or π1 with probability at least 1
2 + ε

2t . Although, we do not know the exact value of t∗, we can we

can guess it with probability 1
t , to obtain an algorithm which decides whether m∗ Φ-hides π0 with

advantage ε
2t2

which is a violation of the Φ-hiding assumption. �

If each mi Φ-hides the same π, then A must distribute errors randomly among the blocks, since

the notion of blocks in this case is completely arbitrary. Since A must behave identically when each

mi Φ-hides the same modulus as when they all Φ-hide different moduli, we obtain the following

lemma.
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Lemma 8. If A is a probabilistic polynomial-time machine, the distribution of the errors among

the Φ-hidden moduli πi is indistinguishable from random.

Proof. Suppose there exists a distinguisher D that can distinguish the corruptions A introduces

among the hi from random with advantage ε. Then we run D on A’s output when A is given moduli

that Φ-hide between one and t distinct πs. When we run A on a t-tuple (h1, . . . , ht) where each mi

Φ-hides the same π, in this situation A must distribute errors randomly, since A has no information

about the underlying blocks. Thus in this situation, D cannot distinguish A’s corruptions from

random with probability greater than 1
2 , since in this case A’s corruptions are random. Now we

proceed via a hybrid argument. When A is run on moduli that Φ-hide t distinct πi, then D can

distinguish A’s corruptions from random with advantage ε, thus by the triangle inequality, there

exists a t∗ < t such that D can distinguish A’s output when A is run on moduli, t∗ of which are

then same, from A’s output when A is run on moduli, t∗ +1 of which are the same, with advantage
ε
t . This allows us to break the Φ-hiding assumption in exactly the manner described before. Given

a modulus m∗ that Φ-hides either π0 or π1, we construct t∗ moduli m1, . . . ,mt∗ which all Φ-hide

π, and t− t∗− 1 moduli mt∗+1, . . . ,mt−1 which all Φ-hide different moduli. Then we run D on A’s

output, when A is given (m1, . . . ,mt−1,m
∗). By the definition of t∗ D succeeds in distinguishing

whether m∗ Φ-hides π0 with advantage ε
2t . Thus by guessing a random value in {1, . . . , t − 1} for

t∗, we break the Φ-hiding assumption with advantage ε
2t2 , a contradiction. �

Lemma 9. If A distributes (1
4 − δ)t errors at random, the probability that A destroys any given

block Xi is negligible in `.

Proof. If A distributes errors at random, then we can view A as selecting remainders at random

to corrupt. The adversary A destroys a block Xi exactly when A corrupts more than 1
2 − δ of

the remainders that encode that block, the probability that A destroys a block is exactly the

probability that more than (1
2 − δ)ρ`

d moduli that encode Xi are corrupted. This distribution is

then the Hypergeometric Distribution, where ρ`
d items are selected and (1

2 − δ − δ2)t of which are

corrupted. In [13], Hush and Scovel give the bound

Pr

[

# of errors in encoding of block Xi >

(

1

2
− δ

)

ρ`

d

]

< e
−2

“

d
ρ`+d

”

„

δ4ρ2`2

d2 −1

«

,

which is clearly negligible in `. �

Lemma 10. If at most (1
4−δ)t of the t encryptions are corrupted by a probabilistic polynomial-time

adversary A, then the probability that any bit of the message fails to decode properly is negligible

in k.

Proof. For a given block Xi the probability that that block is damaged under the corruptions

created by A is negligibly different in k than if A produced the corruptions at random, which itself

would damage Xi with only negligible probability in `. Taking ` ≈ k, we have that the block Xi is

damaged with at most negligible probability in k. The union bound then gives that the probability

that any block Xi is damaged is at most t times the probability that a specific block is damaged,

which remains negligible in k. �
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4.7 Extensions

It should be clear that choosing to encode each block by twice as many moduli as necessary was fairly

arbitrary. By increasing the redundancy of the CRT ECC we would increase the error-tolerance,

and also the ciphertext expansion. This scheme also benefits nicely from the methods described

in [24]. By first signing each block using a Public Key Signature Scheme, and then encoding with

the CRT ECC, we could use the list decoding properties of the CRT ECC described in [8] [11] and

decode somewhat beyond the error bounds allowed by the standard CRT ECC.
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A Semantic Security

By a Public Key Cryptosystem, we mean a a triple of probabilistic polynomial time algorithms

G,E,D, such that (PK,SK) ← G(1k), c ← E(PK,x, r) x′ ← D(SK, c) Where PK, SK denote

the public and secret keys and x′ = x w.h.p for the same message. A public key encryption system

is semantically secure if, given two messages x0 and x1, and an encryption of one of the messages,

E(PK,xb), no polynomial time adversary can determine b with probability significantly greater

than one half. That is:

Definition 2. A Public Key Cryptosystem, G,E,D, with security parameter k is called seman-

tically secure (in the sense of indistinguishability) if for all message pairs {x0, x1} and for all

probabilistic polynomial time adversaries A, and for all b ∈ {0, 1},

Pr[(PK,SK)← G(1k); {x0, x1} ← A(PK);A(E(PK,xb , r)) = b] <
1

2
+ ν(k)

Where x0 and x1 must be of equal length, and the probability is taken over the key generation

algorithm’s randomness, b, randomness r used in the encryption algorithm E and the internal

randomness of A.

B Constant Rate Binary Error Correcting Codes

For our scheme to have constant information rate, we need to find a binary error-correcting code

which can tolerate an error-rate of 1
2 − δ.

One method for creating such a code, uses the notion of Concatenated Codes, originally de-

scribed by Forney in [6]. By combining a Reed-Solomon Code and a Random Linear Code as

described in [12], it is possible to obtain a binary error correcting code which recovers from 1
4 − δ

error-rate, but the information-rate of the resulting code is very, about 10−4 for their construction.

Since we are working in the computationally bounded channel model, we can take advantage of

the constructions described in [24], to create a binary code with error-rate 1
2 − δ, and significantly

better information rates than in the unbounded channel model. Applying their construction to the

binary codes with list-decoding rate 1
2 and information rate δ4 described in [10], we obtain a code

which uniquely decodes from error-rate 1
2 − δ, and has information rate about 1

δ4 .

C CRT-Based Error Correction

It was observed in the 1970s [16], [17], [18], that the Chinese Remainder Theorem could be used to

make efficient Error Correcting Codes. The encoding process is very simple. If π1, . . . , πn, πn+1, . . . , πn+t

an increasing sequence of pairwise coprime integers, i.e. π1 < π2 < · · · < πn+t, and gcd(πi, πj) = 1

whenever i 6= j. Then for any integer x with x <
∏n

i=1 πi, we encode x as the (n + t)-tuple {x
mod p1, . . . , x mod pn+t}. If x and x′ are distinct integers less than

∏n
i=1, then the two vectors

E(x) = {x mod π1, . . . , x mod πn+t} and E(x′) = {x′ mod π1, . . . , x
′ mod πn+t} must differ in

at least t+1 coordinates since the residue of x modulo any n of the moduli πi uniquely determines

x. Thus the minimum distance in this code is t, and so it can correct b t
2c errors. Thus if we take

n + t = ρn, this code can recover from error-rate 1
2 − 1

2ρ , in the digits of the code.

This code differs significantly from most other error correcting codes in that each “digit”, i.e.

each remainder, of the codeword carries a different amount of information. Thus the Hamming
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distance between two codewords, measured as the number of remainders in which they differ is

not the natural distance to consider for this code. This fact made finding an efficient decoding

algorithm a nontrivial task. In his original paper in 1972, Mandelbaum proposed an algorithm that

ran in expected polynomial-time. Since then, many variants of that algorithm have appeared, but

it was not until 2001 [11] that the first polynomial-time decoding algorithm was found. While we

will not have an explicit use for this property, it should be noted that the standard techniques of

list-decoding of errors beyond half the minimum distance can be implemented for the CRT ECC

as well, see [8], [11].

D Gentry-Ramzan PIR

While our scheme does not explicitly rely on the Gentry-Ramzan PIR scheme, our protocol was

inspired by their use of the Φ-hiding assumption to do “hidden” Chinese Remaindering. In the

interest both of giving some context for our scheme, and of showing what else can be achieved by

hidden Chinese Remaindering, we briefly sketch the Gentry-Ramzan Private Information Retrieval

scheme [7]. This scheme allows computationally private single database PIR with constant commu-

nication rate under the Φ-hiding assumption. Here “constant” means proportional to the security

parameter. The scheme allows retrieval of entire blocks at once, and the scheme we describe will

retrieve an `-bit block from an n-bit database.

The scheme assumes some initial set-up. First, sequence of small primes p1, . . . , pt are fixed in

advance. Then we set ` = dn/te, and ci = dlogpi
`e. Setting πi = pci

i , we have that πi > 2` for

all i, and the integers π1, . . . , πt are pairwise relatively prime. This initial set-up is assumed to be

known to both the user and the database, and is not included in the communication complexity of

the scheme.

To begin the scheme, the database must do some pre-processing. Instead of viewing the database

as a single n-bit string, we instead view it as a concatenation of t `-bit integers a1, . . . , at. Recall

that we have chosen our πi such that ai < πi for each i. Using the Chinese Remainder Theorem,

the database can find an integer e <
∏t

i=1 πi, such that e mod πi = ai.

To retrieve the jth block of the database, aj , the user then chooses an RSA modulus m = pq

that Φ-hides πj, and a g for cyclic the group Gm, i.e. g has order ϕ(m)
2 in (Z/mZ)∗. Since πj|ϕ(m),

we have that Gm has a subgroup of order πj. Letting q = ϕ(m)
2πj

, this subgroup is generated by

gq. The user then sends both m, and g to the database. The database calculates ge mod m and

returns the result.

Given ge mod m, the user then calculates (ge)q = (gq)e = ge mod πj mod m since gq has order

πj in Gm. Then by performing (a tractable) discrete-log computation in the subgroup of order πj

generated by gq the user recovers e mod πj = aj . Using Pohlig-Hellman algorithm this discrete-log

computation can be calculated in O(cj
√

pj) time.

If log2(m) = k, then the user sends 2k bits to the database, and the database replies with k

bits, so the total communication complexity is 3k bits. To avoid the lattice-based attacks described

in [5] and [4], we must choose m such that πi < m
1
4 for all i, i.e. ` < 4k.
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