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Abstract

In this paper, we introduce the notion of a Public-Key Encryption (PKE) Scheme that is
also a Locally-Decodable Error-Correcting Code. In particular, our construction simultaneously
satisfies all of the following properties:

• Our Public-Key Encryption is semantically secure under a certain number-theoretic hard-
ness assumption (a specific variant of theΦ-hiding assumption).

• Our Public-Key Encryption function hasconstant expansion: it maps plaintexts of length
n (for anyn polynomial ink, wherek is a security parameter) to ciphertexts of sizeO (n+
k). The size of our Public Key is also linear inn andk.

• Our Public-Key Encryption is also aconstant ratebinary error-correcting code against
any polynomial-time Adversary. That is, we allow a polynomial-time Adversary to read
the entire ciphertext, perform any polynomial-time computation and change an arbitrary
(i.e. adversarially chosen) constant fraction ofall bits of the ciphertext. The goal of the
Adversary is to cause error in decoding any bit of the plaintext. Nevertheless, the decod-
ing algorithm can decodeall bits of the plaintext (given the corrupted ciphertext) while
making a mistake onanybit of the plaintext with only a negligible ink error probability.

• Our Decoding algorithm has aLocal Decodability property. That is, given a corrupted
ciphertext ofE(x) the decryption algorithm, for any 1≤ i ≤ n can recover thei’th bit
of x (i.e., xi) with overwhelming probability reading at mostO (k2) bits of the corrupted
ciphertext and performing computationpolynomial in k. Thus, for large plaintext mes-
sages, our Public Key Decryption algorithm can decode and error-correct anyxi with
sublinear (in|x|) computation.

We believe that the tools and techniques developed in this paper will be of independent interest
in other settings.
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1 Introduction

Error correction has been an important field of research since Shannon laid the groundwork for a
mathematical theory of communication in the nineteen forties. An error correcting code is a pair of
algorithmsC andD such that given a messagex, C(x) is a codeword such that, given a stringy, if
the Hamming Distance betweend(C(x),y) is “small”, thenD(C(x)) = x. When speaking of an error
correcting code, two of the most important characteristicsare theinformation rate, which is the ratio
of the message size to the codeword size|C(x)|

|x| , and theerror rate which is the smallestε such that
if d(C(x),y) > ε|C(x)| thenD(C(x)) fails to recoverx uniquely. Since the field’s inception, many
codes have been found that exhibit both constant information rate, and constant error rate, which,
in a sense, is optimal. These codes all share the property that to recover even a small portion of
the messagex from the codewordy, the receiver must decrypt the entire codeword. In [14], Katz
and Trevisan posed the question: can codes be found in which asingle bit of the message can be
recovered by decrypting only a small number of bits from the codeword? Codes of this type are
calledlocally-decodable, and would be immensely useful in encoding large amounts of data which
only needs to be recovered in small portions, for example anykind of database or archive. Currently
the best known locally-decodable codes are due to Yekhanin [27] and that can tolerate a constant
error rate, have exponentially small information rates.

It was shown by Katz and Trevisan [14], that any information-theoretic Private Information
Retrieval (PIR) scheme can be transformed into a locally-decodable code. While this provides a
new approach to the problem of constructing efficient locally-decodable codes, so far it has not
lead to any codes with sub-exponential size codewords, as weare still unable to construct efficient
information-theoretic Private Information Retrieval schemes.

Recently, Micali, Peikert, Sudan and Wilson [24] showed that by changing the model of how
errors are introduced, existing error correcting codes could be significantly improved. Their work
used the Computationally Bounded Channel Model, first proposed by Lipton [15]. In this model,
errors are not introduced in codewords at random, but in a worst case fashionby a computationally
bounded adversary. This realistic restriction on the power of the channel allowed for the intro-
duction of cryptographic tools into the problem of error correction. After seeing the dramatic im-
provement of error-correcting codes in this model, a natural question then becomes whether locally-
decodable codes can be improved in the computationally bounded channel model.

The first real progress in this setting was recently accomplished by Ostrovsky, Pandey and Sahai
[21], where they showed how to construct a constant information-rate, constant error-rate locally-
decodable code in the case where the sender and receiver share a private key. This left open the
question whether the same can be accomplished in the Public-Key setting, which does not follow
from their results. Indeed, a naı̈ve proposal (that does notwork) would be to encrypt the key needed
by [21] separately and then switch to the private-key model already solved by [21]. This however
leaves unresolved the following question: how do you encrypt the [21] key in a locally-decodable
fashion? Clearly, if we allow the adversary to corrupt a constant fraction of all the bits (including
encryption of the key and the message), and we encrypt the keyseparately, then the encryption of
the key must consume a constant fraction of the message, otherwise it can be totally corrupted by
an Adversary. But if this is the case all hope for local decodability is lost. Another suggestion is
to somehow hide the encryption of the key inside the encryption of the actual message. It is not
clear how this can be achieved. Thus, a new, and completely different, approach must be taken.
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Indeed, in this paper, we show a Public-Key Encryption whichachieves constant information-rate
and constant error-rate code with local decodability.

High Level Idea of Our Construction. At a very high level, our approach is as follows: Gentry and
Ramzan [7] described a computational PIR scheme that allowsthe sender to retrieve remainders of
the database modulo hidden moduli. Our approach is to build upon the Gentry and Ramzan machin-
ery and to encrypt the message by computing it over multiple hidden moduli, then doing Chinese
Remaindering over the hidden moduli, and using the fact thatwe can error-correct individual blocks
using the Chinese Remainder Error Correcting Code Theorem (CRT-ECC), see for example [8].
This introduces a large alphabet error-correcting code, however using the ideas of concatenated-
codes we reduce this to a binary alphabet (by applying standard error correcting codes inside the
CRT-ECC Code) to obtain binary error-correcting code with asymptotically optimal rate which is
also a semantically secure public key cryptosystem.

1.1 Previous Work

While the notion of a computationally bounded channel has existed for over ten years, it was only
comparatively recently that it was shown to have substantial benefits. The first real success in the
computationally bounded channel model was not until 2005. In [24], Micali et al demonstrated a
class of binary error correcting codes with positive information rate, that can uniquely decode from
1
2− ε error rate, under the assumption that one-way functions exist. These codes decode from an
error rateabovethe proven upper bound of1

4− ε in the the (unbounded) adversarial channel model.
Here, again, we emphasize the reasonableness of the computationally bounded channel model, since
under the assumption that one-way functions exist, Micali et al show thatall channels (that don’t
hold the messages for an exponential amount of time) must be computationally bounded, or they
could be used as inverters of the one-way function.

In [21], Ostrovsky, Pandey and Sahai applied the computationally bounded channel model to
locally-decodable codes, and were able to produce private locally decodable codes with constant
information rate, and able to recover from a constant error rate, a significant improvement over the
best known locally-decodable codes in the unbounded adversarial channel model, due to Yekhanin,
which require exponential size codewords to recover from constant error rate.

In this paper, we also consider locally-decodable codes, inthe computationally bounded chan-
nel model but in thepublic key setting. Specifically we show that our cryptosystem has constant
ciphertext expansion, i.e. constant information rate, andis locally decodable from constant error
rate in the computationally bounded channel model.

1.2 Our Results

In this paper, we present the first Public Key Encryption system with local decodability. Our system
is also the first Locally Decodable Code with constant information-rate which does not require the
sender and receiver to share a secret key. To achieve this, wework in the Computationally Bounded
Channel Model, which allows us to use cryptographic tools that are not available in the Adversarial
Channel Model. Our system presents a significant improvement in communication costs over the
best codes in the information-theoretic setting. Yekhanin’s Codes, described in [27], which are
currently the shortest known locally decodable codes in theinformation-theoretic setting, still have
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codewords which are exponential in the message size, while our codewords are only a constant
times larger than the message.

Our system has a few disadvantages over the information-theoretic codes. First, our channel is
computationally limited. This assumption is fairly reasonable, but it is also necessary one for any
type of public key encryption. In [24], Micali et al. show that if a true adversarial channel exists,
which can always introduce errors in a worst-case fashion, then one-way functions cannot exist.
Second, our code has a larger “locality” than most information-theoretic codes. For example, in
Yekhanin’s Codes, the receiver is only required to read three letters of the codeword to recover one
letter of the message. In our code the receiver must readO (k2) bits to recover 1 bit of the plaintext,
wherek is the security-parameter. It should be noted, however, that to maintain the semantic security
of the cryptosystem, the receiver must readO (k) bits to recover any single bit of the message. It
is an interesting question whether the locality of our code can be reduced fromO (k2) to O (k).
For long messages, our code still presents a very significantimprovement in locality over standard
error correcting codes. Third, our decryption algorithm isnot particularly efficient. While it is true
that decryption is fairly computationally intensive, it remains polynomial in the security parameter
k. Throughout this paper we have focused presenting our algorithms clearly, and have not made
an effort to optimize them where we have felt that it might be in conflict with the clarity of the
exposition. We stress, however, that while the algorithms presented could undoubtedly be improved
somewhat in efficiency, they are all computationally feasible as presented.

2 Preliminaries

2.1 Notation

This paper brings together a number of different cryptographic building blocks, which, unfortu-
nately, have conflicting names and notations. To minimize confusion we use the following naming
conventions for our variables.

• x will denote a plaintext message, which will usually ben bits in length.

• πi = pci
i will denote a prime-power modulus used for Chinese Remaindering.

• mwill denote an RSA modulus, which, i.e. a product of two approximately equal size primes,
andm will usually bek bits in length.

• k will denote our security parameter.

• ν(k) will denote a function which is negligible ink.

• Gm will denote the largest cyclic subgroup of(Z/mZ)∗. Sincem will always be an RSA
modulus, this gives|Gm|= ϕ(m)/2.

We will use the notation∈R, to denote an element drawn uniformly at random from a set.
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2.2 The Small PrimesΦ-Hiding Assumption

The Φ-Hiding Assumption is a relatively new computational hardness assumption, which relates
to the difficulty of finding small prime factors ofϕ(m), whereϕ is the Euler Totient Function. If
a prime p dividesϕ(m), we say thatm Φ-hides p. TheΦ-Hiding assumption was first proposed
by Cachin, Micali and Stadler in [3], and a variant was proposed by Gentry and Ramzan in [7].
Our constructions require only the security of the Gentry-Ramzan PIR scheme, and so we make the
following variant of theΦ-Hiding Assumption

Let Pk denote the set of primes of bit-lengthk2, H k be the set of products of two primes inPk,
and letH π

k ⊂ H k denote the set of composite moduli thatΦ-hideπ, i.e.

H
π

k = {m : m= pq, {p,q} ⊂ Pk, p≡ 1 modπ}.

Small PrimesΦ-Hiding Assumption. For all small prime powers,π0,π1 such that 3< π0 < π1 <

2
k
4−1, givenb∈R {0,1} andm∈ H πb

k , for all probabilistic polynomial-time algorithmsA, we have

Pr[A(π0,π1,m) = b]≤ 1
2

+ ν(k),

for some negligible functionν(k), where the probability is taken over allm∈ H πb
k , b∈ {0,1}, and

the internal randomness ofA.

Thus we are asserting that no probabilistic polynomial-time adversary can determine which
prime power a given modulusΦ-hides. We will sometimes find it convenient to use a slightly
different form. Specifically, we assert that given two moduli m0,m1 whichΦ-hide two prime powers
π0,π1, no probabilistic polynomial-time adversary can tell whetherπ0 = π1 with probability better
than one half.

Lemma 1. Under the Small PrimesΦ-Hiding Assumption, if 3< π0≤ π1 < 2
k
4−1, b∈R {0,1} and

m0 ∈RH
πb

k andm1 ∈RH
π1−b

k Then for all probabilistic polynomial-time adversariesA,

Pr

[

A(m0,m1) =

{

0 if π0 = π1

1 if π0 6= π1

]

≤ 1
2

+ ν(k),

for some negligible functionν(k), where the probability is taken over the internal randomness ofA,
the choice ofm0,m1, and the choice ofb.

Proof. Assume there exists a polynomial-time adversaryA which can correctly determine whether
π0 = π1 with probability 1

2 + ε(k) for some non-negligible functionε(k). Givenπ0,π1 andm such

that πb | ϕ(m), we wish to construct an algorithmA′ that guessesb, as follows: Pick a random
b′ ∈ {0,1}, and generatem′ ∈ H πb′

k . Then runA on (m,m′). If A returns 0 thenA′ returnsb′,
otherwiseA′ returns 1−b′. SinceA succeeds with probability12 +ε(k), A′ succeeds with probability
1
2 + ε(k) which is still non-negligible ink, and thus a violation of theΦ-Hiding assumption �

In particular, we are asserting that there is no efficient algorithm which can match theπi to the
moduli mi significantly better than by guessing randomly. There are a few caveats. First, thepi

must be greater than 3, since every odd numberΦ-hides 2, andm≡ 2 mod 3, only ifm Φ-hides
3. Second, theπi cannot be greater than4

√
mi, this is to prevent the lattice based attack described

in [5], [4]. When thepi ’s and theπi ’s are chosen subject to these restrictions, there are no efficient
algorithms known for breaking theΦ-Hiding assumption.

4



3 Computationally Locally Decodable Codes

3.1 Modeling Noisy Channels

When discussing error correcting, or locally-decodable codes, it is important to consider how the
errors are introduced by the channel. While it may be naturalto assume the errors are introduced “at
random”, small changes in the exact nature of these errors can result in substantial changes in the
bounds on the best possible codes. The first definition of a noisy channel is due to Claude Shannon
[25]. Shannon defined thesymmetric channelwhere each message symbol is independently changed
to a random different symbol with some fixed probability, called the error rate. An alternative
definition of a noisy channel is Hamming’sadversarial channel, where one imagines an adversary
corrupting bits of the message in a worst-case fashion, subject only to the total number of bits
that can be corrupted per block. Most error correcting and locally-decodable codes were designed
for Hamming’s model. Lipton [15] observed in 1994 that the adversarial channel model assumes
that the adversarial channel itself is computationally unbounded. In that paper, Lipton proposed a
new model ofcomputationally bounded noise, which is similar to Hamming’s adversarial channel,
except the adversary is restricted to computation which is polynomial in the block length of the
code. This restriction on the channel’s ability to introduce error is a natural one. In fact, this is
implied by our hardness assumption, since we show that any channel which introduces noise in a
strictly worst-case fashion could be used to break theΦ-hiding assumption. Throughout this paper,
we use Lipton’s model.

3.2 Definitions

We extend the standard definition of computational indistinguishability for public key encryption to
include the size of the plaintext as a function of the security parameter. That is, we set the plaintext
x to be of lengthkα, wherek is the security parameter andα > 1. To make our definition more
robust, we allow the adversaryA to pass some state informationγ, which could include information
about the plaintextsx0,x1, which might be of use in determining which plaintext is encrypted by
E(PK,xb, r).

The primary difference between this definition and the standard definition of semantic-security,
see Appendix A, is that this definition includes the local decodability property of the cryptosystem.
Roughly, this says that given an encryptionc of a messagex, and a corrupted encryptionc′ such that
the hamming distance ofc andc′ is less thanδ|c|, the decoder can decode any bitxi of the plaintext
x from c′ in time significantly less thanO (kα) = O (|x|).

Definition 1. We callPublic Key Cryptosystem semantically secure (in the sense of indistinguisha-
bility) and δ-computationally locally-decodableif for all k and for allα sufficiently large; there is a
triple of probabilistic polynomial-time algorithms(G,E,D), where

• (PK,SK)←G(1k,α),

• c← E(PK,x, r) (where|x|= kα is a plaintext message of length polynomial ink, andr is the
randomness of the encryption algorithm);

• b′← D(SK,c′, i)
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so that for all probabilistic polynomial-time adversariesA:

Pr[(PK,SK)←G(1k,α);{x0,x1} ← A(PK);A(E(PK,xb, r)) = b] <
1
2

+ ν(k),

wherex0 andx1 must both be of lengthkα, and the probability is taken over the key generation
algorithm’s randomness,b, randomnessr used in the encryption algorithmE and the internal ran-
domness ofA. Furthermore, it is computationally, locally-decodable.That is, for all probabilistic
polynomial-time adversariesA′ andA′′,

Pr[(PK,SK)←G(1k,α);

(m,γ)← A′(PK);

c← E(PK,x, r);

{c′, i} ← A′′(c,γ) :

D(SK,c′, i) = xi ] > 1−ν(k),

wherexi denotes theith bit of x, x must be of the lengthkα, c′ andc must be of the same length and
the hamming distance betweenc′ andc is at mostδ|c|, and where the probability is taken over the
key generation algorithm’s randomness, the randomnessr used in the encryption algorithmE and
the internal randomness of bothA′ andA′′. The information-rate is|m||c| and we call the decryption
algorithmlocally-decodableif its running time iso(kα), and theefficiencyof the local decodability
is measured as a function ofk andα.

4 Construction

4.1 A Φ-hiding based Semantically Secure Encryption Protocol

Here, we describe a simple semantically-secure public key encryption scheme, that will be an es-
sential building block of our construction. The encryptionprotocol consists of three algorithms,
G,E,D described below.

To generate the keys,G(1k) first selects a small prime-powerπ, then generatesm∈ H π
k , i.e.

m= pq, wherep,q∈R Pk, subject toπ | p−1. The public key will bePK = (g,m,π) whereg is a

generator for the cyclic groupGm, andSK= ϕ(m)
π .

To encrypt a messagex∈ Z/πZ, we have

E(x) = gx+πr modm,

for a randomr ∈ Z/mZ. To decrypt, we do

D(y) = yϕ(m)/π = gxϕ(m)/π modϕ(m) modm=
(

gϕ(m)/π
)x

modm,

then, using the Pohlig-Hellman algorithm to compute the discrete logarithm in the group〈gϕ(m)/π〉,
we can recoverx modπ = x. If a is a small prime, andπ = ac, the Pohlig-Hellman algorithm runs
in time c

√
a. Thus the decryption requiresO (log(m/π)+ c

√
a) group operations inGm which is

acceptable for small primesa. In our locally decodable code, we will require multiple different
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prime powersπ1, . . . ,πt , and we will choose the small primesa, as the first primes, i.e.π1 =

2c1,π2 = 3c2,π3 = 5c3. If we requiret prime powersπi, the Prime Number Theorem, implies that
the largesta, will be approximatelyt logt. Sincet will be less than the message length,n,

√
a will

be polynomial in the message length, and hence polynomial inthe security parameterk.
It is worth noticing that this scheme is additively homomorphic over the groupZ/πZ, although

we do not have an explicit use for this property. Whenπ = 2, this is just Goldwasser-Micali En-
cryption [9], for largerπ it was described in [1] and [2]. An extension of this scheme isdescribed
in [20].

While this protocol is not new, none of the previous descriptions of this protocol make use of the
Φ-hiding assumption, and instead their security is based on acomposite residuousity assumption,
i.e. it is impossible to tell whether a random group elementh belongs to the subgroup of orderπ in
Gm. We are able to prove security under theΦ-hiding assumption because theΦ-hiding assumption
is strictly stronger than these other assumptions. The reduction is simple, for suppose there exists an
adversaryA which can determine whether a group elementh∈ Gm is aπth power. Noticing that if
π | ϕ(m) exactly 1 inπ elements will beπth powers, while if gcd(π,ϕ(m)) = 1, theneveryelement
is a πth power, by simply sending random group elementshi to A, and measuring the probability
which A says thathi is a πth power, we can distinguish whetherπ | ϕ(m). Our proof of security
essentially follows this reduction.

We now prove the semantic security of this protocol under theΦ-hiding assumption. For clarity
we have broken the proof of security into lemmas 2-5.

Lemma 2. For any adversaryA, which, givenm∈ H π
k , can determine whetherh∈Gm is πth power

with probability at least12, must reply thath is not a πth power with probability at least38 whenh is
selected uniformly at random fromGm.

Proof. Since exactly1
π of the elements inGm areπth powers, a simple counting argument shows

that if A guesses correctly with probability greater than1
2, thenA must guess that at least a 1− π

2π+2
fraction of the elements are notπth powers. Since we requireπ≥ 5, we conclude thatA must guess
that a uniformly chosen group element is not aπth power with at least probability38. �

Now, we notice that even ifA is given an element from an “impostor” group, it must behave in
almost the same manner.

Lemma 3. For any probabilistic polynomial-time adversaryA, such thatA that guesses whether
h ∈R Gm is a πth power with probability at least12, then for a uniformly chosenh′ ∈R Gm′ where
m′ ∈ H k\H π

k , i.e. π - ϕ(m′), A must guess thath is not aπth power with probability at least38−ν(k)
for some negligible functionν.

Proof. AssumeA guesses that a uniformly chosenh′ ∈R Gm′ is not aπth residue with probability
less than3

8 − ε(k) for some non-negligible functionε. Then we can useA to break theΦ-hiding

assumption. Given a modulusm where we wish to determine ifπ | ϕ(m), we simply choose a
random element inh∈R Gm, and runA onh. If A says thath is aπth power inGm, i.e. A(h) = 1, we
say thatπ - ϕ(m). We denote the output ofA on the inputh by

A(h) =

{

0 if h is aπth power,
1 if h is not aπth power.
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Then, calculating the probabilities, we have

π - ϕ(m) π|ϕ(m)

A(h) = 1 5
8 + ε < 5

8

A(h) = 0 3
8− ε > 3

8

From this, we can calculate the conditional probabilities,

Pr[π - ϕ(m) : A(h) = 0]≥
5
8 + ε

5
8 + 5

8 + ε

≥
5
8 + ε

2 + ε
4 + ε

5
5
4 + ε

≥
5
8 + ε

2 + ε
4 + ε2

5
5
4 + ε

=

(5
4 + ε

)(1
2 + ε

5

)

5
4 + ε

=
1
2

+
ε
5
.

A similar calculation holds in the other case, and sinceε(k) is non-negligible, we conclude that we
break theΦ-hiding assumption with non-negligible probability. �

Lemma 4. If there exists a probabilistic polynomial-time adversaryA that can guess whether
h ∈R Gm is a πth power with probability1

2 + ε, whereε(k) is non-negligible, then there exists a
probabilistic polynomial-time adversaryA′ that guesses correctly with probability greater than3

4.

Proof. This is clear, since we can amplifyA’s probability of success by runningA a polynomial
number of times onhrπ for randomly chosenr ∈R Gm. �

We are now ready to prove the semantic security of our encryption scheme.

Lemma 5. This protocol is semantically secure under the Small PrimesΦ-Hiding Assumption.

Proof. Since this cryptosystem is additively homomorphic, to showthat no polynomial-time adver-
sary can distinguishE(x0) from E(x1) it suffices to show that no polynomial-time adversary can dis-
tinguishE(x) from E(0), for any 06= x∈Z/πZ. Now, if r ∈R{1, . . . , |Gm|}, thenE(0) = gπr = (gr)π

is a randomπth power inGm. We now proceed by contradiction. Suppose there exists a polynomial-
time adversaryA such that

Pr

[

A(E(x)) =

{

0 if x = 0,
1 otherwise

]

>
3
4

We can useA to construct an algorithmA′ which breaks theΦ-hiding assumption. SupposeA′

wishes to determine whether somem∈ H π
k , i.e. whetherπ | ϕ(m). Then,A′ chooses anh∈R Gm

at random, and computeshπ. If π - ϕ(m), thenh will still be a uniformly chosen element fromGm.
On the other hand, ifπ | ϕ(m) thenhπ will be a πth power. By Lemma 3, in the first caseA must
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say thathπ is not aπth power with probability at least38− ν(k), while in the second case, by the
definition ofA, A must say thathπ is not aπth power with probability at most14. The conditional
probabilities become

π - ϕ(m) π|ϕ(m)

A(h) = 0 > 3
4 < 5

8 + ν

A(h) = 1 < 1
4 > 3

8−ν
Then we have

Pr[π|ϕ(m) : A(h) = 0]≥
3
4

3
4 + 5

8−ν

≥
3
4−ν

(

11
8 − 6

11 + ν
)

11
8 + ν

=

(

6
11−ν

)(

11
8 + ν

)

11
8 + ν

=
6
11
−ν

=
1
2

+
1
22
−ν.

Sinceν is negligible, we see that we are correct with probability significantly greater than12. A
similar calculation holds in the other case, so we can break the Φ-hiding assumption with non-
negligible probability. �

The protocol described above requires the user to knowπ to encrypt a messagex, which is
clearly contrary to the spirit of theΦ-hiding assumption. The key fact that will use is that given
π0,π1 andm0 ∈ H πb

k , m1 ∈ H
π(1−b)

k , we can encryptx modulo bothπ0,π1 by calculating

gx+rπ0π1
0 modm0 andgx+rπ0π1

1 modm1.

Thus we have two encryptions,E(x modπ0) andE(x modπ1), but the sender cannot distinguish
between them. It is exactly this property that allows the Gentry-Ramzan PIR scheme to function,
and it will be this property that prevents any adversarial channel from destroying any bit of the
message in our encryption scheme.

4.2 Binary Error Correction

A drawback of many error-correcting codes, and locally-decodable codes is that they are defined
over large alphabets. In practice, all these codes are implemented on computers, where the natural
alphabet is{0,1}. Thus when we say that a code like the CRT ECC or Reed-Solomon codes can
tolerate a constant fraction of errors, we mean a constant fraction of errors in their natural alphabet.
In the CRT ECC, if one bit of each remainder corrupted, there are no guarantees that the message
will not be corrupted. Binary error correcting codes do exist, but they are generally not as efficient
as codes over larger alphabets.

To allow our code to tolerate a constant fraction of errors inthebits of the ciphertext, we will
make use of a binary error correcting code ECC, with two properties
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• |ECC(x)| = c|x| for some constantc,

• ECC can recover from an error-rate of1
2−δ in thebits of ECC(x).

Such codes exist, forδ > 1
4 in the unbounded adversarial channel model, andδ > 0 in the

computationally bounded channel model. See Appendix B for amore in-depth discussion.

4.3 Error Correcting Public Key Encryption

We are now ready to describe our construction. Given a message X ∈ {0,1}n, we first divideX into
blocksXi of size`k. As in the Gentry-Ramzan PIR scheme, we view each block as a number in
the range

{

0. . .2`k
}

. Our public key will beρn
k RSA moduli{m1, . . . ,mρn

k
} such that each moduli

Φ-hides a prime powerπi j for 1≤ i ≤
⌈

n
`k

⌉

and 1≤ j ≤
⌈

ρ`
d

⌉

. Exactly which prime is hidden by

which moduli will be chosen at random at the time of key generation, and is part of the receiver’s
secret key. Then, for each blockXi, the sender encryptsXi mod πi j for j = 1. . .dρ`

d e where each
πi j is roughly of sizedk. Notice here that we have usedρ times as many moduli as necessary, thus
for each blockXi we have effectively calculated an encoding ofXi under the CRT ECC which can

tolerate
(

1
2− 1

2ρ

)

`
d corrupted moduli, see Appendix C. We do this for each block, and thus the

resulting encryption isρ`
d · n

`k residues. Since each residue is of sizek, the encryption of the whole

message is now ofn`k
ρ`
d = ρn

dk encryptions of sizek. Finally, we encode each of theρn
kd encryptions

independently using the error correcting code in §4.2. So our final encryption is of sizeρcn
d bits,

which is a constant multiple ofn. This encryption is error correcting because as long as no more
than 1

2 − 1
2ρ of the residues that encode a given block are corrupted, the block can be recovered

correctly by first decrypting each residue, and then reconstructing the CRT ECC. This cryptosystem
is also locally-decodable since to decrypt a given block, itsuffices to decrypt theρ`

d encryptions that
encode it. We now define a triple of algorithmsG,E,D for our encryption scheme.

First, we describe key generationG(1k,α)

• Let p1, . . . , pt be primes with 5≤ p1 < p2 < · · · < pt , and chooseci =
⌊

k
4logpi

⌋

, thusci is

the largest integer such that log(pci
i ) < dk, for somed < 1

4. Setπi = pci
i . To encryptn-bit

messages, we will need to chooset = ρn
dk. Sincen = kα, this becomest = ρkα−1

d .

• Generate a random permutationσ ∈R St , the symmetric group ont elements.

• Generate modulim1, . . . ,mt such thatmi ∈ H
πσ(i)

k , i.e. mi Φ-hidesπσ(i).

• Find generatorsgi of the cyclic groupsGmi .

The public key will then be

PK = ((g1,m1,π1), . . . ,(gt ,mt ,πt)),

and the secret key will be

SK=

(

σ,
ϕ(m1)

πσ(1)
, . . . ,

ϕ(mt)

πσ(t)

)

.

Encryption then works as follows, given ann-bit messageX,
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• BreakX into n
`k blocksXi of size`k, and treat eachXi as an integer in the range{0. . .2`k}.

• For blockXi, we will use thesprime powersπ(i−1)s, . . . ,πis−1 to encodeXi. To do this, using
the Chinese Remainder Theorem, generateX̃ such thatX̃ = Xi mod(π(i−1)s+1 · · ·πis). To

recover from error-rate12− 1
2ρ , we sets= ρ`

d .

• Generate a randomr ∈ {0, . . . ,π1 · · ·πt}.

• Then calculatehi = gX̃+rπ1···πt
i modmi for eachi ∈ {1, . . . , t}. Thus

hi = E
(

X̃ modπσ(i)
)

= E(Xj modπσ(i)),

where( j−1)s+1≤ σ(i)≤ js, andE is the encryption protocol described in §4.1.

• Apply the binary Error Correcting Code ECC to eachhi individually.

• The encryption is then thet-tuple(ECC(h1),ECC(h2), . . . ,ECC(ht)).

To decrypt theith block, of a messageX from thet-tuple(h1, . . . ,ht)

• Select thesencryptions that encodeXi, {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}.

• Decode each ECC(h j) to find obtain{hσ−1((i−1)s+1), . . . ,hσ−1(is)}.

• Decrypt each of thes encryptions using the decryption algorithm from §4.1. Thisgives
a1, . . . ,as wherea j = Xi mod(π(i−1)s+ j).

• Using the Chinese Remainder Code Decoding Algorithm, reconstructXi from thes remain-
dersa1, . . . ,as. Note that if there are no errors introduced, this step can bereplaced by simple
Chinese Remaindering.

We have introduced many parameters in the definition of this scheme, and their roles can be
summarized as follows

n the number of bits in the messageX.
k the security parameter.
α the relation betweenn andk, n = kα.
t the total number of moduli used. We will sett = ρn

dk.
d the fraction of bits that can beΦ-hidden,d is a fixed constantd < 1

4.
` a parameter which affects the “spread” of the code. We will choose`≈ k.
s the number ofπi encoding each block, for uss= ρ`

d .
c is the expansion factor of the error correcting code ECC.
ρ is the expansion factor of the CRT ECC we setρ = 1

2δ , to recover from error-rate12−δ.

There is an unfortunate tradeoff between the public key size, which is proportional to the mes-
sage size, and the usefulness of the local-decodability. Ifthe messageX is very long, the local-
decodability of this code makes it significantly more robustagainst concentrated errors than a sim-
ple error-correcting code, while ifX is very short, the public key remains short, but the local-
decodability becomes meaningless if|X|< `k. If ` ≈ k, this means that we needα > 2 to achieve
local decodability.

11



4.4 Local-Decodability

One of the most interesting features of our construction is the local-decodability. To recover a
small portion of the messageX, only a small portion of the ciphertext(ECC(h1), . . . ,ECC(ht))

needs to be decoded. During encryption the messageX is broken into blocks of length̀k bits,
and this is the smallest number of bits that can be recovered at a time. To recover a single bit
of X, or equivalently the entire blockXi that contains it, we must reads blocks of the ciphertext
{ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}. Since|h j |= k and|ECC(h j)|= ck, we must read a total

of sck= ρc`k
d . Since the probability of error will be negligible iǹ, we set̀ ≈ k, and sinced < 1

4,
we find that we need to read 5c`k2 bits of the ciphertext to recover one bit of the plaintext, where
c andρ are parameters that determine the error-rate of our code. Thus our system only achieves
local-decodability forn= O (k2+ε). Forn≈ k3, our system already offers a significant improvement
over standard error-correcting codes. It should also be noted, that for any semantically-secure cryp-
tosystem, to recover one bit of the plaintext, you must read at leastO (k) bits of the ciphertext. It is
an interesting question whether the locality of such a scheme can be improved fromO (k2) to O (k).

4.5 Running Time

We now show that the three algorithmsG,E,D probabilistic polynomial-time algorithms in the
security parameterk.

We begin by analyzingG. Choosing theπi and the permutationσ, can clearly be done in
polynomial-time, so it only remains to show that generatingmi ∈ H πi

k can be done in polynomial-
time. We can find primesp ∈ Pk in polynomial-time, by simply choosing random numbers and
testing them for primality using an algorithm like the Rabin-Miller primality test [22] or the de-
terministic algorithm presented in [16]. The Prime Number Theorem tells us that the density of
primes of lengthk

2 is asymptotic to2
k , so we expect to find a prime after only a polynomial number

of guesses. A similar theorem, also proven by de la Valée Poussin, gives the density of primes of
length k

2 in the arithmetic progression 1+ πn to be asymptotic to 2
ϕ(π)k , so, in either case we expect

to find a primep such thatp≡ 1 modπ afterO (k) guesses. This allows us to generatem∈R H
π

k
in polynomial time.

The encryption algorithmE will be polynomial-time ink, X̃ can be computed in polynomial-
time using the Chinese Remainder Theorem, and logX̃≈ 2logX. Thus the encryptions cangX̃+rπ1···πt

can be done in polynomial time using the square-and-multiply algorithm.
Finally, the decryption will be polynomial-time because decrypting eachhi to X̃ modπσ(i) in-

volves a single exponentiation, which can be done in polynomial-time via the square-and-multiply
algorithm. Then recovering the blockXi is done via the polynomial-time CRT-ECC algorithm de-
scribed in [12].

4.6 Proof of Security

The semantic security of our system follows immediately from the semantic security of the under-
lying cryptosystem. So here, we only show correctness, i.e.that the system is computationally
locally-decodable up to a constant fraction of errors. By anencryption of a messageX, we mean a
t-tuple (ECC(h1), . . . ,ECC(ht)) wheret = 2n

dk, and eachhi is an element ofGmi . We show that our
decoding algorithm decodes correctly with all but negligible probability, at most a14−δ fraction of

12



the bits of the encryption have been corrupted by a polynomial-time adversaryA. Notice that our
algorithm will decode a blockXi correctly whenever no more than14

2`
d of thehi that encode it are

corrupted. Thus we will show that any polynomial-time adversary that corrupts a14−δ fraction of
the bits, only corrupts more than14 of thehi that encode a given block of the message with negligible
probability. We prove this through a series of lemmas.

We begin by noticing that any adversaryA that corrupts at most14−δ fraction of thebits of the
message, can only corrupt at most a1

2−δ−δ2 fraction of thehi .

Lemma 6. Given(ECC(h1), . . . ,ECC(ht)), where ECC recovers from a binary error-rate of1
2−δ,

any adversaryA that corrupts at most14− δ bits of the entire codeword, can corrupt no more than
1
2−δ+ δ2 of thehi

Proof. This is simply counting.A can corrupt a total of(1
4− δ)ct|hi | bits, and to corrupt onehi A

needs to spend(1
2−δ)c|hi |, thusA can corrupt at most(1

2−δ−δ2)t of thehi since

(

1
4−δ

)

ct|hi |
(

1
2−δ

)

c|hi |
≤

1
4− δ

2− δ
2 + δ2− δ2

2 + δ3

1
2−δ

t

=

(

1
2−δ−δ2

)(

1
2−δ

)

1
2−δ

t

=

(

1
2
−δ−δ2

)

t.

�

For the rest of the proof of correctness, we assume thatA is restricted to corrupting a12−δ−δ2

fraction of thehi , rather than1
4−δ bits of the message.

Now, we show that any such corrupting adversary cannot detect whether inputs are “well-
formed”, i.e. A behaves in an indistinguishable manner whether thet-tuple (h1, . . . ,ht) is a valid
encryption or not.

Lemma 7. For all probabilistic polynomial-time adversariesA, such thatA introduces errors int-
tuples(h1, . . . ,ht), where eachhi ∈ Gmi and eachmi Φ-hides a distinct prime-powerπi , thenA will
also introduce errors int-tuples(h1, . . . ,ht) where eachmi Φ-hidesthe sameprime-powerπi.

Proof. Instead of runningA on at-tuple where each modulusmi Φ-hides a distinctπi , we provide
A with t-tuple in which each modulusmi Φ hidesthe sameπ. AssumeA fails to introduce errors
on this malformed input with non-negligible probabilityε. Now we proceed via hybrid argument.
Since the probability theA fails on t moduli Φ-hiding the sameπ, is ε greater than when eachmi

Φ-hides a different prime, then triangle inequality tells usthat there must be somet∗ < t such that,

|Pr[A fails whent∗ mi Φ-hide the sameπ ]−Pr[A fails whent∗+1 mi Φ-hide the sameπ ]|> ε
t
.

We can now useA to break theΦ-hiding assumption. Given a modulusm∗ such thatm∗ Φ-hidesπ∗
whereπ∗ equalsπ0 or π1, we constructt∗ moduli m1, . . . ,mt∗ thatΦ-hideπ0, andt− t∗−1 moduli
mt∗+1, . . . ,mt−1 thatΦ-hide primes other thanπ0,π1. We then runA, on thet-tuple(h1, . . . ,ht−1,h∗)
wherehi ∈Gmi for 1≤ i < t, andh∗ ∈Gm∗ . If A fails to introduce errors on thist-tuple, we say thatm∗
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Φ-hidesπ0. This algorithm correctly distinguishes whetherm∗ Φ-hidesπ0 or π1 with probability
at least 1

2 + ε
2t . Although, we do not know the exact value oft∗, we can we can guess it with

probability 1
t , to obtain an algorithm which decides whetherm∗ Φ-hides π0 with advantage ε

2t2

which is a violation of theΦ-hiding assumption. �

If eachmi Φ-hides the sameπ, thenA must distribute errors randomly among the blocks, since
the notion of blocks in this case is completely arbitrary. SinceA must behave identically when each
mi Φ-hides the same modulus as when they allΦ-hide different moduli, we obtain the following
lemma.

Lemma 8. If A is a probabilistic polynomial-time machine, the distribution of the errors among the
Φ-hidden moduliπi is computationally indistinguishable from random.

Proof. Suppose there exists a distinguisherD that can distinguish the corruptionsA introduces
among thehi from random with advantageε. Then we runD on A’s output whenA is given moduli
that Φ-hide between one andt distinct πs. When we runA on at-tuple (h1, . . . ,ht) where eachmi

Φ-hides the sameπ, in this situationA must distribute errors randomly, sinceA hasno information
about the underlying blocks. Thus in this situation,D cannot distinguishA’s corruptions from
random with probability greater than12, since in this caseA’s corruptionsare random. Now we
proceed via a hybrid argument. WhenA is run on moduli thatΦ-hide t distinct πi, thenD can
distinguishA’s corruptions from random with advantageε, thus by the triangle inequality, there
exists at∗ < t such thatD can distinguishA’s output whenA is run on moduli,t∗ of which are then
same, fromA’s output whenA is run on moduli,t∗+ 1 of which are the same, with advantageε

t .
This allows us to break theΦ-hiding assumption in exactly the manner described before.Given a
modulusm∗ thatΦ-hides eitherπ0 or π1, we constructt∗ modulim1, . . . ,mt∗ which allΦ-hideπ, and
t− t∗−1 modulimt∗+1, . . . ,mt−1 which all Φ-hide different moduli. Then we runD on A’s output,
whenA is given(m1, . . . ,mt−1,m∗). By the definition oft∗ D succeeds in distinguishing whetherm∗

Φ-hidesπ0 with advantageε
2t . Thus by guessing a random value in{1, . . . , t−1} for t∗, we break

theΦ-hiding assumption with advantageε2t2 , a contradiction. �

Lemma 9. If A distributes(1
4−δ)t errors at random, the probability thatA destroys any given block

Xi is negligible in`.

Proof. If A distributes errors at random, then we can viewA as selecting remainders at random
to corrupt. The adversaryA destroys a blockXi exactly whenA corrupts more than12 − δ of the
remainders that encode that block, the probability thatA destroys a block is exactly the probability
that more than(1

2−δ)ρ`
d moduli that encodeXi are corrupted. This distribution is then the Hyperge-

ometric Distribution, whereρ`
d items are selected and(1

2−δ−δ2)t of which are corrupted. In [13],
Hush and Scovel give the bound

Pr

[

# of errors in encoding of blockXi >

(

1
2
−δ

)

ρ`

d

]

< e
−2

(

d
ρ`+d

)

(

δ4ρ2`2

d2 −1

)

,

which is clearly negligible iǹ . �

Lemma 10. If at most(1
4−δ)t of thet encryptions are corrupted by a probabilistic polynomial-time

adversaryA, then the probability that any bit of the message fails to decode properly is negligible in
k.
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Proof. For a given blockXi the probability that block is damaged under the corruptionscreated byA
is negligibly different ink than ifA produced the corruptions at random, which itself would damage
Xi with only negligible probability iǹ . Taking` ≈ k, we have that the blockXi is damaged with
at most negligible probability ink. The union bound then gives that the probability thatanyblock
Xi is damaged is at mostt times the probability that a specific block is damaged, whichremains
negligible ink. �

4.7 Extensions

It should be clear that choosing to encode each block by twiceas many moduli as necessary was
fairly arbitrary. By increasing the redundancy of the CRT ECC we would increase the error-
tolerance, and also the ciphertext expansion.

This scheme also benefits nicely from the methods described in [24]. As in §4.3, we break our
messageX into `k-bit blocksX1, . . . ,Xt . Then, before applying the CRT ECC to each block, we
sign each block using any Public Key Signature Scheme which is existentially unforgeable under
the chosen message attack. The existence of such a scheme is implied by the existence of a one-way
function [23], which in turn is implied by theΦ-Hiding assumption. We can improve the efficiency
of the digital signature by using the standard trick of first hashing the message, the signing the hash.
Since every PIR protocol is a collision-resistant hash function [26], we can use the Gentry Ramzan
PIR to first “hash” thè k bits in a block down tok bits, then sign the resultingk-bit block. Now,
we proceed as before, encoding each signed block using the hidden CRT ECC, and finally each of
these blocks is further encoded by a binary ECC. As mentionedabove, the rate of the binary ECC
can also be improved via this method.

To decode, we first decode the binary ECC, then welist-decodethe hidden CRT ECC using
one of the list-decoding methods described in [8] or [12]. Then, with all but negligible probability,
only one of the possible decodings will be a validsignedblock. This has the effect of improving
the information rate of the CRT ECC. It should be noted that our scheme has constant codeword
expansion, and can recover from constant error-rate even without these improvements. The use of
digital signatures before applying the CRT ECC or the binaryECC has the effect of increasing the
maximum tolerable error-rate, and decreasing the codewordexpansion.
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Appendix

A Semantic Security

By aPublic Key Cryptosystem, we mean a triple of probabilistic polynomial time algorithmsG,E,D,
such that(PK,SK)←G(1k), c← E(PK,x, r) x′← D(SK,c) WherePK, SK denote the public and
secret keys andx′ = x w.h.p for the same message. A public key encryption system issemantically
secure if, given two messagesx0 andx1, b ∈R {0,1}, and an encryption of one of the messages,
E(PK,xb), no polynomial time adversary can determineb with probability significantly greater
than one half. That is:

Definition 2. A Public Key Cryptosystem,G,E,D, with security parameterk is calledsemantically
secure(in the sense of indistinguishability) if for all message pairs {x0,x1} and for all probabilistic
polynomial time adversariesA, and for allb∈R {0,1},

Pr[(PK,SK)←G(1k);{x0,x1}← A(PK);A(E(PK,xb, r)) = b] <
1
2

+ ν(k)

Wherex0 and x1 must be of equal length, and the probability is taken over thekey generation
algorithm’s randomness, choice ofb, randomnessr used in the encryption algorithmE and the
internal randomness ofA.

B Constant Rate Binary Error Correcting Codes

For our scheme to have constant information rate, we need to find abinary error-correcting code
which can tolerate an error-rate of1

2−δ.
One method for creating such a code, uses the notion of Concatenated Codes, originally de-

scribed by Forney in [6]. By combining a Reed-Solomon Code and a Random Linear Code as
described in [11], it is possible to obtain a binary error correcting code which recovers from14− δ
error-rate, but the information-rate of the resulting codeis very low, about 10−4 for their construc-
tion.

Since we are working in the computationally bounded channelmodel, we can take advantage of
the constructions described in [24], to create a binary codewith error-rate1

2− δ, and significantly
better information rates than in the unbounded channel model. Applying Micali et al’s construction
to the binary codes with list-decoding rate1

2 and information rateδ4 described in [10], we obtain a
code which uniquely decodes from error-rate1

2−δ, and has information rate about1
δ4 .

C CRT-Based Error Correction

It was observed in the 1970s [17], [18], [19], that the Chinese Remainder Theorem could be used to
make efficient Error Correcting Codes. The encoding processis very simple. Ifπ1, . . . ,πn,πn+1, . . . ,πn+t

an increasing sequence of pairwise coprime integers, i.e.π1 < π2 < · · ·< πn+t , and gcd(πi,π j) = 1
wheneveri 6= j. Then for any integerx with x < ∏n

i=1πi , we encodex as the(n+ t)-tuple {x
modp1, . . . ,x modpn+t}. If x and x′ are distinct integers less than∏n

i=1, then the two vectors
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E(x) = {x modπ1, . . . ,x modπn+t} andE(x′) = {x′ modπ1, . . . ,x′ modπn+t} must differ in at
leastt + 1 coordinates since the residue ofx moduloany nof the moduliπi uniquely determines
x. Thus the minimum distance in this code ist, and so it can correctb t

2c errors. Thus if we take
n+ t = ρn, this code can recover from error-rate1

2− 1
2ρ , in the digits of the code.

This code differs significantly from most other error correcting codes in that each “digit”, i.e.
each remainder, of the codeword carries a different amount of information. Thus the Hamming
distance between two codewords, measured as the number of remainders in which they differ is not
the natural distance to consider for this code. This fact made finding an efficient decoding algorithm
a nontrivial task. In his original paper in 1972, Mandelbaumproposed an algorithm that ran in
expected polynomial-time. Since then, many variants of that algorithm have appeared, but it was
not until 2001 [12] that the first polynomial-time decoding algorithm was found. Since the Chinese
Remainder Codes are efficiently list decodable [8], [12], wecan apply the technique in [24] of
combining list-decoding with digital signatures to our protocol to further improve the information-
rate.

D Gentry-Ramzan PIR

While our scheme does not explicitly rely on the Gentry-Ramzan PIR scheme, our protocol was in-
spired by their use of theΦ-hiding assumption to do “hidden” Chinese Remaindering. Inthe interest
both of giving some context for our scheme, and of showing what else can be achieved by hidden
Chinese Remaindering, we briefly sketch the Gentry-Ramzan Private Information Retrieval scheme
[7]. This scheme allows computationally private single database PIR with constant communication
rate under theΦ-hiding assumption. Here “constant” means proportional tothe security parameter.
The scheme allows retrieval of entire blocks at once, and thescheme we describe will retrieve an
`-bit block from ann-bit database.

The scheme assumes some initial set-up. First, sequence of small primesp1, . . . , pt are fixed
in advance. Then we set` = dn/te, andci = dlogpi

`e. Settingπi = pci
i , we have thatπi > 2` for

all i, and the integersπ1, . . . ,πt are pairwise relatively prime. This initial set-up is assumed to be
known to both the user and the database, and is not included inthe communication complexity of
the scheme.

To begin the scheme, the database must do some pre-processing. Instead of viewing the database
as a singlen-bit string, we instead view it as a concatenation oft `-bit integersa1, . . . ,at . Recall
that we have chosen ourπi such thatai < πi for eachi. Using the Chinese Remainder Theorem, the
database can find an integere< ∏t

i=1 πi, such thate modπi = ai .
To retrieve thejth block of the database,a j , the user then chooses an RSA modulusm= pq that

Φ-hidesπ j , and ag for cyclic the groupGm, i.e. g has orderϕ(m)
2 in (Z/mZ)∗. Sinceπ j |ϕ(m), we

have thatGm has a subgroup of orderπ j . Letting q = ϕ(m)
2π j

, this subgroup is generated bygq. The
user then sends bothm, andg to the database. The database calculatesge modm and returns the
result.

Givenge modm, the user then calculates(ge)q = (gq)e = ge modπ j modm sincegq has order
π j in Gm. Then by performing (a tractable) discrete-log computation in the subgroup of orderπ j

generated bygq the user recoverse modπ j = a j . Using Pohlig-Hellman algorithm this discrete-log
computation can be calculated inO (c j

√
p j) time.
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If log2(m) = k, then the user sends 2k bits to the database, and the database replies withk bits,
so the total communication complexity is 3k bits. To avoid the lattice-based attacks described in [5]
and [4], we must choosemsuch thatπi < m

1
4 for all i, i.e. ` < 4k.
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