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Abstract 1 Introduction

We introduce symmetric Datalog, a syn-  Constraint satisfaction problems (GSPs)
tactic restriction of linear Datalog and show provide a unifying framework to study the
that its expressive power is exactly that of re- complexity of various combinatorial problems
stricted symmetric monotone Krom SNP. The arising naturally in optimization, graph the-
deep result of Reingold [17] on the complex- ory, artificial intelligence and database theory.
ity of undirected connectivity suffices to show Loosely speaking an instance ofGSP con-
that symmetric Datalog queries can be evalu- sists of a list of variables and a set of constraints
ated in logarithmic space. We show that for each specified by an ordered tuple of variables
a number of constraint languagds the com-  and a constraint relation over some specified
plement of the constraint satisfaction problem domain. The goal is then to determine whether
CSP(T") can be expressed in symmetric Dat- variables can be assigned domain-values such
alog. In particular, we show that i€SP(T") that all constraints are simultaneously satisfied.
is first-order definable and\ is a finite sub-  The problem is NP-complete in general and
set of the relational clone generated Bythen one thus seeks to identify restrictions of the
—CSP(A) is definable in symmetric Datalog. problem for which the problem is tractable. Re-
Over the two-element domain and under a cent efforts have been directed at classifying
standard complexity-theoretic assumption, ex- the complexity of CSP(T"), the restriction of
pressibility of~CSP(I") in symmetric Datalog  the problem in which constraints are all con-
corresponds exactly to the class of CSPs solv-structed from some set of finitary relatioiis
able in logarithmic space. Finally, we describe over a finite domairD.

a fairly general subclass of implicational (or An important conjecture of [10] states that
0/1/all) constraints for which the complement for each constraint languageI’ the prob-
of the corresponding CSP is also definable in lem CSP(T") is either tractable (i.e. solvable
symmetric Datalog. Our results provide pre- in polynomial time) or NP-complete. This
liminary evidence that symmetric Datalog may dichotomy conjecturds a central challenge
be a unifying explanation for families of CSPs in theoretical computer science and steady
lying in L. progress towards its establishment has been
achieved in the last ten years. It has been veri-
fied for domains of size two [18] and three [3].

“Research supported in part by NSERC, FQRNT and However, from a complexity-theoretic point
CRM. of view, such classifications are rather coarse
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as they do not distinguish the relative com- strictly contain L. This conjecture is verified

plexity of CSPs that are tractable. Over the over the two element domain. We also show
two-element domain, a much finer classifica- that a specific subset of implicational [13]

tion can be obtained: eaddSP(T") is either  or 0/1/all constraints [6] can be captured by
in co-NLOGTIME or complete underAC°- symmetric Datalog. Finally, we briefly expose
isomorphisms for one of the classes L (logarith- the algebraic interpretation of these results. A
mic space), NL (non-deterministic logspace), more thorough discussion appears in [15].

&L (parity-counting logspace), P or NP [1]. In the next section, we review the founda-
Efforts to classify the complexity afSP(I") tions of the study ofCSP and the connection
have been greatly facilitated by two comple- with Datalog. In section 3 we introduce sym-
mentary approaches. The first relates the com-metric Datalog, investigate its relation to re-
plexity of CSP(I") with the algebraic properties ~ stricted symmetric Krom monotone SNP and
of the operations which preserve relationd’in  establish its fundamental properties. Finally,
(see e.g. [5] for a thorough introduction). This section 4 presents examples of the expressive
connection has allowed the use of sophisticated power of symmetric Datalog and the resulting

results in universal algebra [4]. consequences for the complexity ©fP. Due
A second, descriptive complexity approach t0 space restrictions, some proofs are omitted
relates the complexity of'SP(I") with the so- ~ and appear in the appendix.
phistication of logical frameworks required to
describe the class of instances thatmoesat- 2 Constraint Satisfaction Problems
isfiable. In particular, it has been noticed that and Datalog
a number of tractable cases can be captured
by definability of -CSP(I") in the database- Let D be a finite domain. Aonstraint lan-
inspired query language Datalog. If, further- guageover D is a finite" set of finitary rela-
more,—~CSP(T") is definable in linear Datalog tionsI' = {R;,..., Ry} over D. An instance
then the corresponding problem can be solved of the constraint satisfaction proble@SP(T")
in NL and some evidence was given in [7] that is given by a list of variables, ..., z, and a
this condition is in fact necessary and sufficient. set of constraints, where eacbnstraintis of
We introducesymmetric Dataloga natu-  the form(z;,,...,z;) € R, with R;, € T
ral syntactic restriction of linear Datalog and The task is to determine whether the variables
prove that its expressivity is exactly that of can be assigned values In such that all con-
a specific fragment of symmetric Krom SNP straints are simultaneously satisfied.
(see [11, 7]). The evaluation of symmetric It has been noted since the seminal work
Datalog programs boils down to a reachabil- of Feder and Vardi [10] that the problem can
ity problem in a polynomial-sized symmetric conveniently be recast in terms of homomor-
graph. A breakthrough result of Reingold [17] phisms between relational structures. Let
recently established that undirected connectiv- be a finite vocabulary of relational symbols

ity can be solved in logarithmic space and, con- R, ..., Ry, of arity ¢,...,%;. A 7-structure
sequently,CSP(T") also lies in L if ~CSP(T") B consists of a seB (called theuniverseof
can be defined in symmetric Datalog. B) and for eachR; € 7 a relation RB C

We conjecture that expressibility of B". A homomorphism from a-structureA
~CSP(I') in symmetric Datalog is a necessary 0 a7-structureB is a functionf : A —
and sufficient condition for membership of B mapping the universe oA toAthat of B
CSP(T') in L. More precisely we provide such thatforall(as,...,a;,) € R;* we have
evidence that a CSP is either expressible We restrict our attention to the case wheves finite

in symmetric Datalog or hard for one of a 4jthough most of the ensuing definitions can be adapted
number of complexity classes all believed to naturally to the case whetigis infinite.
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(h(a1),...,h(as,)) € RB. the rule is valid.

In its full generality, the homomorphism Formally, for ar-structureA, let A9 de-
problem Hom is the task of determining note ther’ structure over the same universe
whether there exists a homomorphism betweenand such thatzA°” — RAif R € + and
two 7 structuresA and B given as input. A RA°Y _ ¢gif R € + — 7. We now induc-
constraint languagé' = {R1,..., Ry} over tively defineA®"+! as follows. FirstifR e 7

D can be regarded as defining-&structureD then RAQI 1 _ pAQl _ pA

with universeD and we denote this structure Suppose now thaR € =/ — 7 is an IDB
as a boldfacd”. An instance ofCSP(I") simi- of arity ». Leth — by:...:b, be a Data-
larly corresponds to a-structure over the uni-
versery,...,x,. The problemCSP(T") is then

equivalent to the problenilom(I") of deter-

mining if a givenr-structure is homomorphic
toT.

log rule using variables, ..., z;. An inter-
pretation of the rule over the domaia is a
function f : {z1,...,2x} — A. We then
define RA“" " as the union ofRA®™ with

all r-tuples (ay,...,a,) such that for some

rule with headR(x;,,...,z;.) and some in-

2.1 Datalog and CSP terpretationf such thatf(z;;) = a; we have
Datalog is a database inspired query- for all T'(xj,,...,x; ) in the body of the rule

language whose connection to the complex- (F(j,), .o, flzg,)) € TA,

ity of constraint satisfaction problems has been By definition, RA°™ < RAY"™ and so
thoroughly investigated (see e.g. [10, 9, 7]). Let the iterative process above is monotone and
7 be some finite vocabulary of relational sym- has a minimal fixed point which we denote as
bols. A Datalog program overis specified by ~ RA?. Accordingly, we defineb(A) as the

a finite set of rules of the form 7/-structure given by th&RA“ .

[n4+1

b by ih As defined above, the output of a Datalog
Y program is ar’-structure but we want to view
where h and the b, are atomic formulas @ Datalog progrand primarily as a way to de-
R(x1,...,zy). Note that the variables occur- fine a class ofr-structures. For this purpose,
ring in a given rule are not assumed to be dis- We choose iy an IDB G known as thegoal
tinct. We distinguish two types of relational Ppredicateand say that the-structureA is ac-
predicates occurring in the program: predicates cepted byQ if GA“ is non-empty. A clas§ is
R that occur at least once in the head of a rule definablein Datalog if there exists a program
(i.e. its left-hand side) are callddtensional @ such thatA € C iff @ acceptsA. Note
database predicate8DBs) and are not part of  that any suclt is homomorphism closede. if
7. The other predicates which occur only inthe 5 : A — B is a homomorphism of-structures
body of arule (its right-hand side) are called  andA € C thenB € C.
tensional database predicatesid must all lie
nT. 3 Symmetric Datalog
Let Q be a Datalog program overand let

7/ denote the union of with the IDBs occur-
ring in Q. The programQ defines a function A rule of a Datalog progrand) is said to be
@, from the set ofr structures to the set of linear if its body contains at most one IDB and
7/ structures. Intuitively®g (A ) is the small- is said to benon-recursiveif its body contains
est ' structure over the same universe As ©nly EDBs. A linear but recursive rule is of the
with the property that for each rul®(z) « form
Pi(y,);...; Px(y,) of @, and any interpreta-
tion of the variables the implication defined by L(T) « I,(9); E1(Z1); - - - ; Ex(ZK)
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where I, I, are IDBs and thely; are EDBs.  the execution graphGa as follows: for each

Each such rule hassymmetric rule I; of arity k, we introduce for each of the®
~ B B B k-tuples of A* a vertex labeled;(ay, . . ., ay).
() < L(Z); E1(71); - - - ; B (Zk)- Furthermore, we add an extra vertex labeled

S. Edges are now determined by the EDBs in
A and the rules of). We add an edge from
Ii(ai,...,a;) to Ly(by,... by) if Q contains

a rule of the forr

A Datalog program() is said to be linear if all
its rules are linear. We further say th@tis a
symmetric Datalog progranf the symmetric
of any non-recursive rule d@ is also a rule of
Q. 1j/(%) « 1;(); Es, (Z1); - - -5 Bs, (Z1)

Let us consider for example the constraint
satisfaction problem two-coloring. In this case, Such that there exists an interpretatipof this

the domain is boolean arid contains a single ~ 'ule over A such thatf(z) = (by,...,by),
binary relations. Equivalently, an undirected /(%) = (a1, ..., ax) and for eacty(z;) < EQ-
graph is two-colorable if it is homomorphic to Informally, such an edge represents the fact that
an undirected edge. Because a graph is two col-f @ places the tuplgas, ... ay) in I; then it
orable iff it contains no undirected cycle of odd Will @lso add the tupleby, ..., by) to I;. We
length, we can defineCSP(T') using the fol-  further add a bi-directional edge between our
lowing symmetric Datalog program: special vertexS and;(ay, . .. , ax) if there ex-
ists a non-recursive rule

O(z,y) < E(z,y) _ _ _

O(w.y) « Ofr,w) E(w,2):E(z,) B BB B )

O(z,w) — O(zy); E(w,z2); E(z,7y) and an interpretationf such thatf(z) =

G — O(wx) (a1,...,a) and f(z;) € E2 for each EDB

occurring in the body. Sinc€ is symmetric,

Here E is the binary EDB representing the the graphG:a is symmetric and can thus be re-
adjacency relation in the input grapB,is abi- ~ garded as an undirected graph. Moreover, the
nary IDB whose intended meaning is "there ex- graph can clearly be constructed in logarith-
ists an odd length path fromtoy andG isthe ~ mic space and we have,, ..., a;) € IA iff
0-ary goal predicate. Note that the two middle the vertexl;(ai,...,ax)is reachable frons'in
rules form a symmetric pair_ In the above de- GA. Since undirected connectivity can be com-
scription, we have not included the symmetric Puted in logarithmic space [17], a representa-
of the last rule. In fact, the fairly counterintu- tion of ¢ (A) can be produced in logarithmic
itive ruleO(z, x) < G can be added to the pro- Space. n
gram without changing the class of structures
accepted by the program since the rule only be-
comes relevant if an odd cycle has already been
detected in the graph.

Corallary 2 If =CSP(T") is definable in sym-
metric Datalog therCSP(T") € L.

] Let T be a vocabulary consisting of relational
Theorem 1 A symmetric Datalog querg can gy mpols SN P is the class of sentences of the
be evaluated in logarithmic space. In other ¢

words, there exists a logspace transducer which

on input A produces some representation of 381, .., SiVur, . ume(v1, - Um)
q(A). .
where S1,...,5; are second-order variables
Proof: Suppose thaf;, ..., I, are the IDBsin  and ¢ is a quantifier-free first-order formula
Q. Let A be the inputr-structure and let Note again that the variables occurringiry, z are

denote the size of its universé. We define  not necessarily distinct.



over the vocabulary U{S, ..., S;} with vari-
ables amongs,...,v,,. We assume thap

is in CNF. In monotoneSN P, every occur-
rence of a relation symbol from is negated.
In Krom SN P, every clause of the quantifier-
free first-order party has at most two second
order variables. Imestricted KromSN P, ev-
ery clause of the quantifier-free first-order part

S = {(z,x+1)|]r < n—1}. Odenotes the set
of all finite successor structures

A logic capturesthe complexity clas€’ if
for every problemP C O, Pisin C if and
only if there exists a formula in the logic such
thatP = {R € O|R [= v}. Using the results
of [11], one can show:

¢ has at most one positive occurrence of a Theorem 4 Over the set of finite successor
second-order variable and at most one negativestructures, symmetric Datal¢g) capturesL.

occurrence of a second-order variabl8ym-
metric restricted Krom monotongN P is the
subset of restricted Krom monotosgV P for-
mulae that contain with every clause of the
form Vv S; v —S; also the clause v —.S; v S
(wherey contains no second-order variables).
We denote as symmetric Dataleg( the
extension of symmetric Datalog programs in
which the negation of EDB predicates is al-
lowed. In the appendix, we show how Theorem
5 of [7] can be adapted to obtain the following.

Theorem 3 Let C be a collection of 7-
structures. Then 1 is equivalent to 2, and 3 is
equivalent to 4.

1. Cis definable in symmetric Datalog;

2. =C is definable in symmetric restricted
Krom monotoneS N P;

3. Cis definable in symmetric Datalog];

—C is definable in symmetric restricted
Krom SN P.

We give a proof in the appendix. Similarly,
Datalog—) and linear Datalog-) capture P
and NL respectively (see [16, 7, 11] and com-
ments following the proof of Theorem 4).

4 Applications

We consider in this section a number of
specific classes of constraint languadesor
which —=CSP(T") is expressible in symmetric
Datalog. This includes, to the best of our
knowledge, all families 0€SP known to lie in
logspace, thus providing preliminary evidence
that symmetric Datalog is a unifying explana-
tion for logspace computabléSP.

For a constraint languagg, we denote as
(I") the relational clone generated by (also
known as theprimitive positive closure of)
i.e. the set of relations which can be defined
by a primitive positive formula over and the
equality relation. For any finiteA C (T')
there exists a polynomial time reduction from
CSP(A) to CSP(T") and this fairly straightfor-
ward observation is crucial when using alge-

It can be shown that the expressive power of braic tools to study the complexity 6fSP [5].

symmetric Datalog, or equivalently symmetric
restricted Krom monoton8NP is quite lim-
ited. In particular, there exists no symmetric

In some particularly simple cases”SP(T")
is in fact definable by a Datalog program with-
out any recursive rule. These FO-definable

Datalog program that computes the transitive CSP have been completely characterized [2,

closure of a binary relation [8].

A finite successor structures a structure
whose domain i0,1,...,n — 1} (for some
n € N) and whose vocabulary contains the
two constant symbolgiin andmax and the bi-
nary predicateS whose interpretations are the
constants), n — 1 and the successor relation

5

14]. All such problems can be solved @o-
NLOGTIME, a class provably strictly contained
in logarithmic space (see [1] for a thorough dis-
cussion). It has been noted that over any non-
trivial domain there exist constraint languages
I, A such that(T') = (A) but CSP(T") is FO-
definable whileCSP(A) is not. Our first result



however guarantees thalCSP(A) is still de-
finable in symmetric Datalog.

Theorem 5 If T' is a constraint language such
that ~CSP(T") is definable in symmetric Dat-
alog and A is a finite subset ofI') then
—CSP(A) is definable in symmetric Datalog.
In particular, if CSP(T') is first-order definable
then—=CSP(A) is definable in symmetric Dat-
alog, and furthermoreCSP(A) is either first-
order definable itself or L-complete.

Proof: The theorem relies on the work of two
of the authors. Sinca is a finite subset of
(T") then it can be obtained from the detby

a finite sequence of applications of six basic
constructions, five of which are shown in [15]
to preserve expressibility in symmetric Data-
log. It remains to show that i~CSP(I") is
expressible in symmetric Datalog then so is
-CSP(I' U {=}). We present this argument as
Lemma 11 in the appendix.

If CSP(T") is first-order definable then
-~CSP(T") is certainly expressible in symmet-
ric Datalog, hence so isCSP(A). The second
part also follows from a result of [15]: if a CSP
is not FO expressible then it is Logspace-hard
(under FO reductions). [ |

Dalmau showed in [7] that constraint satis-
faction problems defined hiynplicational con-
straints [13] (known in [6] as 0/1/all con-
straintg are definable in linear Datalog. A bi-
nary relationR C D? is said to be implica-
tional if it is of one of three forms:

1. R=B x CforsomeB,C C D;

2. R ={(b,f(b)) : b€ B} whereB C D
and f is an injective function;

3. R={b} xCUB x {c} forsomeB, C C
D withb € Bandc € C.

Note that the relation< over the two-
element domain is implicational since it is
{0} x {0,1} U {0,1} x {1}. Furthermore
{0} x {1} is also implicational and it is easy to
see thaCSP({<, {0} x {1}}) is NL-complete

and in fact-CSP({<,{0} x {1}}) is not ex-
pressible in symmetric Datalog [8]. The dif-
ficulty in fact stems from implicational con-
straints of the third form and we use the fol-
lowing lemma to show that for arly consisting
solely of implicational constraints of the first
two forms,~CSP(I) is definable in symmetric
Datalog.

Theorem 6 Let I' be a constraint language
over the domairD such that for somé € D,
every relationR in T is either

1. aunary relationS C D;

2. a binary relation R; such thatR, =
{(a,m(a)) : a € D} for some permuta-
tion = with (d) = d;

3. ak-ary relation Ry, with k > 2 and Ry, =
{(a1,...,a) : Jia; =d}.

Then—-CSP(T") is definable in symmetric Dat-
alog. The result also holds if the permutations
have no fixed poiné but I" does not contain
any relation of the third form above.

Proof. Let us assume that the permutations
have a fixed pointl (see comment following
the proof) and thaf® contains relations of the
form R, = {(al,. .. ,ak) D doa; = d}
Before describing the symmetric Datalog pro-
gram, we make a few basic observations and
recast the problem in a more graph-theoretic
fashion. First note that if < k, then the rela-
tion R;{(ai,...,a;) : 3i a; = d} is simply the
set of tuples such thdi, .. .,aj) €
Ry. By Theorem 5, we can thus assume with-
out loss of generality thaf' contains a single
relation R;. Next, we can also assume tHat
contains all unary relations ovér, i.e. for any

S C D, T" contains the unary relatialis = S.

If A is an inputr-structure and) : A — T°

is a homomorphism, then for eaghe A we
must havep(x) € ﬂer? S. For convenience,
we denote by, this intersection which corre-
sponds to the subset of values foin D which
respect the unary constraints imposedron

sy Agy e



For ar-structureA, we construct an edge-
labeled and vertex-labeled directed graph-
(V,E) as follows. Vertices are the elements
of the universe ofA. For anyz,y such that
(x,y) € Rr we add an edgéz,y) labeled
with  and an edgéy, ») labeled withr 1. Fi-
nally we color the vertex with U,. Any path
p between vertices andy can be thought of
as labeled by the permutatior, which is the
product of the labels of individual edges on that
path.

Let x be a vertex of the graph withy, =
{a1,...,a¢}. We say that a set of paths
p1,--.,p¢ from x to verticesyy, ...,y in G
is permutation-blocking for the vertexif for
eachl < i <t we have eithefr,, (a;) ¢ Uy, or
x = y; andmy, (a;) # a;. By design, ifG con-

that this assignment is well defined: if there
are two (or more) distinct paths, p’ from x

to a giveny thenpp’~! is a path fromz to

r and som,,-1(a) a which means that
mp(a) =y (a).

This stage defines(y) for eachy in the con-
nected component af. We can repeat the ar-
gument to similarly fix the values af in each
other connected component Gf We need to
prove that¢ is indeed a homomorphism. By
construction, we have(x) € U, for eachx
and (¢(x), é(y)) € R, forany (z,y) € RA.

It remains to show that ifz1,...,2x) € R
then(¢(z1),...,¢(zx)) € Ry which, by def-
inition of Ry is equivalent to the requirement
that¢(x;) = d for somej. SinceG contains no
k-blocking pattern, there exists some such

tains a permutation-blocking pattern then there that ally in the connected component.of sat-

can be no homomorphisi from A toI'. In-
deed, for any suck, we require¢(z) € U,.
However, if¢(z) = a; then we must also have
D(yi) = mp,(ai) & Uy,

Similarly, for any (z1,...,zx) € R we
say that thé-tuple (v, . . ., yx) is ak-blocking
pattern inG if for eachl < ¢ < k there is a
path fromz; to y; andd & U,,. Again, if ak-
blocking pattern exists for sonfey, ..., xx) €
R2, then there is no homomorphism frafnto
I". Since none of thg; can be mapped t®and
d is a fixed point of all permutations, it fol-
lows that none of the; can be mapped tdand
so(¢(z1), ..., 0(xk)) & Ry

We claim thatA < CSP(T') if and only
if G contains no permutation-blocking a@r

blocking patterns. Note that we have already Ir,.....pr;,.... p,

established the left to right implication. Let us
suppose tha& contains no blocking patterns
and explicitly construct a homomorphism from
A toT'. Consider an arbitrary elementof A.

If d € U, for all y in the connected component
(in G) of x, then we set(x) = d. Otherwise,
sinceG contains no permutation-blocking pat-
tern, there exists some € U, such that for
each pathp from z to y eitherz = y and
mp(a) = aorz # yandm,(a) € U,. We
set ¢(x) a and ¢(y) = mp(a) for each
vertex y reachable fronx by a pathp. Note

isfy d € U, and sop(x;) = d.

Our symmetric Datalog program contains
rules of one of eight types summarized in
Figure 1. The program is a simple reflec-
tion of the above graph-theoretic construction.
For each|D|-tuple (my,...,mp) of permu-
tations of D, we create dD| + 1-ary IDB
Lnyomp (T 915 - - ,Y|p|+1) Which is intended
to represent the fact for each < j < |D|
there is a pattp labeled with7; from z to
y;. We include non-recursive initialization
rules stating that ifA includes for eachj
the constraint(z,y;) € R, then the tuple
(7,91, ,¥Yp|+1) liesin the IDBIm,,,,mD‘.

We next include recursive rules for these
IDBs as follows. Consider two IDBs
and Iny,mjpmip) whose in-
dex differs only in thejth permutation. If
T,y1,. ..,y p| are such that there exist for each
ianz ~» y; path labeled byr; and if further
A contains a constrairfy;, z) € R, then there
is a pathz ~~ z labeledpr;. But symmetri-
cally, if there is ax ~» z labeled bypr;, we
have a path: ~ y; labeled byp~!pm;, = 7;.
This observation justifies the rules of the form
(2) and (3) in our program and it is clear that
these IDBs behave as intended.

We use an IDBJ (x4, ..., 2k, Y1, - -, Yi) Of
arity 2k to represent the fact that for eac¢h



~

@) Lrymp (@, 9155 YD) — Re(z,y1);-- 5 Reppy (7,9D))

(2) I7r1,...,p7rj,...,7r‘D‘(xayla~~~aZa-'-ay\D\) — Rp(?/j,Z);Im,...,wj,...mm(%yl,---’Z/ja---ay\D\)
3) Ir,,. w‘j,.__yr‘D‘(w,yl,...,yj,...,y‘D‘) — Rp(yj,z);Im’m?m].r__ﬂr‘m(w,yl,...,z,...,y|D|)
4 J(x1,..., Tk, Y1, Yk) — Rq(z1,u1);- . Rey (Tk, Uk

(B) J(x1, . Ty Y1y ey 2y ey Yk) — J@1, Tk Y Y Uk Re (Y, 2)
6) J(@1, ., Tk Y1y Yjre -5 Yk) — J@1, Tk Y, 2 Uk) Re (Y5, 2)

7 G — Inymp (@91, Yk); Uni Ui - Uy

8) G — J(@1, . Tl Y1y - Yk);

Ry(w1, .., 2); Ur(y)s - -5 Uk (k)

Figure 1. Types of rules for the program of Theorem 6

there is a path (regardless of labels) frafrto conjunction of unary EDBs constraining these
y;. Clearly, we can initialize this IDB with the variables in a way that creates a blocking pat-
non-recursive rule (4). Note that we have one tern. [
such rule for any choice &, since we do not

care about the actual label of the paths. Sim- We assumed in our proof thdtwas a fixed
ilarly, we have recursive rules of the form (5) point of the permutations. However, it is clear
and (6) for each < j < k and everyR;. from the argument that this requirement is only
Finally our program contains a unary goal needed in the presence of tig relations. If
predicate G which is hit whenever the pro- T consists solely of permutations and unary re-
gram has detected a permutation-blocking lations,~CSP(T") can be defined in symmetric

or k-blocking pattern.  There exists &- Datalog. However, if* contains a relatiorR;,
blocking pattern iff there exists a tuple but contains a permutation of whichis not a
(x1,..., Tk, y1,---,yk) In J and unary re- fixed point expressibility in symmetric Datalog
lations Uy, ..., Uy such thatd ¢ U; and  cannot be guaranteed. Indeed, over the two-

(z1,...2) € R (rules of type (8)). Note element domain, the relatioR, is the binary

that the program contains one such rule for any Or relation and the non-trivial permutationis

choice of the unary relatiors,, ..., U thatdo  disequality. The problem@SP(Ors, #) is NL-

not containd. hard and-CSP(Or,, #) does not lie in sym-
Permutation blocking patterns are identified metric Datalog [8].

using rules of type (7). We consider a set of  This theorem immediately provides the fol-

paths from some to somey;, ..., yx with la- lowing result for implicational constraints.
belsmy, ..., p. Hence the body of the rule
containslz,,..x p (%, 41, - -, yx). Thefactthat  Corollary 7 Let " be a finite set of implica-

these form a permutation-blocking pattern now tional constraints of the form 1 and 2. Then
depends solely on the set of unary relations -~CSP(T") is expressible in symmetric Datalog.
that bound the variables, yi, ..., y;p. Our

program creates a separate rule of type (7) Proof: Obviously, a binary relation of the form
to handle each combination of unary relations B x C can be expressed as the conjunction of
imposed onz,ys, ...,y p| Which result in a  the unary relationd/p andUc. Similarly, if
blocking pattern. Note that there is a fixed B C D andf : B — D is injective thenf
bound on the number of ways in which these can be extended to a permutatierof D such
|D| + 1 variables can be constrained by unary thatmz = f. The implicational relation? =
relations. For succintness, we represented thes€ (b, f(b)) : b € B} can then be expressed as
rules in Figure 1 by using the symbols,, a conjunction of the relatio®, and the unary
Uy,, etc. to indicate that the body contains a relation 5. Thus,I" C (A) for someA of the

8



form given in Theorem 6 and the result follows
by Theorem 5. |

Over the two-element domain, there is a very
tight correspondence betwe€8P in logspace
and symmetric Datalog.

Theorem 8 Let I' be a constraint language
over the two-element domain. The@SP(I")
is definable in symmetric Datalog 6ISP(T") is
hard for NL or&L under logspace reductions.

Proof: By [1], we know thatCSP(T") is hard
for one of NL or ®L unlessT is contained

is expressible in symmetric Datalog, then the
minimal non-trivial factors of the associated al-
gebra must be of a very specific form (in uni-
versal algebra lingo, this algebra must generate
a variety admitting only the Boolean type). As
a special case of Theorem 6, we obtain that all
CSPs whose associated algebra is one of these
so-called strictly simple algebras have their
complement expressible in symmetric Datalog.

Theorem 9 Let I" be a finite set of relations
on the setA such that the algebra\(T") is an
idempotent, strictly simple algebra of Boolean
type. Them-C'SP(T") is expressible in symmet-

in the relational clone generated by the unary ric Datalog.

relations, the equality relation and the dise-
quality relation. By Theorem 6, we have
-CSP({0},{1},=,#}) is definable in sym-
metric Datalog and this expressibility results
extends to all” in the relational clone by The-
orem 5. ]

If one accepts the hypothesis thstl, = L
and L # L, we thus have, over the two-
element domain, thatSP(T") is in logarithmic
space iffFCSP(T") is in symmetric Datalog.

We conclude with a brief discussion on the

relationship between our results and the alge-

braic approach t€SP mentioned earlier.
To each set of relation§ on a setA is
associated an algebr&(I") with universe A

Proof: We invoke a classification of idempo-
tent, strictly simple algebras of Boolean type
(see Theorem 6.1 of [20]) to get a precise
description of the algebra (T"): either it is
guasiprimal, and hence it admits the discrim-
inatort as a basic operation, where

z ifx=y,
z else,

- |

or there exists soméd € A, and G a group

of permutations ofd such thatd is the unique
fixed point of every non-identity element (@,
and such that the set of basic operations of
A(T) is equal toFy for some2 < k < w,
whereF}, consists of all idempotent operations

whose basic operations are the operations thaty, preserve the relations @ = {(b, f(b)) :

preserve all relations i, i.e. the functions
f : A¥ — A such that for any-ary R € T,
and anyk ¢-tuplesz, ..., T, € R it holds that
f(@1,...,Tx) € R. Itis known that whether
the problemC'SP(T") is polynomially solvable
or NP-hard is determined by the equational
properties of this algebra (see e.qg. [5]). In [15],

m € G} and the relations?; defined in the
statement of Theorem &, in the intersection
of all the F},.
Accordingly we split the proof in two cases:
Case 1. Suppose that\(T") is quasiprimal,
and thust preserves every relation in It fol-
lows from standard results in universal algebra

this approach is refined, and general hardnessat since every relation iff is invariant un-

results for CSP’s are presented for various com-

plexity classes such as L, NL, P and Mad

and some necessary algebraic conditions are,,rqs we obtain thaf C ()

described for expressibility in various restric-
tions of Datalog. In particular, i=C'SP(T")

*Mod, L is the class of problems which are logspace
reducible to solving systems of linear equations dgr

der the discriminatot, each is determined by
its projections on at most two factors. In other
whereI" con-
sists of all projections on at most two factors of
all the relations ii". By Theorem 5, it now suf-
fices to prove that:C'SP(I”) is in symmetric
Datalog. By Theorem 4.2 of [19], every binary



relation invariant under the discriminator is ei-
ther a product of two unary relations or is the
form 7° = {(z,7(x) : * € B;} where B,
is some non-empty subset df andr is some
injective map fromB,; into A. This case is pre-
cisely covered by Corollary 7.

Case 2. Suppose now that the set of basic
operations ofA(T") is Fj. For anyk we have
I' € ({G°, Rs,...,Rj,...}); however, since
T" is finite and since each relation in it is pro-
duced from finitely many of the?;, it follows
that there exists some finitesuch thatl’ C
(G°Ry) and by Theorem 6;-CSP(G°, Ry) is
expressible in symmetric Datalog. [ |

In light of this result and Theorem 8, it is
tempting to conjecture an analog of Theorem 8
for non-Boolean domains. By results in [15, 8],
it remains to show that if the variety gener-
ated byA (T") admits only the Boolean type then
—CSP(T') is definable in symmetric Datalog.
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Appendix

This appendix includes the proofs of Theo-

some tuplet’ € A", TAY (¢') is true butR;(t')
is false. Then there exists a smallgstan
indexk, and a tuple € A" such thatrA“" (¢)

rems 3 and 4 as well as a lemma required in our is true butRy () is false.

proof of Theorem 5.

Theorem 3 Let C be a collection of 7-
structures. Then 1 is equivalent to 2, and 3 is

equivalent to 4.
1. Cis definable in symmetric Datalog;

2. =C is definable in symmetric restricted

Krom monotoneS N P;
C is definable in symmetric Datalogy;

—C is definable in symmetric restricted
Krom SN P.

We use the following lemma.

Lemmal0 Let @ be a Datalog{:) program

overr with IDBsI4,...,I,,. Let
w(Il,...,Im,xl,...,fL'n) =
N he (A Aby).
heb1;...;bg€Q

Let A be ar-structure such that there exist re-

lations Ry, ..., R,, such that
A Ry,....Ry =
Var, .o, pn0(l1y .oy Ly @1y oo, Tp)-

ThenIA®(t) — Ry(t) for eachi,1 < i < m
and eacht € A" wherer is the arity ofI;.

Notation:
IAQ[J']
i

For convenience, we write
— R; to denote that for each tuple
t € A" wherer is the arity ofI;, TA% (1) —
Ri(t). We writeTA%Y" — R to denote that for
eachi,1 < 7 < m and for each tuple ¢ A"
wherer is the arity ofI;, IA°Y (1) — R;(t).

Proof: Consider the sequence

AQLI AQH AQ and for the sake of
contradiction assume that for somend for
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Let Ii (g, - - .;bg be the
rule which addedt to 7A°" using the in-

S Tk,.) — bi;..

terpretation f r1,...,2, — A. No-
tice thatt = (f(xg,),..., f(zk,.)). By the
choice of j, 1A%"" R. Therefore

A,Rl,...,Rm,f(.%'l),...,f((L‘n) ): biN...A
bq andb A... /\bq — Rk(f(xkl), ce f(:t?kr))
in 4. This implies thatRy(¢) is true which is a

contradiction. [ ]

Proof[Proof of Theorem 3] We prove the
equivalence of 1 and 2. The equivalence of 3
and 4 is an obvious modification of the proof.

1 — 2: Let@ be a symmetric Datalog pro-
gram with IDB predicatedy, ..., I, one of
which is the goal predicatg,. Letv be a CNF
formula defined as:

w(Il,...,Im,xl,...,fL'n) =
LA\ he (AL ALy =
heb1;...;b4€Q
A N\ hVabiV..v b,
heb1;..;b4€Q

Let ¢ be the following symmetric restricted
Krom monotoneS' N P sentence

(b = 3R1,... ,Rmvm,... , Ly
w(Ilw . 7Im7x17- . 7xTZ)'
We show that ¢ is satisfied exactly
by those structures that are rejected
by Q. Assume that (Q rejects A.
Then clearly, A, IAY,. .. IA® =
Vzq,... ,.’Enﬂ)(Il, e ,Im) SOA |: o.

Conversely, assume that is a structure
such thatA = ¢. Then there exist rela-
tionsRy,..., Ry, such thatA, Ry,..., R, &=
Var, ..o, ep0(ly, ooy Iy @1, ooy ). By
Lemma10/A° — Randin particulan’ﬁQ —
R,. Therefore becausRB, is falsteQ is also
false, i.e.() rejectsA.



2—-1: Let 10) = Proof. It follows from [12] and [17] that
an, ..., LpyVey, . coan(, .o Iy, 21, ... ,x,)  OVer the set of finite successor structures
be an arbitrary sentence in symmetric restricted [ST'Cz 51 (7, §)] (min, maz) capturesL. Here
Krom monotoneSNP. We rewrite ¢ in an 1 is a quantifier-free first-order formula and
equivalent "implicational” form which we call  [STCz ¢ (Z,y)] denotes the reflexive, sym-
¢’ and the modified) becomesy’. Parallel  metric and transitive closure of the binary re-
to this, we construct a symmetric Datalog lation defined byy. Now we use an idea from
program@ as follows: Theorem 6.4 in [11].

If P is a problem inL then the com-
plement of P can be defined by a formula
¢ = —[STCsz(z. 7)) (min, maz) where
is quantifier-free. Letv;1); be the disjunctive

1. Add a new second order variahlg ; to
the existential quantifier block @f and a
new clause tap, (I,,+1 = False). The

IDBs of Q arely,..., I,y and i, is . i
T normal form ofyy and build the formula:

the goal predicate. Let' be a clause ofy v

(but not the newly added clause); IRVE, 7, 2R(Z, T)A

2. IfC = hVb V... Vb, whereh,by,... b, N @i, 2) — (R(Z,5) < R(z,2)))A

are literals and” contains a non-negated i

second order variable which we denoted ~R(min, maz).

by h then rewrite theC' ash « (—b; A

...A"bg). Add the ruleh «— —by;...; b, This formula is equivalent t@ and it can be

to @ in which the IDBs are the second or- rewritten as a symmetric restricted Krom SNP

der variables of”; formula:

3. 1fC = by V...V b, whereC does not 3RVZ, §, 7R(%, T)A
contain a non-negated second order vari- e '

able then rewriteC' as I, .1 «— (—b1 A N\(i(7,2) vV =R(Z,9) V R(Z, 2))A
... AN bg). Add Iy g — —by;. .. —bg tO g
Q' /\(_'wl(gv 2) \/R(jvg) VﬁR(.’Z',Z))/\

)

Observe that) is a symmetric. We show

—R(min, maz).
that () accepts exactly the same set of struc- (min, maz)

tures which falsify ¢'. Assume thatQ re-  Now we use Theorem 3 to defirfein symmet-
jects A. Then clearly, A, I, ... | I07, | ric Datalogf-).
Yy, ..z (L1, Ly 21,0 T0), SOA = Conversely, a symmetric Datalog)can be
/ . . .
@ evaluated inL by a simple extension of Theo-
Conversely, assume tha\ is a structure  (em 1. [
such thatA = ¢/. Then there exist relations
Rl,---,Rmﬂ such thatA, Ry, ..., Ryt Comments: A similar argument can be
Var, . an¥'(In, o Img1, @1, -, @0). BY  used using transitive closure instead of sym-

Q . ) » .
Lemma10/A” — R;,1 <i<m+1.Inpar-  metric transitive closure to show that linear
ticular 1;,331 — Rp,+1 WhereR,,,; is forced Datalog(-) over the set of finite successor

to be false. ThereforgA?, is false, i.e.Q re-  structures capturesL.

jectsA. [ Finally, the following lemma is needed to
complete the proof of Theorem 5. We state a
slighter more general result.

Theorem 4 Over the set of finite successor Lemmall LetI' be a finite set of relations
structures symmetric Datalogj capturesL. such that-C'SP(T") is expressible in (linear,
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symmetric) Datalog. ThenCSP(I'U{=}) is
also expressible in (linear, symmetric) Datalog
respectively.

Proof. We proceed by modifying a program for
the first problem to obtain a program for the
second. LefP be a (linear, symmetric) Datalog
program for-C'SP(T") with goal predicates.
Note that we may modify the programas fol-
lows without loss of generality: for every rule
p of P of the form

G<—R1,...,Rn

where eachR; is an EDB, add the following
rules toP:
I,~ Ri,...,R,

G—1,

wherel, is a new IDB whose variables are ex-
actly those appearing in the;. For example,
if P contains the following rule

G Rl(xvya Z);
R2(wiat); R3(CC, Zat)

then add taP the rules

— Ri(z,y,2);
R2(x7w7t); Rg(.%', th)

Ip(.%', Yy, z,w, t)

G — I,(z,y,z,w,t).

Finally, remove rulep from P. Itis clear that

the set of structures accepted by the new pro-

gram remains unchanged.
We define a prograrf) as follows:

(i) For every rule of P with IDB’s

I,Ji,...,Jsand EDB'SRy,..., R,
I—Jy,....,Js,Ri,...,Ry

Q@ will have the rule
T—Ji,...,Js,Ri,... Ry;

(i) Let E denote the relational symbol (i.e.
EDB) that corresponds to the equality relation.

13

For every IDBI of arity k the programP,
and everyl <i < k, @ has the rules

I(zy,...,28) «—

I(‘Tl) ey Lg—15Yiy L1y e v - 7xk?)’szyz
and
I(xy,...,¢) —

I(xlv sy Ti—15Yiy Lit1s - - - 7xk)7yZExZ

Notice that the prograr we have obtained
is indeed linear (symmetric) if the program
is. We shall show thaf) decides—-C'SP(I" U
{=}) correctly. For this we use a simple reduc-
tion of ~-CSP(I' U {=}) to -CSP(T"). LetT
andT”’ denote the “target” structures for these
problems, i.e. whose base setdsand whose
basic relations are those bfandI’ U {=} re-
spectively. Given an inpu§’ for CSP(T"),
construct an inpuss for CSP(T) as follows:
let # denote the partition of the base set$jf
(which is also the base set §j into connected
components of the relatioA: now for any ba-
sic relationR in T, let (z1,...,z;) be in RS
whenever there exista], ..., ) in R such
thatz; andz) are in the samé-block, for ev-
eryl < i < k. We claim thatS admits a homo-
morphism tal" if and only if S” admits a homo-
morphism toZ”. One direction is trivial. Now
suppose thaf : S — T is a homomorphism,
and letz andy be distinct elements of sonte
block. Let f’ be the function obtained fronf
by settingf'(z) = f(y) and f'(t) = f(¢) for
all t # x. By construction ofR®, if a tuple of
the relationR® has an occurrence efthen the
tuple obtained by replacing all occurrences of
x by y is also inR?, and hence obviously’ is
also a homomorphism. Hence if there is a ho-
momorphism fromS to T there is one which is
constant on every block; this is obviously a
homomaorphism front’ to 7”.

For any IDBK (in any of the two programs),
and any input structuré to the program, re-
call that we denote a&A°" the content of this
IDB aftert¢ steps of Datalog evaluation and de-
note askA“ the content of this IDB at the end



of the run of the program, i.e. when the con-

Step 2. For everyt > 0, 1Pl C 19, and

tents stabilize. When the input structure is clear hencel@ C 9.

we shall simply writek @[] and K <.

Claim. If S and S’ are the above struc-
tures, then for every DB I of the programP,
759U _ ps@

Proving this claim completes the proof of
our lemma; indeed, from the claim it follows
immediately that) acceptsS if and only if P
acceptsS’, which occurs if and only if there is
a homomorphism fron$’ to 7" if and only if
there is a homomorphism frosito 7.

Proof of Claim. Let e denote the reflexive,
symmetric, transitive closure of the relatidn
on S. We say that &-ary relationd on the
base set of5 is e-closedif (z1,...,x;) € 6
whenever there exists sontgy,...,yx) € 0
with z;ey; for all 1 < i < k. Two tuplesz and
y are said to be-equivalentif x;ey; for all <.

We split the proof in two steps:

Step 1. For everyt > 0, I, C I, and hence
19 C 19,

We shall use the following fact that follows
directly from the construction of the program
Q:

Fact. For every IDBI the relationI® is e-
closed.

We prove the inclusion by induction on
Fort = 0 there is nothing to prove. Assume
the inclusion holds for somg> 0. Consider a
rule

I —JRy,....Ry

(the case of a rule with no IDB in the head is
identical), and suppose that a tuplez I was
obtained via this rule at step+ 1. Consider

Fact. For everyt > 0 and every IDBI of
programP the relation/?" is e-closed; in par-
ticular I¢ is e-closed.

We prove the fact by induction an for ¢t =
0 we havel, = () so there is nothing to prove.
Assume now it holds for some> 0. Consider
arule

I—JRi,....,R,

(the case of a rule with no IDB in the head is
identical), and suppose that a tuplez I was
obtained via this rule at step+ 1. Lety be a
tuple such that;ey; for all 4; then modify the
assignment of values to the variables of the rule
by replacing each; by y;: sinceJ%!" and the
EDB's on S’ are e-closed, this assignment of
values still satisfies all conditions in the head
and so forces the presenceyan 791,

Now we prove the inclusion by induction on
t: for t = 0 there is nothing to show. Assume
the inclusion holds for some > 0. Suppose
that a tuplez € I was obtained at step-+ 1.
First consider a rule of the form

I~ JRi,....R,

(the case of a rule with no IDB in the head is
identical), Consider the assignment of values
to the variables of the rule that yields since

R C RY for all i and using the induction hy-
pothesis, this assignment also satisfies the con-

ditions in the head of the rule
I—JRy,....,R,

and hence is in IR+ C 19, On the other

the assignment of values to the variables of the hand if the tupler was obtained at step+ 1

rule that yieldsz: by definition of the relations
Rf’ and by induction hypothesis, and using the

fact above, we may find a new assignment of (21,

variables which ig-equivalent to the previous

one and that satisfies all conditions in the head

of the rule
T j,Rl,...,Rn;

hence we've found a tuple i@ which is e-
equivalent taz, and by the fact we are done.
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via a rule of the form

'7xk) —

I(.%'l, oy Ti—15Yiy LTi41y - - - ,:L'k),xiEyi

(the case for the symmetric rule is identical), it
means that there exists a tuplequivalent taz
which is in7@, and hence id? by induction
hypothesis. By the fact, we conclude that
I€. |
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