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Abstract

In this paper, we introduce the notion of a Public-Key Entirp (PKE) Scheme that is
also a Locally-Decodable Error-Correcting Code. In pattc our construction simultaneously
satisfies all of the following properties:

e Our Public-Key Encryption is semantically secure undermrtagenumber-theoretic hard-
ness assumption (a specific variant of iding assumption).

e Our Public-Key Encryption function hamnstant expansiorit maps plaintexts of length
n (for anyn polynomial ink, wherek is a security parameter) to ciphertexts of size +
k). The size of our Public Key is also linearimrandk.

e Our Public-Key Encryption is also eonstant ratebinary error-correcting code against
any polynomial-time Adversary. That is, we allow a polynaitime Adversary to read
the entire ciphertext, perform any polynomial-time congpiain and change an arbitrary
(i.e. adversarially chosen) constant fractioradfbits of the ciphertext. The goal of the
Adversary is to cause error in decoding any bit of the plaintdevertheless, the decod-
ing algorithm can decodall bits of the plaintext (given the corrupted ciphertext) whil
making a mistake oanybit of the plaintext with only a negligible ik error probability.

e Our Decoding algorithm haslaocal Decodability property. That is, given a corrupted
ciphertext ofE(x) the decryption algorithm, for any £ i < n can recover thé&'th bit
of x (i.e., %) with overwhelming probability reading at mastk?) bits of the corrupted
ciphertext and performing computatiquolynomial in k. Thus, for large plaintext mes-
sages, our Public Key Decryption algorithm can decode arat-eprrect anyx; with
sublinear (inx|) computation.

We believe that the tools and techniques developed in tigsrmpaill be of independent interest
in other settings.
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1 Introduction

Error correction has been an important field of researches8itannon laid the groundwork for a
mathematical theory of communication in the nineteendsrtiAn error correcting code is a pair of
algorithmsC andD such that given a messageC(x) is a codeword such that, given a stripgf
the Hamming Distance betwedfC(x),y) is “small”, thenD(C(x)) = x. When speaking of an error
correcting code, two of the most important characterigtiestheinformation rate which is the ratio
of the message size to the codeword é%@ and theerror rate which is the smallest such that

if d(C(x),y) > €|C(x)| thenD(C(x)) fails to recoverx uniquely. Since the field’s inception, many
codes have been found that exhibit both constant informate, and constant error rate, which,
in a sense, is optimal. These codes all share the propeityahacover even a small portion of
the messag& from the codeword;, the receiver must decrypt the entire codeword. In [14]zKat
and Trevisan posed the question: can codes be found in wrsaigke bit of the message can be
recovered by decrypting only a small number of bits from thdesvord? Codes of this type are
calledlocally-decodableand would be immensely useful in encoding large amountsitaf ehich
only needs to be recovered in small portions, for examplekanyof database or archive. Currently
the best known locally-decodable codes are due to Yekh&Tihgnd that can tolerate a constant
error rate, have exponentially small information rates.

It was shown by Katz and Trevisan [14], that any informatibeeretic Private Information
Retrieval (PIR) scheme can be transformed into a localedable code. While this provides a
new approach to the problem of constructing efficient Igedécodable codes, so far it has not
lead to any codes with sub-exponential size codewords, agaevstill unable to construct efficient
information-theoretic Private Information Retrieval safres.

Recently, Micali, Peikert, Sudan and Wilson [24] showed thachanging the model of how
errors are introduced, existing error correcting codesddcba significantly improved. Their work
used the Computationally Bounded Channel Model, first pgeddoy Lipton [15]. In this model,
errors are not introduced in codewords at random, but in avease fashioby a computationally
bounded adversary This realistic restriction on the power of the channelvaéid for the intro-
duction of cryptographic tools into the problem of errorregtion. After seeing the dramatic im-
provement of error-correcting codes in this model, a natyrastion then becomes whether locally-
decodable codes can be improved in the computationally dexinhannel model.

The first real progress in this setting was recently accahptl by Ostrovsky, Pandey and Sahai
[21], where they showed how to construct a constant infdonatate, constant error-rate locally-
decodable code in the case where the sender and receiveraspawate key. This left open the
guestion whether the same can be accomplished in the Rtbjisetting, which does not follow
from their results. Indeed, a naive proposal (that doesvodt) would be to encrypt the key needed
by [21] separately and then switch to the private-key mottebdy solved by [21]. This however
leaves unresolved the following question: how do you erictlyp [21] key in a locally-decodable
fashion? Clearly, if we allow the adversary to corrupt a tamsfraction of all the bits (including
encryption of the key and the message), and we encrypt thed@arately, then the encryption of
the key must consume a constant fraction of the messagewitket can be totally corrupted by
an Adversary. But if this is the case all hope for local detidlitg is lost. Another suggestion is
to somehow hide the encryption of the key inside the enayptif the actual message. It is not
clear how this can be achieved. Thus, a new, and completiratit, approach must be taken.



Indeed, in this paper, we show a Public-Key Encryption whichieves constant information-rate
and constant error-rate code with local decodability.

High Level Idea of Our Construction. At a very high level, our approach is as follows: Gentry and
Ramzan [7] described a computational PIR scheme that atloevsender to retrieve remainders of
the database modulo hidden moduli. Our approach is to bpitth the Gentry and Ramzan machin-
ery and to encrypt the message by computing it over multildén moduli, then doing Chinese
Remaindering over the hidden moduli, and using the facttieatan error-correct individual blocks
using the Chinese Remainder Error Correcting Code Theo@&RT-ECC), see for example [8].
This introduces a large alphabet error-correcting codwejelier using the ideas of concatenated-
codes we reduce this to a binary alphabet (by applying stdnel@or correcting codes inside the
CRT-ECC Code) to obtain binary error-correcting code wakinaptotically optimal rate which is
also a semantically secure public key cryptosystem.

1.1 Previous Work

While the notion of a computationally bounded channel hastex for over ten years, it was only
comparatively recently that it was shown to have substiabénefits. The first real success in the
computationally bounded channel model was not until 2005/24], Micali et al demonstrated a
class of binary error correcting codes with positive infation rate, that can uniquely decode from
% — € error rate, under the assumption that one-way functionst.eXihese codes decode from an
error rateabovethe proven upper bound éf— € in the the (unbounded) adversarial channel model.
Here, again, we emphasize the reasonableness of the cdiopailit bounded channel model, since
under the assumption that one-way functions exist, Midadil show thatall channels (that don't
hold the messages for an exponential amount of time) musbimpatationally bounded, or they
could be used as inverters of the one-way function.

In [21], Ostrovsky, Pandey and Sahai applied the computaliyp bounded channel model to
locally-decodable codes, and were able to produce privat@ly decodable codes with constant
information rate, and able to recover from a constant eata, & significant improvement over the
best known locally-decodable codes in the unbounded aavarshannel model, due to Yekhanin,
which require exponential size codewords to recover fromstant error rate.

In this paper, we also consider locally-decodable codethdarcomputationally bounded chan-
nel model but in thepublic key setting Specifically we show that our cryptosystem has constant
ciphertext expansion, i.e. constant information rate, iaridcally decodable from constant error
rate in the computationally bounded channel model.

1.2 Our Results

In this paper, we present the first Public Key Encryptionesystvith local decodability. Our system
is also the first Locally Decodable Code with constant infation-rate which does not require the
sender and receiver to share a secret key. To achieve thigprken the Computationally Bounded
Channel Model, which allows us to use cryptographic todds éne not available in the Adversarial
Channel Model. Our system presents a significant improvemerommunication costs over the
best codes in the information-theoretic setting. Yekhan@odes, described in [27], which are
currently the shortest known locally decodable codes inrtfegmation-theoretic setting, still have



codewords which are exponential in the message size, whileadewords are only a constant
times larger than the message.

Our system has a few disadvantages over the informatimrdtie codes. First, our channel is
computationally limited. This assumption is fairly reaabte, but it is also necessary one for any
type of public key encryption. In [24], Micali et al. show th&a true adversarial channel exists,
which can always introduce errors in a worst-case fashioen bne-way functions cannot exist.
Second, our code has a larger “locality” than most infororatheoretic codes. For example, in
Yekhanin’s Codes, the receiver is only required to readethetters of the codeword to recover one
letter of the message. In our code the receiver mustogéé)) bits to recover 1 bit of the plaintext,
wherek is the security-parameter. It should be noted, howevetrfdhmaintain the semantic security
of the cryptosystem, the receiver must rea(k) bits to recover any single bit of the message. It
is an interesting question whether the locality of our code be reduced from (k%) to o (k).
For long messages, our code still presents a very significgsmovement in locality over standard
error correcting codes. Third, our decryption algorithmas particularly efficient. While it is true
that decryption is fairly computationally intensive, itmains polynomial in the security parameter
k. Throughout this paper we have focused presenting ouritdigms clearly, and have not made
an effort to optimize them where we have felt that it might beconflict with the clarity of the
exposition. We stress, however, that while the algorithmesgnted could undoubtedly be improved
somewhat in efficiency, they are all computationally felesés presented.

2 Preliminaries

2.1 Notation

This paper brings together a number of different cryptogi@puilding blocks, which, unfortu-
nately, have conflicting names and notations. To minimizgugion we use the following nhaming
conventions for our variables.

e X will denote a plaintext message, which will usuallyrbbits in length.

5 = p~ will denote a prime-power modulus used for Chinese Remaiingle

¢ mwill denote an RSA modulus, which, i.e. a product of two apprately equal size primes,
andmwill usually bek bits in length.

e kwill denote our security parameter.
¢ v(k) will denote a function which is negligible ik

e G, will denote the largest cyclic subgroup 6£/mZz)*. Sincem will always be an RSA
modulus, this give$Gny| = ¢(m)/2.

We will use the notatioreg, to denote an element drawn uniformly at random from a set.



2.2 The Small Primes®-Hiding Assumption

The ®-Hiding Assumption is a relatively new computational hasth assumption, which relates
to the difficulty of finding small prime factors df(m), where¢ is the Euler Totient Function. If
a prime p divides ¢(m), we say tham ®-hidesp. The ®-Hiding assumption was first proposed
by Cachin, Micali and Stadler in [3], and a variant was pragbby Gentry and Ramzan in [7].
Our constructions require only the security of the GenteyrRan PIR scheme, and so we make the
following variant of the®-Hiding Assumption

Let 7 denote the set of primes of bit-Ieng§,1 sk be the set of products of two primes 4R,
and lets " C s denote the set of composite moduli tidahide T, i.e.

sy ={m:m=pq {p,q} C2x, p=1 modmy}.

Small Primes ®-Hiding Assumption. For all small prime powersy, Ty such that 3< 1 < ™ <
241, givenb €g {0,1} andme #®, for all probabilistic polynomial-time algorithma, we have

PriA(Th, Ty, m) = b| < %Jrv(k),

for some negligible function(k), where the probability is taken over afi€ #,®, b € {0,1}, and
the internal randomness Af

Thus we are asserting that no probabilistic polynomiaktiatdversary can determine which
prime power a given modulu®-hides. We will sometimes find it convenient to use a slightly
different form. Specifically, we assert that given two madug, m; which ®-hide two prime powers
T, T, No probabilistic polynomial-time adversary can tell wietp = 14 with probability better
than one half.

Lemma 1. Under the Small Prime®-Hiding Assumption, if 3< H <1 < 25‘1, ber{0,1} and
My €R ﬂk"b andmy €r ﬂk"“ Then for all probabilistic polynomial-time adversariés

Oif Ti=1m 1
: <=
lifmp#m ] vk,

-2
for some negligible function(k), where the probability is taken over the internal randorars\,
the choice ofny, my, and the choice db.

Pr[A(mo, m) = {

Proof. Assume there exists a polynomial-time adversamyhich can correctly determine whether
T = Ty with probability % + ¢(k) for some non-negligible functioa(k). GivenTtp, Ty andm such
that TR, ] $(m), we wish to construct an algorith® that guesses, as follows: Pick a random
b’ € {0,1}, and generaten € s, ®. Then runA on (m,m). If A returns O ther returnsby,
otherwiseA’ returns 1-b'. SinceA succeeds with probabilit§+s(k), A’ succeeds with probability
% + ¢(k) which is still non-negligible irk, and thus a violation of thé-Hiding assumption [

In particular, we are asserting that there is no efficienvrtigm which can match thg to the
moduli my significantly better than by guessing randomly. There arevadaveats. First, thg;
must be greater than 3, since every odd nunidides 2, andn=2 mod 3, only ifm ®-hides
3. Second, theg cannot be greater thagim, this is to prevent the lattice based attack described
in [5], [4]. When thep;’s and therg'’s are chosen subject to these restrictions, there are ropeeffi
algorithms known for breaking th@-Hiding assumption.

4



3 Computationally Locally Decodable Codes

3.1 Modeling Noisy Channels

When discussing error correcting, or locally-decodabldesp it is important to consider how the
errors are introduced by the channel. While it may be nataratsume the errors are introduced “at
random”, small changes in the exact nature of these errorsesalt in substantial changes in the
bounds on the best possible codes. The first definition ofsyrabiannel is due to Claude Shannon
[25]. Shannon defined thymmetric channelhere each message symbol is independently changed
to a random different symbol with some fixed probability,|ledithe error rate. An alternative
definition of a noisy channel is Hammingslversarial channelwhere one imagines an adversary
corrupting bits of the message in a worst-case fashionestilginly to the total number of bits
that can be corrupted per block. Most error correcting andllp-decodable codes were designed
for Hamming’s model. Lipton [15] observed in 1994 that theexdarial channel model assumes
that the adversarial channel itself is computationallyaurzled. In that paper, Lipton proposed a
new model oftcomputationally bounded nois@nhich is similar to Hamming’s adversarial channel,
except the adversary is restricted to computation whicholgrmial in the block length of the
code. This restriction on the channel's ability to introdwgrror is a natural one. In fact, this is
implied by our hardness assumption, since we show that aayneh which introduces noise in a
strictly worst-case fashion could be used to breakdtHading assumption. Throughout this paper,
we use Lipton's model.

3.2 Definitions

We extend the standard definition of computational indigtishability for public key encryption to
include the size of the plaintext as a function of the segymdtrameter. That is, we set the plaintext
x to be of lengthk®, wherek is the security parameter amnd> 1. To make our definition more
robust, we allow the adversafyto pass some state informatignwhich could include information
about the plaintexts®,xt, which might be of use in determining which plaintext is emted by
E(PK,X2,r).

The primary difference between this definition and the stashdlefinition of semantic-security,
see Appendix A, is that this definition includes the localabiability property of the cryptosystem.
Roughly, this says that given an encryptioaf a messagg, and a corrupted encryptiansuch that
the hamming distance afandc’ is less thad|c|, the decoder can decode anyXiof the plaintext
x from ¢’ in time significantly less than (k%) = o (|x|).

Definition 1. We callPublic Key Cryptosystem semantically secure (in the sehiselistinguisha-
bility) and d-computationally locally-decodabliéfor all k and for alla sufficiently large; there is a
triple of probabilistic polynomial-time algorithm&, E, D), where

e (PK,SK) « G(1¥,a),

e c— E(PK,xr) (where|x| = k% is a plaintext message of length polynomiakjrandr is the
randomness of the encryption algorithm);

o b/ — D(SK.C,i)



so that for all probabilistic polynomial-time adversarfes

Pr(PK, SK) — G(1¥,a); {x°,x}} — A(PK); A(E(PK,X°,r)) = b] < %+v(k),

wherex? andx! must both be of lengtk®, and the probability is taken over the key generation
algorithm’s randomnes#, randomness used in the encryption algorithia and the internal ran-
domness ofA. Furthermore, it is computationally, locally-decodablhat is, for all probabilistic
polynomial-time adversarie& andA’”,

Pr{(PK,SK) — G(1¥,a0);

(m,y) < A'(PK);

c— E(PK,xr);

{c,i} —A"(cy):
D(SK,c,i) =x]| > 1—v(k),

wherex; denotes théh bit of x, x must be of the lengtk®, ¢’ andc must be of the same length and
the hamming distance betweehandc is at mostd|c|, and where the probability is taken over the
key generation algorithm’s randomness, the randomnesgd in the encryption algorithile and
the internal randomness of bo#yandA”. The information-rate is%l and we call the decryption

algorithmlocally-decodablef its running time iso(k), and theefficiencyof the local decodability
is measured as a function bainda.

4  Construction

4.1 A®-hiding based Semantically Secure Encryption Protocol

Here, we describe a simple semantically-secure public keyyption scheme, that will be an es-
sential building block of our construction. The encryptiprotocol consists of three algorithms,
G, E,D described below.

To generate the key$(1¥) first selects a small prime-powex then generates € 7 le.
m= pg, wherep,q €r 2k, Subject tort | p— 1. The public key will bePK = (g,m, 1) whereg is a
generator for the cyclic group,, andSK= olm),

U
To encrypt a message< Z/1tZ, we have

EX)=g“‘™ modm,
for a randonr € Z/mZ. To decrypt, we do

D(y) = yH(M/— g/ Mo mogm— (g#™/")"  modm

then, using the Pohlig-Hellman algorithm to compute thereig logarithm in the groufg?™/™),
we can recovex modri= x. If ais a small prime, andi = a¢, the Pohlig-Hellman algorithm runs
in time ¢/a. Thus the decryption requires(log(m/T) + ¢,/a) group operations iy, which is
acceptable for small primes In our locally decodable code, we will require multiplefdient
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prime powersry,..., T, and we will choose the small primes as the first primes, i.em =
2%, = 3%, 13 = 5%. If we requiret prime powersr, the Prime Number Theorem, implies that
the largest, will be approximatelytlogt. Sincet will be less than the message length,/a will

be polynomial in the message length, and hence polynomthkisecurity parametér

It is worth noticing that this scheme is additively homontagover the groufZ /1Z, although
we do not have an explicit use for this property. Whes 2, this is just Goldwasser-Micali En-
cryption [9], for largerrtit was described in [1] and [2]. An extension of this schemeddscribed
in [20].

While this protocol is not new, none of the previous desiip of this protocol make use of the
®-hiding assumption, and instead their security is based amosite residuousity assumption,
i.e. itis impossible to tell whether a random group elenie¢longs to the subgroup of ordein
Gm. We are able to prove security under thehiding assumption because tiehiding assumption
is strictly stronger than these other assumptions. Thectimntuis simple, for suppose there exists an
adversaryA which can determine whether a group elemert Gy, is atth power. Noticing that if
Tt \ ¢ (m) exactly 1 inrtelements will bath powers, while if gcdrt, ¢(m)) = 1, theneveryelement
is atth power, by simply sending random group elemdnt® A, and measuring the probability
which A says thath; is ath power, we can distinguish whethHﬂ ¢(m). Our proof of security
essentially follows this reduction.

We now prove the semantic security of this protocol undedit@ding assumption. For clarity
we have broken the proof of security into lemmas 2-5.

Lemma 2. For any adversang, which, givenm € ™, can determine whethére Gy, is 1ith power
with probability at Ieas%, must reply thah is not a th power with probability at Iea% whenhis
selected uniformly at random frof@,.

Proof. Since exactly%[ of the elements i, areth powers, a simple counting argument shows
that if A guesses correctly with probability greater t@nhenA must guess that at least a—]z.’.[%
fraction of the elements are nath powers. Since we require> 5, we conclude thah must guess
that a uniformly chosen group element is natth power with at least probabilitg. |

Now, we notice that even # is given an element from an “impostor” group, it must behawe i
almost the same manner.

Lemma 3. For any probabilistic polynomial-time adversafly such thatA that guesses whether
h er Gy, is atth power with probability at Ieas}, then for a uniformly chosel’ eg G,y where
m € s\ 7,7, i.e. Tty ('), Amust guess thatis not arth power with probability at Iea%—v(k)
for some negligible function.

Proof. AssumeA guesses that a uniformly choskher Gy is not amth residue with probability
less than% —g(k) for some non-negligible function. Then we can us@ to break the®-hiding
assumption. Given a modulus where we wish to determine lf[| ¢(m), we simply choose a
random element ih eg Gy, and runA onh. If A says thahis atth power inGp, i.e. A(h) =1, we
say thatrt ¢ (m). We denote the output & on the inputh by

Alh) = 0 if his armth power,
~ | 1 if hisnot arth power.



Then, calculating the probabilities, we have

T ¢(m) | T (m)
Ah=1| 2+¢ | <2
Ah)=0| 3-

€ >3
From this, we can calculate the conditional probabilities,
e
2+3+¢
+5+i+e
S+e

5,¢e_, &g €
gTotats

Prrty ¢(m) : A(h) =0] >

>

v

_G+e(G+E)
5
ate
1 e
2 5
A similar calculation holds in the other case, and siede is non-negligible, we conclude that we
break thed-hiding assumption with non-negligible probability. |

Lemma 4. If there exists a probabilistic polynomial-time adversdnthat can guess whether
h er Gy, is atth power with probability% + ¢, whereg(k) is non-negligible, then there exists a
probabilistic polynomial-time adversa#gy that guesses correctly with probability greater téan

Proof. This is clear, since we can amplif's probability of success by runningy a polynomial
number of times omr™ for randomly chosen eg G, [ |

We are now ready to prove the semantic security of our enorygcheme.
Lemma 5. This protocol is semantically secure under the Small Prigré4iding Assumption.

Proof. Since this cryptosystem is additively homomorphic, to sltaat no polynomial-time adver-
sary can distinguisk (xp) from E(x,) it suffices to show that no polynomial-time adversary can dis
tinguishE (x) from E(0), for any 0+£ x € Z/TZ. Now, ifr eg{1,...,|Gm|}, thenE(0) = g™ = (g")"

is a randonmth power inG,. We now proceed by contradiction. Suppose there existsyapolial-
time adversanA such that

1 otherwise | ~ 4

PF[A(E(X)):{ 0 ifx=0, } 3
We can useA to construct an algorithnd’ which breaks theb-hiding assumption. Suppo%
wishes to determine whether sommes #,", i.e. Whethem| ¢(m). Then,A’ chooses ah €g G,
at random, and computd&. If it ¢(m), thenh will still be a uniformly chosen element froG.
On the other hand, |ﬁ| ¢ (m) thenh™ will be a 1th power. By Lemma 3, in the first cagemust
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say thath™ is not amnth power with probability at Ieag —v(Kk), while in the second case, by the
definition of A, A must say thah™ is not atth power with probability at mosﬁ. The conditional
probabilities become

Uk

—~

m) | Tgo(m)

5
<§+V

w

>
<

ENT IR INIA
vV
ool

|

<

Then we have

+
< oolulfhlw
|

o<

—
[Eny
|
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Hlo
_|_
<
SN—

Y
|2 oo
4

=<

—
Rlo
|

5N

~—

+/—\
< |oof
+
=

ol <

Sincev is negligible, we see that we are correct with probabiligngicantly greater thar%. A
similar calculation holds in the other case, so we can breakbthiding assumption with non-
negligible probability. |

The protocol described above requires the user to kride encrypt a message which is
clearly contrary to the spirit of thé-hiding assumption. The key fact that will use is that given

T, Ty andmg € #,°, my € ﬂkn(l’b), we can encrypx modulo bothrg, T by calculating
g5 '™ modmy andgi ™™ modmy.

Thus we have two encryptiong,(x modTtgp) andE(x modry), but the sender cannot distinguish
between them. It is exactly this property that allows the tBeRamzan PIR scheme to function,
and it will be this property that prevents any adversariarciel from destroying any bit of the
message in our encryption scheme.

4.2 Binary Error Correction

A drawback of many error-correcting codes, and locallyediedle codes is that they are defined
over large alphabets. In practice, all these codes are imgnieed on computers, where the natural
alphabet is{0,1}. Thus when we say that a code like the CRT ECC or Reed-Solomdeasccan
tolerate a constant fraction of errors, we mean a constactidin of errors in their natural alphabet.
In the CRT ECC, if one bit of each remainder corrupted, theeena guarantees that the message
will not be corrupted. Binary error correcting codes do £xist they are generally not as efficient
as codes over larger alphabets.

To allow our code to tolerate a constant fraction of errorthabits of the ciphertext, we will
make use of a binary error correcting code ECC, with two prtigse
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e |ECC(x)| = c|x| for some constart,
e ECC can recover from an error-rate %)# din thebits of ECC(x).

Such codes exist, fob > % in the unbounded adversarial channel model, ane 0 in the
computationally bounded channel model. See Appendix B fapee in-depth discussion.

4.3 Error Correcting Public Key Encryption

We are now ready to describe our construction. Given a meséag{0,1}", we first divideX into
blocks X; of size/k. As in the Gentry-Ramzan PIR scheme, we view each block asrdoeuin
the range{0...2}. Our public key will bef' RSA moduli{my,...,men} such that each moduli

®-hides a prime power; for 1 <i <[] and 1< j < {%ﬂ Exactly which prime is hidden by
which moduli will be chosen at random at the time of key geti@na and is part of the receiver’s
secret key. Then, for each blogk, the sender encrypts mod; for j =1... (%ﬁ where each
TG; is roughly of sizedk. Notice here that we have uspdimes as many moduli as necessary, thus

for each blockX; we have effectively calculated an encoding¥ptunder the CRT ECC which can
1

toIerate(i — 2—1’)) g corrupted moduli, see Appendix C. We do this for each blockl thus the

resulting encryption i%ﬁ - 7k residues. Since each residue is of dizéhe encryption of the whole

message is how o;iz%é = S—I’I encryptions of sizé. Finally, we encode each of tl'% encryptions
independently using the error correcting code in 84.2. Sdioal encryption is of size’%1 bits,
which is a constant multiple af. This encryption is error correcting because as long as nme mo
than% — zi of the residues that encode a given block are corrupted, lduk loan be recovered
correctly by first decrypting each residue, and then recoaiihg the CRT ECC. This cryptosystem
is also locally-decodable since to decrypt a given blocklffices to decrypt th%é encryptions that
encode it. We now define a triple of algorithi@sE, D for our encryption scheme.

First, we describe key generati@{1*, a)

e Let p,...,p be primes with 5< p; < p2 < -+ < pt, and choose; = Lﬁgp.J thusc; is
the largest integer such that Iggf') < dk, for somed < %1. Setr; = p{*. To encryptn-bit
messages, we will need to chodse S—E. Sincen = k%, this become$ = %A.

e Generate a random permutatiorer §, the symmetric group ohelements.
e Generate modulin, ..., m such thain, € ﬂk""“), i.e. m ®-hidesTy;).
e Find generators; of the cyclic group<Gy, .

The public key will then be

PK = ((gl)ml’nl)"' i (glarnhni)))

and the secret key will be

SK— (0’ (M) <I>(mt)> _

o) T
Encryption then works as follows, given arbit message,
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e BreakX into ;. blocksX; of sizelk, and treat eaclf; as an integer in the rand@. .. 2k},

e For blockX;, we will use thes prime powersy;_y)s,. .., Tis—1 to encodeX;. To do this, using
the Chinese Remainder Theorem, genebateuch thatX = X mod(Tf;_1)s;1---Tis). TO

recover from error-ratg — 2—1p we sets= 2.

e Generate a randome {0,..., Ty - T }.
e Then calculatdy = gii“"l“'“ modm for eachi € {1,...,t}. Thus
h=E(X modmy;) =E(X; modry)),
where(j—1)s+1 < o(i) < js, andE is the encryption protocol described in §4.1.
¢ Apply the binary Error Correcting Code ECC to edglindividually.
e The encryption is then thetuple (ECC(h;),ECC(hy),...,ECCh)).
To decrypt theth block, of a messagk from thet-tuple (hy, ..., h)
e Select thesencryptions that encod§, {ECC(h;-1((i_1)s11)), - - - » ECCNg1is)) }-
¢ Decode each EC(@;) to find obtain{hs-1((i_1)sy1), - -,No-1(is) }-

e Decrypt each of thes encryptions using the decryption algorithm from 84.1. Tises
ay,...,as whereaj = X mod(T4;_y)sy)-

¢ Using the Chinese Remainder Code Decoding Algorithm, r&tcoct X; from thes remain-
dersay,...,as. Note that if there are no errors introduced, this step careplaced by simple
Chinese Remaindering.

We have introduced many parameters in the definition of tthemme, and their roles can be
summarized as follows

the number of bits in the message

the security parameter.

the relation between andk, n = k“.

the total number of moduli used. We will get £¢.

the fraction of bits that can b&-hidden,d is a fixed constand < %1.

a parameter which affects the “spread” of the code. We wiloste/ ~ k.
the number off encoding each block, for us= %‘)’.

is the expansion factor of the error correcting code ECC.

is the expansion factor of the CRT ECC we get 2—16, to recover from error-raté —0.

DT OO SO0 T Q X S

There is an unfortunate tradeoff between the public key, svbéch is proportional to the mes-
sage size, and the usefulness of the local-decodabilitthelfmessagX is very long, the local-
decodability of this code makes it significantly more robagainst concentrated errors than a sim-
ple error-correcting code, while K is very short, the public key remains short, but the local-
decodability becomes meaningles$Xf < ¢k. If £ =k, this means that we need> 2 to achieve
local decodability.
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4.4 Local-Decodability

One of the most interesting features of our constructiorhéslocal-decodability. To recover a
small portion of the messag¢, only a small portion of the ciphertexXECC(h;),...,ECC(h))
needs to be decoded. During encryption the mesXagebroken into blocks of lengtlik bits,
and this is the smallest number of bits that can be recoveredtime. To recover a single bit
of X, or equivalently the entire block; that contains it, we must reaxblocks of the ciphertext
{ECC(hafl((i_l)erl)), e, ECC(hO-—l(iS))}. Since|hj| = kand|ECC(h;)| = ck, we must read a total
of sck= %. Since the probability of error will be negligible i) we setl =~ k, and sinced < %,
we find that we need to read? bits of the ciphertext to recover one bit of the plaintext,en

¢ andp are parameters that determine the error-rate of our codas @tr system only achieves
local-decodability fon = o (k*+¢). Forn~ k3, our system already offers a significant improvement
over standard error-correcting codes. It should also bedhdhat for any semantically-secure cryp-
tosystem, to recover one bit of the plaintext, you must readéeesto (k) bits of the ciphertext. Itis
an interesting question whether the locality of such a sehean be improved from (k?) to o (k).

4.5 Running Time

We now show that the three algorithn@& E,D probabilistic polynomial-time algorithms in the
security parametex.

We begin by analyzings. Choosing ther and the permutatiow, can clearly be done in
polynomial-time, so it only remains to show that generatimge s, can be done in polynomial-
time. We can find primep € 2, in polynomial-time, by simply choosing random numbers and
testing them for primality using an algorithm like the Rabiller primality test [22] or the de-
terministic algorithm presented in [16]. The Prime Numb&edrem tells us that the density of
primes of IengtHg is asymptotic toE, so we expect to find a prime after only a polynomial number
of guesses. A similar theorem, also proven by de la Valés$tougives the density of primes of
Iength% in the arithmetic progression{1mn to be asymptotic tqﬁ, S0, in either case we expect
to find a primep such thatp =1 modm after o (k) guesses. This allows us to generateg #,
in polynomial time.

The encryption algorithnE will be polynomial-time ink, X can be computed in polynomial-
time using the Chinese Remainder Theorem, an&leg? logX. Thus the encryptions cayf ™ T
can be done in polynomial time using the square-and-mulgajgorithm.

Finally, the decryption will be polynomial-time becausedgting eacth; to X modTj) in-
volves a single exponentiation, which can be done in polyabtime via the square-and-multiply
algorithm. Then recovering the blo¢k is done via the polynomial-time CRT-ECC algorithm de-
scribed in [12].

4.6 Proof of Security

The semantic security of our system follows immediatelyrfrhe semantic security of the under-
lying cryptosystem. So here, we only show correctness, that the system is computationally
locally-decodable up to a constant fraction of errors. Byaoryption of a messagé, we mean a
t-tuple (ECC(hy),...,ECC(h;)) wheret = ﬂ and eacth; is an element 0G,. We show that our
decoding algorithm decodes correctly with all but negligiprobability, at most % — & fraction of
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the bits of the encryption have been corrupted by a polynietiniee adversaryA. Notice that our
algorithm will decode a block; correctly whenever no more th%’%” of the hj that encode it are
corrupted. Thus we will show that any polynomial-time adegy that corrupts é— o fraction of
the bits, only corrupts more thé‘of theh; that encode a given block of the message with negligible
probability. We prove this through a series of lemmas.

We begin by noticing that any adversakthat corrupts at mos} — o fraction of thebits of the
message, can only corrupt at mosﬁ a & — & fraction of theh.

Lemma 6. Given (ECC(hy),...,ECC(h)), where ECC recovers from a binary error-rate}of 8,
any adversanA that corrupts at mos} — 0 bits of the entire codeword, can corrupt no more than
3-8+ of theh

Proof. This is simply counting.A can corrupt a total of%1 — d)ct|hy| bits, and to corrupt onk; A
needs to spend% —0)clhi|, thusA can corrupt at mos{t% — 38— 8t of theh; since

<4 t
(3-9)clhi| 30
L)
1-8
(1 < o
_(E 0—0° |t

For the rest of the proof of correctness, we assumeAlmtestricted to corrupting é— o— &
fraction of theh;, rather than}1 — 0 bits of the message.

Now, we show that any such corrupting adversary cannot tietbhether inputs are “well-
formed”, i.e. A behaves in an indistinguishable manner whethertttuple (hy,...,h) is a valid
encryption or not.

Lemma 7. For all probabilistic polynomial-time adversari@s such thatA introduces errors it-
tuples(hy,...,h), where eacln; € G, and eachm; ®-hides a distinct prime-powaer, thenA will
also introduce errors itxtuples(hy,...,h) where eactm ®-hidesthe samerime-powerrs.

Proof. Instead of runningA on at-tuple where each modulus ®-hides a distinctt, we provide
A with t-tuple in which each modulusy @ hidesthe samat AssumeaA fails to introduce errors
on this malformed input with non-negligible probability Now we proceed via hybrid argument.
Since the probability thé fails ont moduli ®-hiding the samer, is € greater than when each
®-hides a different prime, then triangle inequality tellsthiat there must be somié < t such that,

, . . . €
|Pr{A fails whent* my ®-hide the samet| — Pr{A fails whent* + 1 my ®-hide the samex || > T
We can now usé to break theb-hiding assumption. Given a modulag such tham* ®-hidestt*
whereTtt" equalsrg or 1, we construct™ modulimy, ..., m- that ®-hide 1, andt —t* — 1 moduli

M41,...,M_1 that®-hide primes other thary, . We then rurA, on thet-tuple (hy, ..., h_1,h*)
whereh; € Gy, for 1 <i <t, andh* € Gy If Afails to introduce errors on thistuple, we say than*
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®-hidestp. This algorithm correctly distinguishes whethat ®-hidesty or Ty with probability
at least} + £. Although, we do not know the exact value f we can we can guess it with
probability % to obtain an algorithm which decides whethmt ®-hides 1y with advantagez%
which is a violation of theb-hiding assumption. |

If eachm, ®-hides the samg, thenA must distribute errors randomly among the blocks, since
the notion of blocks in this case is completely arbitraryc®A must behave identically when each
m; ®-hides the same modulus as when theydahide different moduli, we obtain the following
lemma.

Lemma 8. If Ais a probabilistic polynomial-time machine, the distribatof the errors among the
®-hidden modulirg is computationally indistinguishable from random.

Proof. Suppose there exists a distinguistizrthat can distinguish the corruptions introduces
among thehy; from random with advantage Then we rurD on A’'s output wherA is given moduli
that ®-hide between one artddistinctts. When we rurA on at-tuple (hy,...,h) where eachm
®-hides the samg, in this situationA must distribute errors randomly, sinéeéhasno information
about the underlying blocks. Thus in this situatidh,cannot distinguishA’'s corruptions from
random with probability greater tha%’; since in this casé'’s corruptionsare random. Now we
proceed via a hybrid argument. Wheénis run on moduli thaid-hide t distinct 15, thenD can
distinguishA’s corruptions from random with advantagethus by the triangle inequality, there
exists a* < t such thaD can distinguishA’s output whenA is run on modulit* of which are then
same, fromA’s output whenA is run on modulit* + 1 of which are the same, with advantage
This allows us to break th@-hiding assumption in exactly the manner described befGieen a
modulusnt* that®-hides either or 1, we construct* modulimy, ..., m- which all ®-hide T, and
t—t*— 1 modulim-_1,...,m_3 which all ®-hide different moduli. Then we ruB on A’'s output,
whenAis given(my,...,m_1,m"). By the definition ot* D succeeds in distinguishing whethaf
®-hidestp with advantages;. Thus by guessing a random value{ih ...t — 1} for t*, we break
the ®-hiding assumption with advantag&, a contradiction. |

Lemma. If A distributes(;l1 —d)t errors at random, the probability thatdestroys any given block
X; is negligible in’.

Proof. If A distributes errors at random, then we can vi@vas selecting remainders at random
to corrupt. The adversari destroys a block; exactly whenA corrupts more thar% — 0 of the
remainders that encode that block, the probability fhedestroys a block is exactly the probability
that more tham% — 5)% moduli that encode; are corrupted. This distribution is then the Hyperge-
ometric Distribution, Wheré’df items are selected ar@ — &— &)t of which are corrupted. In [13],
Hush and Scovel give the bound

o d )[R ]
Pr| # of errors in encoding of block; > (%—6) %q <e ("“")< @ >,

which is clearly negligible irt. |

Lemma 10. If at most(%1 —d)t of thet encryptions are corrupted by a probabilistic polynomiialet
adversan, then the probability that any bit of the message fails tadegroperly is negligible in
K.
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Proof. For a given block; the probability that block is damaged under the corruptareated byA

is negligibly different ink than if A produced the corruptions at random, which itself would dgena
Xi with only negligible probability inf. Taking/ =~ k, we have that the block; is damaged with
at most negligible probability ik. The union bound then gives that the probability thay block
X is damaged is at mosttimes the probability that a specific block is damaged, wharhains
negligible ink. |

4.7 Extensions

It should be clear that choosing to encode each block by tagscmany moduli as necessary was
fairly arbitrary. By increasing the redundancy of the CRT@&@e would increase the error-
tolerance, and also the ciphertext expansion.

This scheme also benefits nicely from the methods describg#l]. As in 84.3, we break our
messageX into ¢k-bit blocks Xy,...,X. Then, before applying the CRT ECC to each block, we
sign each block using any Public Key Signature Scheme whi@xistentially unforgeable under
the chosen message attack. The existence of such a schenpiésliby the existence of a one-way
function [23], which in turn is implied by thé-Hiding assumption. We can improve the efficiency
of the digital signature by using the standard trick of fimshing the message, the signing the hash.
Since every PIR protocol is a collision-resistant hash fiond26], we can use the Gentry Ramzan
PIR to first “hash” the/k bits in a block down tdk bits, then sign the resultinkrbit block. Now,
we proceed as before, encoding each signed block usingddeiCRT ECC, and finally each of
these blocks is further encoded by a binary ECC. As mentiahese, the rate of the binary ECC
can also be improved via this method.

To decode, we first decode the binary ECC, thenligstedecodethe hidden CRT ECC using
one of the list-decoding methods described in [8] or [12]efhwith all but negligible probability,
only one of the possible decodings will be a vadignedblock. This has the effect of improving
the information rate of the CRT ECC. It should be noted thatsmlheme has constant codeword
expansion, and can recover from constant error-rate evilloumtithese improvements. The use of
digital signatures before applying the CRT ECC or the birta®C has the effect of increasing the
maximum tolerable error-rate, and decreasing the codeexpension.
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Appendix

A Semantic Security

By aPublic Key Cryptosystemve mean a triple of probabilistic polynomial time algoniteG, E, D,
such that(PK, SK) < G(1¥), ¢ +— E(PK,x,r) X « D(SK c) WherePK, SK denote the public and
secret keys ang = x w.h.p for the same message. A public key encryption systesansntically
secure if, given two messagg$ andx?, b g {0,1}, and an encryption of one of the messages,
E(PK,x?), no polynomial time adversary can determimavith probability significantly greater
than one half. That is:

Definition 2. A Public Key CryptosystenG, E, D, with security parametedeis calledsemantically
secure(in the sense of indistinguishability) if for all messagérp4x®,x'} and for all probabilistic
polynomial time adversarie&, and for allb g {0, 1},

Pr{(PK, SK) «— G(1); {x0,x}} — A(PK); A(E(PK,x,r)) = b] < %—kv(k)
Wherex? and x* must be of equal length, and the probability is taken overkéage generation
algorithm’s randomness, choice bf randomness used in the encryption algorithia and the
internal randomness &.

B Constant Rate Binary Error Correcting Codes

For our scheme to have constant information rate, we needdcafbinary error-correcting code
which can tolerate an error-rate %)f— 0.

One method for creating such a code, uses the notion of Cametad Codes, originally de-
scribed by Forney in [6]. By combining a Reed-Solomon Codeg arRandom Linear Code as
described in [11], it is possible to obtain a binary erromreoting code which recovers fro@— 0
error-rate, but the information-rate of the resulting cexeery low, about 10 for their construc-
tion.

Since we are working in the computationally bounded chamwalel, we can take advantage of
the constructions described in [24], to create a binary wiﬂeerror-rate% — 9, and significantly
better information rates than in the unbounded channel mégglying Micali et al’s construction
to the binary codes with list-decoding rageand information raté* described in [10], we obtain a
code which uniquely decodes from error-réte 9, and has information rate abogt

C CRT-Based Error Correction

It was observed in the 1970s [17], [18], [19], that the ChinBemainder Theorem could be used to
make efficient Error Correcting Codes. The encoding prosassy simple. Ifry, ... T, Thi, - - -, That
an increasing sequence of pairwise coprime integersii.e. 1 < --- < Thy, and gedrg, ;) = 1
wheneveri # j. Then for any integex with x < i, T, we encodex as the(n+t)-tuple {x
modps,...,X modpnt}. If x andX are distinct integers less thgml,, then the two vectors
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E(x) = {x modTmy,...,x modm,} andE(X) ={xX modm,...,X modm,,} must differ in at
leastt + 1 coordinates since the residue>omoduloany nof the moduliTg uniquely determines
x. Thus the minimum distance in this codetjsand so it can corredts | errors. Thus if we take
n+t = pn, this code can recover from error-ra}e 2—1p, in the digits of the code.

This code differs significantly from most other error cotieg codes in that each “digit”, i.e.
each remainder, of the codeword carries a different amouirtfarmation. Thus the Hamming
distance between two codewords, measured as the numbenaihcers in which they differ is not
the natural distance to consider for this code. This factatiendling an efficient decoding algorithm
a nontrivial task. In his original paper in 1972, Mandelbaproposed an algorithm that ran in
expected polynomial-time. Since then, many variants dof atgorithm have appeared, but it was
not until 2001 [12] that the first polynomial-time decodirigaithm was found. Since the Chinese
Remainder Codes are efficiently list decodable [8], [12], cae apply the technique in [24] of
combining list-decoding with digital signatures to ourjmaol to further improve the information-
rate.

D Gentry-Ramzan PIR

While our scheme does not explicitly rely on the Gentry-RamBIR scheme, our protocol was in-
spired by their use of th@-hiding assumption to do “hidden” Chinese Remainderinghéninterest
both of giving some context for our scheme, and of showingtwelse can be achieved by hidden
Chinese Remaindering, we briefly sketch the Gentry-RamzaatP Information Retrieval scheme
[7]. This scheme allows computationally private singleaffaise PIR with constant communication
rate under the&d-hiding assumption. Here “constant” means proportiondh&security parameter.
The scheme allows retrieval of entire blocks at once, andgtheme we describe will retrieve an
£-bit block from ann-bit database.

The scheme assumes some initial set-up. First, sequencealif @imesps,..., p; are fixed
in advance. Then we sét= [n/t], andc; = [log,, £]. Settingr = p-, we have thatg > 2° for
all i, and the integersy, ..., % are pairwise relatively prime. This initial set-up is assao be
known to both the user and the database, and is not includig ipommunication complexity of
the scheme.

To begin the scheme, the database must do some pre-prardssiead of viewing the database
as a singlen-bit string, we instead view it as a concatenatiort &#bit integersay,...,a. Recall
that we have chosen ooy such that; < 15 for eachi. Using the Chinese Remainder Theorem, the
database can find an integex |‘|}:1Tri, such thae modT; = a;.

To retrieve thejth block of the database;, the user then chooses an RSA modutus pqthat
®-hidesT;, and ag for cyclic the groupGn, i.e. g has order@ in (Z/mz)*. Sincery|$p(m), we
have thatGm has a subgroup of order,. Lettingq = "’2(—]? this subgroup is generated bf. The
user then sends both, andg to the database. The database calculgtesnodm and returns the
result.

Giveng® modm, the user then calculatég®)? = (g9)° = g° ™9™ modm sinceg® has order
1 in Gy, Then by performing (a tractable) discrete-log computatiothe subgroup of orde;
generated by the user recovers modT; = a;. Using Pohlig-Hellman algorithm this discrete-log
computation can be calculatedar{c;/pj) time.

19



If log,(m) = k, then the user sends Bits to the database, and the database replieskaitts,
so the total communication complexity ik Bits. To avoid the lattice-based attacks described in [5]
and [4], we must choos®a such thatrg < m# for all i,l.e.l <4k
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