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Abstract

In this paper, we introduce the notion of a Public-Key Encryption Scheme that is also a Locally-Decodable
Error-Correcting Code (PKLDC). In essence, this is a protocol that is semantically-secure in the standard sense,
but possesses the additional property that it is a binary error-correcting locally-decodable code against any
polynomial-time Adversary. That is, we allow a polynomial-time Adversary to read the entire ciphertext, per-
form any polynomial-time computation and change an arbitrary (i.e. adversarially chosen) constant fraction
of all bits of the ciphertext. The goal of the Adversary is to cause error in decoding any bit of the plaintext.
Nevertheless, the decoding algorithm can decodeall bits of the plaintext (given the corrupted ciphertext) while
making a mistake onanybit of the plaintext with only a negligible ink error probability. In addition, the de-
coding algorithm has aLocal Decodability property. That is, given a corrupted ciphertext ofE(x) the decoding
algorithm, for any 1≤ i ≤ n, can recover thei’th bit of the plaintextx with overwhelming probability reading
a sublinear (in|x|) number of bits of the corrupted ciphertext and performing computation polynomial in the
security parameterk.

We present a general reduction from any semantically-secure encryption protocol and any computational
Private Information Retrieval (PIR) protocol to a PKLDC. Inparticular, since it was shown that homomorphic
encryption implies PIR, we give a general reduction from anysemantically-secure homomorphic encryption
protocol to a PKLDC. Applying our construction to the best known PIR protocol (that of Gentry and Ramzan),
we obtain a PKLDC, which for messages of sizen and security parameterk achieves ciphertexts of sizeO (n),
public key of sizeO (n+ k), and locality of sizeO (k2). This means that for messages of lengthn = ω(k2+ε),
we can decode bit of the plaintext from a corrupted ciphertext while doing computation sublinear inn. We
emphasize that this protocol achieves codewords that are only a constanttimes larger than the underlying plain-
text, while the best known locally-decodable codes (due to Yekhanin) have codewords that are only slightly
subexponential in the length of the plaintext. In addition,we believe that the tools and techniques developed in
this paper will be of independent interest in other settingsas well.

Keywords: Public Key Cryptography, Locally Decodable Codes, Error Correcting Codes, Bounded Channel
Model, Chinese Remainder Theorem, Private Information Retrieval.

∗Department of Mathematics, University of California, Los Angeles. E-mail: bretth@math.ucla.edu
†Department of Computer Science and Department of Mathematics, University of California, Los Angeles 90095. E-mail:

rafail@cs.ucla.edu, rostrovs@math.ucla.edu.

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 21 (2007)

ISSN 1433-8092




1 Introduction

Error correction has been an important field of research since Shannon laid the groundwork for a mathematical
theory of communication in the nineteen forties. An error correcting code is a pair of algorithmsC andD such that
given a messagex, C(x) is a codeword such that, given a stringy, if the Hamming Distance betweend(C(x),y) is
“small”, thenD(C(x)) = x. When speaking of an error correcting code, two of its most important characteristics
are theinformation rate, which is the ratio of the message size to the codeword size|x||C(x)| , and theerror rate

which is the smallestε such that ifd(C(x),y) > ε|C(x)| thenD(C(x)) fails to recoverx uniquely. Since the field’s
inception, many codes have been found that exhibit both constant information rate, and constant error rate, which,
in a sense, is optimal. These codes all share the property that to recover even a small portion of the messagex from
the codewordy, the receiver must decrypt the entire codeword. In [21], Katz and Trevisan posed the question: can
codes be found in which a single bit of the message can be recovered by decoding only a small number of bits from
the codeword? Codes of this type are calledlocally-decodable, and would be immensely useful in encoding large
amounts of data which only needs to be recovered in small portions, for example any kind of database or archive.
Currently the best known locally-decodable codes are due toYekhanin [35], they can tolerate a constant error rate,
but achieve only slightly better than exponentially small information rates1.

It was shown by Katz and Trevisan [21], that any information-theoretic Private Information Retrieval (PIR)
scheme can be transformed into a locally-decodable code. While this provides a new approach to the problem of
constructing efficient locally-decodable codes, so far it has not lead to any codes with significantly sub-exponential
size codewords, as we are still unable to construct efficientinformation-theoretic Private Information Retrieval
schemes.

In 1994, Lipton examined the notion of error-correction in the computationally bounded channel model [24].
In this model, errors are not introduced in codewords at random, but in a worst case fashionby a computationally
bounded adversary. This realistic restriction on the power of the channel allowed for the introduction of crypto-
graphic tools into the problem of error correction. In [24] and [14] it was shown how, assuming a shared private
key, one can use hidden permutations to achieve improved error correcting codes in the private key setting. Re-
cently, Micali, Peikert, Sudan and Wilson used the computationally bounded channel model to show how existing
error correcting codes could be significantly improved in the public-key setting [28]. After seeing the dramatic
improvement of error-correcting codes in this model, a natural question then becomes whether locally-decodable
codes can also be improved in the computationally bounded channel model.

The first real progress in this setting was by Ostrovsky, Pandey and Sahai [31], where they construct a constant
information-rate, constant error-rate locally-decodable code in the case where the sender and receiver share a
private key. This left open the question whether the same canbe accomplished in the Public-Key setting, which
does not follow from their results. Indeed, a naı̈ve proposal (that does not work) would be to encrypt the key
needed by [31] separately and then switch to the private-keymodel already solved by [31]. This however leaves
unresolved the following question: how do you encrypt the private key from [31] in a locally-decodable fashion?
Clearly, if we allow the adversary to corrupt a constant fraction of all the bits (including encryption of the key and
the message), and we encrypt the key separately, then the encryption of the key must consume a constant fraction
of the message, otherwise it can be totally corrupted by an Adversary. But if this is the case all hope for local
decodability is lost. Another suggestion is to somehow hidethe encryption of the key inside the encryption of the
actual message, but it is not clear how this can be done.

A more sophisticated, but also flawed, idea is to use Lipton’scode-scrambling approach [24]. In his paper,
Lipton uses a private shared permutation to “scramble” the code and essentially reduce worst-case error to random
error. A first observation is that we can use PIR to implement arandom permutation in the public-key setting. We
proceed as follows: the receiver will generate a random permutationσ ∈ Sr , and the receiver’s public key would
be a set of PIR queriesQ1, . . . ,Qr , whereQi is a PIR query for theσ(i)th block of anr block database, using
some known PIR protocol. The sender would then break their messagex into blocks,x1, . . . ,xr , apply standard
error correction to each block, calculate theQ1, . . . ,Qr on their message, apply standard error correction to each
PIR responseRi = Qi(ECC(x)), and send the messageECC(R1), . . . ,ECC(Rr). If ECC and PIR have constant
expansion rates, as is the case with many ECCs and the Gentry-Ramzan PIR [11], the resulting code has only
constant expansion rate. But an adversary can still destroya single block, by focusing damage on a single PIR
response. If we add redundancy by copying the messagec times, and publishingcr PIR queries, the adversary
can still destroy a block with non-negligible probability by destroying constant number of blocks at random, and
with non-negligible probability the adversary will destroy all c responses corresponding to the same block, and the
information in that block will be lost. Recall that we demandthat no bit of information should be destroyed except

1Yekhanin achieves codewords of size 2n1/ loglogn
for messages of lengthn, assuming there exist infinitely many Mersenne primes.



with negligible probability. Hence this method does not work either. Of course, this can be fixed by increasing the
redundancy beyond a constant amount, but then the codeword expansion becomes more than constant as does the
public key size. Thus, this solution does not work either, and new ideas are needed. Indeed, in this paper, we use
PIR to implement a hidden permutation, but we achieve a PKLDCwhich can recover from constant error-rate with
only constantciphertext expansion.

1.1 Previous Work

The first work on error correction in the computationally bounded channel model was done by Lipton in [24].
In [24] and [14] it was shown how to use hidden permutations toachieve improved error correcting codes in the
private key setting. The computationally bounded channel model was first considered in the public key setting
only recently. In [28], Micali et al used a generic public keysignature scheme combined with list-decoding to
demonstrate a class of binary error correcting codes with positive information rate, that can uniquely decode from
1
2− ε error rate, under the assumption that one-way functions exist. These codes decode from an error rateabove
the proven upper bound of14− ε in the (unbounded) adversarial channel model. Here, again,we emphasize the
reasonableness of the computationally bounded channel model, since under the assumption that one-way functions
exist, Micali et al show thatall channels (that don’t hold the messages for an exponential amount of time) must
be computationally bounded, or they could be used as inverters of the one-way function. The first application of
the computationally bounded channel to Locally Decodable Codes was in [31], although their work was in the
private-key setting.

In addition to extending the work in the computationally bounded channel model, our work draws heavily from
the field of Computational Private Information Retrieval (PIR). The first computational PIR protocol was [22], and
since then there has been much progress, see for example [4],[5], [20], [23], [11]. For a survey of work relating to
computational PIR see [30].

1.2 Our Results

In this paper, we present a general reduction from semantically-secure encryption and a PIR protocol to a Public
Key Encryption system with local decodability (PKLDC). We also present a general reduction from any homomor-
phic encryption to a PKLDC. In §7 we present the first Locally Decodable Code with constant information-rate
which does not require the sender and receiver to share a secret key. To achieve this, we work in the Computation-
ally Bounded Channel Model, which allows us to use cryptographic tools that are not available in the Adversarial
Channel Model. Our system presents a significant improvement in communication costs over the best codes in
the information-theoretic setting. Yekhanin’s Codes, described in [35], which are currently the shortest known
locally decodable codes in the information-theoretic setting, still have codewords which are almost exponential in
the message size, while our codewords are only a constant times larger than the message.

Informally, our results can be summarized as follows,

Main Theorem (informal). Given a computational PIR protocol with query size|Q|, and response size|R| which
retrievesdk bits per query, and a semantically-secure encryption protocol, there exists a Public Key Locally De-
codable Code which can recover from a constant error-rate inthe bits of the message, which has public key size
O (n|Q|/(dk2)+k) and ciphertexts of sizeO (n|R|/(dk2)), wheren is the size of the plaintext andk is the security
parameter. The resulting code has localityO (|R|k/d), i.e. to recover a single bit from the message we must read
O (|R|k/d) bits of the codeword.

Combining the main theorem with the general reduction from homomorphic encryption to PIR, we obtain

Corollary 1. Under any homomorphic encryption protocol which takes plaintexts of lengthm to ciphertexts of
lengthαm, there is a Public-Key Locally Decodable Code which can recover from a constant error-rate in the bits
of the message, with public key sizeO (nkβ β

√
n) and ciphertexts of sizeO (nαβ−1k), for anyβ ∈ N, wheren is the

size of the plaintext andk is the security parameter. The resulting code has localityO (αβ−1k2), i.e. to recover a
single bit from the message we must readO (αβ−1k2) bits of the codeword.

We can further improve efficiency if we have a Length-Flexible Additively Homomorphic Encryption like
Dåmgard-Jurik [8], using this cryptosystem we obtain

Corollary 2. Under the Decisional Composite Residuousity Assumption [32] there is a Public-Key Locally De-
codable Code which can recover from a constant error-rate inthe bits of the message, with public key size
O (nlog2(n) + k) and ciphertexts of sizeO (nlog(n)), wheren is the size of the plaintext andk is the security



parameter. The resulting code has localityO (k2 log(n)), i.e. to recover a single bit from the message we must read
O (k2 log(n)) bits of the codeword.

We also give a specific construction of a system based on theΦ-hiding assumption (see §7), in this situation
we obtain

Corollary 3. Under the Small PrimesΦ-Hiding Assumption (Assumption 1) there is a Public-Key Locally De-
codable Code which can recover from a constant error-rate inthe bits of the message, with public key sizeO (n)
and ciphertexts of sizeO (n), wheren is the size of the plaintext andk is the security parameter. The resulting code
has localityO (k2), i.e. to recover a single bit from the message we must readO (k2) bits of the codeword.

Note that in full generality, our main result requires two assumptions, the existence of a PIR protocol and a
semantically-secure encryption protocol. In practice, however, two separate assumptions are usually not needed,
and all the corollaries apply under a single hardness assumption.

Our construction does have a few disadvantages over the information-theoretic codes. First, our channel is
computationally limited. This assumption is fairly reasonable, but it is also necessary one for any type of public
key encryption. In [28], Micali et al. show that if a true adversarial channel exists, which can always introduce
errors in a worst-case fashion, then one-way functions cannot exist. Second, our code has a larger “locality” than
most information-theoretic codes. For example, in Yekhanin’s Codes, the receiver is only required to read three
letters of the codeword to recover one letter of the message.In our code in §7 the receiver must readO (k2) bits to
recover 1 bit of the plaintext, wherek is the security-parameter. It should be noted, however, that to maintain the
semantic security of the cryptosystem, the receiver must readω(logk) bits to recover any single bit of the message.
It is an interesting question whether the locality of our code can be reduced fromO (k2) to O (k). For long messages
(i.e. n = ω(k2+ε)) our code still presents a very significant improvement in locality over standard error correcting
codes.

2 Preliminaries

2.1 Notation

In this paper, we adopt the following naming conventions.

• x or X will denote a plaintext message, which will usually ben bits in length.

• k will denote our security parameter.

• ν(k) will denote a function which is negligible ink.

We will use the notation∈R, to denote an element drawn uniformly at random from a set.

3 Computationally Locally Decodable Codes

3.1 Modelling Noisy Channels

When discussing error correcting, or locally-decodable codes, it is important to consider how the errors are intro-
duced by the channel. While it may be natural to assume the errors are introduced “at random”, small changes in
the exact nature of these errors can result in substantial changes in the bounds on the best possible codes.

The first definition of a noisy channel is due to Claude Shannon[34]. Shannon defined thesymmetric channel
where each message symbol is independently changed to a random different symbol with some fixed probability,
called the error rate. An alternative definition of a noisy channel is Hamming’sadversarial channel, where one
imagines an adversary corrupting bits of the message in a worst-case fashion, subject only to the total number
of bits that can be corrupted per block. Most error correcting and locally-decodable codes were designed for
Hamming’s model.

In 1994, Lipton [24] observed that the adversarial channel model assumes that the adversarial channel itself is
computationally unbounded. In that paper, Lipton proposeda new model ofcomputationally bounded noise, which
is similar to Hamming’s adversarial channel, except the adversary is restricted to computation which is polynomial
in the block length of the code. This restriction on the channel’s ability to introduce error is a natural one, and it is
implied by the existence of any one-way function [28]. Throughout this paper, we use Lipton’s model.



3.2 Definitions

We use the standard definition of computational indistinguishability for public key encryption, where we also view
the size of the plaintext as a function of the security parameter. That is, we set the plaintextx to be of lengthkα,
wherek is the security parameter andα > 1.

The primary difference between our definition and the standard definition of semantic security is the local
decodability property of the cryptosystem. Roughly, this says that given an encryptionc of a messagex, and a
corrupted encryptionc′ such that the hamming distance ofc andc′ is less thanδ|c|, the time it takes the decoder to
decode any bitxi of the plaintextx from c′ is much shorter than the length of the message, and does not increase as
the message length increases.

Definition 1. We call Public Key Cryptosystem semantically-secure (in the senseof indistinguishability) andδ-
computationally locally-decodableif there is a triple of probabilistic polynomial-time algorithms (G,E,D), such
that for allk and for allα sufficiently large

• (PK,SK)←G(1k,α),

• c← E(PK,x, r) (where|x|= kα is a plaintext message of length polynomial ink, andr is the randomness of
the encryption algorithm);

• b′← D(SK,c′, i)

so that for all probabilistic polynomial-time adversariesA,A′:

Pr[(PK,SK)←G(1k,α);{x0,x1,γ} ← A(PK);A′(E(PK,xb, r),γ) = b] <
1
2

+ ν(k),

wherex0 andx1 must both be of lengthkα, and the probability is taken over the key generation algorithm’s random-
ness,b, randomnessr used in the encryption algorithmE and the internal randomness ofA andA′.2 Furthermore,
it is computationally, locally-decodable. That is, for allprobabilistic polynomial-time adversariesA′′ andA′′′,

Pr[(PK,SK)←G(1k,α);

(x,γ)← A′′(PK);

c← E(PK,x, r);

{c′, i} ← A′′′(c,γ) :

D(SK,c′, i) = xi ] > 1−ν(k),

wherexi denotes theith bit of x, x must be of the lengthkα, c′ andc must be of the same length and the hamming
distance betweenc′ andc is at mostδ|c|, and where the probability is taken over the key generation algorithm’s
randomness, the randomnessr used in the encryption algorithmE and the internal randomness of bothA′′ andA′′′.
The information-rate is|m||c| and we call the decryption algorithmlocally-decodableif its running time iso(kα), and
theefficiencyof the local decodability is measured as a function ofk andα.

4 Building Blocks

Our construction relies on a number of standard cryptographic tools and for completeness we briefly review them
here

4.1 Private Information Retrieval

A computational Private Information Retrieval protocol (PIR) is a protocol in which a user or client to query a
position from a database, while keeping the position queried hidden from the server who controls the database.
In particular the user generates a decryption keyDPIR, picks a positionj and generates a queryQ j . Then, given
Q j , the server who has database (or message)x, can execute queryQ j on x and obtain a responseRj . The privacy
requirement is that server cannot guess the positionj with probability noticeably greater than random. The correct-
ness requirement is that givenDPIR, andRj the user can correctly recover thejth position of the messagex. The

2As is standard practice, to allow the adversaryA to pass state informationγ, which could include information about the plaintextsx0,x1,
which might be of use in determining which plaintext is encrypted byE(PK,xb, r).



efficiency of a PIR protocol is measured in the communicationcomplexity, i.e. the sizes ofQ andR. Currently, the
most efficient PIR protocol is that of Gentry and Ramzan [11],which has|Q| = |R| = O (k) wherek is a security
parameter, and each query successfully retrieves approximatelyk/4 bits of the messagex.

Formal definitions and concrete constructions of computational Private Information Retrieval protocols can be
found in [22], [19], [4], [5] or [11].

4.2 Semantically-Secure Public Key Encryption

Our construction requires a semantically-secure encryption protocol,SSE. The only requirement we make on the
protocolSSE, is that for a messagex, |SSE(x)| = O (|x|). For concreteness, we assume|SSE(x)| = c1|x| for some
constantc1. This is achieved by many cryptosystems for example [32], [8], [29], [10], or theΦ-hiding based
scheme in described §7.2.

To avoid making additional intractability assumptions, itis natural to choose hardness assumption that yields
both a semantically-secure encryption protocol as well as aPIR protocol. In practice this is almost always the case,
for example Paillier’s Cryptosystem [32] and Chang’s PIR [5], or Gentry-Ramzan [11] (or Cachin-Micali-Stadler
PIR [4]) and the encryption protocol outlined in Section 7.2. It is also worth noting that since [19] shows that any
homomorphic encryption protocol immediately yields a PIR protocol, if we have a homomorphic encryption, we
need not make an additional assumption to obtain a PIR protocol.

4.3 Reed-Solomon Codes

Our construction uses a standard error-correcting code as building block. In this paper we use the Reed-Solomon
code for three reasons. First, it is very simple algebraically; second it is almost universally known and understood;
and third, when recovering from a constant error rate it has only a constant expansion factor. It should be clear,
however, that these codes can be replaced by any efficient error-correcting code.

The Reed-Solomon Error Correcting Code (RS-ECC) works as follows: first we fix a primep of lengthk, and
all computations are done in the fieldZ/pZ. Then, given a plaintextx of lengthn, we representx as a polynomial
fx of degreen/k−1 overZ/pZ. This can be done in many ways, perhaps the simplest is to break x into blocks of
sizek and view these as the coefficients offx. Then, the encoding ofx is simply the evaluation offx at a number of
points inZ/pZ. We need at leastn/k evaluations uniquely determine a polynomial of degreen/k−1, theRSECC
adds redundancy by evaluatingfx at more points,RSECC(x) = ( fx(1), . . . , fx(ρn/k)) for someρ > 1. For distinct
plaintextsx,y, we havefx− fy 6= 0, and since a nonzero polynomial of degreen/k−1 has at mostn/k−1 zeros,
RSECC(x) andRSECC(y) must have hamming distance at least(ρ−1)n/k+ 1, thus this code can recover from
(ρ− 1)n/(2k) errors in the evaluation points, i.e. it can recover from an error rate of 1

2− 1
2ρ in the digits of the

code.
From now on we will viewRSECC(x) as aρn/k-tuple which can be successfully decoded from an error rate

of 1
2− 1

2ρ in its digits.

4.4 Binary Error Correction

A desirable property of any error-correcting code is the ability to recover from a constant fraction of errors among
thebitsof the codeword. A drawback of many error-correcting codes,and locally-decodable codes, is that they are
defined over large alphabets, and can only recover from a constant fraction of errors in the alphabet of the code.
The natural alphabet of theRSECC described above is the fieldZ/pZ. In practice, all these codes are implemented
on computers, where the natural alphabet is{0,1}. Thus when we say that a code like Reed-Solomon code can
tolerate a constant fraction of errors, we mean a constant fraction of errors in their natural alphabet. In the Reed
Solomon code, if one bit of each evaluation point is corrupted, there are no guarantees that the message will not
be corrupted. Binary error correcting codes do exist, but they are generally not as efficient as codes over larger
alphabets.

To allow our code to tolerate a constant fraction of errors inthebits of the ciphertext, we will make use of a
binary error correcting codeECC, with two properties

• |ECC(x)|= c2|x| for some constantc2,

• ECC can recover from an error-rate of1
2−δ in thebits of ECC(x).

Such codes exist, forδ > 1
4 in the unbounded adversarial channel model, andδ > 0 in the computationally

bounded channel model. See Appendix B for a more in-depth discussion.



5 Construction

5.1 High Level Outline of Our Construction

A public key will be a list oft PIR queriesQ1, . . . ,Qt , along with the public key to the semantically-secure encryp-
tion SSE. The private key will be the private key for the semantically-secure encryption, the private key for the PIR
protocol and a permutationσ∈St such thatQ j is a query for theσ( j)th position of the message. To encrypt ann-bit
messageX, we first divideX into r blocksX1, . . . ,Xr , then we encrypt each block using our semantically-secure
encryption (this can be done by further subdividing the block if necessary). Then we encode each block using the
Reed-Solomon code, thus obtaining a list of evaluation points that constitute the Reed-Solomon encoding of this
block. Next, we concatenate the evaluation points for all the blocks, and, treating this list as a single database, we
evaluate allt PIR queries on it. Finally, we encode each PIR response with astandard binary error correcting code
ECC.

In more detail, we assume that when we evaluate a PIR queryQ on a messageX, the PIR responseR encodes
dk bits of X wherek is our security parameter andd depends on the specific PIR protocol used. For example
the Gentry-Ramzan protocol hasd ≈ 1

4, while a PIR protocol like [4] which only retrieves a single bit at a time
hasd = 1/k. Next, we fix a primep of lengthk which will determine the base-field of theRSECC. Then, we
setr = n/(`k), thus each blockXi has|Xi| = `k, where` is the parameter that will determine the “spread” of our
code. Next we encrypt each blockXi usingSSE, obtainingSSE(X1), . . . ,SSE(Xr) where|SSE(Xi)| = c1`k. Then
we encode each encrypted block asc1ρ` field elements inZ/pZ usingRSECC. Thus we can recover any blockXi

as long as no more than12− 1
2ρ of the field elements that encode it are corrupted. Finally, we concatenate allc1rρ`

field elements, thus at this point our “database” isc1rρ`k = c1nρ bits. Next we evaluate allt queriesQ1, . . . ,Qt on
this database. Since we wish to retrieveall the information inX, we needt = c1nρ/(dk). Thus we obtaint PIR
responsesR1, . . . ,Rt . Finally, we send thet-tuple(ECC(R1), . . . ,ECC(Rt)).

Thus our final encryption is of sizec1c2nρ|Rj |/(dk). If |Rj | ≈ k as is case in [4], [5], [11], then our encryption
will be of lengthc1c2ρn/d. If we use the PIR protocol in [11] then,d will be constant, thus our code will have
constant information rate. Notice that the spread parameter ` has no effect on the length of the encryption. This
encryption is error correcting because as long as no more than 1

2− 1
2ρ of the responses that encode a given block

are corrupted, the block can be recovered correctly by first decoding each point usincECC, and then reconstructing
the block using theRSECC. This cryptosystem is also locally-decodable since to decrypt a given block, it suffices
to read thec1ρ`

dk PIR responses that encode it.

5.2 Error Correcting Public Key Encryption

We now define a triple of algorithmsG,E,D for our encryption scheme.

Key Generation: G(1k,α).

• Fix a primep of lengthk.

• Generate public-key private-key pair forSSE, PKE,SKE.

• Generate a PIR decryption keyDPIR.

• Generate a random permutationσ ∈ St .

• Generatet PIR queriesQ1, . . . ,Qt , whereQ j queries the block ofdk bits at position
(σ( j)−1)c1dk+1 of ac1nρ bit database.

The public key will then be
PK = (PKE,Q1, . . . ,Qt)

and the secret key will be
SK= (σ,SKE,DPIR)

Thus the public key will be of lengtht|Q|+ |SKE| = c1nρ|Q|/(dk). If we use [11], then|Q| = k and d is
constant, so assuming|SKE|= O (k), we obtain|PK|= O (n+k).

Encryption: given ann-bit messageX,



• BreakX into r = n
`k blocksXi of size`k.

• Encrypt each block usingSSE. If SSE can only encrypt strings of lengthk, we simply divideXi into shorter
strings, encrypt the shorter strings and then concatenate the encryptions.

• For each encrypted block,SSE(Xi) we encode it as a list ofc1ρ` field elementsZi,1, . . . ,Zi,c1ρ` in Z/pZ using
theRSECC.

• Concatenate all the evaluations, creatingX̃ = Z1,1, . . . ,Z1,c1ρ`, . . . ,Zr,1,Zr,c1ρ`. Thus|X̃|= rc1ρ`k= c1nρ bits,
and we run each PIR query{Q1, . . . ,Qt} on X̃ receiving responsesR1, . . . ,Rt . Since each PIR query recovers
dk bits, we will needc1/d queries to recover each field elementZ.

• Encode eachRj individually using the binary error correcting codeECC.

• The encryption is then thet-tuple(ECC(R1), . . . ,ECC(Rt)).

Decryption: to recover theith block, of a messageX from thet-tuple(ECC(R1), . . . ,ECC(Rt))

• We wish to retrieve the encodingZi,1, . . . ,Zi,c1ρ`, which are the bits of̃X in positions
(i−1)c1ρ`/d+1, . . . , ic1ρ`/d, Thus we select thec1ρ`/d responses that encodeXi,
{ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . ,ECC(Rσ−1(ic1ρ`/d))}.

• Decode eachECC(Rj) to obtain{Rσ−1((i−1)c1ρ`/d+1), . . . ,Rσ−1(ic1ρ`/d)}.

• Decode each of thec1ρ`/d PIR responsesRj to obtainZi,1, . . . ,Zi,c1ρ`.

• Using theRSECC reconstructSSE(Xi) from Zi,1, . . . ,Zi,c1ρ`.

• DecryptSSE(Xi).

Notice that to recover blockXi we only need to readc1c2|R|ρ`/d bits of the encryption. In the Gentry-Ramzan
PIR |R|= k andd = 1/4, so we are reading onlyO (`k) bits of the message. For correctness we will choose` = k,
thus in this case our scheme will achieve localityO (k2).

5.3 Local-Decodability

One of the most interesting features of our construction is the local-decodability. To recover a small portion of the
messageX, only a small portion of the ciphertext(ECC(R1), . . . ,ECC(Rt)) needs to be decoded. During encryption
the messageX is broken into blocks of length̀k bits, and this is the smallest number of bits that can be recovered
at a time. To recover a single bit ofX, or equivalently the entire blockXi that contains it, we must readc1ρ`/d
blocks of the ciphertext{ECC(Rσ−1((i−1)c1ρ`/d+1)), . . . ,ECC(Rσ−1(ic1ρ`/d))}. Since|ECC(Rj)| = c2|Rj |, we must
read a total ofc1c2|R|ρ`/d bits. Since the probability of error will be negligible in`, we will set` = k. Herec2 and
ρ are parameters that determine the error-rate of our code.

Using the Gentry-Ramzan PIR, we have|R|= k andd = 1/4, so the locality isO (k2). Using the Chang’s PIR
[5] based on Paillier’s cryptosystem [32] we have|R| = 2k andd = 1/2 so we achieve the same encryption size
and locality, although in this situation the public key sizeis O (n3/2) instead ofO (n) in the Gentry-Ramzan case.

5.4 Extensions

For convenience, in our proof of correctness (§6.2) we set the parameterρ equal to 1/2. It should be clear that
this value is somewhat arbitrary and that by increasingρ we increase the error tolerance of the code along with
the ciphertext expansion. Similarly, in our proof we set theparameter̀ to be the security parameterk. We can
changè , and an increase iǹcorresponds to a decrease in the probability that the channel succeeds in introducing
an error, and a decrease in the locality of the code. In particular our code fails with probability that is negligible in
`, and the smallest number of bits that can be recovered from the message isO (`k).

Our protocol also benefits nicely from the idea of Batch Codes[20]. Since our protocol requires making
multiple PIR queries to the same message, this is an ideal application of Batch Codes, which can be used to
amortize the cost of making multiple PIR queries to a fixed database. By first “batching” the messageX̃ in §5.2,
we can significantly decrease server computation by slightly increasing ciphertext expansion, or we can decrease



ciphertext expansion by paying a slight increase in server computation. It should be noted that batch codes are
perfect, in the sense that batching the message in this way does not change the probability of correctness.

We can also increase the efficiency of our construction by further taking advantage of the bounded channel
model. If in addition to the sender knowing the receiver’s public key, we assume that the receiver knows the
verification key to the senders signature algorithm (a reasonable assumption since anyone receiving messages
from the sender should be able to verify them), our scheme benefits nicely from the sign and list-decode methods
described in [28]. As in §5.2, we break our messageX into `k-bit blocks X1, . . . ,Xt . Then, before applying
the RSECC to each block, we sign each block using any Public Key Signature Scheme which is existentially
unforgeable under a chosen message attack. The existence ofsuch a scheme is implied by the existence of a one-
way function [33]. We can also improve the efficiency of the digital signature by using the standard trick of first
hashing the message, the signing the hash. Since every PIR protocol is a collision-resistant hash function [19], we
can first “hash” each blockXi then sign the hash of each block. Now, we proceed as before, encoding each signed
block using theRSECC, and finally each of these blocks is further encoded by a binary ECC. As mentioned above
(in §4.4), the rate of the binary ECC can also be improved via this method. Again, we note that this construction
requires the receiver to know the public key for the sender’ssignature scheme, in addition to the sender knowing
the public key to the receiver’s encryption scheme.

To decode in this situation, we first decode the binary ECC, then welist-decodethe RSECC. Then, with all
but negligible probability, only one of the possible decodings will be a validsignedblock. This has the effect
of improving the information rate of theRSECC. It should be noted that our scheme has constant codeword
expansion, and can recover from constant error-rate even without these improvements. The use of digital signatures
before applying theRSECC or the binary ECC has the effect of increasing the maximum tolerable error-rate,
and decreasing the codeword expansion. Unlike the application of Batch Codes above, this sign and list-decode
technique will slightly increase the probability that a message fails to decrypt, although it still remains negligible.

5.5 Constructions Based on Homomorphic Encryption

It was shown in [19] that any homomorphic encryption protocol yields a PIR protocol, thus our construction can be
achieved based on any homomorphic encryption protocol. In this situation, it is unnecessary to first encrypt each
block Xi before applying theRSECC since the PIR protocol described in [19] is already semantically-secure. Thus
the idea of coupling encryption and error-correction is even more natural in this situation. Using the construction
in [30] to construct a PIR protocol from a homomomorphic encryption protocol and then applying our construction
yields

Corollary 1. Under any homomorphic encryption protocol which takes plaintexts of lengthm to ciphertexts of
lengthαm, there is a Public-Key Locally Decodable Code which can recover from a constant error-rate in the bits
of the message, with public key sizeO (nkβ β

√
n) and ciphertexts of sizeO (nαβ−1k), for anyβ ∈ N, wheren is the

size of the plaintext andk is the security parameter. The resulting code has localityO (αβ−1k2), i.e. to recover a
single bit from the message we must readO (αβ−1k2) bits of the codeword.

Using a Length-Flexible Additively Homomorphic Encryption protocol such as the one described in [8] yields
an even more efficient PIR protocol. Using the methods outlined in [30] and applying our construction we arrive
at the following result

Corollary 2. Under the Decisional Composite Residuousity Assumption [32] there is a Public-Key Locally De-
codable Code which can recover from a constant error-rate inthe bits of the message, with public key size
O (nlog2(n) + k) and ciphertexts of sizeO (nlog(n)), wheren is the size of the plaintext andk is the security
parameter. The resulting code has localityO (k2 log(n)), i.e. to recover a single bit from the message we must read
O (k2 log(n)) bits of the codeword.

6 Proof of Security

6.1 Overview

The semantic security of our scheme follows immediately from the semantic security of the underlying encryption
SSE. The full proof of the correctness (i.e. local decodability) of our scheme requires some care. Here, we
outline only the high-level ideas of the proof. The structure of the proof is as follows. Given an encryption
(ECC(R1), . . . ,ECC(Rt)). The outerECC forces an adversary to concentrate their errors among only afew Rj .
Thus, we may assume that the adversary is only allowed to introduce errors into a constant fraction of theRj .



Then, we note that any polynomial-time adversary cannot tell which remaindersRj encode which blockXi by by
the privacy of the PIR protocol. Thus any errors introduced in theRj will be essentially uniform among theZ’s
that make up the Reed-Solomon encryptions. Next, we note show that our code has sufficient “spread” so that
errors introduced uniformly among theRj will cluster on theRj encoding a given blockXi with only negligible
probability. Finally, if the errors are not clustered amongtheRj that encode a given block, we show that theRSECC
will correctly recover that block.

Thus we arrive at the following result

Main Theorem. Given a computational PIR protocol with query size|Q|, and response size|R| which retrieves
dk bits per query, and a semantically-secure encryption protocol SSE, there exists a Public Key Locally Decod-
able Code which can recover from a constant error-rate in thebits of the message, which has public key size
O (n|Q|/(dk2)+k) and ciphertexts of sizeO (n|R|/(dk2)), wheren is the size of the plaintext andk is the security
parameter. The resulting code has localityO (|R|k/d), i.e. to recover a single bit from the message we must read
O (|R|k/d) bits of the codeword.

6.2 Proof of Local-Decodability

Here, we show correctness, i.e. that our system is computationally locally-decodable up to a constant fraction
of errors. By an encryption of a messageX, we mean at-tuple (ECC(R1), . . . ,ECC(Rt)) wheret = ρn

dk, and each
Rj is a PIR response to queryQ j . For concreteness, we setρ = 2, and we show that our decoding algorithm
decodes correctly with all but negligible probability, at most a1

4−δ fraction of the bits of the encryption have been
corrupted by a polynomial-time adversaryA. Notice that our algorithm will decode a blockXi correctly whenever
no more than1

4
2`
d of theRj that encode it are corrupted. Thus we will show that any polynomial-time adversary

that corrupts a1
4 − δ fraction of the bits, only corrupts more than14 of the Rj that encode a given block of the

message with negligible probability. We prove this througha series of lemmas.
We begin by noticing that any adversaryA that corrupts at most14−δ fraction of thebits of the message, can

only corrupt at most a12−δ−δ2 fraction of theRj .

Lemma 1. Given(ECC(R1), . . . ,ECC(Rt)), whereECC recovers from a binary error-rate of1
2−δ, any adversary

A that corrupts at most14−δ bits of the entire codeword, can corrupt no more than1
2−δ+ δ2 of theRj

Proof. This is simply counting.A can corrupt a total of(1
4−δ)ct|Rj | bits, and to corrupt oneRj A needs to spend

(1
2−δ)c|Rj |, thusA can corrupt at most(1

2−δ−δ2)t of theRj since

(

1
4−δ

)

ct|Rj |
(

1
2−δ

)

c|Rj |
≤

1
4− δ

2− δ
2 + δ2− δ2

2 + δ3

1
2−δ

t

=

(

1
2−δ−δ2

)(

1
2−δ

)

1
2−δ

t

=

(

1
2
−δ−δ2

)

t.

�

For the rest of the proof of correctness, we assume thatA is restricted to corrupting a12−δ−δ2 fraction of the
Rj , rather than1

4−δ bits of the message.
Now, we show that any such corrupting adversary cannot detect whether inputs are “well-formed”, i.e.A

behaves in an indistinguishable manner whether thet-tuple(R1, . . . ,Rt) is a valid encryption or not.

Lemma 2. For all probabilistic polynomial-time adversariesA, such thatA introduces errors int-tuples(R1, . . . ,Rt),
where eachRj is a response to queryQ j and eachQ j queries distinct position in the database, thenA will also in-
troduce errors int-tuples(R1, . . . ,Rt) where eachQ j queries thesameposition of the database.

Proof. Instead of runningA on a t-tuple where each queryQ j queries a distinct position in the database, we
provideA with t-tuple in which each PIR queryQ j queries thethe sameposition in the database. AssumeA fails to
introduce errors on this malformed input with non-negligible probabilityε. Now we proceed via hybrid argument.



Since the probability theA fails on t queries querying the same position isε greater than when eachQ j queries a
different position, then the triangle inequality tells us that there must be somet∗ < t such that,

∣

∣Pr[A fails whent∗ Q j query the same position]−Pr[A fails whent∗+1 Q j query the same position]
∣

∣>
ε
t
.

We can now useA to break the privacy of the PIR protocol. Given a queryQ∗ such thatQ∗ queries positioni∗ where
i∗ equalsi0 or i1, we constructt∗ queriesQ1, . . . ,Qt∗ that query positioni0, andt− t∗−1 queriesQt∗+1, . . . ,Qt−1
that query positions other thani0, i1. We then runA, on thet-tuple (R1, . . . ,Rt−1,R∗) whereRj is a response to
Q j for 1≤ i < t, andR∗ is a response toQ∗. If A fails to introduce errors on thist-tuple, we say thatQ∗ queries
position i0. This algorithm correctly distinguishes whetherQ∗ queries positioni0 or i1 with probability at least
1
2 + ε

2t . Although, we do not know the exact value oft∗, we can we can guess it with probability1t , to obtain an
algorithm which decides whetherQ∗ queries positioni0 with advantage ε

2t2 which is a violation of the privacy of
the PIR protocol. �

If eachQ j queries the same positioni, thenA must distribute errors randomly among the blocks, since the
notion of blocks in this case is completely arbitrary. SinceA must behave identically when eachQ j queries the
same position as when they all query different positions, wenotice that an adversary cannot focus the errors on
the remainders encoding a specific block. To make this formal, recall that the messageX was divided into blocks
r = n

`k blocks Xi, and for each blockRSECC(SSE(Xi)) was encoded by 2c1`/d PIR responses, andt was the
total number of responsest = 2c1n

dk . If we defineSi ⊂ {R1, . . . ,Rt} to be the set of remainders encoding blockXi,
Si = hσ−1(2(i−1)c1`/d+1), . . . ,hσ−1(2c1i`/d), then|Si |= 2`/d, and we obtain the following lemma.

Lemma 3. If A is a probabilistic polynomial-time machine which introduces errors in{R1, . . . ,Rt}, the distribution
of the errors in the set{S1, . . . ,Sr} is computationally indistinguishable from the uniform random distribution on
{S1, . . . ,Sr}.
Proof. Suppose there exists a distinguisherD that can distinguish the corruptionsA introduces among theSi from
uniform random with advantageε. Then we runD on A’s output whenA is given queries that query between one
andt distinct positions. When we runA on at-tuple (R1, . . . ,Rt) where eachQ j queries the same position, in this
situationA must distribute errors uniformly, sinceA hasno information about the underlying subsetsSi . Thus in
this situation,D cannot distinguishA’s corruptions from random with probability greater than1

2, since in this case
A’s corruptionsare random. Now we proceed via a hybrid argument. WhenA is run on queries that queryt distinct
positions, thenD can distinguishA’s corruptions from random with advantageε, thus by the triangle inequality,
there exists at∗ < t such thatD can distinguishA’s output whenA is run on queries,t∗ of which are then same,
from A’s output whenA is run on queries,t∗+1 of which are the same, with advantageε

t . This allows us to break
the privacy of the PIR in exactly the manner described before. Given a queryQ∗ that queries eitheri0 or i1, we
constructt∗ queriesQ1, . . . ,Qt∗ which all query positioni0, andt− t∗−1 queriesQt∗+1, . . . ,mt−1 which all query
different positions. Then we runD on A’s output, whenA is given(R1, . . . ,Rt−1,R∗). By the definition oft∗ D
succeeds in distinguishing whetherQ∗ queries positioni0 with advantageε

2t . Thus by guessing a random value in
{1, . . . , t−1} for t∗, we break the privacy of the PIR protocol with advantageε

2t2 , a contradiction. �

Lemma 4. If A distributes(1
4− δ)t errors uniformly among thet responses, the probability thatA destroys any

given blockXi is negligible in`.

Proof. If A distributes errors at random, then we can viewA as selecting field elementsZi,ι to corrupt uniformly at
random . The adversaryA destroys a blockXi exactly whenA corrupts more than12−δ of the pointsZi,ι that encode
that block, the probability thatA destroys a block is exactly the probability that more than(1

2− δ)2c1`
d points that

encodeXi are corrupted. This distribution is then the Hypergeometric Distribution, where2c1`
d items are selected

and(1
2−δ−δ2)t of which are corrupted. In [18], Hush and Scovel give the bound

Pr

[

# of errors in encoding of blockXi >

(

1
2
−δ
)

2c1`

d

]

< e
−2
(

d
2c1`+d

)

(

4δ4c2
1`2

d2 −1

)

,

where the probability is taken over the uniform distribution on thet remainders, and this probability is clearly
negligible in`. �

Lemma 5. If at most(1
4− δ)t of the t encryptions are corrupted by a probabilistic polynomial-time adversaryA,

then the probability that any bit of the message fails to decode properly is negligible ink.



Proof. For a given blockXi the probability that that block is damaged under the corruptions created byA is
negligibly different ink than if A produced the corruptions at random, which itself would damage Xi with only
negligible probability iǹ . Taking`≈ k, we have that the blockXi is damaged with at most negligible probability
in k. The union bound then gives that the probability thatanyblockXi is damaged is at mostt times the probability
that a specific block is damaged, which remains negligible ink. �

7 A Concrete Protocol Based onΦ-Hiding

We now present a concrete example of our reduction based on the Gentry-Ramzan [11] PIR protocol. A straightfor-
ward application of our main construction in §5.2 already yields a PKLDC with public key sizeO (n) and constant
ciphertext expansion, but the Gentry-Ramzan PIR protocol has many nice properties which can be exploited to sim-
plify the construction and further increase the efficiency of the protocol. The construction we present here differs
from the straightforward application of our general reduction to the Gentry-Ramzan protocol in two ways. First,
we are able to integrate the basic semantically-secure encryption protocol into our construction, thus reducing the
ciphertext expansion by a constant factor, and eliminatingthe need for another hardness assumption. Second, we
use the Chinese Remainder Theorem Error Correcting Code (CRT-ECC) instead of the Reed-Solomon code used
in the general construction. This is because theΦ-hiding assumption allows us to do hidden chinese-remaindering,
and so it is a more natural code to use in this context. This does not change the arguments in any substantial way,
since from the ring-theoretic perspective, the CRT-ECC andthe Reed-Solomon ECC are exactly the same (see
Appendix E).

7.1 The Small PrimesΦ-Hiding Assumption

TheΦ-Hiding Assumption is a relatively new computational hardness assumption, which relates to the difficulty
of finding small prime factors ofϕ(m), whereϕ is the Euler Totient Function. If a primep dividesϕ(m), we say
thatm Φ-hidesp. TheΦ-Hiding assumption was first proposed by Cachin, Micali and Stadler in [4], and a variant
was proposed by Gentry and Ramzan in [11]. Our constructionsrequire only the security of the Gentry-Ramzan
PIR scheme, and so we make the following variant of theΦ-Hiding Assumption

Let Pk denote the set of primes of bit-lengthk2, H k be the set of products of two primes inPk with gcd(p−
1,q−1) = 2, and letH π

k ⊂ H k denote the set of composite moduli thatΦ-hideπ, i.e.

H
π

k = {m : m= pq, {p,q} ⊂ Pk, gcd(p−1,q−1) = 2, p≡ 1 modπ}.

Assumption 1. The Small PrimesΦ-Hiding Assumption
For all small prime powers,π0,π1 such that 3< π0 < π1 < 2

k
4−1, given b ∈R {0,1} andm∈R H

πb
k , for all

probabilistic polynomial-time algorithmsA, we have

Pr[A(π0,π1,m) = b]≤ 1
2

+ ν(k),

for some negligible functionν(k), where the probability is taken over allm∈ H πb
k , b ∈ {0,1}, and the internal

randomness ofA.

Thus we are asserting that no probabilistic polynomial-time adversary can determine which prime power a
given modulusΦ-hides. We will sometimes find it convenient to use a slightlydifferent form. Specifically, we
assert that given two modulim0,m1 which Φ-hide two prime powersπ0,π1, no probabilistic polynomial-time
adversary can tell whetherπ0 = π1 with probability better than one half.

Lemma 6. Under the Small PrimesΦ-Hiding Assumption, ifπ0∈R{5, . . . ,b2k
4−1c}, S0 = {π0}, S1 = {5, . . . ,b2k

4−1c}\
{π0}, b∗ ∈R {0,1}, π1 ∈R Sb∗ , b∈R {0,1} andm0∈RH

πb
k andm1 ∈RH

π1−b
k . Then for all probabilistic polynomial-

time adversariesA,

Pr[A(m0,m1) = 0 andπ0 = π1]+Pr[A(m0,m1) = 1 andπ0 6= π1]≤
1
2

+ ν(k),

for some negligible functionν(k), where the probability is taken over the internal randomness of A, the choice of
π0,π1, m0,m1, and the choice ofb∗ andb.



Proof. Assume there exists a polynomial-time adversaryA which can correctly determine whetherπ0 = π1 with
probability 1

2 + ε(k) for some non-negligible functionε(k). Givenπ0,π1 andm such thatπb | ϕ(m), we wish to
construct an algorithmA′ that guessesb, as follows: Pick a randomb′ ∈ {0,1}, and generatem′ ∈H πb′

k . Then runA
on(m,m′). If A returns 0 thenA′ returnsb′, otherwiseA′ returns 1−b′. SinceA succeeds with probability12 +ε(k),
A′ succeeds with probability12 + ε(k) which is still non-negligible ink, and thus a violation of theΦ-Hiding
assumption �

In particular, we are asserting that there is no efficient algorithm which can match theπi to the modulimi
significantly better than by guessing randomly. Notice thatin the small primesΦ-hiding assumption we have
excludedπ = 2 or 3, this is because every odd numberΦ-hides 2, andm≡ 2 mod 3, only ifm Φ-hides 3. Notice
also that we restrict theπi to be smaller than4

√
mi, this is to prevent the lattice based attack described in [7], [6].

When thepi ’s and theπi ’s are chosen subject to these restrictions, there are no efficient algorithms known for
breaking theΦ-Hiding assumption.

7.2 A Φ-hiding based Semantically-Secure Encryption Protocol

Here, we describe a simple semantically-secure public key encryption scheme,BasicEncrypt that will be an es-
sential building block of our construction. The encryptionprotocol consists of three algorithms,G,E,D described
below.

To generate the keys,G(1k) first selects a small prime-powerπ, then generatesm∈ H π
k , i.e. m= pq, where

p,q∈R Pk, subject toπ | p−1. The public key will bePK = (g,m,π) whereg is a generator for the cyclic group

Gm, andSK= ϕ(m)
π .

To encrypt a messagex∈ Z/πZ, we have

E(x) = gx+πr modm,

for a randomr ∈ Z/mZ. To decrypt, we do

D(y) = yϕ(m)/π = gxϕ(m)/π modϕ(m) modm=
(

gϕ(m)/π
)x

modm,

then, using the Pohlig-Hellman algorithm to compute the discrete logarithm in the group〈gϕ(m)/π〉, we can recover
x modπ = x. If a is a small prime, andπ = ac, the Pohlig-Hellman algorithm runs in timec

√
a. Thus the

decryption requiresO (log(m/π)+ c
√

a) group operations inGm which is acceptable for small primesa. In our
locally decodable code, we will require multiple differentprime powersπ1, . . . ,πt , and we will choose the small
primesa, as the first primes, i.e.π1 = 5e1,π2 = 7e2,π3 = 11e3. If we requiret prime powersπi, the Prime Number
Theorem, implies that the largesta, will be approximatelyt logt. Sincet will be less than the message length,n,√

a will be polynomial in the message length, and hence polynomial in the security parameterk.
It is worth noticing that this scheme is additively homomorphic over the groupZ/πZ, although we do not have

an explicit use for this property. Whenπ = 2, this is just Goldwasser-Micali Encryption [13], for larger π it was
described in [3] and [2]. An extension of this scheme is described in [29].

While this protocol is not new, none of the previous descriptions of this protocol make use of theΦ-hiding
assumption, and instead their security is based on some formof composite residuousity assumption, i.e. it is
impossible to tell whether a random group elementh belongs to the subgroup of orderπ in Gm. We are able
to prove security under theΦ-hiding assumption because theΦ-hiding assumption is strictly stronger than these
other assumptions. The reduction is simple, for suppose there exists an adversaryA which can determine whether
a group elementh∈Gm is aπth power. Noticing that ifπ | ϕ(m) exactly 1 inπ elements will beπth powers, while
if gcd(π,ϕ(m)) = 1, theneveryelement is aπth power, by simply sending random group elementshi to A, and
measuring the probability whichA says thathi is aπth power, we can distinguish whetherπ | ϕ(m).

7.3 The Semantic-Security ofBasicEncrypt

We now prove the semantic security of the simple encryption protocol given in §7.2 under theΦ-hiding assumption,
we prove this as a sequence of lemmas, lemma 7 through lemma 9.

Lemma 7. Under the Small PrimesΦ-Hiding Assumption, if we define

H0 = {g∈Gm : 〈g〉= Gm, i.e. g generatesGm },



andH1 = Gm\H0, then, ifb∈R {0,1}, givenm∈RH k, g∈R Hb, no probabilistic polynomial time distinguisherD
can correctly distinguish whetherg∈H0 with probability noticeably greater than12.

Proof. SupposeD correctly guesses whetherg generatesGm with probability 1
2 + ε for some noticeable function

ε. We will useD to break theΦ-hiding assumption. Our adversaryA is givenm,π according to the distributions
given in Assumption 1, and will useD as a subroutine to determine whetherm∈ H π

k .
First notice thatGm is a cyclic group, so|H0| = ϕ(|Gm|) = ϕ(ϕ(m)/2). A well-known consequence of the

Prime Number Theorem is the lower bound

ϕ(n) >
cn

log log(e2n)
,

for some constantc and alln (see for example [1]). Thus

|H0|= ϕ(|Gm|)

>
c|Gm|

log log(e2|Gm|)

>
c|Gm|

log log(e2m)
.

In particular |H0|
|Gm| >

c
log log(e2m)

which is noticeable ink, sincek ≈ logm. Thus an element drawn uniformly at
random fromGm will be a generator with noticeable probability, we call this probabilityι. Then to determine if
m∈ H π

k , we generate a randomg∈ Gm, and sendgπ andm to D. If D saysg∈ H0, A replies thatm 6∈ H π
k , i.e. m

does notΦ-hideπ.
To show that we succeed with noticeable probability, we notethat if m 6∈ H π

k , thengπ ∈ H0 iff g ∈ H0, so
gπ ∈ H0 with probability ι. If m∈ H π

k , thengπ cannot generateGm, sogπ 6∈H0.
Thus

π|ϕ(m) π - ϕ(m)

A saysgπ ∈ H0
1
2− ε 1

2− ε+2ιε
A saysgπ 6∈H0

1
2 + ε 1

2 + ε−2ιε

soA is correct with probability

1
2

(

1
2 + ε+2ιε

(1
2− ε)+ (1− ε+2iε)

+
1
2 + ε

(1
2 + ε)+ (1

2 + ε−2ιε)

)

=
1
2

(

1
2− ε+2ιε

1−2ε+2ιε
+

1
2 + ε

1+2ε−2ιε

)

>
1
2

(

1
2

+
ιε

1−2ε+2ιε
+

1
2

+
ιε

1+2ε−2ιε

)

>
1
2

(

1
2

+ ιε+
1
2

)

=
1
2

+
ιε
2

.

Which is non-negligible since bothι andε are non-negligible. �

Next, we prove a straightforward fact about the distribution r modϕ(m), wherer ∈R Z/mZ.

Lemma 8. If r is selected uniformly at random inZ/mZ, andr ′ is selected uniformly at random inZ/|Gm|Z, then
the distributions ofr mod|Gm| andr ′ are statistically close, i.e.

1
2 ∑

x∈Z/|Gm|Z
|Pr[r = x]−Pr[r ′ = x]|

is negligible ink.



Proof. Since|Gm|= ϕ(m)
2 = pq−p−q+1

2 , the distribution forr mod|Gm| becomes

P(r = x) =







2
m for |Gm|− p−q+1 elements

3
m for p+q−1 elements

Thus

1
2 ∑

x∈Z/|Gm|Z
|Pr[r = x]−Pr[r ′ = x]| = 1

2
(|Gm|− p−q+1)

(

1
|Gm|

− 2
m

)

+
1
2
(p+q−1)

(

3
m
− 1
|Gm|

)

.

Now,
1
|Gm|

− 2
m

= 2

(

1
pq− p−q+1

− 1
pq

)

=
p+q−1
m|Gm|

,

so
1
2
(|Gm|− p−q+1)

(

1
|Gm|

− 2
m

)

≤ p+q
2m

.

Similarly, we have

3
m
− 1
|Gm|

=
3(pq− p−q+1)−2pq

m(pq− p−q+1)
=

pq−3(p+q−1)

2m|Gm|
<

pq− p−q+1
2m|Gm|

=
1
m

.

so
1
2
(p+q−1)

(

3
m
− 1
|Gm|

)

≤ p+q
2m

.

Thus the statistical distance is less than
(p+q)

m

which is negligible ink since logm≈ k, and logp≈ logq≈ k
2. �

Now we are ready to prove the semantic security of our cryptosystem.

Lemma 9. The encryption in §7.2 is semantically-secure under the small primesΦ-hiding assumption.

Proof. Given any distinguisherD for the encryption protocol that succeeds with non-negligible probability, we
construct an adversaryA which violates theΦ-hiding assumption with non-negligible probability. Given m andπ
wherem∈RH

π
k with probability 1

2 andm∈RH k\H π
k with probability 1

2, the adversaryA picks ag∈Gm and sends
g,m to the distinguisherD, andD responds with two messagesx0,x1. ThenA choosesb∈R {0,1}, andr ∈R Z/mZ
and computes

c = gxb+πr modm

and sendsc to the distinguisherD. D responds with a bitb∗. If b∗ = b the adversary responds thatm Φ-hidesπ,
otherwise the adversary respondsmdoes notΦ-hideπ.

Now we must show that this adversary breaks theΦ-hiding assumption with non-negligible probability.
First, assumeg generatesGm. If m Φ-hidesπ, thenc is a valid encryption ofxb, and so by the definition ofD,

we must have thatb∗ = b with probability 1
2 + ε for some non-negligible functionε.

On the other hand, ifmdoes notΦ-hideπ, thenπ ∈ (Z/|Gm|Z)∗. Now, notice that ifr ′ were chosen uniformly
in Z/|Gm|Z instead ofZ/mZ, we would havexb + πr ′ mod|Gm| is also uniformly distributed inZ/|Gm|Z. Thus
gxb+πr ′ would be uniformly distributed inGm, and hence any distinguisherD could guessb from gxb+πr ′ with
probability at most one half. By lemma 8, the statistical distance betweengxb+πr andgxb+πr ′ is negligible, thus any
distinguisherD succeeds in guessingb with probability 1

2 + ν for some negligible functionν.
Then, following this scheme, ifg generatesGm with probabilitya, our algorithm succeeds in breaking theΦ-

hiding assumption with probability12 + ε−ν
2 which is a non-negligible sinceε is non-negligible andν is negligible.

If, instead,g does not generateGm, then by lemma 7,D’s output distribution must be negligibly different from
wheng generatesGm. Thus in this case as well,A correctly guesses whetherπ|ϕ(m) with probability noticeably
greater than12. �



7.4 Outline of Our Φ-hiding based Construction

We begin by fixing a list oft prime powers{π1, . . . ,πt} as part of the public parameters. For concreteness we
chooseπ1 = 5e1, π2 = 7e2, . . . as in §7.2. A public key will be a list oft RSA moduli{m1, . . . ,mt}, such that
eachmj Φ-hides some prime powerπ j ′ . The Private key will be the factorizations of themj , more specifically
ϕ(m1), . . . ,ϕ(mt), along with a random permutationσ ∈ St such thatmj Φ-hidesπσ( j). To encrypt a message
X ∈ {0,1}n, we first divideX into blocksXi of size`k. Wherek is the security parameter, and` is a parameter
determining the “spread” of the code. As in the Gentry-Ramzan PIR scheme, we view each block as a number in
the range

{

0. . .2`k
}

. Our public key will bet = ρn
dk RSA moduli{m1, . . . ,mρn

dk
} such that each modulusΦ-hides a

prime powerπ j . We will uses= dρ`/de of theπ j to encode each blockXi. Since there aredn/`ke, and for each
block we usedρ`/de prime powers, we use a total ofn

`k ·
ρ`
d = ρn

dk = t prime powers. The parameterρ determines the
redundancy of the CRT-ECC, hence increasingρ increases the error tolerance and also the ciphertext expansion.
Recall thatd is the information rate of the Gentry-Ramzan PIR, sod is some fixed constant less than 1/4, for
concreteness you can assumed = 1/5. Exactly which prime is hidden by which modulus will be chosen at random
at the time of key generation, and is part of the receiver’s secret key. For each blockXi, the sender encryptsXi
modulo thes prime powers{π(i−1)s+1, . . . ,πis}, where eachπ j is roughly of sizedk. Notice here that we have
usedρ times as many moduliπ j as necessary to encode each block, thus for each blockXi we have effectively

calculated an encoding ofXi under the CRT-ECC which can tolerate
(

1
2− 1

2ρ

)

`
d corrupted moduli (see Appendix

C). We do this for each block, and thus the resulting encryption is ρ`
d · n

`k residues. Since each residue is of size

k, the the encryption of the whole message is now ofn
`k

ρ`
d = ρn

dk encryptions of sizek. Finally, we encode each
of the ρn/(kd) encryptions independently using the error correcting codein §4.4. So our final encryption is of
sizeρc2n/d bits, which is a constant multiple ofn. This encryption is error correcting because as long as no more
than 1

2− 1
2ρ of the residues that encode a given block are corrupted, the block can be recovered correctly by first

decrypting each residue, and then reconstructing the CRT-ECC. This cryptosystem is also locally-decodable since
to decrypt a given block, it suffices to decrypt theρ`

d encryptions that encode it.

7.5 Error Correcting Public Key Encryption Based on Φ-hiding

We now define a triple of algorithmsG,E,D for our encryption scheme.

Key Generation: G(1k,α).

• Let p1, . . . , pt be primes with 5≤ p1 < p2 < · · ·< pt , and chooseej =
⌊

k
4logpj

⌋

, thusej is the largest integer

such that log
(

p
ej
j

)

< dk, for somed < 1
4. Setπ j = p

ej
j . To encryptn-bit messages, we will need to choose

t = ρn
dk. Since we assumen = kα, this becomest = ρkα−1

d .

• Generate a random permutationσ ∈R St , the symmetric group ont elements.

• Generate modulim1, . . . ,mt such thatmj ∈ H
πσ( j)

k , i.e. mj Φ-hidesπσ( j).

• Find generators{g j} of the cyclic groups{Gmj}.

The public key will then be
PK = ((g1,m1,π1), . . . ,(gt ,mt ,πt)),

and the secret key will be

SK=

(

σ,
ϕ(m1)

πσ(1)
, . . . ,

ϕ(mt)

πσ(t)

)

.

Encryption: given ann-bit messageX,

• BreakX into n
`k blocksXi of size`k, and treat eachXi as an integer in the range{0. . .2`k}.



• For blockXi, we will use thesprime powersπ(i−1)s+1, . . . ,πis to encodeXi. Since the modulimσ−1((i−1)s+1), . . . ,mσ−1(is)
that correspond to theseπ’s is unknown to the sender, he must apply the Chinese Remainder Theorem using
all theπ j ’s. Thus for each blockXi, using the CRT, the sender generatesX̃i ∈ [1, . . . ,(π1 · · ·πt)], such that

X̃i =

{

Xi modπ j for j ∈ [(i−1)s+1, . . . , is],
0 modπ j for j ∈ [1, . . . ,(i−1)s]∪ [is+1, . . . , t].

To recover from error-rate12− 1
2ρ , we sets= ρ`

d .

• The sender then sets̃X = ∑
n
`k
i=1 X̃i. Thus for eachj, X̃ = Xi modπσ( j) for the uniquei such that(i−1)s+1≤

σ( j)≤ is.

• For j ∈ [1, . . . , t], generate a randomr j ∈ {0, . . . ,π1 · · ·πt}.

• Then calculateh j = g
X̃+r j π1···πt
j modmj for each j ∈ {1, . . . , t}. Thus

h j = E
(

X̃ modπσ( j)

)

= E(Xi modπσ( j)),

where(i− 1)s+ 1≤ σ( j) ≤ is, andE is the encryption protocol described in §7.2. At this point,partial
information about the blockXi is spread oversof theh j ’s.

• Apply the binary Error Correcting CodeECC to eachh j individually.

• The encryption is then thet-tuple(ECC(h1),ECC(h2), . . . ,ECC(ht)).

Decryption: to recover theith block, of a messageX from thet-tuple(h1, . . . ,ht)

• Select thesencryptions that encodeXi, {ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}.

• Decode eachECC(h j) to find obtain{hσ−1((i−1)s+1), . . . ,hσ−1(is)}.

• Decrypt each of thes encryptions using the decryption algorithm from §7.2. Thisgivesa1, . . . ,as where
a j = Xi mod(π(i−1)s+ j).

• Using the Chinese Remainder Code Decoding Algorithm, reconstruct Xi from thes remaindersa1, . . . ,as.
Note that if there are no errors introduced, this step can be replaced by simple Chinese Remaindering.

8 Analysis

The proof of local-decodability remains essentially the same as in the general setting (see §6.2).
For the locality, we note that to recover a single bit ofX, or equivalently the entire blockXi that contains it, we

must readsblocks of the ciphertext{ECC(hσ−1((i−1)s+1)), . . . ,ECC(hσ−1(is))}. Since|h j |= k and|ECC(h j)|= c2k,

we must read a total ofsc2k = ρc2`k
d bits. Since the probability of error will be negligible iǹ, we set̀ ≈ k, and

sinced < 1
4, we find that we need to read 5c2ρk2 bits of the ciphertext to recover one bit of the plaintext, wherec

andρ are parameters that determine the error-rate of our code. Thus our system only achieves local-decodability
for n = O (k2+ε). For n≈ k3, our system already offers a significant improvement over standard error-correcting
codes. It should also be noted, that for any semantically-secure cryptosystem, to recover one bit of the plaintext,
you must read at leastω(logk) bits of the ciphertext. It is an interesting question whether the locality of such a
scheme can be improved fromO (k2) to O (k).

Thus we arrive at the following result

Corollary 3. Under the Small PrimesΦ-Hiding Assumption (Assumption 1) there is a Public-Key Locally De-
codable Code which can recover from a constant error-rate inthe bits of the message, with public key sizeO (n)
and ciphertexts of sizeO (n), wheren is the size of the plaintext andk is the security parameter. The resulting code
has localityO (k2), i.e. to recover a single bit from the message we must readO (k2) bits of the codeword.
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Appendix

A Semantic Security

By a Public Key Cryptosystem, we mean a a triple of probabilistic polynomial time algorithmsG,E,D, such that
(PK,SK)← G(1k), c← E(PK,x, r) x′ ← D(SK,c) WherePK, SK denote the public and secret keys andx′ = x
w.h.p for the same message. A public key encryption system issemantically-secure if, given two messagesx0 and
x1, b∈R {0,1}, and an encryption of one of the messages,E(PK,xb), no polynomial time adversary can determine
b with probability significantly greater than one half. That is:

Definition 2. A Public Key Cryptosystem,G,E,D, with security parameterk is calledsemantically-secure(in the
sense of indistinguishability) if for all message pairs{x0,x1} and for all probabilistic polynomial time adversaries
A, and for allb∈R {0,1},

Pr[(PK,SK)←G(1k);{x0,x1}← A(PK);A(E(PK,xb, r)) = b] <
1
2

+ ν(k)

Wherex0 andx1 must be of equal length, and the probability is taken over thekey generation algorithm’s random-
ness, choice ofb, randomnessr used in the encryption algorithmE and the internal randomness ofA.

B Constant Rate Binary Error Correcting Codes

For our scheme to have constant information rate, we need to find abinaryerror-correcting code which can tolerate
an error-rate of12−δ.

One method for creating such a code, uses the notion of Concatenated Codes, originally described by Forney in
[9]. By combining a Reed-Solomon Code and a Random Linear Code as described in [16], it is possible to obtain
a binary error correcting code which recovers from1

4−δ error-rate, but the information-rate of the resulting code
is very low, about 10−4 for their construction.

Since we are working in the computationally bounded channelmodel, we can take advantage of the construc-
tions described in [28], to create a binary code with error-rate 1

2−δ, and significantly better information rates than
in the unbounded channel model. Applying Micali et al’s construction to the binary codes with list-decoding rate
1
2 and information rateδ4 described in [15], we obtain a code which uniquely decodes from error-rate1

2− δ, and
has information rate about1δ4 .

C CRT-Based Error Correction

It was observed in the 1970s [25], [26], [27], that the Chinese Remainder Theorem could be used to make efficient
Error Correcting Codes. Ifπ1, . . . ,πn,πn+1, . . . ,πn+t an increasing sequence of pairwise coprime integers, i.e.
π1 < π2 < · · · < πn+t , and gcd(πi ,π j) = 1 wheneveri 6= j. Then for any integerx with x < ∏n

i=1πi , we encode
x as the(n+ t)-tuple {x modp1, . . . ,x modpn+t}. If x andx′ are distinct integers less than∏n

i=1, then the two
vectorsE(x) = {x modπ1, . . . ,x modπn+t} andE(x′) = {x′ modπ1, . . . ,x′ modπn+t} must differ in at least
t +1 coordinates since the residue ofx moduloany nof the moduliπi uniquely determinesx. Thus the minimum
distance in this code ist, and so it can correctb t

2c errors. Thus if we taken+ t = ρn, this code can recover from
error-rate1

2− 1
2ρ , in the digits of the code.

This code differs significantly from most other error correcting codes in that each “digit”, i.e. each remainder,
of the codeword carries a different amount of information. Thus the Hamming distance between two codewords,
measured as the number of remainders in which they differ is not the natural distance to consider for this code.
This fact made finding an efficient decoding algorithm a nontrivial task. In his original paper in 1972, Mandelbaum
proposed an algorithm that ran in expected polynomial-time. Since then, many variants of that algorithm have
appeared, but it was not until 2001 [17] that the first polynomial-time decoding algorithm was found. Since the
Chinese Remainder Codes are efficiently list decodable [12], [17], we can apply the technique in [28] of combining
list-decoding with digital signatures to our protocol to further improve the information-rate.



D Gentry-Ramzan PIR

While our scheme does not explicitly rely on the Gentry-Ramzan PIR scheme, our protocol was inspired by their
use of theΦ-hiding assumption to do “hidden” Chinese Remaindering. Inthe interest both of giving some context
for our scheme, and of showing what else can be achieved by hidden Chinese Remaindering, we briefly sketch
the Gentry-Ramzan Private Information Retrieval scheme [11]. This scheme allows computationally private single
database PIR with constant communication rate under theΦ-hiding assumption. Here “constant” means propor-
tional to the security parameter. The scheme allows retrieval of entire blocks at once, and the scheme we describe
will retrieve an`-bit block from ann-bit database.

The scheme assumes some initial set-up. First, sequence of small primesp1, . . . , pt are fixed in advance. Then
we set̀ = dn/te, andci = dlogpi

`e. Settingπi = pci
i , we have thatπi > 2` for all i, and the integersπ1, . . . ,πt are

pairwise relatively prime. This initial set-up is assumed to be known to both the user and the database, and is not
included in the communication complexity of the scheme.

To begin the scheme, the database must do some pre-processing. Instead of viewing the database as a single
n-bit string, we instead view it as a concatenation oft `-bit integersa1, . . . ,at . Recall that we have chosen ourπi
such thatai < πi for eachi. Using the Chinese Remainder Theorem, the database can find an integere< ∏t

i=1 πi,
such thate modπi = ai .

To retrieve thejth block of the database,a j , the user then chooses an RSA modulusm= pq thatΦ-hidesπ j ,

and ag for cyclic the groupGm, i.e. g has orderϕ(m)
2 in (Z/mZ)∗. Sinceπ j |ϕ(m), we have thatGm has a subgroup

of orderπ j . Lettingq = ϕ(m)
2π j

, this subgroup is generated bygq. The user then sends bothm, andg to the database.
The database calculatesge modmand returns the result.

Givenge modm, the user then calculates(ge)q = (gq)e = ge modπ j modmsincegq has orderπ j in Gm. Then
by performing (a tractable) discrete-log computation in the subgroup of orderπ j generated bygq the user recovers
e modπ j = a j . Using Pohlig-Hellman algorithm this discrete-log computation can be calculated inO (c j

√
p j)

time.
If log2(m) = k, then the user sends 2k bits to the database, and the database replies withk bits, so the total

communication complexity is 3k bits. To avoid the lattice-based attacks described in [7] and [6], we must choose
msuch thatπi < m

1
4 for all i, i.e. ` < 4k.

E Why the CRT-ECC and the Reed-Solomon Code Are The Same

The general form of the Chinese Remainder Theorem states that if R is a commutative ring andI1, . . . , It are pairwise
coprime ideals (i.e.Ii + I j = R for all i 6= j) then

R/(I1I2 · · · It)'R/I1×R/I2×·· ·×R/It .

Taking R = Z and I j = mjZ for pairwise coprime integersmj we arrive at the classical form of the Chinese
Remainder Theorem. Now, noting that

ψ : Z/pZ[x]/(x−a)→ Z/pZ

f (x)→ f (a)

is a ring isomorphism, we can view evaluatingf ∈ Z/pZ[x] at a pointa as quotienting out by the ideal(x− a).
Applying the Chinese Remainder Theorem toR= Z/pZ[x] andI j = (x−a), we obtain exactly the setting of the
Reed-Solomon code. In both situations, the minimal distance for the code remains exactly the same since an
element inR/(I1 · · · It) is uniquely determined by itst images in the quotient ringsR/I j .
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