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Abstract. In this paper we will look at restricted versions of the evaluation problem, the
model checking problem, the equivalence problem, and the counting problem for quantified
propositional formulas, both with and without bound on the number of quantifier alterna-
tions. The restrictions are such that we consider formulas in conjunctive normal-form with
restricted types of clauses (e.g., positive, Horn, linear, etc.). For each of these algorithmic
goals we will obtain full complexity classifications, exhibiting on the one hand severe syn-
tactic restrictions of the original problems that are still computationally hard, and on the
other hand non-trivial subcases that admit efficient solution algorithms.
Generalizing these results to non Boolean domains, we obtain a number of hardnes results
for quantified constraints over arbitrary finite universes.

1 Introduction

Different types of satisfiability problems are important in computational complexity theory because
most often they constitute the notorious standard complete problems for many important complex-
ity classes. Very well known is of course the problem SAT, the satisfiability problem for propositional
formulas, which, by Cook’s Theorem [Coo71] (cf. also [Lev73]), is the first NP-complete problem. In
this paper we are interested in quantified propositional formulas. The problem QSAT, the problem
to decide if a fully quantified propositional formula is true, is PSPACE-complete [SM73]. Restrict-
ing the formulas to be in prenex normal-form with a Σk quantifier prefix, i.e., with k−1 quantifier
alternations starting with an existantial quantifier, we obtain the problem QSATk, which is com-
plete for the class ΣkP of the polynomial hierarchy, also known as Meyer-Stockmeyer hierarchy
[MS72].

Besides the evaluation problem QSAT or QSATk, further important computational goals for
quantified propositional logic, following Kleine-Büning and Lettmann [KL99], are the problems
of satisfiability, model-checking, and equivalence. For the satisfiability problem, we are given a
quantified propositional formula that possibly has some free variables, and we ask if there we
can assign Boolean values to the free variables such that then the formula evaluates to true. The
complexity of this problem coincides of course with the evaluation problem for problems with an
additional first block of existential quantifiers. For the model checking problem we are given a
not necessarily closed quantified formula and an assignment to the free variables, and we have
to decide if this assignment is satisfying. It is not too hard to see that for QSATk-formulas this
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problem is again ΣkP-complete and if we drop the bound on the number of quantifier alternations
the problem is PSPACE-complete. For the equivalance problem we are given two not necessarily
closed formulas with the same set of free variables, and we have to decide if they have the same
set of satisfying assignments. This problem is PSPACE-complete for general quantified formulas
and Πk+1P-complete for QSATk-formulas [KL99].

Completeness results are a form of lower bounds, and a question arising here is how much we can
restrict our problems and still remain complete for important complexity classes. As an example,
completeness of QSAT for PSPACE still holds if we restrict the formulas to 3-CNF (formulas in
conjunctive normal form with at most 3 literals per clause) [SM73]. The problem QSATk remains
complete for ΣkP if we restrict the formulas to 3-CNF for odd values of k, and to 3-DNF (formulas
in disjunctive normal form with at most 3 literals per conjunct) for even k, as shown by Wrathall
[Wra77].

The more general approach we follow in this paper is the following: We allow arbitrary restric-
tions (or generalizations) of clauses in the following sense: A constraint relation is just a Boolean
relation R of some arity k, i.e., R ⊆ {0, 1}k. A constraint (or constraint application) is a formula of
the form R(x1, . . . , xk) where the xi are propositional variables. Let S be a finite set of constraint
relations. Then an S-formula is a conjunction of constraints where all occuring constraint relations
are from S. Such formulas are also called a Boolean constraint satisfaction problems (CSP); S is
called constraint language. This approach was introduced by Thomas Schaefer [Sch78] who con-
sidered the infinite family of problem CSP(S), the satisfiability problems for S-formulas. Schaefer
showed that every such problem is either NP-complete for polynomial-time solvable (i.e., the fam-
ily avoids the under the assumption P 6= NP infinitely many complexity degrees in between) and
moreover obtained an easy criterion to tell, given S, to which case it belongs.

In this paper we study quantified S-formulas/quantified constraint satisfaction problems. For
each finite set S of constraint relations, we will determine the complexity of the evaluation prob-
lem, the model checking problem, and the equivalence problem for quantified S-formulas. More-
over, as a variant of equivalence, we will also consider the counting problem, where we do not
ask if two quantified formulas have the same sets of satisfying assignments but want to determine
the number of satisfying assignments of a formula. For general formulas this problem is complete
for FPSPACE(poly), the class of polynomially length-bounded functions computable in polyno-
mial space [Lad89], and for QSATk-formulas it is hard for #·ΣkP-complete under parsimonious
reductions (we give an introduction to counting problems and the relevant complexity classes and
reducibility notions in Sect. 5.1). For all four computational goals (evaluation, model checking,
equivalence, and counting), we obtain full complexity classifications, allowing us, given a set of
allowed constraint relations, to determine exactly the complexity of the problem under considera-
tion.

In this way we contribute problems complete for different levels of the polynomial hierarchy that
are of a combinatorial structure as simple as possible. The reasoning behind our work is the question
how low can we go, i.e., how far we can restrict our formulas, without loosing completeness. What
makes a satisfiability problem hard? We will reveal cases for which evaluation, model checking,
equivalence, and counting become tractable. For the other cases we provide insight into the sources
of hardness by explicitly stating the properties of relations that lead to hard problems.

More precisely we will see that if the set of constraints is Schaefer (that is: all relations are
definable by Horn formulas, by dual Horn formulas, by 2CNF formula – the so called bijunc-
tive constraint languages, or by systems of equations over GF[2] – the so called affine constraint
languages) then evaluation and model checking are tractable, and in all other cases the general
hardness results described above already apply. For equivalence, we obtain tractable cases only for
a subset of these constraints: we have to require that all of them are affine, bijunctive or so called
implicative hitting set bounded (a restriction of Horn formulas) to be able to obtain efficient algo-
rithms. If we are not in one of these cases but Schaefer then equivalence is coNP-complete; in all
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other cases the general hardness from the above for equivalence holds. For counting, the situation
is even worse: only affine relations allow efficient algorithms; if we are not affine but Schaefer we
obtain #P-completeness; in all other cases the general hardness (for FPSPACE(poly) or a class
#·ΣkP, resp.) holds.

Let us illustrate our results with some concrete examples. The relation NAE = {0, 1}3 \
{(0, 0, 0), (1, 1, 1)} (not all components in the 3-tuple are equal, this relation can be shown to be
non-Schaefer) leads by Schaefer’s Theorem to an NP-complete satisfiability problem. Also, QSATk

is ΣkP-complete, the corresponding equivalence problem is Πk+1P-complete, and the counting
problem is #·ΣkP-complete. For the relation DUP = {0, 1}3 \ {(0, 1, 0), (1, 0, 1)} (all 3-tuples with
two consecutive coordinates that share the same value, again a non-Schaefer relation), observe
that satisfiability is trivial, since all formulas build using only this relation are satisfied by the
constant-0 and the constant-1 truth assignment. However, as for NAE, QSATk is ΣkP-complete,
equivalence is Πk+1P-complete, and counting is #·ΣkP-complete. For the relation (x ∧ y) → z
(which is Horn), satisfiability and evaluation of quantified formulas is tractable, but equivalence
is coNP-complete for an arbitrary number of quantifier alternations. This is an instance of one of
our general results showing that the coNP-completeness of the equivalence problem for the class
QHORN of quantified Horn formulas stated in [KL99] holds even for the stricter class of Horn
formulas that are at the same time 0-valid and 1-valid. Counting in this case is #·ΣkP-complete if
the number of quantifier alternations is bounded by k− 1. A more general summary of our results
is given in Fig. 3 on page 24.

As argued in [CKS01], the study of the computational complexity of different algorithmic goals
for Boolean constraint satisfaction problems provides a “microcosm of computational complexity
theory”. The study of this particular family of problems allows a “bird’s eye view” of complexity
theory and the classes it has created. Our paper adds further support to this thesis. One particular
point that will become clear in the course of the paper and that we will address again in the con-
clusion is the question what type of reductions to use for the study of counting problems. Turing
reductions, used by Valiant in his celebrated result that the permanent is #P-complete, as well
as the later considered stricter counting reductions turn out to be too coarse, since they cannot
distinguish between the levels of the hierarchy of classes #·ΣkP. On the other hand, parsimonious
reductions are too strict and arguably not suited for the study of counting problems for restricted
classes of propositional formulas. In this paper we advocate that complementive reductions (intro-
duced in [BCC+05]) are suitable.

Constraint satisfaction problems have also been studied over larger (non-Boolean) finite or
infinite universes. For an overview of recent research in this very active field, the reader is asked to
consult [CKV07]. In this paper we will also consider domains of arbitrary finite cardinality. We will
show that essentially all hardness results we obtain hold in the more general setting; more precisely
the lower bounds in the Boolean case all hold in the general case for all sets of constraint S that
have only so called essentially unary or constant polymorphisms. Together with the many results
from the literature [BBJK03,Che04a,Che04b,CD05] (cf. also the recent survey [Che06]) that mainly
obtain upper bounds for quantified constraints by constructing clever algorithms, this yields not
a full complexity classification of the studied problems for general constraints but already quite a
detailed picture.

Organization of the paper. In the next section we introduce the reader to the field of con-
straint satisfaction problems. Important for our results is a Galois connection between the lattice
of sets of constraint relations and the lattice of sets of Boolean functions. We provide all neces-
sary background from universal algebra also here in Sect. 2. In Sect. 3 we introduce quantified
S-formulas and observe that the Galois connection for not quantified CSPs still helps. In Sects. 4
and 5 we study the complexity of problems for Boolean quantified constraints. We first turn to
decision problems (evaluation, model checking, equivalence) for quantified S-formulas in Sects. 4.1
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and 4.2. The classification of the evaluation problem has already been obtained in [Hem04], and
we give a very short and simple new proof here making use of the Galois connection and Post’s
lattice. (The original proof from [Hem04] does not make use of universal algebra.) This will turn
out important, because the line of argumentation for the evaluation problem—we will show that we
do not loose hardness of the algorithmic problem when we simplify the input formulas from general
first to 3-CNF, then to the type of relations that is hard in Schaefer’s dichotomy, and finally to
anything non-Schaefer—will turn out very helpful also for the other problems we study. In Sect. 5
we turn to counting problems. After a detailed introduction of the complexity classes and more
importantly the reductions relevant here (Sect. 5.1) we obtain our classification for the Boolean
domain in Sect. 5.2. Finally, in Sect. 6 we turn to non-Boolean domains and prove a number of
lower bounds. We conclude our paper in Sect. 7 with a short summary and some remaining open
questions.

2 Constraint Satisfaction Problems and Closure Properties

Throughout the paper we use the standard correspondence between predicates and relations. We
use the same symbol for a predicate and its corresponding relation, the meaning will always be
clear from the context. We say that the predicate represents the relation. The set D will denote a
finite domain of cardinality m ≥ 2, D = {0, . . . ,m− 1}. An n-ary logical relation R is a relation of
arity n defined over D, i.e., a set R ⊆ Dn. Let V be a set of variables. A constraint is an application
of R to an n-tuple of variables from V , i.e., R(x1, . . . , xn). An assignment of values to the variables
I : V → D satisfies the constraint R(x1, . . . , xn) if (I(x1), . . . , I(xn)) ∈ R holds.

Example 2.1. – Equivalence, =D, is the binary relation defined by {(0, 0), . . . , (m − 1,m − 1)}.
Similarly the inequality, 6=D, is defined by D2 \ =D.

– Given the ternary relation NAED = D3 \ {(0, 0, 0), . . . , (m− 1,m− 1,m− 1)}, the constraint
NAED(x1, x2, x3) is satisfied if and only if not all variables are assigned the same value. We
write NAEm for NAED with |D| = m.

– The Boolean constraint Rn/m(x1, . . . , xm) is satisfied if exactly n of them variables are assigned
to 1.

Let S be a non-empty finite set of non-empty relations defined over D; such sets are often called
constraint languages. An S-formula is a finite conjunction of S-clauses, ϕ = c1 ∧ · · · ∧ ck, where
each S-clause ci is a constraint application of some logical relation R ∈ S. An assignment I satisfies
ϕ if it satisfies all clauses ci. We denote by sat(ϕ) the set of satisfying assignments of a formula ϕ.
We denote by CSP(S) the satisfiability problem for S-formulas. For a relation R, we often write
CSP(R) instead of CSP({R}). The acronym “CSP” stands for constraint satisfaction problem.

We now show with two examples how CSPs can be used to express important computational
problems in computer science:

Example 2.2. – The well-known 3-SAT problem can be seen as the constraint satisfaction prob-
lem over the set S3SAT = {(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3)}.

– The 3-Colorability problem can be seen as the constraint satisfaction problem using only the
inequality relation over the three-element domain.

Given a set S of relations, in order to study the complexity of CSP(S) we will be interested in
the expressive power of S, which can be measured by the set COQ(S) of all relations that can be
represented by formulas of the form

ϕ(x1, . . . , xk) = ∃y1∃y2 · · · ∃yl ϕ(x1, . . . , xk, y1, . . . , yl),

where ϕ is an S-formula. Such formulas are also called conjunctive-queries.
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Throughout the text we refer to different types of Boolean constraint relations following Schae-
fer’s terminology [Sch78]. We say that a Boolean relation R is 1-valid if (1, . . . , 1) ∈ R, 0-valid
if (0, . . . , 0) ∈ R, Horn (dual Horn, resp.) if R can be represented by a conjunctive normal form
(CNF) formula having at most one unnegated (negated, resp.) variable in each clause, bijunctive
if it can be represented by a CNF formula having at most two variables in each clause, affine
if it can be represented by a conjunction of linear functions, i.e., a CNF formula with ⊕-clauses
(XOR-CNF), complementive if for each (α1, . . . , αn) ∈ R, also (¬α1, . . . ,¬αn) ∈ R.

A set S of Boolean relations is called 0-valid (1-valid, Horn, dual Horn, affine, bijunctive,
complementive) if every relation in S has this property. Finally a set S of Boolean relations is
called Schaefer if it is Horn, dual Horn, affine, or bijunctive.

Given a Boolean relation R the following well-known closure properties determine the structure
of R (operations are applied coordinate-wise on vectors, maj is the ternary majority function, which
yields 1 if and only if at least two of its arguments are 1) [Sch78,CKS01].

– R is Horn if and only if m,m′ ∈ R implies m ∧m′ ∈ R.
– R is dual Horn if and only if m,m′ ∈ R implies m ∨m′ ∈ R.
– R is bijunctive if and only if m,m′,m′′ ∈ R implies maj(m,m′,m′′) ∈ R.
– R is affine if and only if m,m′,m′′ ∈ R implies m⊕m′ ⊕m′′ ∈ R.
– R is complementive if and only if m ∈ R implies ¬m ∈ R.

The notion of closure properties of a relation has been defined more generally, see for in-
stance [JCG97,Pip97]. Let f : Dk → D be a k-ary function. We say that R is closed under f , or
that f is a polymorphism of R, if for any choice of k vectors m1, . . . ,mk ∈ R, not necessarily
distinct, we have that

(

f
(

m1[1], . . . ,mk[1]
)

, f
(

m1[2], . . . ,mk[2]
)

, . . . , f
(

m1[n], . . . ,mk[n]
)

)

∈ R,

i.e., the vector constructed coordinate-wise from m1, . . . , mk by means of f belongs to R.
We denote by Pol(R) the set of all polymorphisms of R and by Pol(S) the set of functions

that are polymorphisms of every relation in S. It turns out that Pol(S) is a clone for every
set of relations S, i.e., Pol(S) contains all projection functions and is closed under superposition
(composition of functions), see, e.g., [Pip97].

A Galois correspondence exists between the sets of functions Pol(S) and the sets of relations S.
An introduction to this correspondence can be found in [Pip97,Pös01] and a comprehensive study
in [PK79,Lau06]. This theory helps us to get elegant and short proofs for complexity results con-
cerning constraint satisfaction problems, see, e.g., [JCG97,Dal00,BCRV04]. Indeed, it shows that
the smaller the set of polymorphisms is, the more expressive the corresponding conjunctive queries
are, which is the cornerstone for applying the algebraic method to complexity. The following propo-
sition can be found, e.g., in [Dal00].

Proposition 2.3. Let S1 and S2 be constraint languages defined over D. If the inclusion Pol(S2) ⊆
Pol(S1) holds, then COQ(S1) ⊆ COQ(S2 ∪ {=D}).

This result was used in [JCG97] to obtain the following complexity result.

Theorem 2.4. Let S1 and S2 be constraint languages. If the inclusion Pol(S2) ⊆ Pol(S1) holds,
then CSP(S1) is polynomial-time reducible to CSP(S2).

A number of results on the complexity of CSP have been obtained via this approach (see, e.g.,
[JCG97,Bul06]). In particular, the well-known Schaefer’s dichotomy theorem can be proved in this
way by using Post’s lattice (see, e.g., [BCRV04]).

5



Theorem 2.5. [Sch78] Let S be a Boolean constraint language. If S is Schaefer, or 0- or 1-valid,
then CSP(S) is in P, otherwise CSP(S) is NP-complete.

To obtain a full classification for the just given and many more results, one starts with a
constraint language S and then looks at the set of its polymorphisms Pol(S). Since this is a clone,
one then enters a case distinction for all possible clones. In the case of the Boolean universe, all
clones and all inclusions among them are known, see Fig. 1. This figure is nowadays known as
Post’s lattice and is described, e.g., in [Pip97,BCRV03]. For the purpose of this paper, we define
the clones by simply giving a basis for each of them, see Fig. 2, i.e., the third column of the table
gives for each clone its defining basis. Here, if B is such a basis, then the corresponding clone,
denoted by [B], is the smallest set of Boolean functions that contains all functions from B and all
projections (i.e., all functions Ink (x1, . . . , xn) = xk) and is closed under composition of functions.
One function appearing in the bases that is maybe not so familiar is the threshold function Tn

k ,
where Tn

k (x1, . . . , xn) = 1 ⇐⇒
∑n

i=1 xi ≥ k. The previously mentioned function maj is just T3
2.

Further properties of the lattice will be introduced in the development of this paper as needed.
We only mention one further concept already here, that of duality.

We say a function f is the dual function of g if they both have the same arity n and for
all a1, . . . , an ∈ {0, 1} we have f(a1, . . . , an) = g(a1, . . . , an). We define dual(f) to be the dual
function of f and for a set of Boolean functions B we let dual(B) = { dual(f) | f ∈ B }. A function
is self-dual if it coincides with its dual.

For each clone B, the set dual(B) is again a clone. Looking at Fig. 1, imagine a symmetry axis
through BF and I2. Now, for each class on the one side of the axis the dual one is the mirror image
on the other side of the axis. For classes B located on the axis, we have dual(B) = B.

Looking at the list of bases for Post’s lasses, the above characterizations of the Schaefer and
other classes of formulas in terms of Boolean operations (∧, ∨, maj, ⊕) can now be stated as
follows:

Pol(R) ⊇ E2 ⇔ R is Horn Pol(R) ⊇ D2 ⇔ R is bijunctive
Pol(R) ⊇ V2 ⇔ R is dual Horn Pol(R) ⊇ L2 ⇔ R is affine
Pol(R) ⊇ I0 ⇔ R is 0-valid Pol(R) ⊇ N ⇔ R is complementive, 0- and 1-valid
Pol(R) ⊇ I1 ⇔ R is 1-valid Pol(R) ⊇ N2 ⇔ R is complementive
Pol(R) ⊇ I2 ⇔ R is any relation

Looking at the inclusion structure of the lattice, we note in particular that this means that a
relation R is not Schaefer if and only if Pol(R) ⊆ N. One special case here is that of relations R for
which Pol(R) = N, this is the class of relations that are not Schaefer but complementive, 0-valid,
and 1-valid. As for the Schaefer cases, for these the satisfiability problem is still polynomial-time
decidable (in fact, all formulas here are satisfiable, since the all-1 or all-0 assignment will always
be satisfying). Only if we drop the requirements of R being 0-valid or 1-valid, we arrive at the hard
cases for satisfiability. This is the set of relations R for which Pol(R) ⊆ N2. Hence, a reformulation
of Schaefer’s Theorem 2.5 is the following:

Corollary 2.6. Let S be a constraint language. If Pol(S) ⊆ N2 then CSP(S) is NP-complete, in
all other cases CSP(S) ∈ P.

We need to introduce another class of formulas, namely the class of IHSB (for implicative
hitting set bounded) formulas. These formulas form a subclass of and are less expressive than the
class of Horn and dual Horn formulas; for more background the reader is asked to consult [CKS01].

A clause is said to be IHSB− if it is of one of the following types: (xi), (¬xi1 ∨ xi2) or (¬xi1 ∨
. . . ∨ ¬xik

) for some k ≥ 1. Dually, a clause is said to be IHSB+ if it is of one of the following
types: (¬xi), (¬xi1 ∨xi2 ) or (xi1 ∨ . . .∨xik

) for some k ≥ 1. Finally, a formula is said to be IHSB−
(resp. IHSB+) if all its clauses are IHSB− (resp. IHSB+).
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Fig. 1. Graph of all Boolean clones
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Class Description Base

BF all Boolean functions {∧,¬}
R0 0-reproducing functions {∧,⊕}
R1 1-reproducing functions {∨, x ⊕ y ⊕ 1}
R2 R1 ∩ R0 {∨, x ∧ (y ⊕ z ⊕ 1)}
M monotone functions {∧,∨, 0, 1}
M1 M ∩ R1 {∧,∨, 1}
M0 M ∩ R0 {∧,∨, 0}
M2 M ∩ R2 {∧,∨}
Sn

0 functions that are 0-separating of degree n {→, dual(Tn+1
n

)}
S0 0-separating functions {→}
Sn

1 functions that are 1-separating of degree n {x ∧ y, Tn+1
n

}
S1 1-separating functions {x ∧ y}
Sn

02 Sn

0 ∩ R2 {x ∨ (y ∧ z), dual(Tn+1
n

)}
S02 S0 ∩ R2 {x ∨ (y ∧ z)}
Sn

01 Sn

0 ∩ M {dual(Tn+1
n

), 1}
S01 S0 ∩ M {x ∨ (y ∧ z), 1}
Sn

00 Sn

0 ∩ R2 ∩ M {x ∨ (y ∧ z), dual(Tn+1
n

)}
S00 S0 ∩ R2 ∩ M {x ∨ (y ∧ z)}
Sn

12 Sn

1 ∩ R2 {x ∧ (y ∨ z), Tn+1
n

}
S12 S1 ∩ R2 {x ∧ (y ∨ z)}
Sn

11 Sn

1 ∩ M {Tn+1
n

, 0}
S11 S1 ∩ M {x ∧ (y ∨ z), 0}
Sn

10 Sn

1 ∩ R2 ∩ M {x ∧ (y ∨ z), Tn+1
n

}
S10 S1 ∩ R2 ∩ M {x ∧ (y ∨ z)}
D self-dual functions {xy ∨ xz ∨ yz}
D1 D ∩ R2 {xy ∨ xz ∨ yz}
D2 D ∩ M {xy ∨ yz ∨ xz}
L linear functions {⊕, 1}
L0 L ∩ R0 {⊕}
L1 L ∩ R1 {≡}
L2 L ∩ R2 {x ⊕ y ⊕ z}
L3 L ∩ D {x ⊕ y ⊕ z ⊕ 1}
V ∨-functions plus constant functions {∨, 0, 1}
V0 [{∨}] ∪ [{0}] {∨, 0}
V1 [{∨}] ∪ [{1}] {∨, 1}
V2 [{∨}] {∨}
E ∧-functions plus constant functions {∧, 0, 1}
E0 [{∧}] ∪ [{0}] {∧, 0}
E1 [{∧}] ∪ [{1}] {∧, 1}
E2 [{∧}] {∧}
N [{¬}] ∪ [{0}] ∪ [{1}] {¬, 1}, {¬, 0}
N2 [{¬}] {¬}
I I2 ∪ [{1}] ∪ [{0}] {0, 1}
I0 I2 ∪ [{0}] {0}
I1 I2 ∪ [{1}] {1}
I2 all projections ∅

Fig. 2. List of all Boolean clones with their defining bases
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As usual a Boolean relation R is said to be IHSB− (resp. IHSB+) if R can be represented by a
CNF formula which is IHSB− (resp. IHSB+). Finally, a constraint language S is said to be IHSB−
(resp. IHSB+) if every relation in S is IHSB− (resp. IHSB+).

As for the above introduced classes, IHSB relations can be characterized by their polymorphism,
as follows immediately from [BRSV05]:

Pol(R) ⊇ S10 ⇔ R is IHSB−
Pol(R) ⊇ S00 ⇔ R is IHSB+

3 Quantified Problems

In this paper we consider the more general framework of quantified constraint satisfaction problems,
which are defined as follows.

Let S be a finite set of relations defined over the domain D. An instance of QCSP(S) is a closed
formula of the form Q1x1Q2x2 . . . Qnxnφ, where Q1, . . . , Qn are arbitrary quantifiers and φ is an S-
formula. The question is whether the sentence is true, i.e., if there exists, for every assignment Π to
the universally quantified variables, an assignmentE to the existentially quantified variables, where
the value for each existentially quantified variable only depends on the values of universal variables
quantified before, such that the formula φ holds when assigning these values to the variables. One
can use an exhaustive search algorithm to show that QCSP(S) is always in PSPACE.

The problem QSAT of deciding, whether a given closed quantified Boolean formula is true, is
PSPACE-complete [SM73]. This problem remains PSPACE-complete if we restrict the formulas to
3-CNF [Sto77]. It is worth noticing that the Boolean case still displays a dichotomy for satisfia-
bility of quantified S-formulas. The following theorem was stated by Schaefer only for constraint
languages which include the constants, but his proof ideas are sufficient to show the complete
classification.

Theorem 3.1. [Sch78,Dal97,CKS01] Let S be aBoolean constraint language. If S is Schaefer, then
QCSP(S) is in P, otherwise QCSP(S) is PSPACE-complete.

In this paper, we are interested in quantified constraint satisfaction problems in which the
number of quantifier alternations is bounded. These problems are prototypical for the polynomial-
time hierarchy (PH for short), which was defined by Meyer and Stockmeyer [MS72]. Following the
notation of [Pap94], Σ0P = Π0P = P and for all i ≥ 0, Σi+1P = NPΣiP and Πi+1P = coNPΣiP. The
set QSATk is the set of all closed, true quantified Boolean formulas with k−1 quantifier alternations,
starting with an ∃-quantifier. For all k ≥ 1, QSATk is complete for ΣkP. This problem remains ΣkP-
complete if we restrict the Boolean formula to be 3-CNF for k odd, and 3-DNF for k even [Wra77].
Note that for formulas starting with a universal quantifier, the satisfiability problem for formulas in
disjunctive normal form is complete for the levels of the hierarchy. Since disjunctive normal forms
cannot be naturally modeled in a constraint satisfaction context, in order to generalize QSATk

to arbitrary set of constraints S and to get complete problems for the levels of the polynomial
hierarchy, we consider the unsatisfiability problem for these cases. Thus, we adopt the following
definition for QCSPk(S) from [Hem04]:

Let S be set a of relations over the domain D and let k ≥ 1.

– A Σk(S)-formula is a formula of the form ϕ = ∃X1∀X2 . . . QkXkψ,
– a Πk(S)-formula is a formula of the form ϕ = ∀X1∃X2 . . .QkXkψ,

where the Xj , j = 1, . . . , k, are disjoint sets of variables, Qi = ∃ and Qi = ∀ if i is odd, Qi = ∀
and Qi = ∃ if i is even, and ψ is a quantifier-free S-formula defined on

⋃

j Xj ∪Z for some set Z of
free variables, and is called the matrix of Φ. For k odd, a QCSPk(S)-formula is a Σk(S)-formula,
and for k even, a QCSPk(S)-formula is a Πk(S)-formula.
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Observe that for all k, the innermost quantifier of a QCSPk(S)-formula is existential. In the
following, making use of the above definition of the quantifiers Qi, we will denote such a formula
by ϕ = QkX1Qk−1X2 . . . ∃Xkψ.

Problem: QCSPk(S)

Input: a closed QCSPk(S)-formula φ

Question: If k is odd: Is φ true?
If k is even: Is φ false?

Note that QCSPk(S) belongs to ΣkP for each k ≥ 1. Moreover, according to Wrathall’s result
[Wra77], QCSPk(S3SAT) (see Example 2.2) is ΣkP-complete.

The following proposition states that the Galois connection between sets of relations and their
closure properties still applies to quantified problems with bounded alternations.

Proposition 3.2. Let S1 and S2 be constraint languages over the same domain, and let k ≥
1. If the inclusion Pol(S2) ⊆ Pol(S1) holds, then QCSPk(S1) is logspace many-one reducible to
QCSPk(S2).

Proof. If Pol(S2) ⊆ Pol(S1), then due to Proposition 2.3 one can express every relation from S1 with
an existential S2∪{=

D}-formula. We locally replace every S1-constraint by its equivalent S2∪{=
D}-

formula and move the additional existential variables to the right end of the quantifier sequence.
Since in every QCSPk(S)-formula the last quantifier is ∃, we end up with a QCSPk(S2 ∪ {=D})-
formula equivalent to the original formula.

We now remove the equality constraints. We check if there are variables x and y such that
y is ∀-quantified after x is quantified with an =-path from x to y. In this case, the formula is
false. Otherwise, all =-connected components of variables consist of variables of which at most
the first one, x, is universally quantified. We can rename all these variables to x and delete the
corresponding existential quantifiers. The complexity of this procedure is dominated by undirected
graph accessibility, which is in logspace due to [Rei05]. �

Contrary to [BBJK03, Theorem 4], we cannot restrict our attention to surjective polymor-
phisms, because in the context of bounded quantifier alternation, this does not yield sharp re-
ductions. Börner et al. prove that if S1, S2 are constraint languages such that all surjective poly-
morphisms of S2 are polymorphisms of S1 then QCSP(S1) reduces to QCSP(S2). However, the
reductions obtained from this theorem increase the number of quantifier alternations. Thus, while
their reduction is a useful tool for the case of an unbounded number of quantifier alternations, it
cannot be applied to prove completeness results for individual levels of the polynomial hierarchy.

4 Decision Problems for Quantified Boolean CSPs

In this and the next section we turn to the study of different computational goals for quantified
constraints over the Boolean domain, before we study domains of higher cardinality in Sect. 6.

4.1 Evaluation and Model Checking

We turn first to the complexity of deciding if a given quantified formula over the Boolean domain
is true, and consider related decision problems later in this section.

As it turns out, the relation NAE is central for our development, and as a starting point we
consider formulas with this logical relation only.

Lemma 4.1. For k ≥ 1, QCSPk(NAE2) is ΣkP-complete under logspace reductions.
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Proof. Let I2 be the clone containing all projections. This is the smallest clone, contained in all
other clones. Since Pol(R1/3) = I2 ⊆ Pol(S3SAT), Proposition 3.2 states that QCSPk(S3SAT) is
logspace many-one reducible to QCSPk(R1/3). Since QCSPk(S3SAT) is complete for ΣkP, it suffices

to show QCSPk(R1/3) ≤
log
m QCSPk(NAE2).

Let ϕ be a QCSPk(R1/3)-formula, ϕ = QkX1Qk−1X2 . . . ∃Xk

∧p
j=1 R1/3(xj1 , xj2 , xj3). For each

constraint R1/3(xj1 , xj2 , xj3), introduce the following conjunction of NAE2 constraints:

R2/4(xj1 , xj2 , xj3 , t) =
∧

j 6=k∈{j1,j2,j3}

NAE2(xj , xk, t) ∧ NAE2(xj1 , xj2 , xj3 ).

Let ϕ′ = QktQkX1Qk−1X2 . . . ∃Xk

∧p
j=1 R2/4(xj1 , xj2 , xj3 , t). Since obviously R1/3(x, y, z) =

R2/4(x, y, z, 1), the formula ϕ′[t/1] (that is, ϕ with every occurrence of t replaced by 1) is true iff
ϕ is true. Since R1/3(x̄, ȳ, z̄) = R2/4(x, y, z, 0), the formula ϕ′[t/0] is true iff Ren(ϕ) is true, where
Ren(ϕ) is obtained from ϕ by renaming all variables x by their negation x̄. Finally, since Ren(ϕ)
is true iff ϕ is true, we proved that ϕ is true if and only if ϕ′ is true. �

Since Pol(NAE2) = N2, we proved that, if Pol(S) = N2, then QCSPk(S) is complete for ΣkP.
We now show how this result generalizes to the case where we also have constant polymorphisms,
i.e., the entire clone N, and therefore to the “maximal non-Schaefer” case.

Lemma 4.2. There exists a Boolean relation R0 such that Pol(R0) = N and for all k ≥ 2,
QCSPk(NAE2) reduces to QCSPk(R0) under logspace reductions.

Proof. We define R0 to be the relation

R0 =
{

(u, v, x1, x2, x3)
∣

∣ u = v or NAE2(x1, x2, x3)
}

.

It is easy to see that Pol(R0) contains all the constants as well as the negation, thus Pol(R0) = N.
Now we prove that QCSPk(NAE2), which is complete for ΣkP, can be reduced to QCSPk(R0)

in logarithmic space. Let

ϕ = QkX1 . . . ∃Xk

p
∧

j=1

NAE2(xj1 , xj2 , xj3 )

be an instance of QCSPi(NAE2). We define

ϕ′ = QkX1 . . .∀Xi−1∀u∀v∃Xk

p
∧

j=1

R0(u, v, xj1 , xj2 , xj3).

It is clear that ϕ is true if and only if ϕ′ is true, concluding the proof of the lemma. �

Thus we obtain the following classification of the complexity of QCSPk(S) for k ≥ 2—note that
the case k = 1 is given in Theorem 2.5:

Theorem 4.3. Let S be a Boolean constraint language, and let k ≥ 2. If S is Schaefer, then
QCSPk(S) is in P, otherwise QCSPk(S) is ΣkP-complete under logspace reductions.

Proof. The polynomial cases follow from Theorem 3.1. According to the closure properties of a
non-Schaefer set (see [BCRV04], Section 2), the case Pol(S) = N remains. Now the theorem follows
from Lemma 4.1, Lemma 4.2, and Proposition 3.2. �
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Theorem 4.3 settles the Boolean case completely, thus reproving via the algebraic approach a
result first obtained by E. Hemaspaandra [Hem04]. For the present paper, this theorem is just a
first technical step to show how the Galois connection can work in the quantified context. The
reason for us to present this re-proof of Hemaspaandra’s theorem is that we will obtain results
that concern the counting complexity of the quantified constraint satisfaction problem with a very
similar technique later in Section 5.

A slight variant of the evaluation problem QCSPk(S) is the model checking problem (cf. [KL99]),
where we are given a not necessarily closed quantified formula and an assignment to its free
variables, and we ask if this assignment is satisfying.

We generalize the notation φ[x/α] from the above to the simultaneous substitution of several
variables, i.e., for a formula ϕ and variables x1, . . . , xn, the formula ϕ[x1/α1, . . . , xn/αn] is the
formula ϕ with every occurence of xi replaced by αi, for 1 ≤ i ≤ n.

Problem: QMCk(S)

Input: a QCSPk(S)-formula ϕ(z1, . . . , zn) with free variables z1, . . . , zn and values
α1, . . . , αn ∈ D

Question: Does ϕ[z1/α1, . . . , zn/αn] hold?

As usual, QMC denotes the version with unbounded number of quantifier alternations.
Though our proofs will actually not depend on it, we note that the Galois connection works as

well for model checking:

Proposition 4.4. Let S1 and S2 be constraint languages over the same domain such that Pol(S2) ⊆
Pol(S1). Then QMC(S1) ≤

log
m QMC(S2) and QMCk(S1) ≤

log
m QMCk(S2) for all k.

Proof. In the same way as in the proof for Proposition 3.2, we can transform S1-formulas into
S2-formulas. When identifying two variables x and y in renaming every occurrence of y to x, and
the assignment given in the instance does not give the same value to x and y, we produce a false
instance. In this way we ensure that the original assignment is a solution for the original formula
if and only if it is one for the new formula. �

Since evaluation for any quantified formula of the appropriate quantifier alternation is in the
corresponding class of the polynomial hierarchy, the following is obvious:

Proposition 4.5. Let S be a constraint language and k ∈ N. Then QMCk(S) ∈ ΣkP if k is odd,
and QMCk(S) ∈ ΠkP if k is even. Furthermore, QMC(S) ∈ PSPACE.

It is obvious that the model checking problem is closely related to the evaluation problem for
quantified formulas. Since for a fully quantified formula, i.e., a formula with no free variables, model
checking is the same as evaluation, we immediately get the following:

Proposition 4.6. Let S be a constraint language and k ∈ N.

1. If k is odd, then QCSPk(S) ≤log
m QMCk(S).

2. If k is even, then QCSPk(S) ≤log
m QMCk(S).

3. QCSP(S) ≤log
m QMC(S).

This, combined with the results for evaluation from above, leads to the following Corollary—
note that the case k = 1 is a direct consequence of Schaefer’s result, since in [Sch78], he proves that
the satisfiability problem with constants is NP-complete for non-Schaefer constraint languages.

Corollary 4.7. Let S be a Boolean constraint language such that Pol(S) ⊆ N. Then QMCk(S) is
complete for ΣkP if k is odd, and complete for ΠkP if k is even.

12



Now it is easy to see with a look at Post’s lattice that for a constraint language S which is
Schaefer, the language S′ = S ∪ {x, x} is Schaefer as well. Since the model checking problem can
be solved by replacing the variables with constants, and the evaluation problem for quantified
S-formulas is in P if S is Schaefer, we get the following:

Proposition 4.8. Let S be a constraint language that is Schaefer. Then QMC(S) is solvable in
polynomial time.

Proof. Formally, given ϕ(z1, . . . , zn) = QiX1Qi−1X2 . . . ∃Xiψ(X1 ∪ · · · ∪ Xk ∪ {z1, . . . , zn}) and
values α1, . . . , αn, we add a clause zi if αi = 1, and a clause zi if αi = 0. We existentially quantify
the zi variables in the last ∃-block. This is then an instance of QCSP(S′), which is in P by the
above observation. �

Therefore, the complete classification of the complexity of the model checking problem for the
Boolean case is as follows.

Theorem 4.9. Let S be a Boolean constraint language.

1. If S is Schaefer, then QMC(S) is solvable in polynomial time.
2. Otherwise, QMC(S) is complete for PSPACE, and furthermore, QMCk(S) is complete for ΣkP

if k is odd, and complete for ΠkP if k is even.

4.2 The Equivalence Problem

We now turn to the considerably more complicated setting where we want to check equivalence of
two quantified S-formulas. Equivalence of two formulas, as usual, means that an assignment to the
free variables either satisfies or falsifies both formulas.

Problem: QEQUIVk(S)

Input: two QCSPk(S)-formulas ϕ and ψ with free variables z1, . . . , zn

Question: Is ϕ[z1/a1, . . . , zn/an] = ψ[z1/a1, . . . , zn/an] for every a1, . . . , an ∈ D?

As before, omitting the index, QEQUIV(S) denotes the problem with unbounded number of
quantifier alternations.

As for the two problems before, we start with the question if the Galois connection holds.
However, this time the situation is more complicated than before.

Proposition 4.10. Let S1 and S2 be constraint languages over the same domain D such that
Pol(S2) ⊆ Pol(S1). Then

QEQUIV(S1) ≤
log
m QEQUIV(S2 ∪ {=D}) and QEQUIVk(S1) ≤

log
m QEQUIVk(S2 ∪ {=D})

for all k.

Proof. Immediate consequence of Proposition 2.3. �

As for satisfiability and model checking, we would like to state a version of the above proposition,
where we conclude QEQUIVk(S1) ≤

log
m QEQUIVk(S2). Thus we have to get rid of the new equality

clauses introduced by applying Proposition 2.3. In Propositions 3.2 and 4.4 we reach this by simply
identifying those variables that are connected by equality clauses. Here, however, we would change
the set of satisfying assignments by this, leading to a formula no longer equivalent to the original
one, and therefore not obtain the desired reduction. The only way to remove the equality clauses is
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to express them using relations from S2. A formal definition of this idea, which will also be useful
for us here, is given in [ABI+05] as follows:

A constraint language S can express the relationR(x1, ..., xn) if there is an S-formulaR1(z
1
1 , . . . ,

z1
n1

) ∧ · · · ∧ Rl(z
l
1, . . . , z

l
nl

), with zi
j ∈ {x1, . . . , xn, y1, . . . , yr} (the zi

j’s need not be distinct) such
that for each assignment of values (c1, . . . , cn) to the variables x1, . . . , xn, R(c1, ..., cn) evaluates
to true if and only if there is an assignment of values to the variables y1, . . . , yr such that all
Ri-clauses, with xi replaced by ci, evaluate to true. If R is the equality relation, we also simply
say S can express equality.

If the “larger” constraint language can express equality, we obtain the following stronger state-
ment of Proposition 4.10:

Proposition 4.11. Let S1 and S2 be constraint languages over the same domain such that S2 can
express equality and Pol(S2) ⊆ Pol(S1). Then

QEQUIV(S1) ≤
log
m QEQUIV(S2) and QEQUIVk(S1) ≤

log
m QEQUIVk(S2)

for all k.

Proof. Apply Proposition 4.10 and then replace the equality clauses by S2-formulas expressing
equality. The new variables introduced in this last step will be existentially quantified in the last
quantifier block. �

In the case of equivalence problems, besides the Galois connection we use a second powerful
tool, that of duality.

Lemma 4.12. Let S1 and S2 be constraint languages that can express equality such that Pol(S1) =
dual(Pol(S2)). Then QEQUIV(S1) ≡ QEQUIV(S2).

Proof. For a constraint relation R, let R := {m | m ∈ R} where the tuple m is obtained from tuple
m by componentwise complementation, and for a constraint language S, let S := {R | R ∈ S}.
Then Pol(S) = dual(Pol(S)). Thus it is sufficient, because of the Galois connection, to show
QEQUIV(S) ≤log

m QEQUIV(S).
Let ϕ1, ϕ2 be CSP(S)-formulas. Let ϕ1, ϕ2 be the formulas derived from ϕ1 and ϕ2 by ex-

changing every occurring relation R with the corresponding relation R. We claim ϕ1 ≡ ϕ2 implies
ϕ1 ≡ ϕ2 (the other direction follows for symmetry reasons). It suffices to show ϕ1 ⇒ ϕ2.

Let a1, . . . , an ∈ {0, 1} such that ϕ1[x1/a1, . . . , xn/an] holds. Then ϕ1[x1/a1, . . . , xn/an] holds,
and since ϕ1 ≡ ϕ2, this implies that ϕ2[x1/a1, . . . , xn/an] holds as well. Therefore, we conclude
that ϕ2[x1/a1, . . . , xn/an] holds. �

In general, the equivalence problem for quantified Boolean formulas is PSPACE-complete. More
precisely, we have the following upper bounds:

Lemma 4.13. 1. For any Boolean constraint language S and k ≥ 0, QEQUIV(S) ∈ PSPACE
and QEQUIVk(S) ∈ Πk+1P.

2. If S is a constraint language that is Schaefer, then QEQUIV(S) ∈ coNP.

Proof. This follows by making a case distinction whether k is odd or even, and by expressing equiv-
alence under all assignments using an outermost universal quantifier as follows: ϕ(x1, . . . , xn) ≡
ψ(x1, . . . , xn) if and only if

∀x1, . . . , xn

(

ϕ(x1, . . . , xn) ∧ ψ(x1, . . . , xn)) ∨ (¬ϕ(x1, . . . , xn) ∧ ¬ψ(x1, . . . , xn)
)

.

�
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The following lemma provides lower bounds:

Lemma 4.14. For any Boolean constraint language S and all k ≥ 0, we have QCSPk+1(S) ≤log
m

QEQUIVk(S).

Proof. Let k be odd, and let ϕ = ∀X1 . . .∃Xk+1ψ. Then ϕ is true (and thus not in QCSPk+1(S),
since k + 1 is even), if and only if ∃X2 . . .∃Xk+1ψ is equivalent to 1 (1 can be expressed by fully
existentially quantifying a non-empty relation).

Now, let k be even, and let ϕ = ∃X1∀X2 . . . ∃Xk+1 be an instance of QCSPk+1(S). Observe
that ϕ is false (and thus not in QCSPk+1(S), since k + 1 is odd) if and only if ∀X2 . . .∃Xk+1 is
equivalent to 0. �

These lemmas together with Theorem 4.3 lead to the following hardness results.

Proposition 4.15. Let S be a Boolean constraint language with Pol(S) ⊆ N, and let k ≥ 0. Then
QEQUIVk(S) is complete for Πk+1P.

Next we turn to cases with lower complexity, not depending on the quantifier depth. We first
identify tractable cases of the equivalence problem.

Theorem 4.16. Let S be a Boolean constraint language. If S is affine, bijunctive, IHSB−, or
IHSB+, then QEQUIV(S) is solvable in polynomial time.

Proof. The main idea of the proof is to construct, for two given formulas, equivalent ones where
quantification does not occur. For affine constraint languages, this first step can be performed in
polynomial time mainly in using Gaussian elimination (see [CKS01] for a detailed algorithm). For
the bijunctive and IHSB cases the two equivalent formulas are obtained by means of Q-resolution
(see [KL99, Theorem 7.4.6]). Observe that it is here fundamental that the IHSB- constraint lan-
guage be finite in order to get only a polynomial number of possible resolvents, thus insuring that
this step can be performed in polynomial time.

Thus we have reduced the quantified equivalence problem to the unquantified one, which is in
P for the cases examined here (see [BHRV02]). �

Another result from Kleine-Büning and Lettmann [KL99, Theorem 7.5.4] classifies the com-
plexity for Horn-formulas. Translated into our vocabulary, and using the duality of the clones, this
gives us (note that membership in coNP follows from above):

Proposition 4.17. Let S be a Boolean constraint language such that Pol(S) ∈ {E2,V2}. Then
QEQUIV(S) is coNP-complete, and, in fact, already QEQUIV1(S) is coNP-hard.

We can generalize this to include the constant polymorphisms as well, with a construction
similar to the one allowing all essentially unary functions in Lemma 4.2. This gives us:

Theorem 4.18. Let S be a Boolean constraint language such that Pol(S) ⊆ E or Pol(S) ⊆ V.
Then QEQUIVk(S) is coNP-hard for all k ≥ 1.

Proof. We prove the theorem for the case Pol(S) ⊆ E. The dual case Pol(S) ⊆ V then follows
from Lemma 4.12, since constraint languages with these sets of polymorphisms always can express
equality due to [ABI+05]. Let S be a constraint language such that Pol(S) = E2. We show that
QEQUIV1(S) ≤log

m QEQUIVk(S′) for some constraint language S′ for which M ⊇ Pol(S′) ⊇ E holds.
The result then follows from Proposition 4.17 and the Galois connection stated in Proposition 4.11.
Note that, by [ABI+05], if Pol(S) ⊆ M then S can express equality.
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For an n-ary relation R ∈ S, we construct an n+2-ary relation R which can be used to express
R for our purposes, and which has both constant polymorphisms. We define

R′ = {(u, v, x1, . . . , xn | (x1, . . . , xn) ∈ R or u = v = x1 = · · · = xn}.

It is obvious that R′ is closed under both constant polymorphisms and under conjunction.
Let S′ be defined as {R′ | R ∈ S} ∪ {→}. As mentioned above, it suffices to prove hardness

for this special choice of S′. The relation of logical implication, →, can easily be seen to be
invariant under conjunction, and obviously it contains both constant tuples. Hence we know that
Pol(S′) ⊇ E, and since Pol(→) = M, we know that M ⊇ Pol(S′) ⊇ E holds, as required. Now let
ϕ1 and ϕ2 be QCSP1(S)-formulas with the same set of free variables, i.e., let

ϕ1 = ∃x1, . . . , xn

l1
∧

i=1

R1
i (u

i
1, . . . , u

i
ri

),

ϕ2 = ∃y1, . . . , ym

l2
∧

i=1

R2
i (v

i
1, . . . , v

i
si

),

where the occurring R1
i (R2

i ) are ri-ary (si-ary, resp.) relations from S, the occurring variables ui
t

are either from {x1, . . . , xn}, or from the set {z1, . . . , zk} of free variables of ϕ1, and similarly the
variables vi

t are from {y1, . . . , ym, z1, . . . , zk}.
We define formulas ψ1 and ψ2 as follows:

ψ′
1 = ∃x1, . . . , xn

l1
∧

i=1

R′1
i (a, b, ui

1, . . . , u
i
ri

),

ψ′
2 = ∃y1, . . . , ym

l2
∧

i=1

R′2
i (a, b, vi

1, . . . , v
i
si

),

where a, b are additional free variables. Finally we obtain ψ1 and ψ2 by adding, for each variable
z free in φ1 (φ2, resp.), the clause z → a and the clause b → z to the above formulas. Then, by
definition, ψ1 and ψ2 are QCSPk(S′)-formulas.

The relationship between these formulas is stated in the following claim which is easy to check:

Claim. For an assignment I to the free variables of ψ1, I satisfies ψ1 if and only if one of the
following two conditions applies:

1. I is constant, or
2. I restricted to the variables appearing in ϕ1 satisfies ϕ1, and I(a) = 1, I(b) = 0.

An analogous claim obviously holds for the formulas ϕ2 and ψ2. We now show that ϕ1 and ϕ2

are equivalent if and only if ψ1 and ψ2 are.
First, assume that ϕ1 and ϕ2 are equivalent, and let I be some assignment to the free variables

of ψ1 such that I |= ψ1. We show that I is also a solution for ψ2, the equivalence of the formulas
then follows due to symmetry. Due to the claim above, we have two cases to consider: if I is a
constant assignment, then, by the analogous claim for ψ2, we know that I is a solution for ψ2.
Otherwise, due to the claim above, we know that I(a) = 1, I(b) = 0, and I restricted to the
variables appearing in ϕ1 is a solution to the latter formula. Since ϕ1 and ϕ2 are equivalent, this
implies that the restriction of I is a solution for ϕ2 as well, and due to the analogous claim for ψ2,
it follows that I is a solution of ψ2.

Now assume that ψ1 and ψ2 are equivalent, and let I be a solution for ϕ1. Again, due to
symmetry, it suffices to show that I is a solution for ϕ2 as well. Due to the claim above, we know
that the solution I ′ obtained from I by augmenting it with the assignments I ′(a) = 1, and I ′(b) = 0,
is a solution for ψ1. Since ψ1 and ψ2 are equivalent, this implies that I ′ is also a solution for ψ2.
Therefore, due to the analogous claim for ψ2, it follows that I is a solution for ϕ1, as claimed. �
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Thus, we obtain a full classification of the equivalence problem for quantified Boolean constraint
satisfaction problems.

Theorem 4.19. Let S be a Boolean constraint language.

1. If S is affine, bijunctive, IHSB− or IHSB+, then QEQUIV(S) is in P;
2. else, if S is Horn or dual Horn, then QEQUIVk(S) is in P for k = 0, while QEQUIVk(S) for

k > 0 and QEQUIV(S) are coNP-complete;
3. otherwise QEQUIVk(S) is complete for Πk+1P for each k > 0 and QEQUIV(S) is PSPACE-

complete.

Proof. As mentioned in Sect. 2, a constraint language S is affine iff Pol(S) ⊇ L2, S is bijunctive iff
Pol(S) ⊇ D2, S is IHSB− iff Pol(S) ⊇ S10, and S is IHSB+ iff Pol(S) ⊇ S00. The cases considered
in Proposition 4.15, Theorem 4.16, Theorem 4.18 thus cover the whole lattice and we have reached
the full classification. The results for k = 0 are given in [BHRV02]. �

5 Counting Problems for Quantified Boolean CSPs

5.1 Introduction to Counting Problems and Reductions

Let Σ, S be alphabets and let R ⊆ Σ∗×S∗ be a binary relation between strings such that, for each
x ∈ Σ∗, the set R(x) = {y ∈ S∗ | R(x, y)} is finite. We write #R to denote the following counting
problem: Given a string x ∈ Σ∗, find the cardinality |R(x)| of the set R(x) associated with x.

Valiant [Val79a,Val79b] was the first to investigate the computational complexity of counting
problems. To this end, he introduced the class #P of counting functions that count the number
of accepting paths of nondeterministic polynomial-time Turing machines. Toda [Tod91a,Tod91b]
(cf. also [Vol94,HV95]) introduced higher complexity counting classes using a predicate-based
framework that focuses on the complexity of membership in the witness sets. Specifically, if C
is a complexity class of decision problems, then #·C is the class of all counting problems whose
witness relation R satisfies the following conditions:

1. There is a polynomial p(n) such that for every x and every y with R(x, y), we have that
|y| ≤ p(|x|), where |x| is the length of x and |y| is the length of y.

2. The witness recognition problem “given x and y, does R(x, y) hold?” is in C.

Following Toda [Tod91a,Tod91b,Vol94,HV95], #·ΣkP ⊆ #·ΠkP = #PΣkP ⊆ #·Σk+1P holds
for each k.

Several notions of reducibilities among counting problems have been defined. The strongest
is the one of parsimonious reduction [Val79a], which is a polynomial-time many-one reduction
preserving the number of witnesses, i.e., #A reduces to #B by parsimonious reductions (#A ≤p

par

#B) if there is a polynomial-time computable function g such that |A(x)| = |B(g(x))| for all strings
x. The aforementioned counting classes are closed under this reduction, #SAT is complete for #P
under these reductions, but not many more completeness results are known since the reductions are
very strict. Valiant himself obtained only very few completeness results for #P under parsimonious
reductions besides the one for #SAT. For most of his other results, in particular for the permanent,
he used Turing reductions: #A reduces to #B by Turing reductions (#A ≤p

T #B) if #A can be
computed by a polynomial-time oracle Turing machine with oracle #B. For most of Valiant’s
hardness proofs, even Turing-reductions with one oracle query (≤p

1-T) are sufficient. Zankó [Zan91]
refined Valiant’s results and introduced counting reductions (essentially truth-table-reductions with
one oracle query), i.e., #A reduces to #B by counting reductions (#A ≤p

cnt #B) if there exist
polynomial-time computable functions f, g such that #A(x) = f

(

#B(g(x))
)

for all strings x. She
proved that the permanent is complete for #P not only under Turing-reductions (as shown by
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Valiant [Val79a]) but even under counting reductions. In fact, today many problems complete for
#P under counting reductions are known. However, the aforementioned counting classes are not
closed under these reductions. In fact, the closure of #P under counting reductions gives already
#·PH [TW92], where PH =

⋃

i ΣiP.
Thus, when studying counting problems related to classes of the form #·ΣiP, researchers have

looked for reductions that are powerful enough to obtain many completeness proofs but strict
enough to be able to distinguish between different classes #·ΣkP. Durand, Hermann, and Kolaitis
[DHK05] have introduced subtractive reductions, defined as follows: We say that #A reduces to
#B via a strong subtractive reduction, if there exist polynomial-time computable functions f, g
such that for every string x, B(g(x)) ⊆ B(f(x)) and |A(x)| = |B(f(x))| − |B(g(x))|. Subtractive
reductions (≤p

sub) now are the transitive closure of strong subtractive and parsimonious reductions.
Durand et al. showed that all classes of the form #·ΠkP are closed under subtractive reductions,

but the closure of #·ΣkP under subtractive reductions is #·ΠkP. This is maybe not as nice as one
would have wished, since not all of Toda’s counting classes are closed; however, for most applications
it is sufficient, because, if a problem is complete for #·ΠkP under subtractive reductions it cannot be
in #·Πk−1P unless #·ΠkP = #·Πk−1P (which implies a collapse of the polynomial-time hierarchy
to ΣkP [Vol94]), and a problem complete for #·ΣkP cannot be in #·Σk−1P unless #·ΣkP =
#·Πk−1P (which implies that UPΣk−1P = ΣkP [Vol94], i.e., that ΣkP can be made “unambiguous”
[HV95], which is considered unlikely).

Hence, under reasonable complexity-theoretic assumptions, subtractive reductions can distin-
guish between the different levels of the #·ΣkP-hierarchy. Durand et al. obtained many complete-
ness results in this vein, concerning circumscription and related non-monotonic logics.

In [BCC+05] the notion of subtractive reductions was generalized to complementive reduction,
which appeared to be useful for Boolean constraint satisfaction problems involving complementive
relations. This reduction is also suitable for the counting problems we consider in this section.

Before we can state the definition of complementive reductions, we need some additional notions.
We enlarge every permutation π on an alphabet Γ to the strings in Γ ∗ by means of π(a1 · · · ak) =
π(a1) · · ·π(ak) for each string a1 · · · ak ∈ S∗. A set of strings E ⊆ Γ ∗ over an alphabet Γ is called
complementive if there is a permutation π on Γ such that for all x, if x ∈ E then π(x) ∈ E.

Definition 5.1. Let Σ1, Σ2, Γ1, Γ2 be alphabets and let #A and #B be two counting problems
determined by the binary relations A ⊆ Σ∗

1 × Γ ∗
1 and B ⊆ Σ∗

2 × Γ ∗
2 .

We say that #A reduces to #B via a strong complementive reduction, if there exist polynomial-
time computable functions f, g : Σ∗

1 → Σ∗
2 such that for every string x ∈ Σ∗

1 :

– B(x) is complementive,
– B(g(x)) ⊆ B(f(x)),
– 2 · |A(x)| = |B(f(x))| − |B(g(x))|.

A complementive reduction #A ≤p
compl #B is a sequence of strong complementive, strong

subtractive, or parsimonious reductions.

The need for complementive reductions arises in our context because the sets of satisfying
assignments for formulas ϕ built over, e.g., a NAE2-relation is invariant under negation. In par-
ticular, this implies that the number of satisfying assignments of ϕ will always be a multiple of
2. Therefore, a parsimonious reduction from arbitrary problems in the counting hierarchy is not
possible.

The following theorem from [BCC+05] shows that the counting classes share the same closure
properties under complementive reductions as under subtractive reductions.

Theorem 5.2 ([BCC+05]). The class #P and all higher complexity classes #·ΠkP, k ≥ 1, are
closed under complementive reductions.
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Unfortunately, the #·ΣkP-classes are not closed under complementive reductions (unless #·ΣkP
= #·ΠkP, see [BCC+05], which implies that the polynomial-time hierarchy collapses to ΣkP
[Vol94]). Nevertheless, these reductions are suitable to distinguish between the levels of the #·ΣkP-
hierarchy. We will prove a number of completeness results under complementive reductions for
classes of the form #·ΣkP; and as for subtractive reductions we then know that these problems
cannot be in #·Σk−1P unless #·ΣkP = #·Πk−1P

5.2 Counting the Number of Satisfying Assignments

In the Boolean case Creignou and Hermann [CH96] proved that the complexity of the counting
problem #SAT(S) of S-formulas is dichotomous: #SAT(S) is in FP (the class of all functions
computable in polynomial time), if S is a set of affine relations, otherwise #SAT(S) is #P-complete
under counting reductions. Bauland et al. [BCC+05] exhibited a trichotomy result for the counting
problem associated with conjunctive queries, i.e., existentially quantified formulas, denoted by
#SAT-COQ: #SAT-COQ(S) is in FP if S is affine, else #SAT-COQ(S) is #P-complete under
counting reductions if S is bijunctive, Horn, or dual Horn, and otherwise #SAT-COQ(S) is #·NP-
complete under complementive reductions.

We are interested in the counting problem associated with QCSPk(S)-formulas. Let us first look
at the case of unrestricted quantified propositional formulas (not necessarily CNF or S-formulas for
some S). Here, given a formula ϕ with free variables Y , ϕ(Y ) = ∃X1∀X2 . . .QkXkψ(Y,X1, . . . , Xk),
where ψ is quantifier-free, we are interested in the number of assignments for Y such that ϕ(Y )
holds. We will denote this number by #sat(ϕ) (and by #unsat(ϕ) the number of assignments for Y
such that ϕ(Y ) does not hold). Let us denote by #QSATk the problem of counting the satisfying
assignments of a quantified Boolean formula with free variables and k − 1 quantifier alternations
starting with an ∃-quantifier. This problem is prototypical for #·ΣkP-complete problems under
parsimonious reductions. It remains #·ΣkP-complete when the formula is restricted to be 3-CNF
for i odd, and 3-DNF for i even, as shown in [DHK05] building on the results by Wrathall [Wra77]
explained already in Sect. 3.

The following problems are the counting versions of the decision problems studied in Section 4.1.
Let S be a finite set of logical relations.

Problem: #QCSPk(S)

Input: a QCSPk(S)-formula ϕ with free variables

Output: if k is odd: #sat(ϕ);
if i is even: #unsat(ϕ)

Observe that #QCSP1(S) is the same as the problem #SAT-COQ(S) studied in [BCC+05].
Note that #QCSPi(S) ∈ #·ΣiP, and that according to the remark above #QCSPi(S3SAT) is #·ΣiP-
complete under parsimonious reductions. Our goal is to study the complexity of #QCSPi(S) for
all possible sets S. A central result for our development is the following easy consequence of
Proposition 2.3. It states that the Galois connection holds for the counting problem, with a proof
identical to the one of Proposition 3.2.

Proposition 5.3. Let S1 and S2 be constraint languages over the same domain. If the inclu-
sion Pol(S2) ⊆ Pol(S1) holds, then there exists a parsimonious reduction from #QCSPk(S1) to
#QCSPk(S2), for any k ≥ 1.

Our work will essentially follow the same line as the one for the corresponding decision problems
in Sect. 4.1.

Lemma 5.4. #QCSPk(R1/3) is #·ΣkP-complete under parsimonious reductions, for any k ≥ 1.

Proof. #QCSPk(S3SAT) is #·ΣkP-complete under parsimonious reductions. Now apply Proposition
5.3 (remember Pol(R1/3) = I2). �
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Lemma 5.5. #QCSPk(NAE2) is #·ΣkP-complete under complementive reductions, for any k ≥ 1.

Proof. We show that #QCSPk(R1/3) can be reduced to #QCSPk(NAE2). The construction is very
similar to the one in the proof of Proposition 4.1.

Let ϕ(Y ) be a QCSPk(R1/3)-formula with free variables Y (suppose Y = {y1, . . . , yn}) and
ϕ(Y ) = QkX1 . . .∀Xk−1∃XkC1 ∧ · · · ∧Cm such that each Cj is of the form Cj = R1/3(vj1 , vj2 , vj3)
for some vj1 , vj2 , vj3 ∈ Y ∪X1 ∪ · · · ∪Xi. Consider now the formula

ϕ1(Y, u, v) = QkX1 . . . ∀Xk−1∃Xk

m
∧

j=1

Cj ∧ R1/3(u, u, v),

where u and v are two new variables. Observe that #sat(ϕ1) = #sat(ϕ) and #unsat(ϕ1) =
2n+2 −#sat(ϕ). Now, let t be an additional new variable, and construct the formula ϕ2(Y, u, v) =
QkX1 . . . ∀Xk−1∃Xk∃t

∧m
j=1 R2/4(vj1 , vj2 , vj3 , t)∧R2/4(u, u, v, t), where each relation R2/4(a, b, c, d)

stands for the equivalent conjunction of NAE2-clauses. We get a QCSPk(NAE2)-formula ϕ2(Y, u, v)
such that #sat(ϕ2) = 2#sat(ϕ) and #unsat(ϕ2) = 2n+2 − 2#sat(ϕ).

Now consider the formula ϕ3(Y, u, v) = NAE2(u, u, v) ∧
∧n

j=1 NAE2(u, v, yj). Observe that

unsat(ϕ3) ⊆ unsat(ϕ2), and that #unsat(ϕ3) = 2n+1. For k odd, we use ϕ2(Y, u, v) constructed from
ϕ(Y ) above. This is a QCSPk(NAE2)-formula which verifies #sat(ϕ) = #sat(ϕ2)/2. For k even we
construct the pair (ϕ2(Y, u, v), ϕ3(Y, u, v)) of QCSPk(NAE2)-formulas, which verify unsat(ϕ3) ⊆

unsat(ϕ2) and #unsat(ϕ) = #unsat(ϕ2)−#unsat(ϕ3)
2 . Thus, in both cases we have a complementive

reduction from #QCSPk(R1/3) to #QCSPk(NAE2). �

Lemma 5.6. There exists a Boolean relation R0 such that N ⊆ Pol(R0) and #QCSPk(R0) is
#·ΣkP-complete under complementive reductions, for any k ≥ 1..

Proof. Observe that the reduction provided in the proof of Lemma 4.2 is parsimonious. Thus, for
k ≥ 2 the conclusion follows from Lemma 5.5. The case k = 1 follows from [BCC+05]. �

We are now in a position to prove the following complexity classification, which completely
classifies the #QCSPi(S) problem for the Boolean case.

Theorem 5.7. Let S be a Boolean constraint language and k ≥ 1.

– If S is affine, then #QCSPk(S) is in FP,
– else if S is bijunctive, or Horn, or dual Horn, then #QCSPk(S) is #P-complete under counting

reductions,
– otherwise, #QCSPk(S) is #·ΣkP-complete under complementive reductions.

Proof. If S is affine, then the Gaussian elimination algorithm given in [CH96] for #CSP(S) can
also be used to construct a corresponding polynomial-time algorithm for #QCSPi(S).

If S is Horn, dual Horn, or bijunctive, then QCSP(S) (and a fortiori QCSPi(S)) is in P (see
Theorem 3.1) and therefore #QCSPi(S) is in #P. Moreover, we know from [CH96] that in this
case #SAT(S) is #P-hard. Hence, the trivial reduction from #SAT(S) to #QCSPi(S) shows that
#QCSPi(S) is #P-complete.

The only remaining case Pol(S) = N follows from Lemma 5.6 and Proposition 5.3. �

Our trichotomy for Boolean #QCSPi(S) yields (with the same proofs) a classification of the
counting problem in the case of an unbounded number of alternations. Denoting this problem
by #QCSP(S), a classification completely analogous to Theorem 5.7, but replacing #·ΣiP by
#PSPACE, is obtained. Here, #PSPACE in the sense of Valiant [Val79a] denotes #PPSPACE. It is
easy to observe that #PSPACE coincides with Ladner’s class \PSPACE [Lad89]. (Caveat: What
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Ladner denotes by #PSPACE is a different class.) Ladner proves that #PSPACE = \PSPACE
additionally coincides with FPSPACE(poly), the class of all polynomially length-bounded functions
computable in polynomial space, and he observes that #QSAT is complete in this class under
parsimonious reductions.

Corollary 5.8. Let S be a Boolean constraint language.

– If S is affine, then #QCSP(S) is in FP,
– else if S is bijunctive, or Horn, or dual Horn, then #QCSP(S) is #P-complete under counting

reductions,
– otherwise, #QCSP(S) is #PSPACE-complete under complementive reductions.

The above classifications involve reductions that are maybe not the most natural ones. However,
they suffice for our goal, a classification of the counting problem for Boolean quantified CSPs. If a
problem is complete for a class #·ΣkP or #PSPACE it cannot be an element in a lower class (under
reasonable complexity-theoretic assumptions), as stated in the final corollary in this section.

Corollary 5.9. Let S be a finite set of logical relations.

1. If S is not affine then #QCSPk(S) 6∈ FP for any k ≥ 1, unless FP = #P and P = NP.
2. If S is not Schaefer then #QCSPk(S) 6∈ #·Σk−1P for any k ≥ 1, unless #·ΣkP = #·Πk−1P.
3. If S is not Schaefer then #QCSP(S) 6∈ #·ΣkP for any k ≥ 1, unless #·ΠkP = FPSPACE(poly)

and the polynomial-time hierarchy collapses.

6 Non-Boolean Domains

In the preceding two sections we have proven complete complexity classifications for the problems
of evaluation, model checking, equivalence, and counting the number of satisfying assignments
for quantified Boolean CSPs. In this section, we will turn to finite domains of arbitrary higher
cardinality. We will essentially show how the hardness results from above can be transferred to
this case.

6.1 Decision Problems

Let us first turn to the problem of evaluating a quantified CSP. Similarly to Lemma 4.1, it can be
shown that the presence of the constraint NAE over a domain of an arbitrary size m leads to a
hardness result for the evaluation problem:

Lemma 6.1. QCSPk(NAEm) is complete for ΣkP under logspace reductions, for any k ≥ 1.

Proof. The proof follows directly from the proof for Lemma 6.6 below, where the even stronger
result for the complexity of the corresponding counting result is shown. �

This lemma allows us to identify a larger class of ΣiP-complete problems over finite domains,
namely the ones for which the set of polymorphisms consists only of constants or essentially unary
functions. A k-ary function f : Dk → D is essentially unary if there is a non-constant unary function
g : D → D and some 1 ≤ i ≤ k such that f(v1, . . . , vk) = g(vi) for all v1, . . . , vk ∈ D. Again, the
construction is similar to the one in the Boolean case (see Lemma 4.2).

Lemma 6.2. For every finite domain D with |D| = m, there exists a relation R0 defined over
D such that Pol(R0) contains all essentially unary functions and all constants, and such that
QCSPk(NAEm) reduces to QCSPk(R0) under logspace reductions, for any k ≥ 2.
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Proof. Let D be a finite domain of size m. Let R0 be the (m+ 3)-ary relation

R0 =
{

(t1, . . . , tm, x1, x2, x3)
∣

∣ |{t1, . . . , tm}| ≤ m− 1 or NAEm(x1, x2, x3)
}

.

It is clear that Pol(R0) contains all the constants. It is also easy to see that R0 is closed under
unary functions g (if g is injective, then the NAE-property is invariant under g, and if g is not
injective, then |{g(t1), . . . , g(tm)}| ≤ m− 1), and therefore R0 is closed under all essentially unary
functions on D. Now we prove that QCSPk(NAEm), which is complete for ΣkP, can be reduced to
QCSPk(R0) in logarithmic space.

Let ϕ = QkX1 . . .∃Xk

∧p
j=1 NAEm(xj1 , xj2 , xj3 ) be an instance of QCSPk(NAEm). Let ϕ′ =

QkX1 . . . ∀Xi−1∀t1 . . . ∀tm∃Xk

∧p
j=1 R(t1, . . . , tm, xj1 , xj2 , xj3). It is clear that ϕ is true if and only

if ϕ′ is true, concluding the proof of the lemma. �

Lemma 6.2 now yields the following completeness result.

Theorem 6.3. Let S be a constraint language over a finite domain of cardinality at least 2, and
k ≥ 2. If Pol(S) consists only of essentially unary functions and constants, then QCSPk(S) is
ΣkP-complete and QCSP(S) is PSPACE-complete under logspace reductions.

Proof. We have Pol(S) ⊆ Pol(R0), where R0 is the relation exhibited in Lemma 6.2. Hence, the
conclusion follows from Lemma 6.1 and Proposition 3.2. �

As in the Boolean case, the lower bounds for evaluation translate to model checking:

Corollary 6.4. Let S be a constraint language over a finite domain of cardinality of at least 2,
and k ≥ 2. If Pol(S) contains only essentially unary functions and constants, then QMCk(S) is
complete for ΣkP if k is odd, and complete for ΠkP if k is even, and QMC(S) is complete for
PSPACE under logspace reductions.

Proof. Follows by the reduction from (the complement) of the evaluation problem for QCSPs to
the model checking problem, given in Proposition 4.6, which holds here as well. �

Next we turn to the equivalence problem. Again, the lower bounds for QCSP translate to this
case.

Corollary 6.5. Let S be a constraint language over a finite domain of cardinality of at least 2. If
Pol(S) contains only essentially unary functions and constants, then QEQUIVk(S) is complete for
Πk+1P and QEQUIV(S) is complete for PSPACE under logspace-reductions.

Proof. As in the Boolean domain (see Lemma 4.14) we have for any k that QCSPk+1(S) ≤
QEQUIVk(S). The corollary then follows from Theorem 6.3. �

6.2 Counting Problems

We have seen that the clone containing all essentially unary or constant functions gives rise to hard
constraint satisfaction problems in the decision problem, and in the Boolean counting problem. We
now show this hardness result also holds for arbitrary finite domains. Similarly to the Boolean case,
we cannot prove hardness under parsimonious reductions for the #QCSPk-problem, since in the
cases we consider, every permutation of the domain is a polymorphism, and therefore, the number
of satisfying solutions of any S-formula will always be a multiple of the size of D. For the Boolean
case, complementive reductions were used to solve this problem. The canonical generalization of
complementive reductions to arbitrary domains apparently fails to have the property that the
relevant counting classes are closed under this generalization.
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Therefore, we use a different approach for the non-Boolean case: Instead of counting the solu-
tions themselves, we count the number of equivalence classes of solutions, where two solutions are
equivalent if and only if one is obtained by applying a permutation of the domain to the other.
The construction in the proof for the following result not only gives a parsimonious reduction
among the equivalence classes, but it also yields a reduction which is “almost parsimonious” when
counting solutions as usual: The number of solutions of the constructed formula is the number of
solutions of the original formula multiplied with a constant, which only depends on the domain.
We obtain the following result:

Lemma 6.6. #QCSPk(NAEm) is complete for #·ΣkP under parsimonious reductions among the
canonical equivalence classes of the solutions, for any m ≥ 2, k ≥ 1.

Proof. We use ideas from the proof for Proposition 4.1 in [BKBJ02]. Observe that x 6= y can be
expressed as NAE(x, x, y) over any domain. The proof is by induction. The case m = 2 follows
from Lemma 5.5. We now show #QCSPk(NAEm) ≤p

compl #QCSPk(NAEm+1). Let ϕ be a NAEm-
formula with n free variables X = {x1, . . . , xn}, existentially quantified variables Y = {y1, . . . , yny

}
and universally quantified variables Z = {z1, . . . , znz

}. We add free variables xn+1, . . . , xn+m

with inequality constraints between any two of them. We call the result ϕm, and observe that
#sat(ϕm) = m! · #sat(ϕ). We construct a formula ϕm+1 as follows:

– Copy the formula ϕm and replace every relation symbol NAEm with NAEm+1, and add a new
free variable w.

– For each free or ∃-quantified variable v ∈ X ∪ {xn+1, . . . , xn+m} ∪ Y , add a constraint v 6= w.
– For each universally quantified variable zi, change ∀zi to ∀z′i, and add ∃ti,1, . . . , ti,m−1, zi to the

next ∃-block, add inequality constraints ti,j 6= ti,k for j 6= k and (zi 6= ti,j) ∧ (z′i 6= ti,j) ∧ (w 6=
ti,j) for all j ∈ {1, . . . ,m− 1}.

Note that the set of satisfying assignments to these formulas is closed under permutations of the
domain, and every solution assigns exactly m different values to the free variables x1, . . . , xn+m.
Recall that we call two assignments I ′ and I ′′ equivalent if there is a permutation Π of the
domain such that I ′(xi) = Π(I ′′(xi)) for all i. For each equivalence class I, let I0 be one canonical
representative that does not use the value m, for example the one of minimal lexicographical order.
We now show that for these assignments, I0 |= ϕm holds if and only if (I0 ∪ {w = m}) |= ϕm+1

holds.
Let I0 |= ϕm and Πm+1 be a ∀-assignment for ϕm+1. Let

Πm(zj) =

{

Πm+1(z
′
j) if Πm+1(z

′
j) ∈ {0, . . . ,m− 1}

m− 1 otherwise.

Let Em be an ∃-assignment for ϕm such that Em |= ϕm(I0 ∪Πm). We define an ∃-assignment
Em+1 for ϕm+1 as follows:

Em+1(zj) = Πm(zj). Assign the m− 2 different values from {0, . . . ,m} \ {m,Em+1(zj)} to the
tj,k-variables. This satisfies all inequality constraints between the tj,k, those involving w, and the
tj,k 6= zj clauses. The z′j 6= tj,k clauses are satisfied as well, since zj is assigned the same value as
z′j unless Πm+1(z

′
j) = m, and in this case the clause is satisfied, because none of the tj,k-variables

takes the value m.
Let Im = I0 ∪Πm ∪ Em, and Im+1 = I0 ∪ {w = m} ∪Πm+1 ∪ Em+1. We claim that for any

v ∈ (X ∪ Y ∪ Z) \ {w}, it holds that Im(v) = Im+1(v). For free variables v ∈ X , this holds by
definition. For an existentially quantified variable v ∈ Y or a universally quantified variable v ∈ Z,
this holds by definition of Em+1 (recall that the corresponding variable v is ∃-quantified in ϕm+1).
Thus, the NAE-constraints between variables from X ∪ Y ∪Z are satisfied in ϕm+1, because they
are satisfied in ϕm.
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Now, let I0 ∪ {w = m} |= ϕm+1, and Πm be a ∀-assignment for ϕm. Let Em+1 be an ∃-
assignment such that Em+1 |= ϕm+1(I

0 ∪ Πm). By definition, I0 ∪ {w = m}(w) = m. Thus, all
other variables must take values from {0, . . . ,m−1}, in particular, the zj and z′j take the same value
in ϕm+1. Therefore, the ∃-assignment can also be used for ϕm and satisfies the NAEm-constraints.

Since each I0 represents m! (resp. (m + 1)!) satisfying assignments of ϕm (resp. ϕm+1)—one
for each permutation of the domain (note that the value for w is fully determined by the values
for xn+1, . . . , xn+m and therefore the additional variable w does not add another factor)—we have

#sat(ϕm+1) = (m+ 1) · #sat(ϕm) = (m+ 1)! · #sat(ϕ).

This gives us a parsimonious reduction, if we consider the number of satisfying (or unsatisfying)
assignments up to permutations of the domain. �

Thus we finally obtain the following lower bound for the counting problem over arbitrary finite
domains:

Theorem 6.7. Let S be a constraint language over a finite domain of cardinality of at least 2 such
that Pol(S) only contains constants and essentially unary functions. Then #QCSPk(S) is complete
for #·ΣkP under parsimonious reductions among the canonical equivalence classes of the solutions,
for any k ≥ 1.

Proof. #QCSPk(NAEm) is complete for #·ΣkP due to Lemma 6.6. Now use the same reduction
as in Lemma 6.2, which is parsimonious. �

7 Conclusion

In this paper we studied the computational goals of evaluation, model checking, equivalence, and
counting for S-formulas/constraint satisfaction problems. In the case of Boolean formulas, we
obtained full complexity classifications. It can be seen that when going from satisfiability for un-
quantied formulas to evaluation/model checking to equivalence to counting, the cases of constraint
languages S that admit efficient solutions becomes smaller and smaller, see Fig. 3 (there, satisfia-
bility, i.e., the second column, refers to not quantified S-formulas and Schaefer’s Theorem, and the
other columns refer to problems for quantified S-formulas and the results of this paper). In the case
of general non Boolean domains we obtained a number of hardness results for all our problems.

Satisfiability
Evaluation and
Model Checking

Equivalence Counting

hard
not Schaefer, not
0-valid, and not
1-valid

not Schaefer not Schaefer not Schaefer

not so hard – –
Schaefer, not affine,
not bijunctive, and
not IHSB

Schaefer and not
affine

tractable Schaefer, 0-valid, or
1-valid

Schaefer
affine, bijunctive,
IHSB−, or IHSB+

affine

Fig. 3. Summary of complexity results for Boolean constraints
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The most obvious remaining open question is of course how to obtain a finer or even complete
classification for our problems for non-Boolean universes. A. Bulatov [Bul06] obtained a full classi-
fication for satisfiability of (not quantified) CSPs over the 3-element universe – again a dichotomy
as in Schaefer’s case. Also for the counting problem, progress for not quantified CSP has been made
[BD03]. For quantified constraints over arbitrary universes, many complexity results can be found
in [BBJK03,Che04a,Che04b,CD05,Che06]. All this may be a hint that for the case of a 3-element
universe search for a hopefully complete classification for the four computational goals studied in
this paper or at least the counting problem is no hopeless pursuit.

Our results for Boolean S-formulas as summarized in Fig. 3 exhibit a dichotomy for evaluation
and model checking and a trichotomy for equivalence and counting under polynomial-time reduc-
tions. In the Boolean (and maybe also the general) case, a study of the complexity degrees of the
here studied problems under stricter reductions such as logspace or even first-order might turn out
to be worthwhile. For the satisfiability problem for unquantified CSPs this was done in [ABI+05],
and the classification under first-order reductions obtained there together with Agrawal’s first-order
isomorphism theorem [Agr01] leads to the conclusion that there are only six different satisfiability
problems for S-formulas.

To obtain a classification for the counting problem we had to use the conceptionally quite
involved complementive reductions. As long as one is only interested in a disctinction between
polynomial-time solvable on the one hand side and hard for #P on the other side, the simple
counting reductions suffice but, as we saw, these are not able to make fine distinctions in the
hierarchy of classes #·ΣkP. The complementive reductions used here leave the #·ΠkP-classes
closed, but not the #·ΣkP-classes. Though this is sufficient for our purpose here, we want to ask
if there is a reduction that yields completeness for interesting counting problem and leaves all
the relevant classes closed. But even looking only at the class #P and its “standard” complete
problem, the permanent, the more basic question arises if there is a reduction among counting
problems under which simultaneously the permanent is complete and #P is closed.

Acknowledgement. We are grateful to Miki Hermann for many helpful comments on different
topics of this paper, and to Arnaud Durand for suggesting the last open question in our conclusion.
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[KL99] H. Kleine Büning and T. Lettmann. Propositional Logic: Deduction and Algorithms. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1999.

[Lad89] R. E. Ladner. Polynomial space counting problems. SIAM Journal on Computing, 18(6):1087–
1097, 1989.

[Lau06] D. Lau. Function Algebras on Finite Sets. Monographs in Mathematics. Springer Verlag, Berlin
Heidelberg, 2006.

[Lev73] L. A. Levin. Universal sorting problems. Problemi Peredachi Informatsii, 9(3):115–116, 1973.
English translation: Problems of Information Transmission, 9(3):265–266.

[MS72] A. R. Meyer and L. J. Stockmeyer. The equivalence problem for regular expressions with
squaring requires exponential time. In Proceedings 13th Symposium on Switching and Automata

Theory, pages 125–129. IEEE Computer Society Press, 1972.

26



[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.
[Pip97] N. Pippenger. Theories of Computability. Cambridge University Press, Cambridge, 1997.
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