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Abstract

In this paper, we introduce the notion of a Public-Key EntigfgpScheme that is also a Locally-Decodable
Error-Correcting Code (PKLDC). In essence, this is a protttat is semantically-secure in the standard sense,
but possesses the additional property that it is a binamyr-®orrecting locally-decodable code against any
polynomial-time Adversary. That is, we allow a polynomiithe Adversary to read the entire ciphertext, per-
form any polynomial-time computation and change an anlyit(ee. adversarially chosen) constant fraction
of all bits of the ciphertext. The goal of the Adversary is to causerén decoding any bit of the plaintext.
Nevertheless, the decoding algorithm can deablkits of the plaintext (given the corrupted ciphertext) wehil
making a mistake oany bit of the plaintext with only a negligible ik error probability. In addition, the de-
coding algorithm has bocal Decodability property. That is, given a corrupted ciphertex&gk) the decoding
algorithm, for any 1< i < n, can recover théth bit of the plaintextx with overwhelming probability reading
a sublinear (inx|) number of bits of the corrupted ciphertext and performingputation polynomial in the
security parametek.

We present a general reduction from any semantically-seencryption protocol and any computational
Private Information Retrieval (PIR) protocol to a PKLDC.particular, since it was shown that homomorphic
encryption implies PIR, we give a general reduction from aesnantically-secure homomorphic encryption
protocol to a PKLDC. Applying our construction to the besbkm PIR protocol (that of Gentry and Ramzan),
we obtain a PKLDC, which for messages of sizand security paramet&rachieves ciphertexts of size(n),
public key of sizeo (n+k), and locality of sizeo (k?). This means that for messages of length w(k>*¢),
we can decode bit of the plaintext from a corrupted ciphénmhile doing computation sublinear im We
emphasize that this protocol achieves codewords that ye@@onstantimes larger than the underlying plain-
text, while the best known locally-decodable codes (duedkhdnin) have codewords that are only slightly
subexponential in the length of the plaintext. In additie, believe that the tools and techniques developed in
this paper will be of independent interest in other settimgsell.
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1 Introduction

Error correction has been an important field of researchesBitannon laid the groundwork for a mathematical
theory of communication in the nineteen forties. An errarecting code is a pair of algorithn@andD such that
given a message C(x) is a codeword such that, given a stripgf the Hamming Distance betweelC(x),y) is
“small”, thenD(C(x)) = x. When speaking of an error correcting code, two of its mogtartant characteristics

are theinformation rate which is the ratio of the message size to the codeword %{%ﬁ and theerror rate

which is the smallest such that ifd(C(x),y) > €|C(x)| thenD(C(x)) fails to recoverx uniquely. Since the field’s
inception, many codes have been found that exhibit bothtanhsformation rate, and constant error rate, which,
in a sense, is optimal. These codes all share the propettiothecover even a small portion of the messaf®m

the codeword;, the receiver must decrypt the entire codeword. In [21]zKeatd Trevisan posed the question: can
codes be found in which a single bit of the message can beeesbby decoding only a small number of bits from
the codeword? Codes of this type are callechlly-decodableand would be immensely useful in encoding large
amounts of data which only needs to be recovered in smaibpgrtfor example any kind of database or archive.
Currently the best known locally-decodable codes are difekbanin [35], they can tolerate a constant error rate,
but achieve only slightly better than exponentially smaflbrmation rates

It was shown by Katz and Trevisan [21], that any informatibeeretic Private Information Retrieval (PIR)
scheme can be transformed into a locally-decodable codéleWiis provides a new approach to the problem of
constructing efficient locally-decodable codes, so faa#t hot lead to any codes with significantly sub-exponential
size codewords, as we are still unable to construct effigidotmation-theoretic Private Information Retrieval
schemes.

In 1994, Lipton examined the notion of error-correctionhie tomputationally bounded channel model [24].
In this model, errors are not introduced in codewords ateemdut in a worst case fashiday a computationally
bounded adversaryThis realistic restriction on the power of the channelvaéid for the introduction of crypto-
graphic tools into the problem of error correction. In [24Pd14] it was shown how, assuming a shared private
key, one can use hidden permutations to achieve improved esrrecting codes in the private key setting. Re-
cently, Micali, Peikert, Sudan and Wilson used the comparatly bounded channel model to show how existing
error correcting codes could be significantly improved ia public-key setting [28]. After seeing the dramatic
improvement of error-correcting codes in this model, a ratguestion then becomes whether locally-decodable
codes can also be improved in the computationally boundadre model.

The first real progress in this setting was by Ostrovsky, Bamadid Sahai [31], where they construct a constant
information-rate, constant error-rate locally-decodabbde in the case where the sender and receiver share a
private key. This left open the question whether the samebeamccomplished in the Public-Key setting, which
does not follow from their results. Indeed, a naive prop@et does not work) would be to encrypt the key
needed by [31] separately and then switch to the privaterkegiel already solved by [31]. This however leaves
unresolved the following question: how do you encrypt thiegte key from [31] in a locally-decodable fashion?
Clearly, if we allow the adversary to corrupt a constanttfaacof all the bits (including encryption of the key and
the message), and we encrypt the key separately, then thgtan of the key must consume a constant fraction
of the message, otherwise it can be totally corrupted by avedsdry. But if this is the case all hope for local
decodability is lost. Another suggestion is to somehow ltigeencryption of the key inside the encryption of the
actual message, but it is not clear how this can be done.

A more sophisticated, but also flawed, idea is to use Liptoale-scrambling approach [24]. In his paper,
Lipton uses a private shared permutation to “scramble” tue@nd essentially reduce worst-case error to random
error. A first observation is that we can use PIR to implemeandom permutation in the public-key setting. We
proceed as follows: the receiver will generate a random pttiono € S, and the receiver’s public key would
be a set of PIR querie®y,...,Q;, whereQ; is a PIR query for thes(i)th block of anr block database, using
some known PIR protocol. The sender would then break thegsagex into blocks,x,..., %, apply standard
error correction to each block, calculate @g,...,Q; on their message, apply standard error correction to each
PIR responsdr; = Q;(ECC(x)), and send the messag€C(R;),...,ECC(R;). If ECC and PIR have constant
expansion rates, as is the case with many ECCs and the GRangan PIR [11], the resulting code has only
constant expansion rate. But an adversary can still destrsipngle block, by focusing damage on a single PIR
response. If we add redundancy by copying the messdipees, and publishingr PIR queries, the adversary
can still destroy a block with hon-negligible probability destroying constant number of blocks at random, and
with non-negligible probability the adversary will destrall c responses corresponding to the same block, and the
information in that block will be lost. Recall that we demahdt no bit of information should be destroyed except

lyekhanin achieves codewords of siZ& " for messages of length assuming there exist infinitely many Mersenne primes.



with negligible probability. Hence this method does not kveither. Of course, this can be fixed by increasing the
redundancy beyond a constant amount, but then the codewpathgion becomes more than constant as does the
public key size. Thus, this solution does not work eithed aew ideas are needed. Indeed, in this paper, we use
PIR to implement a hidden permutation, but we achieve a PKlb{ch can recover from constant error-rate with
only constantciphertext expansion.

1.1 Previous Work

The first work on error correction in the computationally bhdad channel model was done by Lipton in [24].
In [24] and [14] it was shown how to use hidden permutationadisieve improved error correcting codes in the
private key setting. The computationally bounded channedehwas first considered in the public key setting
only recently. In [28], Micali et al used a generic public k&ignature scheme combined with list-decoding to
demonstrate a class of binary error correcting codes witltipe information rate, that can uniquely decode from
% — € error rate, under the assumption that one-way functiorst.eXhese codes decode from an error eddteve

the proven upper bound c%f— € in the (unbounded) adversarial channel model. Here, agaremphasize the
reasonableness of the computationally bounded channedlirsiiice under the assumption that one-way functions
exist, Micali et al show thaall channels (that don't hold the messages for an exponentialanof time) must

be computationally bounded, or they could be used as imgesfethe one-way function. The first application of
the computationally bounded channel to Locally DecodaledesS was in [31], although their work was in the
private-key setting.

In addition to extending the work in the computationally bdad channel model, our work draws heavily from
the field of Computational Private Information RetrievalRP. The first computational PIR protocol was [22], and
since then there has been much progress, see for examlg][420], [23], [11]. For a survey of work relating to
computational PIR see [30].

1.2 Our Results

In this paper, we present a general reduction from semélgtgacure encryption and a PIR protocol to a Public
Key Encryption system with local decodability (PKLDC). We@present a general reduction from any homomor-
phic encryption to a PKLDC. In 87 we present the first Locallgcddable Code with constant information-rate
which does not require the sender and receiver to share et ¥egr To achieve this, we work in the Computation-
ally Bounded Channel Model, which allows us to use cryptplgi@tools that are not available in the Adversarial
Channel Model. Our system presents a significant improveinecommunication costs over the best codes in
the information-theoretic setting. Yekhanin's Codes,cdbgd in [35], which are currently the shortest known
locally decodable codes in the information-theoreticisgttstill have codewords which are almost exponential in
the message size, while our codewords are only a constagd targer than the message.
Informally, our results can be summarized as follows,

Main Theorem (informal). Given a computational PIR protocol with query sjg@, and response sizB| which
retrievesdk bits per query, and a semantically-secure encryption pobtdéhere exists a Public Key Locally De-
codable Code which can recover from a constant error-ratieeioits of the message, which has public key size
o (n|Q|/(dk?) +k) and ciphertexts of size (n|R|/(dk?)), wheren is the size of the plaintext arldis the security
parameter. The resulting code has locatity{R|k/d), i.e. to recover a single bit from the message we must read
o (|Rlk/d) bits of the codeword.

Combining the main theorem with the general reduction framémorphic encryption to PIR, we obtain

Corollary 1. Under any homomorphic encryption protocol which takesnmgits of lengthm to ciphertexts of
lengtham, there is a Public-Key Locally Decodable Code which canvecérom a constant error-rate in the bits
of the message, with public key sizénkB¥n) and ciphertexts of size (naf~k), for anyp € N, wheren is the
size of the plaintext antl is the security parameter. The resulting code has localjty®=*k?), i.e. to recover a
single bit from the message we must rea@®1k?) bits of the codeword.

We can further improve efficiency if we have a Length-Flexi#dditively Homomorphic Encryption like
Damgard-Jurik [8], using this cryptosystem we obtain

Corollary 2. Under the Decisional Composite Residuousity Assumpti@j} {Bere is a Public-Key Locally De-
codable Code which can recover from a constant error-ratidanbits of the message, with public key size
o (nlog?(n) + k) and ciphertexts of size (nlog(n)), wheren is the size of the plaintext anklis the security



parameter. The resulting code has locatit§k?log(n)), i.e. to recover a single bit from the message we must read
o (k?log(n)) bits of the codeword.

We also give a specific construction of a system based odthigling assumption (see 87), in this situation
we obtain

Corollary 3. Under the Small Prime®-Hiding Assumption (Assumption 1) there is a Public-Key &albg De-
codable Code which can recover from a constant error-ratieeiits of the message, with public key sizén)
and ciphertexts of size (n), wheren is the size of the plaintext aridis the security parameter. The resulting code
has localityo (k?), i.e. to recover a single bit from the message we must og&d) bits of the codeword.

Note that in full generality, our main result requires twewsptions, the existence of a PIR protocol and a
semantically-secure encryption protocol. In practiceyéner, two separate assumptions are usually not needed,
and all the corollaries apply under a single hardness agsump

Our construction does have a few disadvantages over thamiafemn-theoretic codes. First, our channel is
computationally limited. This assumption is fairly reaabte, but it is also necessary one for any type of public
key encryption. In [28], Micali et al. show that if a true adsarial channel exists, which can always introduce
errors in a worst-case fashion, then one-way functionsaaexist. Second, our code has a larger “locality” than
most information-theoretic codes. For example, in YekhanCodes, the receiver is only required to read three
letters of the codeword to recover one letter of the mesdageur code in §7 the receiver must readk?) bits to
recover 1 bit of the plaintext, whekeis the security-parameter. It should be noted, howevet tthaaintain the
semantic security of the cryptosystem, the receiver mastawglogk) bits to recover any single bit of the message.
Itis an interesting question whether the locality of oureodn be reduced from(k?) to o (k). For long messages
(i.e. n = w(k?*%)) our code still presents a very significant improvement @ality over standard error correcting
codes.

2 Preliminaries

2.1 Notation

In this paper, we adopt the following naming conventions.
e xor X will denote a plaintext message, which will usuallyrbbkits in length.
e kwill denote our security parameter.
¢ v(k) will denote a function which is negligible ik

We will use the notatioreg, to denote an element drawn uniformly at random from a set.

3 Computationally Locally Decodable Codes

3.1 Modelling Noisy Channels

When discussing error correcting, or locally-decodablgeso it is important to consider how the errors are intro-
duced by the channel. While it may be natural to assume tleseare introduced “at random”, small changes in
the exact nature of these errors can result in substanéages in the bounds on the best possible codes.

The first definition of a noisy channel is due to Claude Sharj@déh Shannon defined th&/mmetric channel
where each message symbol is independently changed to @matifferent symbol with some fixed probability,
called the error rate. An alternative definition of a noiswarmhel is Hamming'sdversarial channelwhere one
imagines an adversary corrupting bits of the message in atwgase fashion, subject only to the total number
of bits that can be corrupted per block. Most error corrgctimd locally-decodable codes were designed for
Hamming’s model.

In 1994, Lipton [24] observed that the adversarial chanradlehassumes that the adversarial channel itself is
computationally unbounded. In that paper, Lipton prop@sedw model oEomputationally bounded noiserhich
is similar to Hamming’s adversarial channel, except theeagbry is restricted to computation which is polynomial
in the block length of the code. This restriction on the clesrability to introduce error is a natural one, and it is
implied by the existence of any one-way function [28]. Thgbaut this paper, we use Lipton’s model.



3.2 Definitions

We use the standard definition of computational indistiskyability for public key encryption, where we also view
the size of the plaintext as a function of the security patamé& hat is, we set the plaintextto be of lengthk®,
wherek is the security parameter and> 1.

The primary difference between our definition and the stethdifinition of semantic security is the local
decodability property of the cryptosystem. Roughly, thigssthat given an encryptionmof a message, and a
corrupted encryptio’ such that the hamming distanceadindc’ is less thad|c|, the time it takes the decoder to
decode any bik; of the plaintexix from ¢’ is much shorter than the length of the message, and doescnease as
the message length increases.

Definition 1. We call Public Key Cryptosystem semantically-secure (in the sehsgdistinguishability) andd-
computationally locally-decodablé there is a triple of probabilistic polynomial-time aldgtthms (G, E,D), such
that for allk and for alla sufficiently large

e (PK,SK) « G(1¥,a),

e c— E(PK,xr) (where|x| = k¥ is a plaintext message of length polynomiakjrandr is the randomness of
the encryption algorithm);

e b — D(SKC,i)

so that for all probabilistic polynomial-time adversar@s\:

Pr(PK,SK) — G(1¥,a); {x0,x},y} — A(PK); A'(E(PK,X°,r),y) = b] < % +v(K),

wherex® andx! must both be of lengtk®, and the probability is taken over the key generation allgors random-
nessb, randomness used in the encryption algorithi and the internal randomnessAandA’.2 Furthermore,
it is computationally, locally-decodable. That is, for ptbbabilistic polynomial-time adversarié§ andA”,

Pr{(PK,SK) — G(1¥,a);
(xy) « A"(PK);
c— E(PK,xr);
{c\i} =A"(cy):
D(SK,c,i) =x] > 1-v(k),
wherex; denotes théth bit of x, x must be of the lengtk®, ¢’ andc must be of the same length and the hamming

distance betweed andc is at mostd|c|, and where the probability is taken over the key generatigarighm’s
randomness, the randomneassed in the encryption algorithea and the internal randomness of béthandA™ .

The information-rate i C|| and we call the decryption algorithlocally-decodabléf its running time iso(k®), and
the efficiencyof the local decodability is measured as a functiofk ahda.

4 Building Blocks

Our construction relies on a number of standard cryptodcaplols and for completeness we briefly review them
here

4.1 Private Information Retrieval

A computational Private Information Retrieval protocolRPis a protocol in which a user or client to query a
position from a database, while keeping the position qdenidden from the server who controls the database.
In particular the user generates a decryption Reyg, picks a positionj and generates a quegy;. Then, given
Qj;, the server who has database (or messagegn execute quer®; onx and obtain a respon$g. The privacy
requirement is that server cannot guess the posjtisith probability noticeably greater than random. The cttrre
ness requirement is that givép r, andR; the user can correctly recover thih position of the message The

2As is standard practice, to allow the adversaip pass state informatignwhich could include information about the plaintex@sxt,
which might be of use in determining which plaintext is emted byE(PK,xb,r).



efficiency of a PIR protocol is measured in the communicatmmplexity, i.e. the sizes @ andR. Currently, the
most efficient PIR protocol is that of Gentry and Ramzan [#d]ich has|Q| = |R| = o (k) wherek is a security
parameter, and each query successfully retrieves appatedyk/4 bits of the message

Formal definitions and concrete constructions of companiati Private Information Retrieval protocols can be
found in [22], [19], [4], [5] or [11].

4.2 Semantically-Secure Public Key Encryption

Our construction requires a semantically-secure enaygirotocol, SSE. The only requirement we make on the
protocolSSE, is that for a message |[SSE(x)| = o (|x|). For concreteness, we assufS8E(x)| = c1|x| for some
constantc;. This is achieved by many cryptosystems for example [33], [ER], [10], or the ®-hiding based
scheme in described 8§7.2.

To avoid making additional intractability assumptionsisinatural to choose hardness assumption that yields
both a semantically-secure encryption protocol as wellRiRgorotocol. In practice this is almost always the case,
for example Paillier's Cryptosystem [32] and Chang’s PIR § Gentry-Ramzan [11] (or Cachin-Micali-Stadler
PIR [4]) and the encryption protocol outlined in Section.t2s also worth noting that since [19] shows that any
homomorphic encryption protocol immediately yields a PHatpcol, if we have a homomorphic encryption, we
need not make an additional assumption to obtain a PIR pbtoc

4.3 Reed-Solomon Codes

Our construction uses a standard error-correcting codeilbriy block. In this paper we use the Reed-Solomon
code for three reasons. First, it is very simple algebricaécond it is almost universally known and understood,;
and third, when recovering from a constant error rate it hdg a constant expansion factor. It should be clear,
however, that these codes can be replaced by any efficiemta@nrecting code.

The Reed-Solomon Error Correcting Code (RS-ECC) works lisafe; first we fix a primep of lengthk, and
all computations are done in the figld pZ. Then, given a plaintext of lengthn, we represent as a polynomial
fx of degreen/k— 1 overZ/pZ. This can be done in many ways, perhaps the simplest is t& krieéo blocks of
sizek and view these as the coefficientsfef Then, the encoding ofis simply the evaluation of, at a number of
points inZ/pZ. We need at least/k evaluations uniquely determine a polynomial of degrde— 1, theRSECC
adds redundancy by evaluatifigat more pointsRSECC(x) = (fx(1),..., fx(pn/k)) for somep > 1. For distinct
plaintextsx,y, we havefy — fy # 0, and since a nonzero polynomial of degrg& — 1 has at mosti/k — 1 zeros,
RSECC(x) andRSECC(y) must have hamming distance at legst- 1)n/k + 1, thus this code can recover from
(p—1)n/(2K) errors in the evaluation points, i.e. it can recover from aorerate of 3 — 2—1p in the digits of the
code.

From now on we will viewRSECC(x) as apn/k-tuple which can be successfully decoded from an error rate
of 2 - 2—1p in its digits.

4.4 Binary Error Correction

A desirable property of any error-correcting code is thditsttib recover from a constant fraction of errors among
thebits of the codeword. A drawback of many error-correcting codes, locally-decodable codes, is that they are
defined over large alphabets, and can only recover from aamnfaction of errors in the alphabet of the code.
The natural alphabet of tRSECC described above is the fiel)/ pZ. In practice, all these codes are implemented
on computers, where the natural alphabefdsl}. Thus when we say that a code like Reed-Solomon code can
tolerate a constant fraction of errors, we mean a constaatidin of errors in their natural alphabet. In the Reed
Solomon code, if one bit of each evaluation point is corrdptbere are no guarantees that the message will not
be corrupted. Binary error correcting codes do exist, bey thre generally not as efficient as codes over larger
alphabets.

To allow our code to tolerate a constant fraction of errorthabits of the ciphertext, we will make use of a
binary error correcting codeCC, with two properties

e |[ECC(X)| = c2|x| for some constart,,
e ECC can recover from an error-rate éf— o in thebits of ECC(x).

Such codes exist, fay > ;11 in the unbounded adversarial channel model, &ndO in the computationally
bounded channel model. See Appendix B for a more in-deptustson.



5 Construction

5.1 High Level Outline of Our Construction

A public key will be a list oft PIR querie®y,...,Q;, along with the public key to the semantically-secure epcry
tion SSE. The private key will be the private key for the semanticaigcure encryption, the private key for the PIR
protocol and a permutatiame § such that; is a query for thes( j)th position of the message. To encryptrahit
messageX, we first divideX into r blocks Xy, ..., X, then we encrypt each block using our semantically-secure
encryption (this can be done by further subdividing the blib@iecessary). Then we encode each block using the
Reed-Solomon code, thus obtaining a list of evaluationtpdimat constitute the Reed-Solomon encoding of this
block. Next, we concatenate the evaluation points for alittocks, and, treating this list as a single database, we
evaluate alt PIR queries on it. Finally, we encode each PIR response vgtaralard binary error correcting code
ECC.

In more detail, we assume that when we evaluate a PIR dDeny a messag¥, the PIR responsB encodes
dk bits of X wherek is our security parameter arttildepends on the specific PIR protocol used. For example
the Gentry-Ramzan protocol hdsx 7, while a PIR protocol like [4] which only retrieves a singli at a time
hasd = 1/k. Next, we fix a primep of lengthk which will determine the base-field of t/RSECC. Then, we
setr = n/(¢k), thus each block; has|X;| = ¢k, where/ is the parameter that will determine the “spread” of our
code. Next we encrypt each blok usingSSE, obtainingSSE(Xy),...,SSE(X;) where|SSE(X)| = ci/k. Then
we encode each encrypted blockeag/ field elements ir¥./ pZ usingRSECC. Thus we can recover any blogk
as long as no more thé"k 2—1p of the field elements that encode it are corrupted. Finakycancatenate athrpf
field elements, thus at this point our “databaset;igp/k = c1np bits. Next we evaluate alqueriesQy,...,Q; on
this database. Since we wish to retrialethe information inX, we need = c;np/(dk). Thus we obtairt PIR
responsefy,...,R:. Finally, we send the-tuple (ECC(Ry),...,ECC(R)).

Thus our final encryption is of sizgconp|R;|/(dK). If |R;| ~ k as is case in [4], [5], [11], then our encryption
will be of lengthcicpn/d. If we use the PIR protocol in [11] thed, will be constant, thus our code will have
constant information rate. Notice that the spread paranddias no effect on the length of the encryption. This
encryption is error correcting because as long as no more%thaz—}) of the responses that encode a given block

are corrupted, the block can be recovered correctly by fasvding each point usitleCC, and then reconstructing
the block using th&®SECC. This cryptosystem is also locally-decodable since toygea@ given block, it suffices

to read thecé—pkf PIR responses that encode it.
5.2 Error Correcting Public Key Encryption

We now define a triple of algorithm@, E, D for our encryption scheme.

Key Generation: G(1¥,a).
e Fix a primep of lengthk.

Generate public-key private-key pair fB8E, PKg, SKe.

Generate a PIR decryption k®p|r.

Generate a random permutatiore §.

Generaté PIR queriegQy,...,Q;, whereQ; queries the block afik bits at position
(a(j) —1)cidk+ 1 of acinp bit database.

The public key will then be
PK = (PKg,Qu,...,Q)

and the secret key will be
SK= (0,SKg,Dpir)

Thus the public key will be of lengthQ| + |SKe| = c1np|Q|/(dk). If we use [11], thenQ| = k andd is
constant, so assumingke| = o (k), we obtain|PK| = o (n+k).

Encryption: given ann-bit messag,



e BreakX intor = i blocksX; of size(k.

e Encrypt each block usin§SE. If SSE can only encrypt strings of lengt we simply divideX; into shorter
strings, encrypt the shorter strings and then concatehatertcryptions.

e For each encrypted blockSE(X;) we encode it as a list @fp/ field elements,; 1, ..., Z; ¢,ps IN Z/pZ using
the RSECC.

e Concatenate all the evaluations, creattg Z1 1, ..., Z1cypt; - - - , Zr 1, Zrcypr- Thus|X| = rciplk = cinp bits,
and we run each PIR quef®s,...,Q} on X receiving responsdg, ..., R;. Since each PIR query recovers
dk bits, we will needc; /d queries to recover each field elemént

e Encode eackR; individually using the binary error correcting coB&C.

e The encryption is then thetuple (ECC(Ry),...,ECC(R,)).

Decryption: to recover thath block, of a messag¥ from thet-tuple (ECC(Ry),...,ECC(R,))

e We wish to retrieve the encodirg 1, ..., Zi c,p¢, Which are the bits oK in positions
(i— )clpé/d +1,...,ic1pf/d, Thus we select the;p//d responses that encodg

{ECC(Rs-1((i—1)cipt/d+1) ) - - - s ECC(Ro-1(ic, pr /ety -
Decode eacIECC(RJ) to obtain{Ry-1((i—1)cype/d+1): - - - » Ro-1(icape/a) -

Decode each of the p//d PIR responseRj to obtainZ; 1,...,Zicpe-

Using theRSECC reconstrucSSE(X;) from Z; 1,...,Zi ¢ or-

DecryptSSE(X;).

Notice that to recover block; we only need to read; cz|R|p¢/d bits of the encryption. In the Gentry-Ramzan
PIR |R| = kandd = 1/4, so we are reading only(¢k) bits of the message. For correctness we will chdose,
thus in this case our scheme will achieve localit{k?).

5.3 Local-Decodability

One of the most interesting features of our constructiohddacal-decodability. To recover a small portion of the
messag&, only a small portion of the cipherte)fCC(R;),...,ECC(R;)) needs to be decoded. During encryption
the messag¥ is broken into blocks of lengtbk bits, and this is the smallest number of bits that can be erealv
at a time. To recover a single bit of, or equivalently the entire block; that contains it, we must readp//d
blocks of the ciphertex{ ECC(Ry-1((i—1)cip¢/d+1))s - - - s ECC(Ro-1(icype/a)) - Since|ECC(Ry)| = c2|Rj|, we must
read a total of;c,|R|p¢/d bits. Since the probability of error will be negligible énwe will set¢ = k. Herec, and
p are parameters that determine the error-rate of our code.

Using the Gentry-Ramzan PIR, we ha® = k andd = 1/4, so the locality is (k?). Using the Chang’s PIR
[5] based on Paillier’s cryptosystem [32] we hg® = 2k andd = 1/2 so we achieve the same encryption size
and locality, although in this situation the public key size (n*?) instead ofo (n) in the Gentry-Ramzan case.

5.4 Extensions

For convenience, in our proof of correctness (86.2) we septrametep equal to ¥2. It should be clear that
this value is somewhat arbitrary and that by increaginge increase the error tolerance of the code along with
the ciphertext expansion. Similarly, in our proof we set plagameter’ to be the security parametkr We can
change/, and an increase ificorresponds to a decrease in the probability that the chaooeeeds in introducing
an error, and a decrease in the locality of the code. In pdatiour code fails with probability that is negligible in
¢, and the smallest number of bits that can be recovered frermtbssage is (k).

Our protocol also benefits nicely from the idea of Batch Cd@€§. Since our protocol requires making
multiple PIR queries to the same message, this is an idedicappn of Batch Codes, which can be used to
amortize the cost of making multiple PIR queries to a fixeddase. By first “batching” the messa¥en §5.2,
we can significantly decrease server computation by slightreasing ciphertext expansion, or we can decrease



ciphertext expansion by paying a slight increase in sergarputation. It should be noted that batch codes are
perfect, in the sense that batching the message in this wesy/rtit change the probability of correctness.

We can also increase the efficiency of our construction bghéurtaking advantage of the bounded channel
model. If in addition to the sender knowing the receiver'dlpukey, we assume that the receiver knows the
verification key to the senders signature algorithm (a me@sie assumption since anyone receiving messages
from the sender should be able to verify them), our schemefliemicely from the sign and list-decode methods
described in [28]. As in 85.2, we break our messagto /k-bit blocks Xy,...,X%. Then, before applying
the RSECC to each block, we sign each block using any Public Key SigeaBcheme which is existentially
unforgeable under a chosen message attack. The existenuelné scheme is implied by the existence of a one-
way function [33]. We can also improve the efficiency of thgit@il signature by using the standard trick of first
hashing the message, the signing the hash. Since every 8i6tokis a collision-resistant hash function [19], we
can first “hash” each block; then sign the hash of each block. Now, we proceed as befarediny each signed
block using theRSECC, and finally each of these blocks is further encoded by a piB&C. As mentioned above
(in 84.4), the rate of the binary ECC can also be improvedhimrethod. Again, we note that this construction
requires the receiver to know the public key for the sendggaature scheme, in addition to the sender knowing
the public key to the receiver’s encryption scheme.

To decode in this situation, we first decode the binary EC&n thelist-decodethe RSECC. Then, with all
but negligible probability, only one of the possible decwdi will be a validsignedblock. This has the effect
of improving the information rate of thRSECC. It should be noted that our scheme has constant codeword
expansion, and can recover from constant error-rate evibooutithese improvements. The use of digital signatures
before applying theRSECC or the binary ECC has the effect of increasing the maximurerablle error-rate,
and decreasing the codeword expansion. Unlike the applicat Batch Codes above, this sign and list-decode
technique will slightly increase the probability that a sege fails to decrypt, although it still remains negligible

5.5 Constructions Based on Homomorphic Encryption

It was shown in [19] that any homomorphic encryption protgéelds a PIR protocol, thus our construction can be
achieved based on any homomorphic encryption protocohisnsituation, it is unnecessary to first encrypt each
block X; before applying th&®SECC since the PIR protocol described in [19] is already semalyisecure. Thus
the idea of coupling encryption and error-correction isnew@re natural in this situation. Using the construction
in [30] to construct a PIR protocol from a homomomorphic gption protocol and then applying our construction
yields

Corollary 1. Under any homomorphic encryption protocol which takesnéaits of lengthm to ciphertexts of
lengtham, there is a Public-Key Locally Decodable Code which canvecfrom a constant error-rate in the bits
of the message, with public key sizgnkB¥/n) and ciphertexts of size (naP~1k), for anyp € N, wheren is the
size of the plaintext ankl is the security parameter. The resulting code has localjty®*k?), i.e. to recover a
single bit from the message we must rea@?—1k?) bits of the codeword.

Using a Length-Flexible Additively Homomorphic Encrygiiprotocol such as the one described in [8] yields
an even more efficient PIR protocol. Using the methods cedlim [30] and applying our construction we arrive
at the following result

Corollary 2. Under the Decisional Composite Residuousity Assumpti@]} {Bere is a Public-Key Locally De-
codable Code which can recover from a constant error-ratidanbits of the message, with public key size
o (nlog?(n) + k) and ciphertexts of size (nlog(n)), wheren is the size of the plaintext anklis the security
parameter. The resulting code has locatit§k®log(n)), i.e. to recover a single bit from the message we must read
o (k?log(n)) bits of the codeword.

6 Proof of Security

6.1 Overview

The semantic security of our scheme follows immediatelynftbe semantic security of the underlying encryption
SSE. The full proof of the correctness (i.e. local decodabjlitf our scheme requires some care. Here, we
outline only the high-level ideas of the proof. The struetaf the proof is as follows. Given an encryption
(ECC(Ry),...,ECC(R)). The outerECC forces an adversary to concentrate their errors among ofdyw ;.
Thus, we may assume that the adversary is only allowed todate errors into a constant fraction of tRe



Then, we note that any polynomial-time adversary cannbiigich remainder®R; encode which block; by by
the privacy of the PIR protocol. Thus any errors introduaethe R; will be essentially uniform among thé&'s
that make up the Reed-Solomon encryptions. Next, we note #fat our code has sufficient “spread” so that
errors introduced uniformly among thg will cluster on theR; encoding a given block; with only negligible
probability. Finally, if the errors are not clustered amadingR; that encode a given block, we show that REECC
will correctly recover that block.

Thus we arrive at the following result

Main Theorem. Given a computational PIR protocol with query sigd, and response siZ&| which retrieves

dk bits per query, and a semantically-secure encryption pobeSE, there exists a Public Key Locally Decod-
able Code which can recover from a constant error-rate irbitseof the message, which has public key size
o (n|Q|/(dk?) + k) and ciphertexts of size (n|R|/(dk?)), wheren is the size of the plaintext arldis the security
parameter. The resulting code has locatit{{R|k/d), i.e. to recover a single bit from the message we must read
o (|Rlk/d) bits of the codeword.

6.2 Proof of Local-Decodability

Here, we show correctness, i.e. that our system is compuoédly locally-decodable up to a constant fraction

of errors. By an encryption of a messa§ewe mean a-tuple (ECC(Ry),...,ECC(R)) wheret = 2, and each
R; is a PIR response to quefQ;. For concreteness, we set= 2, and we show that our decoding algorithm

decodes correctly with all but negligible probability, absn a%1 — o fraction of the bits of the encryption have been
corrupted by a polynomial-time adversaky Notice that our algorithm will decode a blo&k correctly whenever
no more than}l% of the R; that encode it are corrupted. Thus we will show that any pmlyial-time adversary

that corrupts % — 0 fraction of the bits, only corrupts more th%nof the R; that encode a given block of the
message with negligible probability. We prove this throageries of lemmas.
We begin by noticing that any adversakythat corrupts at mos} — o fraction of thebits of the message, can

only corrupt at most é — 35— & fraction of theR;.

Lemma 1. Given (ECC(Ry),...,ECC(R;)), whereECC recovers from a binary error-rate éf— 0, any adversary
Athat corrupts at mos} — & bits of the entire codeword, can corrupt no more téan6+ 32 of theR;

Proof. This is simply countingA can corrupt a total oﬁ —d)ct|R;| bits, and to corrupt onR; A needs to spend
(2 - 3)c|Rj], thusA can corrupt at mogt; — &— &%)t of theR; since

For the rest of the proof of correctness, we assumeAlmtestricted to corrupting é— 5 — & fraction of the
R;, rather than}1 — 0 bits of the message.

Now, we show that any such corrupting adversary cannot teteether inputs are “well-formed”, i.eA
behaves in an indistinguishable manner whethet-tiaple (Ry,...,R;) is a valid encryption or not.

Lemma 2. For all probabilistic polynomial-time adversari@ssuch thaf introduces errors itrtuples(Ry, ..., R;),
where eaclR; is a response to que; and eaclQ; queries distinct position in the database, thenill also in-
troduce errors in-tuples(Ry, ..., R) where eacl@; queries thesameposition of the database.

Proof. Instead of runningA on at-tuple where each quer®; queries a distinct position in the database, we
provideA with t-tuple in which each PIR queiQ; queries theéhe samegposition in the database. Assurdails to
introduce errors on this malformed input with non-negligiprobabilitye. Now we proceed via hybrid argument.



Since the probability thé fails ont queries querying the same positioreigreater than when ea€d; queries a
different position, then the triangle inequality tells battthere must be sonté < t such that,

\Pr[A fails whent* Q; query the same positign- Pr{A fails whent* 4- 1 Q; query the same positiqlﬁ > %

We can now us@ to break the privacy of the PIR protocol. Given a qué&Yysuch thatQ* queries positiom* where
i* equalsig or i1, we construct® queriesQs,...,Qw that query positiong, andt —t* — 1 queriesQ1,...,Q¢_1
that query positions other thag, i;. We then runA, on thet-tuple (Ry,...,R_1,R*) whereR; is a response to
Q; for 1 <i <t, andR" is a response tQ*. If A fails to introduce errors on thistuple, we say tha@* queries
posmon io. This algorithm correctly distinguishes wheth@t queries positiong or i1 with probability at least
5 14k - Although, we do not know the exact valuetof we can we can guess it with probabllliy to obtain an
algorithm which decides wheth€F* queries positiong with advantagea— which is a violation of the privacy of
the PIR protocol. |

If eachQ; queries the same positianthen A must distribute errors randomly among the blocks, since the
notion of blocks in this case is completely arbitrary. Sidceust behave identically when eaGh queries the
same position as when they all query different positionsnatice that an adversary cannot focus the errors on
the remainders encoding a specific block. To make this fqrreahll that the messagéwas divided into blocks
r = 4 blocks X;, and for each bloclRSECC(SSE(X;)) was encoded by@//d PIR responses, artdwas the

total number of responseb& 23}(” If we defineS C {Ry,...,R} to be the set of remainders encoding blogk
S = hg1(2(i-1)c,0/d+1)s - - - No-1(2cie/a)» theN|S| = 2¢/d, and we obtain the following lemma.

Lemma 3. If Ais a probabilistic polynomial-time machine which introdseerrors ifRy,...,R }, the distribution
of the errors in the sefS;,...,S} is computationally indistinguishable from the uniform dam distribution on

{Sn...S ).

Proof. Suppose there exists a distinguisBethat can distinguish the corruptiodsintroduces among thg§ from
uniform random with advantage Then we rurD on A’s output whenrA is given queries that query between one
andt distinct positions. When we rufton at-tuple (Ry, ..., R) where eacl); queries the same position, in this
situation A must distribute errors uniformly, sing&hasno information about the underlying subs&s Thus in
this situation,D cannot distinguist\'s corruptions from random with probability greater th%msince in this case
A’s corruptionsarerandom. Now we proceed via a hybrid argument. WAasrun on queries that quetyistinct
positions, therD can distinguishA’s corruptions from random with advantagethus by the triangle inequality,
there exists &* <t such thatD can distinguishA’s output whenrA is run on queriest* of which are then same,
from A's output whenA is run on queriest” + 1 of which are the same, with advantageThis allows us to break
the privacy of the PIR in exactly the manner described bef@w®en a queryQ* that queries eitheip or i, we
construct™ queriesQs,...,Q which all query positiong, andt —t* — 1 querieQ;1,...,m_1 which all query
different positions. Then we rub on A’'s output, whenA is given (Ry,...,R_1,R"). By the definition oft* D
succeeds in distinguishing whethgt queries positiong with advantagez—t Thus by guessing a random value in
{1,...,t —1} for t*, we break the privacy of the PIR protocol with advantzagea contradiction. |

Lemma 4. If A distributes(Zl —0)t errors uniformly among theresponses, the probability thatdestroys any
given blockX; is negligible in¢.

Proof. If Adistributes errors at random, then we can vieas selecting field elemengs, to corrupt uniformly at

random . The adversaiydestroys a block; exactly whenA corrupts more thaé — o of the pointsz;, that encode

that block, the probability thah destroys a block is exactly the probability that more tb%n- 0) chf points that

encodeX; are corrupted. This distribution is then the Hypergeordistribution, wherezij—if items are selected
and(% —&— 8)t of which are corrupted. In [18], Hush and Scovel give the labun

Y (U« M,l
Pr| # of errors in encoding of block; > (——6) 2(;15} <e (2‘:1”")( ¢ >7

where the probability is taken over the uniform distribation thet remainders, and this probability is clearly
negligible in/. |

Lemma 5. If at most(%1 — O)t of thet encryptions are corrupted by a probabilistic polynomialet adversanA,
then the probability that any bit of the message fails to deqaroperly is negligible itk.



Proof. For a given blockX; the probability that that block is damaged under the coioupt created byA is
negligibly different ink than if A produced the corruptions at random, which itself would dger?§ with only
negligible probability in¢. Taking/ ~ k, we have that the block; is damaged with at most negligible probability
in k. The union bound then gives that the probability thagblock X; is damaged is at mostimes the probability
that a specific block is damaged, which remains negligible in |

7 A Concrete Protocol Based orb-Hiding

We now present a concrete example of our reduction baseddbehtry-Ramzan [11] PIR protocol. A straightfor-
ward application of our main construction in 85.2 alreadsigé a PKLDC with public key size (n) and constant
ciphertext expansion, but the Gentry-Ramzan PIR protag®hhany nice properties which can be exploited to sim-
plify the construction and further increase the efficientthe protocol. The construction we present here differs
from the straightforward application of our general reducto the Gentry-Ramzan protocol in two ways. First,
we are able to integrate the basic semantically-secure/gtian protocol into our construction, thus reducing the
ciphertext expansion by a constant factor, and eliminatiegneed for another hardness assumption. Second, we
use the Chinese Remainder Theorem Error Correcting Codé-EI) instead of the Reed-Solomon code used
in the general construction. This is becaused®Heaiding assumption allows us to do hidden chinese-remaimgie

and so it is a more natural code to use in this context. This doechange the arguments in any substantial way,
since from the ring-theoretic perspective, the CRT-ECC thiedReed-Solomon ECC are exactly the same (see
Appendix E).

7.1 The Small Primes®-Hiding Assumption

The ®-Hiding Assumption is a relatively new computational hagsis assumption, which relates to the difficulty
of finding small prime factors ap(m), where¢ is the Euler Totient Function. If a prime divides$(m), we say
thatm ®-hidesp. The®-Hiding assumption was first proposed by Cachin, Micali atatir in [4], and a variant
was proposed by Gentry and Ramzan in [11]. Our constructiegqgire only the security of the Gentry-Ramzan
PIR scheme, and so we make the following variant of®liding Assumption

Let », denote the set of primes of bit-Iengga # be the set of products of two primes 4 with gcd(p —
1,g—-1) =2, and letsr," C s denote the set of composite moduli tlihide T, i.e.

#={m:m=pq, {p,q} C 2, gcdp—1,g—1)=2, p=1 modm}.

Assumption 1. The Small Primesp-Hiding Assumption

For all small prime powersip, T such that 3< ) < Ty < 275—1, givenb €g {0,1} andm er ﬂk"b, for all
probabilistic polynomial-time algorithm&, we have

PriA(Th, Ty, m) = b| < %Jrv(k),

for some negligible functiow(k), where the probability is taken over al € #,®, b € {0,1}, and the internal
randomness OA.

Thus we are asserting that no probabilistic polynomiaktiatversary can determine which prime power a
given modulus®-hides. We will sometimes find it convenient to use a slighlifferent form. Specifically, we
assert that given two moduting, m; which ®-hide two prime powerst, Ty, ho probabilistic polynomial-time
adversary can tell whethep = 4y with probability better than one half.

Lemma 6. Under the Small Prime®-Hiding Assumption, if € {5, ..., |24~ 1|}, o= {10}, S = {5,..., | 25~ 1| }\
{0}, b* €r{0,1}, Ty €ER Sy, b E€R {0,1} andmy €g #,® andmy €g 7" °. Then for all probabilistic polynomial-
time adversaries,

1
Pr{A(mp,my) = 0 andtp = 14 + P{A(mp,my) = 1 andrp # 4] < > +v(k),

for some negligible functior(k), where the probability is taken over the internal randorartd4\, the choice of
Th, T, My, My, and the choice df* andb.



Proof. Assume there exists a polynomial-time adversanyhich can correctly determine whetheg = 14 with
probability % + ¢(k) for some non-negligible functioa(k). Given T, ™ andm such thatrm, \ ¢(m), we wish to
construct an algorithm’ that guessel, as follows: Pick a randori’ € {0,1}, and generatet € ﬂk"”. Then rurA
on(m,m). If Areturns O them\ returnsy/, otherwiseA’ returns 1- 1. SinceA succeeds with probability + £(k),

A succeeds with probabilitg + €(k) which is still non-negligible ink, and thus a violation of thé-Hiding
assumption [

In particular, we are asserting that there is no efficientrtigm which can match thg to the modulim
significantly better than by guessing randomly. Notice thathe small primesb-hiding assumption we have
excludedrt= 2 or 3, this is because every odd numbehides 2, andn=2 mod 3, only ifm ®-hides 3. Notice
also that we restrict thg; to be smaller tharg/my, this is to prevent the lattice based attack described in[¢7]
When thep;’s and theti's are chosen subject to these restrictions, there are rweeffialgorithms known for
breaking the®-Hiding assumption.

7.2 A ®-hiding based Semantically-Secure Encryption Protocol

Here, we describe a simple semantically-secure public keyyption schemeBasicEncrypt that will be an es-
sential building block of our construction. The encryptfmotocol consists of three algorithn(s, E, D described
below.

To generate the key§(1¥) first selects a small prime-power then generates) € #,™, i.e. m= pg, where

p,q €r 2k, Subject tart | p— 1. The public key will bePK = (g, m, 1) whereg is a generator for the cyclic group

G, andSK = &,
To encrypt a messagec Z/1tZ, we have

EX)=dg"™ modm,

for a randonr € Z/mZ. To decrypt, we do
D(y) = y#(m/T — gd(m)/m modd(m)  yoqm — (g¢<m>/n>x modm,

then, using the Pohlig-Hellman algorithm to compute thergi logarithm in the groufg®(™/™), we can recover
x modm=x. If ais a small prime, andt= a°, the Pohlig-Hellman algorithm runs in timng/a. Thus the
decryption requires (log(m/m) + c\/a) group operations Gy, which is acceptable for small primes In our
locally decodable code, we will require multiple differgarime powersm,..., %, and we will choose the small
primesa, as the first primes, i.an, = 5%, ™ = 7%, 113 = 11%. If we requiret prime powerst, the Prime Number
Theorem, implies that the largestwill be approximatelytlogt. Sincet will be less than the message length,
v/awill be polynomial in the message length, and hence polyabmithe security parametér

It is worth noticing that this scheme is additively homontagover the groufZ /1, although we do not have
an explicit use for this property. Whan= 2, this is just Goldwasser-Micali Encryption [13], for l&@mgtit was
described in [3] and [2]. An extension of this scheme is dbsdrin [29].

While this protocol is not new, none of the previous desimips of this protocol make use of th-hiding
assumption, and instead their security is based on some dbrromposite residuousity assumption, i.e. itis
impossible to tell whether a random group elemerielongs to the subgroup of orderin G,,. We are able
to prove security under th@-hiding assumption because tiehiding assumption is strictly stronger than these
other assumptions. The reduction is simple, for suppoge #dsts an adversadywhich can determine whether
a group elemertt € G, is atth power. Noticing that ift \ ¢ (m) exactly 1 inttelements will batth powers, while
if gcd(Tt, §(m)) = 1, theneveryelement is atth power, by simply sending random group elemdnt® A, and

measuring the probability which says that is atth power, we can distinguish Whetheﬂ d(m).

7.3 The Semantic-Security oBasicEncrypt

We now prove the semantic security of the simple encryptiotogol given in 87.2 under the-hiding assumption,
we prove this as a sequence of lemmas, lemma 7 through lemma 9.

Lemma 7. Under the Small Prime®-Hiding Assumption, if we define

Ho={g € Gm: (g) = G, i.e. g generateS, },



andH; = G, \ Ho, then, ifb €g {0,1}, givenm € #, g €r Hp, No probabilistic polynomial time distinguishBr
can correctly distinguish whethgre Hqy with probability noticeably greater tha%‘n

Proof. SupposeD correctly guesses whethgrgeneratess,, with probability % + ¢ for some noticeable function
€. We will useD to break thed-hiding assumption. Our adversafyis givenm,Ttaccording to the distributions
given in Assumption 1, and will use as a subroutine to determine whethee » .
First notice thaiGy, is a cyclic group, sdHo| = ¢(|Gm|) = ¢(d(m)/2). A well-known consequence of the
Prime Number Theorem is the lower bound
cn

o) > loglog(e?n)’
for some constant and alln (see for example [1]). Thus

|Ho| = ¢(|Gm|)
> c|Gn|
loglog(€?|Gn|)
|G|
> loglog(e2m)’

In particular IHol

Gal > m which is noticeable irk, sincek ~ logm. Thus an element drawn uniformly at
random fromG, will be a generator with noticeable probability, we callstiprobabilityt. Then to determine if
me [, we generate a randogie Gn, and sendy™ andmto D. If D saysg € Ho, A replies thaim¢ #,7, i.e. m
does notb-hideTt

To show that we succeed with noticeable probability, we b if m ¢ 5,7, theng™ € Ho iff g € Ho, so

g" € Ho with probability1. If me #,7, theng™ cannot generat€,, sog™ ¢ Ho.

Thus
mio(m) | mre(m)
Asaysg"eHo | 3—¢ |2-e+2¢
Asaysg"¢Ho | 5+€ | 5+e—2¢

soA is correct with probability
1 Iiet2e N I+e 1 %—s+2|sJr I+e
2\ (3-e)+(1-e+2e) (E+e)+(3+e—2¢)) 2\1-2e+2e 14+2e—2¢
1

le I€
” 2 <5+1—2£+2|s+§+1+28—2|s>

S (Eies
2 2

2
1.+l8
2

5
Which is non-negligible since bothande are non-negligible. |
Next, we prove a straightforward fact about the distributiomodd(m), wherer egr Z/mZ.

Lemma 8. If r is selected uniformly at random i/mZ, andr’ is selected uniformly at random #/|Gn|Z, then
the distributions of mod|Gp,| andr’ are statistically close, i.e.

1
- % |Prir = x| — Prlr’ = ]|
2er Gml|Z

is negligible ink.



Proof. Since|Gp| = & — P-4+ the distribution for mod|Gp| becomes
{ 2 for |Gm| — p— g+ 1 elements
3
~ for p+qg—1elements

Thus

1 1 1 2 1 3 1
= Pir =X —Prir' =x]| = Z(|Gm| —p—qg+1 (———>+— p+q—1 (———).
2XEZ%GMZ\ r =X —Prr' =x]| = 5(|Gn ) Gl m 5( N o Gl

Now,
1 3_2(;_%_&—1
|Gm| m pg—p—-qg+1 pg M| Gm|
S0 1 1 2
p+q
= —p— — )<=
56n-p-a+1) (15~ ) < o

Similarly, we have

3 1 3(pg—p-q+1)—2pg pg-3(p+q—-1) pg—p-q+1 1

m Gl  m(pg—p—q+1) 2m|Gpy| 2mGm|  m

> 1 3 1 +
pPrq

— +q— _——— < —

5(P+4 1)(m |Gm|>— 2m

Thus the statistical distance is less than
(p+q)
m

which is negligible ink since logn= k, and logp ~ logq ~ '% |
Now we are ready to prove the semantic security of our crygtes.
Lemma 9. The encryption in 87.2 is semantically-secure under thdlgrimes ®-hiding assumption.

Proof. Given any distinguisheb for the encryption protocol that succeeds with non-nelgleiprobability, we
construct an adversadywhich violates theb-hiding assumption with non-negligible probability. GivenandTt
wherem eg 2, with probability% andmeg # \ %, with probability % the adversanA picks ag € G, and sends
g, mto the distinguisheD, andD responds with two message x*. ThenA choosed cr {0,1}, andr €g Z/mZ
and computes

c=g"*™ modm

and sendg to the distinguisheD. D responds with a bib*. If b* = b the adversary responds thatd-hidesrr,
otherwise the adversary respomdsloes not-hide 1t

Now we must show that this adversary breaksdhbiding assumption with non-negligible probability.

First, assume generateS,. If m ®-hidesr, thenc is a valid encryption ok?, and so by the definition db,
we must have thdt* = b with probability% + ¢ for some non-negligible functioa

On the other hand, iihdoes notb-hide 1, thentte (Z/|Gn|Z)*. Now, notice that i’ were chosen uniformly
in Z/|Gm|Z instead ofZ/mZ, we would have® + 11’ mod |Gy is also uniformly distributed it7. /|G| Z. Thus

gxb””' would be uniformly distributed irGn,, and hence any distinguish& could guess from gxb”"' with

probability at most one half. By lemma 8, the statisticatatise betweegXb+ﬂr andgxb““ is negligible, thus any
distinguisheD succeeds in guessifgwith probability% + v for some negligible function.
Then, following this scheme, @ generate$s,, with probability a, our algorithm succeeds in breaking tihe
hiding assumption with probabilit% + &Y which is a non-negligible sinceis non-negligible and is negligible.
If, instead,g does not generai8,, then by lemma 7D’s output distribution must be negligibly different from
wheng generate$sy,,. Thus in this case as wel correctly guesses whethafd (m) with probability noticeably
greater thar}. [ |



7.4 Outline of Our ®-hiding based Construction

We begin by fixing a list ot prime powers{my,...,T¢} as part of the public parameters. For concreteness we
choosermy = 5%, p, = 7%, ... as in §7.2. A public key will be a list of RSA moduli{my,...,m}, such that
eachm; ®-hides some prime powert;. The Private key will be the factorizations of thg, more specifically
¢(my),...,6(m), along with a random permutatiom € § such thatm; ®-hidesyj). To encrypt a message

X € {0,1}", we first divideX into blocksX; of size¢k. Wherek is the security parameter, arids a parameter
determining the “spread” of the code. As in the Gentry-RamRER scheme, we view each block as a number in
the range{0...2}. Our public key will bet = &2 RSA moduli{my, ..., men } such that each modulus-hides a

prime powerr;. We will uses= [p//d] of the; to encode each block. Since there argn//k], and for each

block we usg p//d] prime powers, we use a total gf- Bl — E_E =t prime powers. The parametedetermines the
redundancy of the CRT-ECC, hence increaginigcreases the error tolerance and also the ciphertext siqran
Recall thatd is the information rate of the Gentry-Ramzan PIR,dsis some fixed constant less thap4l for
concreteness you can assudhe 1/5. Exactly which prime is hidden by which modulus will be caost random
at the time of key generation, and is part of the receiversetekey. For each block;, the sender encrypts
modulo thes prime powers{T;_1)s;1,...,Tis}, where eachr; is roughly of sizedk Notice here that we have
usedp times as many modulir; as necessary to encode each block, thus for each bloale have effectively

calculated an encoding &§ under the CRT-ECC which can tolera@ — 2—1p> g corrupted moduli (see Appendix

C). We do this for each block, and thus the resulting enomypisis%f - 7 residues. Since each residue is of size

k, the the encryption of the whole message is nov%ll((% = S—I’I encryptions of siz&. Finally, we encode each
of the pn/(kd) encryptions independently using the error correcting dod&4.4. So our final encryption is of

sizepcyn/d bits, which is a constant multiple of This encryption is error correcting because as long as me mo

than% — 2—1p of the residues that encode a given block are corrupted,Itiol ban be recovered correctly by first

decrypting each residue, and then reconstructing the GRT:H his cryptosystem is also locally-decodable since
to decrypt a given block, it suffices to decrypt t%eencryptions that encode it.

7.5 Error Correcting Public Key Encryption Based on ®-hiding

We now define a triple of algorithmS, E, D for our encryption scheme.

Key Generation: G(1¥,a).

e Letpy,...,p be primes with 5< p; < p2 < --- < pt, and choose; = LWZDJJ , thuse is the largest integer

such that Iog(p?j> < dk, for somed < %1. Setry; = p?j. To encryptn-bit messages, we will need to choose

. . -1
t= g—ﬂ Since we assume= k%, this becomes = %.

e Generate a random permutatioregr §, the symmetric group ohelements.
o Generate moduliny,...,m such tham; € #, ", i.e. m; ®-hidesTiy ).
e Find generatorgg;} of the cyclic groupg G, }.

The public key will then be
PK = ((g1,me, 1), ..., (G, M, Tk)),

and the secret key will be

Sk <0’¢(m1)’___7¢(mt)> |
Ts(1) To(t)

Encryption: given ann-bit message,

e BreakX into /. blocksX; of sizelk, and treat eack; as an integer in the rand@. .. 2/}



e ForblockX;, we will use thesprime powersy;_ys; 1, . - -, Tis to encodeX;. Since the modulMg-1(_1)sy1); - - -, Mg-1(is)
that correspond to theses is unknown to the sender, he must apply the Chinese Reeralifeeorem using
all thet;’s. Thus for each block;, using the CRT, the sender generaXes [1,..., (T -- - T¢)], such that

% = X; modrm for je[(i—1)s+1,...,is],
1 0 modmy  forjefl,...,(i—-1)slUfis+1,...,t].

1

_ ot
550 We sets= .

To recover from error-ratg —
e The sender then se¥s= zilf(i. Thus for eachj, X = X, modTi;, for the unique such thati —1)s+1 <
o(j) <is.
e Forje[l,...,t], generate arandom € {0,..., Ty - T }.

e Then calculatd; = g}(“""l"'“ modm,; for eachj € {1,...,t}. Thus

hj=E (X modr(;)) =E(X mody;)),

where(i —1)s+ 1 < o(]) <is, andE is the encryption protocol described in §7.2. At this pojartial
information about the block; is spread oves of theh;’s.

e Apply the binary Error Correcting CodeCC to eachh; individually.
e The encryption is then thetuple (ECC(hy),ECC(hy),...,ECC(h)).

Decryption: to recover thath block, of a messagk from thet-tuple (hy, ..., h)

Select thesencryptions that encod§, {ECC(hg-1((i_1)s41)); - - - s ECC(hg-1is)) }-

Decode eackCC(hj) to find obtain{h-1(i_1)st1); - - - s No-1(is) }-

Decrypt each of the encryptions using the decryption algorithm from 87.2. Tdiigesa,,...,as where
aj =X Mod(Tyi_1)syj)-

Using the Chinese Remainder Code Decoding Algorithm, retcoct X; from thes remaindersy, ..., as.
Note that if there are no errors introduced, this step carplaced by simple Chinese Remaindering.

8 Analysis

The proof of local-decodability remains essentially theeaas in the general setting (see §6.2).
For the locality, we note that to recover a single biXofor equivalently the entire block; that contains it, we
must reads blocks of the ciphertexECC(hg-1((i_1)s11)), - -, ECC(Ng-1(i5)) }. Sincelhj| = kand|ECC(hj)| = czk,

we must read a total afgk = "C‘%fk bits. Since the probability of error will be negligible hwe setl ~ k, and

sinced < %, we find that we need to readfpk? bits of the ciphertext to recover one bit of the plaintextenét
andp are parameters that determine the error-rate of our codas @t system only achieves local-decodability
for n= o (k**%). Forn~ k%, our system already offers a significant improvement owvamdsrd error-correcting
codes. It should also be noted, that for any semanticatiyreecryptosystem, to recover one bit of the plaintext,
you must read at leasd(logk) bits of the ciphertext. It is an interesting question whethe locality of such a
scheme can be improved from(k?) to o (k).

Thus we arrive at the following result

Corollary 3. Under the Small Prime®-Hiding Assumption (Assumption 1) there is a Public-Key &g De-
codable Code which can recover from a constant error-ratieeiits of the message, with public key sizén)
and ciphertexts of size (n), wheren s the size of the plaintext aridis the security parameter. The resulting code
has localityo (k?), i.e. to recover a single bit from the message we must og&d) bits of the codeword.
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Appendix

A Semantic Security

By a Public Key Cryptosystenwe mean a a triple of probabilistic polynomial time alglniis G, E, D, such that
(PK,SK) — G(1¥), ¢ — E(PK,x,r) X «— D(SK,c) WherePK, SK denote the public and secret keys afig- x
w.h.p for the same message. A public key encryption systesanimntically-secure if, given two messagésand
x, b €r {0,1}, and an encryption of one of the messadg® K, x°), no polynomial time adversary can determine
b with probability significantly greater than one half. Thet i

Definition 2. A Public Key CryptosystemG, E, D, with security parametekis calledsemantically-securén the
sense of indistinguishability) if for all message pdir8,x'} and for all probabilistic polynomial time adversaries
A, and for allb eg {0, 1},

Pr{(PK, SK) — G(1¥); {)°,x}} — A(PK); A(E(PK,X°,r)) = h] < %Jrv(k)

Wherex? andx! must be of equal length, and the probability is taken ovek#yegeneration algorithm’s random-
ness, choice db, randomness used in the encryption algorithia and the internal randomnessAf

B Constant Rate Binary Error Correcting Codes

For our scheme to have constant information rate, we needd@finary error-correcting code which can tolerate
an error-rate of — 8.

One method for creating such a code, uses the notion of Gamatad Codes, originally described by Forney in
[9]. By combining a Reed-Solomon Code and a Random Lineae@sdlescribed in [16], it is possible to obtain
a binary error correcting code which recovers frém o0 error-rate, but the information-rate of the resulting code
is very low, about 10* for their construction.

Since we are working in the computationally bounded chamuelel, we can take advantage of the construc-
tions described in [28], to create a binary code with erabe% — 9, and significantly better information rates than
in the unbounded channel model. Applying Micali et al's damgion to the binary codes with list-decoding rate
% and information rat&* described in [15], we obtain a code which uniquely decodes ferror-rate% -9, and

has information rate abo%g.

C CRT-Based Error Correction

It was observed in the 1970s [25], [26], [27], that the ChinBemainder Theorem could be used to make efficient
Error Correcting Codes. Ify,...,T,T.1,-..,Thet @n increasing sequence of pairwise coprime integers, i.e.
T <Th < - < Thy, and gedr, 1) = 1 wheneveri # j. Then for any integek with x < [i_, T, we encode

x as the(n+t)-tuple {x modpa,...,x modpn}. If xandx are distinct integers less th@{_,, then the two
vectorsE(x) = {x modmy,...,x modm,:} andE(X) = {X modm,...,X modm,.:} must differ in at least

t + 1 coordinates since the residuexahoduloany nof the modulitg uniquely determines. Thus the minimum
distance in this code 5 and so it can correqttij errors. Thus if we taka +t = pn, this code can recover from
error-rate3 — 2—1p, in the digits of the code.

This code differs significantly from most other error cotieg codes in that each “digit”, i.e. each remainder,
of the codeword carries a different amount of informatiolu3 the Hamming distance between two codewords,
measured as the number of remainders in which they diffeoighe natural distance to consider for this code.
This fact made finding an efficient decoding algorithm a neiatirtask. In his original paper in 1972, Mandelbaum
proposed an algorithm that ran in expected polynomial-tirBence then, many variants of that algorithm have
appeared, but it was not until 2001 [17] that the first polyratime decoding algorithm was found. Since the
Chinese Remainder Codes are efficiently list decodable [12], we can apply the technique in [28] of combining
list-decoding with digital signatures to our protocol tether improve the information-rate.



D Gentry-Ramzan PIR

While our scheme does not explicitly rely on the Gentry-RamPIR scheme, our protocol was inspired by their
use of thed®-hiding assumption to do “hidden” Chinese Remainderinghiinterest both of giving some context
for our scheme, and of showing what else can be achieved hghi@hinese Remaindering, we briefly sketch
the Gentry-Ramzan Private Information Retrieval scherig [Ihis scheme allows computationally private single
database PIR with constant communication rate unde@th@ing assumption. Here “constant” means propor-
tional to the security parameter. The scheme allows retirigfentire blocks at once, and the scheme we describe
will retrieve an/-bit block from ann-bit database.

The scheme assumes some initial set-up. First, sequenogabf@imesps, ..., p; are fixed in advance. Then
we set! = [n/t], andc = [logy, £]. SettingTg = p, we have thatg > 2‘ for all i, and the integersy, ..., T¢ are
pairwise relatively prime. This initial set-up is assumedé known to both the user and the database, and is not
included in the communication complexity of the scheme.

To begin the scheme, the database must do some pre-pragebstead of viewing the database as a single
n-bit string, we instead view it as a concatenationt éfbit integersay,...,a. Recall that we have chosen amr
such thatg; < 1 for eachi. Using the Chinese Remainder Theorem, the database camfintbgere < |‘|}:1Tri,
such thae modTm = g;.

To retrieve thejth block of the database,, the user then chooses an RSA modutus: pq that ®-hidesTr;,

and ag for cyclic the groupG, i.e. g has order@ in (Z/mz)*. Sincerj|¢(m), we have thaGn, has a subgroup

of orderm;. Lettingq = "’2(—? this subgroup is generated §¥. The user then sends bath andg to the database.
The database calculatgd modmand returns the result.

Giveng® modm, the user then calculat¢g®)? = (g%)° = g® M°4™ modmsinceg® has ordeny; in Gy, Then
by performing (a tractable) discrete-log computation i shbgroup of ordem; generated bg? the user recovers
e modTy; = a;. Using Pohlig-Hellman algorithm this discrete-log congtign can be calculated in(cj,/pj)
time.

If log,(m) =k, then the user sendx Dits to the database, and the database repliesklits, so the total
communication complexity isk3bits. To avoid the lattice-based attacks described in [d][@8h we must choose

m such thatg < mi for all i,i.e.f <4k

E Why the CRT-ECC and the Reed-Solomon Code Are The Same

The general form of the Chinese Remainder Theorem state$ Bia a commutative ring and, ..., |; are pairwise
coprime ideals (i.el; +1; = Rfor all i # j) then

R/(|1|2-~-|t)2R/|1XR/|2><~-'XR/|t.

Taking R=Z and|; = m;Z for pairwise coprime integersy; we arrive at the classical form of the Chinese
Remainder Theorem. Now, noting that

W:Z/PZ[K/(x—a) — Z/pZ
f(x) — f(a)

is a ring isomorphism, we can view evaluatifige Z/pZ[x| at a pointa as quotienting out by the ide& — a).
Applying the Chinese Remainder TheorenmRe= Z/pZ[x| andlj; = (x— a), we obtain exactly the setting of the
Reed-Solomon code. In both situations, the minimal distaioc the code remains exactly the same since an
element inR/(I1---1t) is uniquely determined by itsimages in the quotient ring3/1;.
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