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Abstract

In cryptography, there has been tremendous success in building primitives out of
homomorphic semantically-secure encryption schemes, using homomorphic properties
in a black-box way. A few notable examples of such primitives include items like private
information retrieval schemes and collision-resistant hash functions (e.g. [14, 6, 13]). In
this paper, we illustrate a general methodology for determining what types of protocols
can be implemented in this way and which cannot. This is accomplished by analyz-
ing the computational power of various algebraic structures which are preserved by
existing cryptosystems. More precisely, we demonstrate lower bounds for algebraically
generating generalized characteristic vectors over certain algebraic structures, and sub-
sequently we show how to directly apply this abstract algebraic results to put lower
bounds on algebraic constructions of a number of cryptographic protocols, including
PIR-writing and private keyword search protocols. We hope that this work will provide
a simple “litmus test” of feasibility for use by other cryptographic researchers attempt-
ing to develop new protocols that require computation on encrypted data. Additionally,
a precise mathematical language for reasoning about such problems is developed in this
work, which may be of independent interest.

1 Introduction

One of the central problems in cryptography is that of finding a public key encryption
scheme that would allow “computation on encrypted data”. In its full generality the problem
could be simply stated as follows: to find a public key encryption scheme such that given
encryptions of arbitrary plaintexts E(x1), . . . , E(xn) it is possible without the decryption key
to compute E(f(x1, . . . , xn)) for any polynomial-time computable function f . Naturally, if
one can find a public-key cryptosystem that is “fully homomorphic”, i.e. allows operations
on ciphertext that preserve the structure of a ring, and hence allows computation of the
ubiquitous “NAND” operation on the underlying plaintext, it would give a general solution
to the above problem. Indeed, the reason this is such a central problem is that it would allow
for incredible ability to arbitrarily manipulate encrypted data without sacrificing privacy.
This problem was posed nearly 30 years ago by Rivest, Adelman and Dertouzos [21]. We
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do not know if such an encryption scheme exists in its full generality, though various partial
answers are known: One partial answer is single-homomorphic encryption: given E(x) and
E(y), where x and y come from some abelian group, there exist cryptosystems that can
compute E(x ∗ y), where ∗ is the group operation. Examples include ElGamal [9], where the
group operation is multiplication, Goldwasser and Micali [10] where the operation is addition
modulo 2, and Pallier [20] where the group operation is addition modulo a large composite.
Recent progress by Boneh, Goh and Nissim [3] showed that more is possible: they designed
a cryptosystem that allows an arbitrary number of additions and a single multiplication (of
the underlying plaintext) by manipulating ciphertexts only. Another approach at building
fully-homomorphic encryptions was considered by Sander, Young, and Yung [23], but only
applied to Boolean operations and doubled the ciphertext size at every step. As a result, one
could only perform a few Boolean operations before the ciphertext size became impractical.
A partial negative result was given by Boneh and Lipton [4].

Many useful protocols and primitives have been derived from such homomorphic schemes
in a “black box” way, essentially just manipulating the homomorphic properties to construct
various systems. Prominent examples include single-database private information retrieval
(PIR) and collision-resistant hashing (see [14, 6, 13]). In this work, we show a variety of
natural tasks that cannot be accomplished in this way. More accurately we’ll illustrate
a single basic task that cannot be algebraically accomplished (with small communication)
with various types of algebra (e.g., that of any abelian group). This result will give us a
nice criterion or “litmus test” for determining the feasibility of constructing communication-
efficient protocols in general, and a very strong result for constructing protocols based on the
black box use of homomorphic encryption. Along the way, we’ll also develop a mathematical
language and technique for reasoning about such questions, which may be of independent
interest.

1.1 Our Results

A central element of this paper, from which we will derive a number of results, is an algebraic
lower bound for a certain task. The task in question is that of specifying “characteristic
vectors” over a group. For a group G, we call a vector (v1, ..., vn) ∈ Gn “characteristic”
for a set S ⊂ [n] if vi 6= 0G if and only if i ∈ S. We’ll show that it is impossible to
“algebraically” specify characteristic vectors of singleton subsets of [n] over any abelian group
with communication complexity less than O(n). A formal statement of this idea appears as
Theorem 2.3.

This statement holds for all abelian groups. For intuition, one may consider the case
of linear algebra, in which the group G is of prime order, and has a field structure which
could be put upon it. It is a relatively simple exercise to prove this very special case of the
theorem, just arguing about the degree of vector spaces. However, this technique does not
get very far. As the reader will see from Example 2.2, these ideas don’t apply to general
abelian groups G, even when they are cyclic. In fact, there is not even a well-defined notion
of degree in this setting. A “degree-based” argument could be carried out via free-module
analysis, but it will greatly complicate and obfuscate matters, and furthermore it will yield
a weaker version of the theorem. Our more abstract approach and more general result will
be of utility later on, when we generalize to other structures.

Additionally, we prove a smooth trade-off in communication complexity as the size of S
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(the number of non-identity elements in the characteristic vectors) increases, and as men-
tioned, we also generalize to other algebraic structures, which contain virtually all such that
are preserved by known homomorphic encryption schemes. In particular, we prove results
for any abelian group as well as results for arbitrary rings, in a setting restricted to polyno-
mials of total degree t. (Note that the cryptosystem of Boneh, Goh, and Nissim [3] gives an
example of such an algebraic structure for the special case of t = 2, where polynomials of
total degree 2 are the most general items that one has the ability to compute on encrypted
data.) Finally, we’ll show a number of natural cryptographic protocols that would imply the
functionality of generating characteristic vectors, and hence derive algebraic lower bounds
for the communication involved in these protocols as well.

As one will see after an examination of our algebraic results, they are in fact quite
general. Since the results for abelian groups apply to all affine maps, this rules out many
possibilities which do not necessarily come from group formulas. (For example, arbitrary
endomorphisms may now be included in the class of “formulas” even though there is no
way to compute all endomorphisms via an abelian group formula.) In particular, even if
one changes their representation of data to be not just one group element, but many, and
furthermore manipulates each of these elements independently, our results will still apply
(this is a simple consequence of Corollary 2.11).

We also note that a general language for formally discussing these ideas is presented here,
using category-theoretic ideas. This helps unify our discussion, and make formal definitions
possible at the right level of abstraction (since as mentioned, a number of different algebraic
structures are addressed here). As a final note, using this language we demonstrate that
with any simple non-abelian group structure one can compute all finite functions via group
formulas (thus, the existence of any cryptosystem homomorphic over a simple non-abelian
group implies a fully-homomorphic encryption). This work can be found in the later sections,
and somewhat generalizes that of [1] and [17], however it is essentially a different, and
constructive version of [25] and may be of independent interest.

1.2 Related Work

The lower bounds that we consider are most closely related to computational lower bounds
on number theoretic problems when algorithms are restricted only to underlying group op-
erations. For example, Boneh and Lipton [4] examine the computational difficulty breaking
any algebraically homomorphic (over a field) cryptosystem. In contrast, our lower bounds
are on communication complexity and apply to a wide variety of algebraic structures. Other
related works are that of Shoup [24] and Maurer and Wolf [16], which consider computa-
tional difficulty of the discrete logarithm problem, and other number-theoretic problems in
cyclic groups, provided that the algorithms do not exploit any specific properties of the
representation of group elements.

Our lower bounds are geared towards communication complexity and program size, rather
than computational complexity, but similar to these works, we focus only on algorithms that
utilize nothing other than the underlying algebraic structures. However, we consider a far
greater variety of structures in our work (including arbitrary abelian groups and bounded
degree polynomials over rings).
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1.3 Overview, Motivation and Intuition

Often times, novel cryptographic protocols are developed using homomorphic encryption as
building block (and often it is the only necessary ingredient). Many basic protocols can be
constructed in this way, for example, private information retrieval, oblivious transfer, and
collision-resistant hashing, to name a few. Indeed, such methods have accomplished much
in the past, and continue to prove themselves as fruitful techniques. However, the types
of algebraic structures available in homomorphic encryption are quite limited. Not much
beyond the structure of an abelian group can be preserved under an encryption scheme.
Quite clearly, abelian groups have limited computing power. If one simply examines the
number of distinct m-variable “formulas” in a finite abelian group G of order k in comparison
to the number of G-valued functions (as set maps) that depend on m variables, one can’t
help but notice a great discrepancy in cardinality (the fraction is in fact negligible as the
number of variables increases). So indeed, there is much that cannot be computed using
only abelian group formulas. But what are these functions? Furthermore, in what sense can
they not be computed?

As mentioned before, there have been many protocols of great utility derived from homo-
morphic encryption over abelian groups (e.g. [14, 6, 13]). However, as the authors believe,
for every such useful protocol in the literature, there are many dead ends, lying at the bot-
tom of stacks of paper upon researchers’ desks. But until now, there has not been much
formal proof that these dead ends are actually just that. This work provides some basic
proofs of lower bounds for a few very straightforward protocols, based on these algebraic as-
sumptions. But more importantly, it develops techniques and methods for reasoning about
such tasks, which hopefully will be of use to many other researchers, in the context of many
other protocols.

1.4 Summary and Techniques

To summarize, we present here a formal study of what can be computed solely using the
operations of various algebraic structures (although certain results hold under weaker as-
sumptions). The structures primarily studied are a superset of the structures that (to date)
can be preserved with a homomorphic encryption scheme. Hence, in terms of generic al-
gebraic methods, the lower bounds shown here serve as practical lower bounds for such
techniques. We prove results for the entirety of abelian groups, and also for rings, in a set-
ting that uses polynomials of some bounded total degree as formulas. (See the cryptosystem
of [3] for motivation of this idea.)

Given the large cardinality discrepancy mentioned above with respect to abelian group
algebraic formulas, it is not surprising that various protocols cannot be algebraically imple-
mented in such a way. However, it may be quite surprising that such simple and natural
protocols cannot be implemented, and also that the techniques used to prove such state-
ments are in fact rather elementary. Basically, what is shown is that all “formulas” over
abelian groups correspond to “affine” group maps, which as we will show have a fair amount
of structure. These “affine” group maps are then analyzed over general modules over a finite
ring R, and a basic result regarding characteristic vectors over a group follows from the
analysis. This result is quite strong from an algebraic point of view, since it was proved for
arbitrary affine maps, not all of which come from formulas over a group. However, every
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(abelian) group formula does come from an affine map. With this abstract formulation and
proof, it will then be relatively easy to extend the result to other more general structures,
such as polynomials of bounded total degree over a ring.

To even begin a mathematical discussion on this subject, a formulation of the idea of
“algebraic formula” is needed, and accordingly, we have provided a thorough formalization in
this work using the language of category theory. This study is actually somewhat extensive,
with numerous examples provided, and as such has been placed near the final sections of the
paper. This material may be interesting in its own right, but it is not the focus of this work.
It is merely a tool for understanding, formalizing, and for properly stating the definitions we
use here. Formalizations of the idea of computing with algebra are given there as well.

2 Preliminaries and Basic Results

2.1 Notations

For a brief index of mathematical notations we use, see Section 5. Most notations are
standard, and most algebraic notations are consistent with [12].

2.2 Generating Encryptions of Characteristic Vectors: Motivation

This example provides a simple description of a protocol that can’t be non-trivially imple-
mented with abelian group algebra. Later, we’ll show a variety of problems (usually related
to PIR or PIR-writing) which would imply a protocol like this. Hence, these too cannot be
implemented with abelian group algebra.

We could, at this point, formalize a cryptographic protocol about generating characteristic-
type vectors over a group, but it may be convenient to postpone such a definition and instead
get right to the main point, which is algebra. So, we will explain in simple terms the algebraic
task we are trying to accomplish. Consider the following problem:

Let n,m ∈ Z+, and let G be an abelian group. Define the following elements vi ∈ Gn:

vi = (0G, ...,0G, xi,0G, ...,0G)

where xi 6= 0G appears in the i-th position.1 Let {mi}n
i=1 ⊂ Gm and let f be an arbitrary

affine group map in m variables from Gm −→ Gn, i.e., f = fm + c where fm : Gm −→ Gn

is linear and c ∈ Gn. Note that these affine maps can express all possible abelian group
formulas on a set of variables (see Definition 4.2). The question is

Question 2.1 (Informal) If f(mi) = vi for all i ∈ [n], what can be said about |Gm|? In
particular, how small can it be?

We will soon answer this question in a variety of contexts, but first we’ll give an example
to help motivate the non-triviality of the question and our lower bound. The phrasing used
regarding the size estimation was deliberate: we don’t isolate or bound m alone, because we
cannot bound m in a non-trivial way. It is in fact possible to accomplish the above result

1We give x an index i simply to show that it need not be uniform across all vectors.
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with m = 1, even for a cyclic group. However, as we’ll show in our lower bound, this comes
at the cost of increasing the size of G.

Example 2.2 Let n ∈ Z+, and let N =
∏n

i=1 pi, where pi is the i-th prime number. Define
G = ZN . Define integers {zi}n

i=1 as follows:

zi =
∏

j 6=i

pj

Then, since all the primes were distinct, it is easy to verify that

(zizj 6= 0 mod N) ⇐⇒ (i = j)

So, we could define a linear function f = (f1, ..., fn) from G −→ Gn by fi(x) = zi · x, and
we would have f(zi) = vi, for some elements vi ∈ Gn which fit the above description of a
complete set of characteristic vectors.

However, in the preceding example, notice that n different primes had to divide the order
of G. Hence, |G| > 2n is of exponential size in n. We will show that even using affine maps,
this is always the case: to generate n orthogonal-type characteristic vectors with m group
elements always requires a group G such that Gm has exponential size in n, although the
statement we prove has a more abstract setting.

2.3 A Basic Algebraic Result

Here, we will make precise the relationship regarding n and the size of an abelian group that
can algebraically generate a complete set of n characteristic vectors over an abelian group
G.

Theorem 2.3 Let n ∈ Z+ and let G,A be abelian groups. Let V = {vi}n
i=1 ⊂ Gn be

any collection of elements so that the j-th position of vi is 0G if and only if i 6= j. Then if
F = f+c is an affine map from A −→ Gn such that V ⊂ F (A) then we have log(|A|) ∈ Ω(n).
More specifically, if A ⊂ Gm, we have that

log(|G|) ≥ n

m + 1

We’ll break the majority of the proof into a lemma and a few simple observations. To
begin, we’ll prove the following lemma which will help us analyze affine maps and translated
characteristic vectors.

Lemma 2.4 Let R be a finite ring with identity, and let M be a (unitary) R-module. Let
Ω = {ωi}k

i=1 ⊂ M be a finite collection of elements. Let Ω′ = {(ωi + c)}k
i=1 for some fixed

element c ∈ M . Then 〈Ω′〉, the module generated by Ω′, increases in size by at most a factor
of |R| over the size of 〈Ω〉. I.e.,

|〈Ω′〉|
|〈Ω〉| ≤ |R|
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Proof: Recall that for any submodules A,B of a module there is always a surjection
A ⊕ B −→ A + B since A ⊕ B is a coproduct and A + B is generated by A ∪ B. Hence
|〈Ω〉 + Rc| ≤ |〈Ω〉 ⊕ Rc| ≤ |〈Ω〉||R|. Since clearly 〈Ω′〉 ⊂ 〈Ω〉 + Rc as M is unitary over R,
this in fact completes the proof. ¥

In light of Lemma 2.4, we need only to analyze “un-translated” characteristic-type vec-
tors. If they generate a large module, then so will the translated vectors. It is quite clear
any such module generated by elements like those in V will be exponential in size, however
to be complete, we provide a formal proof.

Observation 2.5 Let G be a finite abelian group. Let n ∈ Z+. Define elements vi ∈ Gn by
vij = δij · αi for some αi 6= 0 ∈ G, and δij ∈ Z with δii = 1 for all i and δij = 0 for i 6= j.
Let H = 〈{vi}n

i=1〉, the subgroup of Gn generated by the vi. Then |H| ≥ 2n.

Proof: Note that H '
⊕n

i=1〈vi〉 since clearly 〈vi〉 ∩ 〈vj〉 = {0} for all i 6= j, and since by
definition H is generated by the vi. Also, for all i ∈ [n] we have that |〈vi〉| ≥ 2 since αi 6= 0
which completes the proof. ¥

We’ll also make use of a few very elementary observations from group theory.

Observation 2.6 Let G be an abelian group and let a, b ∈ G with x = ord(a), y = ord(b).
Then ord(ab) | lcm(x, y).

Observation 2.7 Let G,H be groups, and let f : G −→ H be a homomorphism. Then for
all g ∈ G, we have that ord(f(g)) | ord(g).

Observation 2.8 Let G be a group, and let (a, b) ∈ G×G. Then ord((a, b)) = lcm(ord(a), ord(b)).

Observation 2.9 Let G be an abelian group, and suppose that there exists N ∈ Z+ such
that N · g = 0G for all g ∈ G, where · denotes Z-module action. Then, G is a ZN -module,
where the action is inherited from that of Z.

We are now ready to complete the proof of Theorem 2.3.

Proof: (Theorem 2.3) Recall that F = f + c was an affine map. By assumption, we
have that V ⊂ F (A), and so, by Observation 2.5 we have that |〈F (A)〉| ≥ |〈V 〉| ≥ 2n.

Next, consider the elements c ∈ Gn and the vi ∈ Gn. Note that (vi − c) ∈ f(A) by
assumption. Now let’s examine the order of these elements. Define V ′ = {vi − c}i∈[n]. By
Observation 2.7, we know that all of the vi − c have order that divides |A|, since they are
images of elements of A under a homomorphism. But then, by Observation 2.8, we can see
that if c = (c1, ..., cn), then all of the ci must have order that divides |A| as well, or else the
order of at least one of the (vi − c) would have order not dividing |A|. Hence c has order
dividing |A|. Now, by Observation 2.6, we have that the vi also have order dividing |A|.
Therefore by Observation 2.9, 〈V 〉 is in fact a Z|A|-module, as of course is 〈V ′〉 since it is in
fact the image of some submodule of A (possibly all of A) under a homomorphism. Then,
by Lemma 2.4 (with 〈V ∪ V ′〉 playing the role of M , if you’d like) we have that

2n

|〈V ′〉| ≤ |Z|A|| = |A|
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and hence
2n ≤ |〈V ′〉||A| ≤ |A|2

so that |A| ≥ 2n/2, and log(|A|) ∈ Ω(n) as desired.
More specifically, if A ⊂ Gm, then all objects involved are Z|G|-modules, and hence

2n

|G| ≤ |f(A)| ≤ |Gm|

So that |G|m+1 ≥ 2n and hence log(|G|) ≥ n
m+1

. ¥

2.4 Functions that Change Multiple Values

We can also generalize this algebraic result to include other types of vectors, where F (mi)
has the i-th component non-identity, but possibly some other number of positions are non-
identity elements as well. If the function F has the ability to change arbitrary subsets of c
elements for a constant c, then our original results clearly apply, as you could re-organize
Gn as a product Gc × · · ·×Gc with n/c components. (Without loss of generality, we assume
c|n.) However, the bounds still apply for less powerful classes of functions. We will show
that any function that produces vectors with c(n) or fewer non-identity positions at a time
has communication complexity Ω(n/c(n)), provided only that it is complete- i.e., for every
position, it has the ability to produce a vector that is non-identity in that position. Here,
c(n) is any positive function of n, and note also that the number of non-identity positions
per mi need not be uniform- we only ask that it is bounded by c(n). We’ll prove this by
showing that we can always re-organize Gn into a product of larger components (of size
c(n)) so that the original function F produces orthogonal characteristic-type vectors in the
original sense, only over (Gc(n))n/c(n). Then, the proof follows immediately from the original
result. Consider the following lemma.

Lemma 2.10 Let c ∈ Z+. Let {Sk}k∈Γ be a collection of sets such that Sk ⊆ [n], |Sk| ≤ c
for all k ∈ [n] and such that the {Sk} form a cover of [n], i.e.,

⋃
k∈Γ Sk = [n]. Then there

exists X ⊆ [n] and a sub-collection of sets {Skj
}kj∈Λ⊆Γ such that Skj

∩Skj′
∩X = ∅ whenever

j 6= j′ yet Skj
∩ X 6= ∅ for at least dn/ce of the sets Skj

.

Proof: Suppose {Sk}k∈Γ is such a cover of [n]. In this finite case, it is clear that every
cover has a minimal sub-cover, i.e., a collection {Skj

}m
j=1 that still covers [n] such that for

any other sub-cover {Sk′

j
}m′

j=1 we have that m ≤ m′. 2 Let {Skj
}m

j=1 be a minimal sub-cover.

For this sub-cover, define for every i ∈ [n]

Ni = |{Skj
| i ∈ Skj

}|

Note that Ni > 0 for all i since the {Skj
} form a cover of [n]. Define X ⊂ [n] as follows:

X = [n] \ {i | Ni > 1}

Now clearly, X has the property that Skj
∩Skj′

∩X = ∅ whenever j 6= j′, but it is also true
that Skj

∩ X 6= ∅ for every j ∈ [m]. To see this, suppose that for some j ∈ [m] we have

2Clearly m < ∞ since P([n]) is finite, so there is no loss of generality.
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Skj
∩ X = ∅, i.e., that Skj

⊂ [n] \ X. This statement says that every element of Skj
is also

in at least one other set in the sub-cover. Hence,

Skj
⊂

⋃

j′ 6=j

Skj′

and thus {Skj′
}j′ 6=j is also a subcover of all of [n] that is smaller than our original, contra-

dicting the minimality that we assumed. So, we have that Skj
∩ X 6= ∅ for every j ∈ [m].

To complete our proof, we simply note that since |Sk| ≤ c for every k, any sub-cover must
have at least dn/ce sets, just by counting. ¥

Corollary 2.11 Let n ∈ Z+ and let G,A be abelian groups. Let w(x) be a positive valued
function and let V = {vi}n

i=1 ⊂ Gn be any collection of elements so that the i-th position of
vi is not equal to 0G, and at most w(n) total positions of vi are non-identity for all i ∈ [n].
Then if F = f + c is an affine map from A −→ Gn such that V ⊂ F (A) then we have
log(|A|) ∈ Ω(n/w(n)).

Proof sketch: This is an easy consequence of the lemma. In the language of the lemma,
set the Sk to be the set of indexes in [n] corresponding to all the positions with non-identity
elements in vk. By the lemma, we can find a subset of the indexes X and a subset of the sets
Sk of size at least n/w(n) so that the Skj

are disjoint on X. We can then re-organize the
product Gn according to the vkj

and where they differ from the identity. Then, transform
f + c into a map on this restricted product of G’s, just using the component functions (i.e.,
the compositions with the projections from Gn −→ G). So, we have some product like:

Gs(k1) × · · · × Gs(kn/w(n))

Then pad Gs(kj) with extra products of G and redefine the maps accordingly (set those
components of the new constant c to 0G, and the new components of f to the trivial map.
You now have exactly the original situation from Theorem 2.3, only with a new value of n,
which happens to be n/c(n). So, we can conclude log(|A|) ∈ Ω(n/w(n)). ¥

2.5 Polynomials of Bounded Total Degree

Recently, new cryptosystems have been developed with additional homomorphic properties
(see [3]), which provide the ability to compute on ciphertext, polynomials of total degree at
most 2. Here, we will generalize our original algebraic result to apply to algebraic functions
of the form of any polynomial of total degree t, over a ring R. Although the following
result will apply to the ring of polynomials over any ring R (it need not have an identity or
be commutative), this result has the most meaning in the case of commutative rings with
identity, since in this case the ring of multivariate polynomials coincides precisely with our
notion of “algebraic formula”, which is formalized in a category theoretic sense in Section
4.1. (For a non-commutative ring, there’s a more general structure that serves as the set of
all formulas.)

Corollary 2.12 Let n ∈ Z+ and let R be any ring. Let V = {vi}n
i=1 ⊂ Rn be any collection

of elements so that the j-th position of vi is not equal to 0R precisely when j = i, for all
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i, j ∈ [n]. Then if F : Rm −→ Rn is such that F = (F1, ..., Fn) with each Fi ∈ R[X1, ..., Xm]
of total degree less than or equal to t (a constant) and has V ⊂ F (Rm) then we have

(
t
√

log(|R|)
)

m ∈ Ω( t
√

n)

In particular, if |R| is independent of n, then m ∈ Ω( t
√

n).

Proof: Let f ∈ R[X1, ..., Xm] be of total degree t. We do not assume that R is commu-
tative, so there could be a total of

∑t
k=0 mk = O(mt) terms. Note that we can simulate f

with a polynomial f ∈ R[Y1, ..., YO(mt)] of total degree 1. I.e., if N =
∑t

k=0 mk and

f =
N∑

k=1

[
rk

∏

j

Xαk(j)

]
+ r0

where αk : [t] −→ [m], then we’ll set

f =
N∑

k=1

rkYk + r0

Then of course
f(X1, ..., Xm) = f(

∏

j

Xα1(j), ...,
∏

j

XαN (j))

The point being that any function which f computes, we can compute with f . But now ob-
serve that f−r0 ∈ HomZ((R, +)mt

, (R, +)). Componentwise applying this to F = (F1, ..., Fn)
as given above, we have a function F : (R, +)mt −→ (R, +)n which is an affine map, and
which can simulate the functionality of F . Hence, it will of course have the property that
V ⊂ F ((R, +)mt

). Now we can directly apply Theorem 2.3 to this situation since (R, +) is
of course an abelian group. Therefore,

log(|R|mt

) ∈ Ω(n)

and hence log(|R|)mt ∈ Ω(n) so that

(
t
√

log(|R|)
)

m ∈ Ω( t
√

n)

as desired. ¥

3 Applications of Algebraic Results

We will discuss here a number of protocols which are both easy to state, and would pro-
vide desirable functionalities, yet under algebraic assumptions, they cannot be very well
implemented with existing technology.
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3.1 Private Database Modification (PIR Writing)

As seen in [5], the ability to privately modify an encrypted database in a communication
efficient way could provide a valuable tool for private computation. One very natural ap-
proach to such a problem, is to proceed in a manner analogous to many PIR protocols, and
use homomorphic encryption as a building block.

The protocol would then communicate encrypted values which encode the modification
to take place, and then the database owner would execute some algebraic operations on the
encrypted database and the modification description to update the database contents. Then,
since all of the communication consisted only of encrypted values, CPA-type security comes
easily. Unfortunately, we have very limited structures available to homomorphic encryption
schemes. Almost always, what is preserved is the operation of an abelian group. At best,
the ability to evaluate polynomials of total degree 2 is provided (see [3]). It will follow from
our preliminary algebraic results, that these type of algebraic protocols cannot be very well
implemented with existing encryption schemes. We’ll often speak of “algebraic” maps, which
will usually mean functions that are obtainable from some type of formula involving only
the operations of the algebraic structure. A precise, formal, and detailed exposition of this
idea is given in Section 4, especially Section 4.1.

We’ve placed some of the formal protocol-type definitions in the appendix to improve
the readability, since there isn’t much surprising about them, and most readers of this paper
could likely re-invent them in a few minutes. We’ll instead give an informal description of the
protocol here. For precise statements, see Definitions 5.1, 5.2 and 5.3, as well as Definition
5.4 which are discussed at length in the appendix.

Let U be a user that wishes to update the database, and denote by DB the database
owner. We’ll summarize a protocol for algebraic database modification between U and
DB via the following steps, in which we assume that G is an abelian group. Below, we’ll
just describe the algebra involved. In an actual protocol, everything will be computed on
ciphertext in some homomorphic encryption scheme over G.

1. U selects mi = (g1, ..., gm) to modify position i and sends mi to DB.

2. DB computes an algebraic function F (X,mi, H) of the database X ∈ Gn, the modifi-
cation description mi, and other inputs of his own, H ∈ Gε.

3. DB replaces X by X ′ = F (X,mi, H)

Clearly the algebra involved in this protocol implies the ability to algebraically generate
complete sets of characteristic vectors:

Claim 3.1 An algebraic protocol for database modification over an abelian group implies an
algebraic function (affine map) with a complete set of characteristic vectors in the image.

Proof sketch: Define a database X = {0G}n
i=1, which is the identity in all positions.

Apply DB’s function to obtain X ′ = F (X,mi, H) where mi describes a modification for
position i. Then clearly X ′ = vi, a characteristic vector in Gn, non-identity at position i. ¥

Therefore, by Theorem 2.3, if we build such a protocol based on a homomorphic cryp-
tosystem over any abelian group, it will necessarily have linear communication complexity.
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Note the strong sense in which this is true: abelian group formulas always correspond to
affine maps, but certainly not every affine map comes from such a formula.3 Furthermore,
Theorem 2.3 did not even assume that the groups were the same. So, even if the database
elements are encrypted in some other cryptosystem and over some other group than the
descriptions, and even if we were provided the ability to compute all algebraic maps from
one to the other on ciphertext, we still couldn’t produce a non-trivial protocol over abelian
groups.

We’ll summarize these ideas as

Corollary 3.2 There are no non-trivial Algebraic Oblivious Database Modifiers over an
abelian group. I.e., any oblivious database modifier based on the operations of an abelian
group has communication complexity Ω(n).

3.2 Algebraic and Homomorphic Protocols for PIR

As a second corollary, we consider “algebraic”, or “homomorphic” protocols for private
information retrieval. One may have observed, as the authors have, that the query results
for PIR protocols usually fall into one of two categories: either (a) they have no (or very
limited) algebraic value4 or homomorphic properties, or (b) the server side communication
is non-constant, i.e., the results of a query return many items, not just an encryption of one
value in the database5. A protocol for private information retrieval that returns encryptions
of single values which retain algebraic and homomorphic properties could be a very useful
tool in private computation6, especially in non-interactive settings. In what follows, we
present evidence that the absence of such protocols is not just a random coincidence.

We’ll try to establish a basic definition that captures the properties that we desire, and
encapsulates most existing work possessing these properties. Suppose that the values in a
database have some algebraic structure. For now, say that of an abelian group. We will
denote the return value of a PIR query for the i-th position of a database by PIR(i), which
consists of one or more encrypted database elements. Let Si = {sj}k

j=1 denote the set of
values from the database that are returned by a PIR query for position i.

Suppose for a moment that the domain from which PIR query returns reside has the
algebraic structure of a group, say (G′, ?). To name just a few, we have the PIR protocols of
[14], [6], [7] as examples of such systems. Suppose also that the database elements themselves
also come from a domain having the algebraic structure of a group, say (G, ·).7 Then we
make the following definition:

3For a simple example, consider G = Zp × Zp and ϕ ∈ HomZ(G,G) by (a, b) 7→ (b, a). So, we’ve shown
that even if we allow DB to somehow compute arbitrary affine maps on the ciphertext values, it still does
not suffice to accomplish this task.

4See the work of [7] for an example of such a PIR protocol having limited algebraic value.
5See [14] for such an example, but virtually every PIR based on homomorphic encryption (over an abelian

group) has this property.
6For example, in the keyword search of [18], the dictionary size could be reduced.
7There is no assumption that the group representing the query returns are the same as the database

elements, or even that they are encryptions of database elements, exactly. It could be the case that as a part
of the encryption, the group that the database elements come from is first homomorphically transformed,
and then transformed back as a part of decryption. The general way that we’ve stated our algebraic results
allows us to reason about such a general definition.
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Definition 3.3 Using the notation established above, we say that a PIR protocol is homo-
morphic if for a given database X ∈ Gn, we have that D(PIR(i) ? PIR(j)) = Si · Sj where
D is the function from the PIR protocol that decrypts the query results.

Note also that for such a PIR protocol to be of much utility as a subroutine in some
private computation, it is almost essential to have |Si| = 1, or at least bounded by a small
constant. If not, then the party which is to perform a computation on the return values
of a homomorphic PIR query will likely not have any information about where the relevant
element is in the query results. Hence, if such a party wishes to perform a computation on
t variables obtained via homomorphic PIR queries, it would in general require repeatedly
performing the computation on all |Si|t possible sequences to ensure that the right variables
were involved at least once. Furthermore, it may not be possible for any party to distinguish
which of the resulting outputs in fact corresponds to the desired computation, even after
decryption.

Finally note that from the definition of homomorphic PIR, we see that the results of
queries are in fact encryptions of elements in some homomorphic cryptosystem. To create
such a PIR protocol, a very natural approach is to manipulate the algebraic structure of
some such homomorphic cryptosystem. This motivates the following definition.

Definition 3.4 We say that a PIR protocol is algebraic if the following hold:

1. A query consists of an ordered sequence of ciphertexts in some cryptosystem where the
plaintext set A has some algebraic structure.

2. To process a query, the database owner computes on ciphertext some algebraic function
of the query’s array, this function being determined by the contents of the database to
obtain an array of ciphertext which will be the results of the query.

For precise definitions regarding “algebraic function”, please see Section 4, specifically
Definition 4.2. For abelian groups, we’ll again have affine maps as our model of algebraic
functions.

Corollary 3.5 Consider an abelian group algebraic PIR protocol with sender-side commu-
nication complexity g(n) and server-side communication complexity h(n). Then g(n)h(n) =
Ω(n). More specifically, if k(n) is any positive integer-valued function and if the server’s
response consists of k(n) encrypted values, then the sender-side communication complexity
is Ω(n/k(n)).

Proof: We will show in a straight-forward way that the algebra involved for any such PIR
protocol will imply the ability for algebraically generating a complete set of characteristic
vectors, and hence, cannot be done with with small communication using the algebra of an
abelian group.

Let δij ∈ {0, 1} defined by δij = 1 ⇐⇒ i = j. Define databases {X(i)}n
i=1 by the

formula X(i)j = δijα where α 6= 0G ∈ G. Each one of these databases has an associated
function Fi : Gm+ε −→ Gk, a homomorphism of groups. Again, the ε variables provided by
the database owner are independent of the m variables that comprise the query. (If not, the
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function can of course be re-written to make it so.)8 Now define maps fi ∈ HomZ(Gm+ε, G)
by fi(x) =

∑k
j=1 Fi(x)j (i.e., we just compose Fi with the map from the sum to G that is

guaranteed to exist by the universal mapping property of coproducts). Next, define F =
(f1, ..., fn) so that F ∈ HomZ(Gm+ε, Gn). Note that in terms of the m variables corresponding
to the queries, F ′ = f + c is an affine map from Gm −→ Gn, again, since the ε variables from
the database are independent. Now by construction, this affine map has a complete set of
characteristic vectors in the image. However, each vector has k non-identity entries. So, by
Lemma 2.10 and Corollary 2.11, we see that this protocol for oblivious database modification
has communication complexity Ω(n/k). However, this is precisely the sender-side complexity
of the PIR protocol as well. So, since the protocol clearly has server-side complexity Ω(k)
(with a tight bound if the group size is a constant) then we see that the product of the
complexities is of course Ω(n). ¥

Using Corollary 2.12, we can generalize this result to cryptosystems that may have addi-
tional homomorphic properties (see [3]), showing Ω( t

√
n) bounds if total degree t polynomials

over a ring R can be computed on ciphertext.
For example, if given a cryptosystem that allows polynomials of fixed total degree t to be

computed on ciphertext over some ring R, we can easily construct an algebraic PIR protocol
with sender-side communication Θ( t

√
n) and server-side complexity Θ(1) (see [3], or section

5 for details of a simple example). However, this is in fact meets a lower bound: In general,
if such a protocol has sender-side complexity g(n) and server-side complexity h(n), then we
can show that g(n)h(n) = Ω( t

√
n), which is a simple consequence of Corollary 2.12.

3.3 Private Keyword Searching [18]

As another relatively simple corollary, we resolve (under our algebraic assumptions) an open
problem posed by Ostrovsky and Skeith [18] regarding extending the query semantics for
private searching on streaming data. We show that without new homomorphic encryption
schemes with additional properties, their methods cannot be extended to perform conjunctive
queries.

Corollary 3.6 The problem of private keyword search on streaming data as proposed in
Ostrovsky and Skeith [18], has no non-trivial algebraic solution for a conjunctive query of
two or more terms if the underlying cryptosystem is only group homomorphic over an abelian
group.

Remark: We will assume the same basic framework as developed in [18] for a solution
and show that there is no such solution that performs conjunctive queries. Specifically, we
assume that a dictionary with an associated array of ciphertexts is used to conditionally
encrypt documents as in [18].

Proof: First note that the protocol inherently gives rise to an algebraic method for
generating complete sets of characteristic vectors: Suppose that the dictionary D has size
m. Each word has its role in the query encoded via an encrypted group element, say in

8Also, note again that this contains all possible algebraic formulas of the inputs, as well as potentially a
large number of maps that are not necessarily obtainable from such formulas.
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some group G. Look at the encoded dictionary (un-encrypted) as the set Gm. Suppose we
have a protocol as described in [18] for some query that involves k variables. Running this
protocol on mk documents which run over all unique k-tuples from the dictionary gives us
a set of characteristic vectors inside of G(mk). So, we can think of this as an algebraic map
from Gm −→ G(mk), which (unless the query is somewhat trivial) contains a complete set
of characteristic vectors in the image. But, now the question is how many positions are
non-identity in each vector? This of course depends on the query. Suppose that the query
is a disjunction of terms. Each vector in G(mk) will have at least mk−1k positions that are
non-identity, since k − 1 entries could be arbitrary as long as one contains a keyword. So,
the ratio of total positions to non-identity positions is less than m and our algebraic lower
bounds give no contradiction (which of course should be the case since [18] gives such a
construction). But now consider a conjunctive query, just of two terms. In the same way
as described above, this gives rise to an algebraic function for characteristic vectors from
Gm −→ G(m2), however this time we have O(1) positions of each vector are non-identity. So,
applying Corollary 2.11, we see that no such protocol can exist based on an abelian group.
More generally, from Corollary 2.12, we see that if given the ability to compute total degree
t polynomials, we can construct a protocol that executes a conjunction of at most t terms.
¥

We believe that this example illustrates particularly well a situation in which the bounds
proved in this work are especially useful. The entire method of [18] critically depends on
the ability to generate these types of characteristic vectors so that the final representation
is an encryption in a homomorphic scheme. This is the case since the functionality of
characteristic vectors is used as a subroutine for the larger procedure, and so to continue the
computation (i.e., writing to the buffer, etc.) it is necessary that the output have algebraic
value. So, since we have proven that this subroutine is impossible to implement in the
critically important manner desired, it seems that improving the work of [18] would require
either a completely new approach, or new designs of homomorphic encryption schemes, such
as fully-homomorphic encryption.

It is this type of information that we hope will save researchers time and effort in the
future. Applying these bounds may not give an absolute impossibility, but it can quickly
eliminate a very large space of what might otherwise seem to be feasible approaches to the
problem.

4 Formalizations Regarding Computation by Algebra

4.1 Unification of Algebraic Formulas

We speak often of the idea of an “algebraic formula” over some algebraic structure, and it
will be very convenient to make definitions at such a level of abstraction. Clearly, we need an
abstract definition of “algebraic formula” before we can continue. We hope to establish an
appropriate definition in this section that applies to a wide variety of categories of algebraic
structures.

To begin, we’ll examine rings of polynomials in an abstract setting, and see if we can’t
extract the ideas about it that characterized it as the set of “algebraic formulas”. Let R be a
commutative ring with identity. This is one of the most natural structures to our intuition,
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and we will use it to extend our intuition to other possibly less natural structures. What
plays the role of an arbitrary algebraic formula in n variables over R? We can add and
multiply, but there isn’t much else we can compute from just the operations of R. This
leads us towards the ring R[x1, ..., xn] serving as the set of all generic algebraic formulas over
R. Next note that in this situation, the ring R[x1, ..., xn] satisfies an interesting universal
mapping property: we always have an evaluation map that takes an assignment of elements
to variables and gives us a homomorphism from R[x1, ..., xn] −→ R that “evaluates” each
polynomial using that assignment of variables. This evaluation map is exactly what we
are after when talking about a general algebraic formula. More formally, and a bit more
abstractly, consider the following claim (see [12] for details) which we state here without
proof:

Claim 4.1 Let R,S be commutative rings with identity. Let ϕ : R −→ S be a homomor-
phism and let α : X = {xi}n

i=1 −→ S be a set map. Then there exists a unique homomorphism
ϕ : R[x1, ..., xn] −→ S such that

1. ϕ|
X

= α, and

2. ϕ|
R

= ϕ

Here, we identified the set of variables, X, and the ring R as subsets of the ring of
polynomials R[X]. More generally, we’ll have canonical injections ιX : X ↪→ R[X] and
ιR : R ↪→ R[X]. Then the conditions on ϕ become α = ϕ ◦ ιX and ϕ = ϕ ◦ ιR, rather than
the restrictions being equal.

As it turns out this mapping property is exactly what we need to characterize algebraic
formulas in general. We’ll see in a moment that any such object is in fact unique up to
isomorphism. We begin with the following definition.

Definition 4.2 Let C be a concrete category. Let A be an object in C, and let X be a set.
We define the object of A-algebraic formulas over X to be an object FA[X] in C together with
maps ιX : X −→ FA[X] and ιA : A −→ FA[X] such that for any object B in C, morphism
ϕ : A −→ B and set map α : X −→ B, there exists a unique morphism ϕ : FA[X] −→ B
such that

1. α = ϕ ◦ ιX and

2. ϕ = ϕ ◦ ιA

The following uniqueness theorem justifies our giving a specific name to such an object
as above.

Theorem 4.3 Let A be an object in a concrete category C. Suppose that (F,X, ιX , ιA) and
(F ′, X ′, ι′X′ , ι′A) are both objects of A-algebraic formulas over X,X ′ respectively, and suppose
that there exists a bijection β : X ↪→→ X ′. Then F, F ′ are equivalent objects in C.

Proof: We need to show that there are morphisms in Hom(F, F ′) and Hom(F ′, F ) such
that the composition is the identity morphism. Consider the map α : X −→ F ′ defined by
α = ιX′ ◦ β and define ϕ = ι′A. Since F is a set of A-algebraic formulas over X, this gives us
a unique morphism ϕ : F −→ F ′ such that
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• ιX′ ◦ β = ϕ ◦ ιX and

• ι′A = ϕ ◦ ιA

And symmetrically, we have a map ϕ′ : F ′ −→ F such that

• ιX ◦ β−1 = ϕ′ ◦ ιX′ and

• ιA = ϕ′ ◦ ι′A

But now, consider the map ϕ′ ◦ ϕ ∈ Hom(F, F ). Note that ϕ′ ◦ ϕ ◦ ιX = ϕ′ ◦ ιX′ ◦ β and
(ϕ′ ◦ ιX′)◦β = ιX ◦β−1 ◦β = ιX = ιX ◦β−1 ◦β = ιX . Very similarly, ϕ′ ◦ϕ◦ ιA = ϕ′ ◦ ι′A = ιA.
So, composing ϕ′ ◦ ϕ with ιX , ιA gives us back ιX , ιA, respectively. However, applying the
universal property of F to itself, using ιX in the place of α and ιA in the place of ϕ, we see
that there is a unique map with the properties we’ve just demonstrated ϕ′ ◦ϕ to have. But,
note of course that the identity morphism, 1F , is also such a map, and therefore ϕ′ ◦ϕ = 1F .
Similarly, we can show that ϕ ◦ϕ′ = 1F ′ , and hence ϕ is an equivalence of objects in C. I.e.,
up to isomorphism, the set of A-algebraic formulas (on bijective sets of variables) is unique.
¥

4.1.1 Examples

Here we’ll give a short list of examples to illustrate the definition, and to (hopefully) see
that it very well matches our intuition about what algebraic formulas should be. Many of
the incarnations of these objects will involve free objects, a somewhat related idea, and as
such, we’ll begin with a brief account of free objects before stating the specific examples.

Recall that a free object in a concrete category C (one in which the objects can be thought
of as sets) is an object F with a set X and a map ι : X −→ F such that for any other object
A of C and for any set map φ : X → A, there is a unique morphism of C, φ : F → A such
that φ ◦ ι = φ. In this case we say that F is free on the set X.

It is sometimes convenient to identify the set X with its image ι(X) in F , and then the
mapping property becomes φ|

X
= φ.

Perhaps the most commonly known example is that of a vector space V over a field F.
In this language, we have that V is a free object in the category of all F-modules (it is free
on any basis). Another simple example is that Zn is a free object in the category of abelian
groups. It is easy to verify that it is free on the set of vectors {(1, 0, ..., 0), ..., (0, ..., 0, 1)},
for example.

Now, let’s move on to some concrete examples.

Example 4.4 (Commutative Rings.) If R is a commutative ring with identity, we have that
the set of all R algebraic formulas on variables {xi}n

i=1 is simply R[x1, ..., xn].

It is quite straightforward to construct the needed maps. As mentioned, the “evalua-
tion” map is what does the trick. All that is needed is a proper formalization, which can be
found in [12]. X

This seems to match our intuition very well regarding algebraic formulas. However, what
about a field F? This is of course a commutative ring with identity, but it seems like we could
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accomplish more with division, and perhaps rational functions would correspond better to
algebraic formulas. But notice a critical difference in this case: if the denominator has roots
in F, then we cannot freely assign variables to values and evaluate such a function on that
assignment. This could have serious implications in cryptographic computation as well- in
this scenario, it may be the case that attempting such an evaluation which leads to “division
by zero” will produce some distinguishable behavior in a method that shouldn’t disclose any
information about the underlying values.

Note that in non-commutative rings, the set of formulas is more complex than just
R[x1, ..., xm] since coefficients and variables cannot always be written so concisely. We’ll see
this in more detail later on.

Example 4.5 (Groups.) For a group G, the set of all G-algebraic formulas on a set of
variables X is the free product of the free group on X with G, i.e., F (X) ∗ G.

A general formula seems to correspond to a word in a free group, only mixed in with
elements of G, which lines up exactly with F (X) ∗G. Using the universal mapping property
of free objects and that of the free product of groups (which is a coproduct in groups), it is
easy to verify the mapping property for G-algebraic formulas. From the free object F (X), we
have that any map α : X −→ A for some group A leads to a unique map from F (X) −→ A
that agrees with α. Then since F (X) ∗ G is a coproduct, we have that given a map of the
two components to A there is a unique map from the free product to A that agrees with all
previous maps. Putting these together, we see that it suffices to give a map from X −→ A
and a map from G −→ A to uniquely determine a map from the free product to A, which
implies that F (X) ∗ G is the set of G-algebraic formulas. X

Example 4.6 (Abelian Groups.) For an abelian group G, the set of G-algebraic formulas
over n variables is simply Zn ⊕ G.

This follows exactly as in the preceding example since Zn is a free object in the category
of abelian groups, and since ⊕ is a coproduct in abelian groups. X

Recall that in our applications, we modeled abelian group algebraic formulas by affine
maps, and of course, every element in Zn ⊕ G corresponds to an affine map. So, we’ve
validated our initial intuition and model for this situation: Indeed, (a subset of) affine maps
play the very same role for abelian groups as polynomials do for commutative rings. Of
course, not every affine map comes from such a formula, so in algebraic terms, the model we
analyzed is actually stronger.

Example 4.7 (R-Modules.) More generally than abelian groups, we have R-modules. In a
very analogous way, we see that for an R-module M , the set of M-algebraic formulas over
n variables is Rn ⊕ M .

As a final example, we’ll take a moment to illustrate what is meant by evaluating such a
formula, which will let us speak of classes of functions say from Am −→ A which correspond
to formulas in FA[{x1, ..., xm}] (which we’ll often write as FA[x1, ..., xm], or just as FA[X]
when it is clear how many variables are involved, and when it is unnecessary to explicitly
name them).
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Example 4.8 Every formula σ ∈ FA[x1, ..., xm] can be associated with a function fσ :
Am −→ A as follows. Let ϕ = 1A, the identity morphism on A, and let y = (y1, ..., ym) ∈ Am.
Let α : X −→ A be the map that sends xi 7→ yi for all i ∈ [m]. Then the pair (ϕ, α) deter-
mines a unique map ϕy : FA[x1, ..., xm] −→ A, as in Definition 4.2. We define

fσ(y) = ϕy(σ)

It will in fact be useful to give a name to such functions that arise from some σ ∈ FA[X].

Definition 4.9 Let A be an object in a concrete category C where FA[X] exists for all finite
sets X. A function f : Am −→ A is said to be A-algebraic if f = fσ for some σ ∈
FA[x1, ..., xm] as described above. We will denote the set of all A-algebraic functions with
variables in X by FA[X].

Note: we may also refer to a function f : Am −→ An as A-algebraic, in which case it is
meant that for each i ∈ [n] there exist σi ∈ FA[x1, ..., xm] such that f = (fσ1 , ..., fσn). These
functions will be denoted by F n

A[X], or simply FA[X] if the context is clear.

4.2 Towards Other Unifying Formalizations

We’ve now established what seems to be a very good idea of “algebraic formula”. However,
this is just a statement about functions from one algebraic set to another. The basic func-
tionalities investigated in this work were not algebraic: they were just functions involving
general sets. So, how do we model an arbitrary function from one set to another via some
algebraic function? There are quite a few possible ways to formalize this idea, and a number
of them actually turn out to be meaningful. Some quite plausible ideas however, turn out to
be completely void of meaning. We will explore these ideas in some detail now, which will
hopefully give us a pleasant and precise vocabulary to talk about such ideas.

In what follows, S will be a set, and A will be some algebraic structure from a concrete
category C, e.g., groups, rings, modules, etc. We’ll assume that FA[X] exists in C for any
finite set X, which as we’ve seen in the examples above, is usually the case for the algebraic
objects we study. We would like to formalize the idea that a function on the set S can be
somehow computed using an algebraic structure. To begin, we offer the following definition.

Definition 4.10 Let f : Sm −→ Sn. We say that f is Algebraically Representable over A,
some algebraic structure, if we have the following:

• {ik : S −→ A}m
k=1

• {pj : A −→ S}n
j=1

• f̃ : Am −→ An

such that
f = p ◦ f̃ ◦ i

where f̃ ∈ F n
A[x1, ..., xm].
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Note that if m = n = 1, then this definition becomes completely meaningless. If this
were the case, then all of the information of f can be encoded into i or p (or both) and have
absolutely nothing to do with the algebra of A. However, with m and n greater than one, it
is a very useful definition that in fact captures a great many situations.

However, if in fact such a representation does have meaning at the level of m = n = 1,
then we have something very special. In this case, all information about f is represented in
f̃ in a very strong and complete way, which gives us great flexibility. Consider the following
definition.

Definition 4.11 We say that a function f : Sm −→ Sn is Composably Representable over
A for an algebraic structure A, if there exist the following:

• i : S ↪→ U ⊆ A

• p : U −→−→ S

• f̃ : Am −→ An

Such that

1. f̃ ∈ F n
A[X] with f̃(Um) ⊂ Un

2. i ◦ p = 1S (extending p, i to the sum, as usual)

3. f = p ◦ f̃ ◦ i

4. [a]p = [a′]p =⇒ [f̃(a)]p = [f̃(a′)]p, where [a]p = {y ∈ Um | p(y) = a} represents the
equivalence class of a ∈ Um under the relation defined by the fibers of p (extended to
sums).

With this definition, it is easy to see that the behavior of f is found completely inside
of the behavior of f̃ , just re-labeling elements, and grouping them together with the fibers
of p. If one believes the axiom of choice, then this definition is equivalent to the following
condition (but in any case the above condition implies the one below):

Claim 4.12 Suppose f : Sm −→ Sn is composably representable over A via a function
p : U ⊆ A −→−→ S and an algebraic function f̃ : Um −→ Un. Then, for any i : S ↪→ U with
p ◦ i = 1S we have that

f = p ◦ f̃ ◦ i

Proof: Let i′ : S ↪→ U be any function such that i′ ◦ p = 1S. By definition, there
exists i : S ↪→ U ⊆ A and f̃ such that f = p ◦ f̃ ◦ i. Let s ∈ S. Then by definition,
[i(s)]p = [i′(s)]p, and then by the definition of composably representable, we have that
[i(f(s))]p = [f̃(i(s))]p = [f̃(i′(s))]p so that indeed, (p ◦ f̃ ◦ i′)(s) = f(s) as desired. ¥

As mentioned above, the condition of the claim is easily seen to be equivalent to the
definition of composably representable, but in the infinite case, this requires the axiom of
choice to construct functions i by selecting an element from each fiber of p.

The following claim shows the motivation for our choice of nomenclature.
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Claim 4.13 If f : Sm −→ Sm is composably representable over A by (p, i, f̃), then for
any k ∈ Z+, fk is composably representable over A by (p, i, f̃k). In particular, for any
i : S ↪→ U ⊆ A such that p ◦ i = 1S we have

fk = p ◦ f̃k ◦ i

Proof: Suppose that k = 1. Then this is trivially true from the definition. Now,
suppose that the theorem is true for all integers less than or equal to k. So, we have that
[a]p = [a′]p =⇒ [f̃k(a)]p = [f̃k(a′)]p. Next, notice that by the definition, and by our inductive
hypothesis, [f̃ r(i(s))]p = [i(f r(s))]p for all r ∈ [k] and hence

[f̃k+1(i(s))]p = [f̃k(f̃(i(s)))]p = [f̃k(i(f(s)))]p = [i(fk(f(s)))]p = [i(fk+1(s))]p

Therefore,
fk+1 = p ◦ f̃k+1 ◦ i

which completes the proof. ¥

For simplicity, we consider the case of f : Sm −→ Sm, but in fact in the general case, if
any function f is composably representable by f̃ , then any composition of f ’s which makes
sense can be computed by the analogous composition of f̃ ’s. For example, if we could
composably represent f : {0, 1}2 −→ {0, 1} where f = NAND(a, b), using f̃ , then we could
also composably represent OR(a, b) by f̃(f̃(a, a), f̃(b, b)).

In what follows, we provide a few simple examples.

Example 4.14 Let G be a group and H < G such that |G : H| = 2. Then the function
f : {0, 1}2 −→ {0, 1} defined by (x, y) 7→ x + y mod 2 = x XOR y is always composably
representable over G as follows: let i(0) = e, i(1) = g ∈ G \ H, and let p(H) = {0} and
p(G \ H) = {1}, and finally, let f̃(x, y) = x · y where · is the operation of the group G. It is
easy to verify the equality

f(x, y) = x + y = p ◦ f̃ ◦ i

is satisfied, no matter what representatives are chosen from the fibers of p, since subgroups
if index 2 are always normal (right cosets must coincide with left cosets).

Example 4.15 Let X ∈ Gm and define the equality function fX : Gm −→ {0, 1} by

fX(Y ) =

{
1 if X = Y
0 otherwise

This function is not algebraically representable over any abelian group of size |G| (e.g.,
G itself).

Question: for f : {0, 1}m −→ {0, 1}, what is the minimum size (as a function of m) of
an abelian group G that can algebraically represent f?

Example 4.16 For primes p, q with q - p − 1, we have [CR(Zp) = CR(Zq)] ⇐⇒ p =
q. (Here CR(G) denotes the set of composably representable functions over an algebraic
structure G.)
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Example 4.17 Let G be a group. Any function f : {0, 1}m −→ {0, 1}n is composably
representable over G if a function A : G × G −→ G such that A(g, h) = 1G ⇐⇒ (g =
1G or h = 1G) can be algebraically computed in G.

Example 4.18 Any function f : {0, 1}m −→ {0, 1}n is composably representable over R,
where R is any domain. Why: You already have a group (abelian in fact) and now the
multiplication of R is exactly the function A from the previous example.

Example 4.19 (Private Information Retrieval.)

For a PIR protocol, one can define the underlying functions for query processing as fX :
Sq −→ Sr, indexed by X = Sn such that there exist a collection {Qi}n

i=1 ⊂ Sq where
fX(Qi)h(i) = Xi, where Qi ∈ Sq represents the user’s query, X ∈ Sn represents the database,
and h is some function that determines which part of the response is the desired database
value Xi. The original work of [14] on computational PIR (at the basic level) gives an explicit
algebraic representation of such a set of functions {fX} over ZN where each fX is represented
with the same functions (p, i) but of course with different f̃X . The work presented in Section
3 shows that if qr < n, then no such set of functions can be algebraically represented over
any abelian group (with uniform (p, i)). X

In the following subsection, we’ll devote a little extra attention to an interesting example.

4.3 Finite Non-Abelian Simple Groups and Composable Repre-
sentability

We will prove a few elementary lemmas, and then the main result (which again, uses only
basic techniques from algebra). We begin, however, with some famous results that will be
essential to our result. Recall that a group G is referred to as simple if it has no proper
normal subgroups.

Theorem 4.20 (Feit-Thompson) Every non-abelian simple group has even order.

The proof of this theorem is on the order of 250 pages. For that, among other reasons,
we will state this theorem without proof.

Theorem 4.21 (Cauchy) Let G be a finite group, and let p be a prime integer such that
p||G|. Then G contains an element of order p.

Proof of this theorem can be found in virtually any undergraduate or graduate text on
algebra. (See [11] or [12] for a nice proof by J.H. McKay.) Combining the above results, we
see that

Fact 4.22 Every non-abelian simple group of finite order has an element of order 2.

This fact is the only dependence of this work on previous results.
Recall that a group G is called perfect if its commutator subgroup 〈[G,G]〉 is in fact all

of G. Since the commutator subgroup is always normal (it is in fact fully invariant), and
since the commutator subgroup of a non-abelian group G is also always non-trivial, we see
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that every non-abelian simple group is perfect. In general, for any subsets X,Y ⊂ G, we will
denote by [X,Y ] the set of all commutators in X,Y , i.e., [X,Y ] = {xyx−1y−1 | x ∈ X, y ∈
Y }. We will need a similar, but stronger condition than perfect, which we can derive from
the property of being simple. Note that these results do not apply to all perfect groups. For
example, the perfect group SL2(F5) cannot be shown to have the ability of performing all
computation by the means given here.

Lemma 4.23 Let G be a finite group and suppose that S ⊂ G is conjugation invariant (i.e.,
∀s ∈ S, g ∈ G we have gsg−1 ∈ S). Then 〈S〉 C G.

Proof: Let x ∈ 〈S〉. Then x = s1s2 · · · sk for some k ∈ Z. Let g ∈ G be an arbitrary
element. Observe that

gxg−1 = g(s1s2 · · · sk)g
−1

= gs1(g
−1g)s2(g

−1g) · · · sk−1(g
−1g)skg

−1

= (gs1g
−1)(gs2g

−1) · · · (gskg
−1)

= s′1s
′
2 · · · s′k ∈ 〈S〉

since all s′i ∈ S by our assumption. Therefore, 〈S〉 C G as desired. ¥

Now, let us consider for a moment conjugacy classes. For an element x ∈ G, we will
denote the conjugacy class by ClG(x). I.e.,

ClG(x) = {y ∈ G | y = gxg−1 some g ∈ G}

Recall that we can define a natural action of G on ClG(x) for any x ∈ G: for all s ∈ ClG(x),
simply define g · s = gsg−1.

Now, let G be a non-abelian simple group of finite order. From Cauchy’s theorem, we
know that there exists x ∈ G such that x has order 2. Consider ClG(x). Let |ClG(x)| = k.
It must be the case that k > 1. If not, then every element of G conjugates x to itself, and
hence we have x ∈ Z(G), the center of G. But of course this is impossible since the center of
a group is always normal and we assumed that G is simple. So, the conjugacy class of x has
at least two elements. Recall next, that whenever a group acts on a set S of size k, there is
an induced homomorphism,

ϕ : G −→ Sk

Since the action of G on ClG(x) is obviously transitive, and since the size k of the class
of x is greater than 1, we see that ϕ cannot be the trivial homomorphism which sends all
elements to the identity, and hence ker(ϕ) 6= G. But, since G is simple, we in fact know that
ker(ϕ) must be the trivial subgroup {e}, since the kernel is always normal. Therefore, every
element of G acts non-trivially on the set ClG(x).

We will extract exactly the useful information into the following lemma which we have
just now proved.

Lemma 4.24 Let G be a finite, non-abelian simple group, and let x ∈ G be an element of
order 2. Then there exists an element y ∈ ClG(x) such that yxy−1 6= x, and hence, such that
[x, y] 6= e.

Using these facts, we can now state and prove the following:
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Theorem 4.25 Let G be a finite non-abelian simple group. Then any function f : {0, 1}m −→
{0, 1}n is composably representable over G.

Proof: We will simply show that the function NAND(a, b) is computable in this way,
which suffices to prove the theorem since any such function f : {0, 1}m −→ {0, 1}n can be
written in terms of compositions of NAND alone. More precisely, we will show that for
an element x of order 2, the set {e, x} can be identified with {0, 1} respectively, and the
operation NAND can be computed solely in terms of the group operation of G.

So, to begin, let x ∈ G be of order 2, which as we discussed exists by Cauchy’s theorem.
Define C = ClG(x). As discussed, |C| > 1. Consider S = [C,C], the set of commutators
in C. Note that the subset S is conjugation invariant since it is generated by C = ClG(x),
which is quite clearly conjugation-invariant. Hence by Lemma 4.23, the subgroup generated
by these specific commutators, is a normal subgroup:

〈S〉 = 〈[C,C]〉 C G

However, by Lemma 4.24, we know that |S| > 1, as there are at least 2 non-commuting
elements. But, we assumed that G was simple. Therefore, we have in fact that 〈S〉 = G.
So, in particular, there exists some product, s1s2 · · · sk of commutators in C such that

s1s2 · · · sk = x

So, each si = [ri, ti] where ri and ti are both conjugate to x. Therefore we have sequences of
group elements, {gi}k

i=1 and {hi}k
i=1 such that

[gixg−1
i , hixh−1

i ] = si

We are now ready to define our NAND(a, b). First, define the function AND(a, b) as follows:

AND(a, b) =
k∏

i=1

[giag−1
i , hibh

−1
i ]

It is now easy to observe that it performs the appropriate function on our inputs from {e, x}2.
Whenever a or b is set to the identity, every commutator will of course be the identity since
all elements commute with e. However, if both a and b are set to the group element x, the
by our design, we will have AND(x, x) = x, exactly as desired. Now, since x has order 2, we
can simply define NAND(a, b) = AND(a, b)x. This completes the proof. ¥

Corollary 4.26 Constructing a fully homomorphic encryption scheme over a ring with iden-
tity is equivalent to constructing a group homomorphic encryption over any finite non-abelian
simple group. In particular, it is equivalent to constructing a homomorphic encryption
scheme over A5, the smallest such group.

To better illustrate the proof, we will provide an explicit construction for the group A5,
which is of course the smallest non-abelian simple group.

Example 4.27 A5 can compute NAND.
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First, we need an element of order 2. As we’ve seen, any such element will suffice. For
example, let x = (1, 2)(3, 4). We know that commutators of conjugates of x will generate
all of A5, in particular, x itself. But to simplify things a bit, we’ll first construct standard
generators of A5 out of such commutators, and then write down x in terms of the standard
generators. For generators, we’ll use A5 = 〈{X,Y }〉 with X = (1, 2, 3, 4, 5) and Y = (3, 4, 5).
Let’s begin. Note that

(3, 5, 4)(1, 2)(3, 4)(3, 4, 5) = (1, 2)(3, 5)

(2, 4, 3)(1, 2)(3, 4)(2, 3, 4) = (1, 4)(2, 3)

and that
[(1, 2)(3, 5), (1, 4)(2, 3)] = ((1, 2)(3, 5)(1, 4)(2, 3))2 = (1, 2, 3, 4, 5)

So, we’ll set g1 = (3, 5, 4) and h1 = (2, 4, 3). Next, note that

(3, 4, 5)(1, 2)(3, 4)(3, 5, 4) = (1, 2)(4, 5)

and that
[(1, 2)(4, 5), (1, 2)(3, 4)] = ((1, 2)(4, 5)(1, 2)(3, 4))2 = (3, 4, 5)

So, we’ll let g2 = (3, 4, 5) and h2 = e. Next we’ll write x = (1, 2)(3, 4) in terms of our
generators:

(1, 2)(3, 4) = X−1Y −1X−1Y −1X2

Finally, using the simple observations that [x, y]−1 = [y, x], and that if a, b have order two
then they are their own inverses, we can write down an explicit expression for NAND(a, b)
in terms of the group operation alone, where a, b ∈ {e, x}:

NAND(a, b) =
h1bh

−1
1 g1ag−1

1 h1bh
−1
1 g1ag−1

1 bg2ag−1
2 bg2ag−1

2 h1bh
−1
1 g1ag−1

1 h1bh
−1
1 g1ag−1

1 \
bg2ag−1

2 bg2ag−1
2 g1ag−1

1 h1bh
−1
1 g1ag−1

1 h1bh
−1
1 g1ag−1

1 h1bh
−1
1 g1ag−1

1 h1bh
−1
1 x

X
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5 Appendix

5.1 Notations

The natural numbers will be denoted N, and the integers by Z. For n ∈ Z, the symbol Zn will
denote the ring Z/nZ, or the group (Z/nZ, +). We will sometimes denote the set of integers
{1, 2, ..., n} by [n] for simplicity. If G is a group, then 0G or 1G will represent the identity
element of G, depending on whether additive or multiplicative notation is being used for
the operation of G. The symbol × will be used to denote a direct product (in sets, groups,
rings, modules, etc.), and if X is a set (or group, ring, module...) then Xn represents the
direct product of n copies of X. Occasionally, if A is a subset of a group (ring, module, etc.)
the symbol 〈A〉 will denote the subgroup (sub-ring, sub-module, etc.) that is generated by
A. I.e., the intersection of all sub-structures containing A. However, we adhere to standard
notations in more specific situations. Let R be a ring and let M be an R-module. If A and
B are sub-modules of M , then we denote the sum of A and B as A + B. We will denote the
external direct sum of any two R-modules A,B by A ⊕ B. For any a ∈ M , Ra will denote
the submodule of M defined by Ra = {ra | r ∈ R}, so that if 1 ∈ R and M is unitary
then 〈{a}〉 = Ra. The set of all R-module homomorphisms from A to B will be denoted
by HomR(A,B). For an abelian group G, the ring of endomorphisms HomZ(G,G) will be
denoted by End(G). For any set X, F (X) will denote the free group generated by X.

5.2 Algebraic PIR from Degree t Polynomials

To see how to construct an algebraic PIR with constant server-side communication given a
cryptosystem that allows polynomials of total degree t to be computed on ciphertext, you
can see the work of [3]. For completeness however, we sketch such a protocol below. Proceed
as follows. First, organize a database of bits in t-coordinate addresses. Now to produce a
query for an address (i∗1, i

∗
2, ..., i

∗
t ), create t vectors of length t

√
n according to the formula

(vk)j = δj,i∗k
. Encrypt these vectors and send them to the server as a query. Label the
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encrypted vectors as wk = E(vk) and suppose that the bits of the database have been labeled
X = {xi1,...,it}ik∈[0, t

√
(n)−1]

. Then for any X ∈ {0, 1}n, define

FX(Y1,1, ..., Y1, t√n−1, ..., Yt,1, ..., Yt, t√n−1) =
n∑

i1,...,it∈[0, t
√

(n)−1]

[
t∏

k=1

Yk,ik

]xi1,...,it

which can of course be computed on ciphertext for any X ∈ {0, 1}n since the exponents
can be computed via the Z-module action and each term has degree t. So, there exists
F̃ , efficiently computable from public information such that if w = E(v) then D(F̃ (w)) =

F (v). So, the database algorithm simply computes F̃ ((w1)1, ..., (wt) t√n−1) as the response
to the query, which will clearly be an encryption of xi∗1,...,i∗t

. Under the assumption that the
cryptosystem is CPA-secure, security of this PIR protocol comes from a standard hybrid
argument since the only information exchanged was a few arrays of ciphertext.

5.3 Additional Definitions

5.3.1 Oblivious Modifiers

Let (K, E ,D) be a CPA-secure cryptosystem, with plaintext set G1 and ciphertext set G2.
We consider the following setting: A user U initially holds a database {xi}n

i=1 and gives to
a storage provider S an array X = {ci}n

i=1 of ciphertexts, where ci = E(xi). Subsequently,
any number of users with the public key may wish to modify one of the underlying xi in
the database, and they wish to do so without revealing any information to S about the
modification.

Definition 5.1 We define an Oblivious Database Modifier to be the following three
algorithms:

1. Key-Gen(k). This algorithm takes a security parameter k and generates all public and
private parameters for the system, including public and private keys for the underlying
cryptosystem.

2. GetModifier : {1, 2, ..., n} × N → M. This takes an integer i ∈ {1, 2, ..., n} and some
integer randomness, and then outputs mi ∈ M which describes the modification to be
done to the database.

3. Modify : Gn
2 × M → Gn

2 . This takes X ∈ Gn
2 and mi ∈ M and outputs X ′ ∈ Gn

2 such
that D(Xi) 6= D(X ′

i) ⇐⇒ mi ∈ GetModifier({i} × N).

The above algorithms describe a one round protocol for oblivious database modification.
GetModifier is executed by the various users which send the result to the database owner
who executes Modify on that input and the database.

Definition 5.2 (Correctness) If whenever i ∈ {1, 2, ..., n},mi ∈ GetModifier({i} × N), X ∈
Gn

2 , and X ′ =Modify(X,mi) it holds that

(D(Xj) 6= D(X ′
j) ⇐⇒ i = j)

with overwhelming probability (over any randomness used in GetModifier and Modify) then
the Oblivious Database Modifier is said to be correct.
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For such a system, the goal is to conceal what database element is being modified. So, we
would like to have no information about the selected index to be efficiently computable from
the protocol’s execution with any noticeable probability. I.e., nothing about i is efficiently
computable from mi. Clearly, this will depend on the security of the underlying cryptosystem.

Definition 5.3 (Privacy) We define semantic security in terms of the following game be-
tween an adversary A and a challenger C. The game consists of the following steps:

1. C runs Key-Gen(k) and sends to A all public parameters, including a description of the
underlying cryptosystem.

2. A can ask queries of the form i ∈ {1, 2, ..., n} and C responds with GetModifier(i).

3. A selects i0, i1 ∈ {1, 2, ..., n} and sends both to C.

4. C randomly chooses b ∈ {0, 1} and sends GetModifier(ib) to A.

5. A may send more GetModifier queries to C, and C will respond properly.

6. A outputs a guess b′ ∈ {0, 1}.

We say that A wins if b′ = b and loses otherwise. Define the adversary’s advantage to be

AdvA(k) =
∣∣∣Pr[b′ = b] − 1

2

∣∣∣

where the probability is taken over all internal randomness of A and C. We say that the
Oblivious Database Modifier is CPA-secure if AdvA(k) is a negligible function in k.

5.3.2 Algebraic Oblivious Modifiers

Let (K, E ,D) be a CPA-secure group homomorphic encryption scheme with plaintext group
G. Suppose that G is an abelian group. (We will consider other structures, e.g. rings and
monoids later on.) By homomorphic, we will mean that for all a, b ∈ G

D(E(a)E(b)) = ab

Given the fact that CPA-secure ciphertexts contain no information that is computable
by a user or the database owner, what could an oblivious database modification protocol’s
algorithm look like? To preserve privacy, the computation performed by GetModifier must
involve every ciphertext in the database, and it logically must involve every underlying
plaintext. Indeed, for virtually all PIR protocols derived from an encryption scheme, the
only operations on the underlying plaintext are group operations. Here, we consider programs
that are restricted to computing algebraic formulas on the underlying plaintext. In order to
discuss lower bounds for such a system in a mathematical setting, we’ll use our formalization
of “arbitrary algebraic formula” developed in the preceding section. Recall that for any object
A in a concrete category, we used the notation FA[X] to denote the set of all A-algebraic
formulas with X as the set of variables, and the corresponding functions from Am −→ An

are denoted by F n
A[X], or more simply FA[X].
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Definition 5.4 We define an Algebraic Oblivious Database Modifier to be an Obliv-
ious Database Modifier with the following constraints:

1. The underlying cryptosystem is homomorphic, preserving the algebraic structure of the
plaintext set, G1 (be it a group, ring, field, et cetera).

2. The modification description set, M, is simply Gm
2 , ordered m-tuples of ciphertexts.

3. The Modify protocol will compute ψ ∈ FG2 [X], an algebraic function to determine the
updated database contents. Here, the set X represents variables for every database
element and for all elements of M.

Clearly correctness and privacy will have the same definitions as a general modifier (see
definitions 5.2 and 5.3, respectively). And as we have formalized above, the phrase “algebraic
formula” now has precise meaning as well. 9

9If the encryption map were deterministic, so that a homomorphic encryption function E was actually
a homomorphism of groups, we could make a slightly more appealing definition, in which we would use
E : G1 −→ G2 to obtain our evaluation map. This way, we could still phrase things in terms of a G1-
algebraic formula.
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