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Abstract. We present algebraic conditions on constraint languages Γ

that ensure the hardness of the constraint satisfaction problem CSP(Γ )
for complexity classes L, NL, P, NP and ModpL. These criteria also
give non-expressibility results for various restrictions of Datalog. Fur-
thermore, we show that if CSP(Γ ) is not first-order definable then it is
L-hard. Our proofs rely on tame congruence theory and on a fine-grain
analysis of the complexity of reductions used in the algebraic study of
CSPs. The results pave the way for a refinement of the dichotomy con-
jecture stating that each CSP(Γ ) lies in P or is NP-complete and they
match the recent classification of [1] for Boolean CSP. We also infer a
partial classification theorem for the complexity of CSP(Γ ) when the
associated algebra of Γ is the idempotent reduct of a preprimal algebra.

Constraint satisfaction problems (CSP) provide a unifying framework to
study various computational problems arising naturally in artificial intelligence,
combinatorial optimization, graph homomorphisms and database theory. An in-
stance of this problem consists of a finite domain, a list of variables and con-
straints relating the possible values of variables: one has to decide whether the
variables can be assigned values that simultaneously satisfy all constraints. This
problem is of course NP-complete and so research has focused on identifying
tractable subclasses of CSP. A lot of attention has been given to the case where
all constraints are constructed from some constraint language Γ , i.e. some set of
finitary relations over a fixed domain. In an instance of CSP(Γ ), all constraints
are of the form (xi1 , . . . , xik

) ∈ Rj for some Rj ∈ Γ .
In their seminal work [9], Feder and Vardi conjectured that each CSP(Γ )

either lies in P or is NP-complete. This so-called dichotomy conjecture is the
natural extension to non-Boolean domains of a celebrated result of Schaefer [18]
on the complexity of Generalized Satisfiability which states that CSP(Γ ) is either
in P or is NP-complete for any constraint language Γ over the Boolean domain.

Progress towards the dichotomy conjecture has been steady over the last
fifteen years and has been driven by a number of complementary approaches.
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One such angle of attack relies on universal algebra: there is a natural way
to associate to a set of relations Γ an algebra A(Γ ) whose operations are the
functions that preserve the relations in Γ and one can show that the complexity
of CSP(Γ ) depends on the algebraic structure of A(Γ ). This analysis has led to
a number of key results including a verification of the dichotomy conjecture for
three-element domains and the identification of wide classes of tractable CSP
(see [4]).

A different, descriptive complexity approach has consisted in classifying CSPs
according to the sophistication of the logical apparatus required to define the
set of negative instances of CSP(Γ ). It was noted early on that when ¬CSP(Γ )
is definable in the database-inspired logic programming language Datalog then
CSP(Γ ) lies in P [9] and this provides a unifying explanation for a number
of (but not all) tractable cases. Further investigations have indicated strong
connections between expressibility in symmetric and linear Datalog and CSPs
solvable in, respectively, logarithmic space (L) and non-deterministic logspace
(NL) [5, 8]. From a logical perspective, the simplest class of CSPs are those which
are first-order definable and recent work has provided a precise characterization
for them [2, 15].

From a complexity-theoretic perspective, the classification of CSP(Γ ) as
“tractable” is rather coarse. Ultimately, one would expect that every CSP(Γ )
lying in P is in fact complete for some “fairly standard” subclass of P. Over the
two-element domain, it was recently established that Schaefer’s dichotomy can
in fact be refined: each CSP(Γ ) over the Boolean domain is either FO-definable
or is complete under AC0 isomorphisms for one of the classes L, NL, ⊕L, P or
NP [1].

The present paper seeks to develop the necessary tools for a refinement of the
dichotomy conjecture and for a smoother integration of the logical and algebraic
approaches to the study of CSPs. As we recall in Section 2, the algebraic angle
of attack relies on a number of basic reductions from CSP(Λ) to CSP(Γ ) when
Γ and Λ are constraint languages when the algebra A(Λ) lies in the variety gen-
erated by A(Γ ) [3, 4]. When the sole objective is to classify CSP(Γ ) as either in
P or NP-complete, polynomial-time Turing reductions are clearly good-enough.
However, finer classifications require much tighter reductions and we show that
all but one of them is in fact first-order. Furthermore we show that all of them
preserve expressibility in Datalog and its most relevant fragments.

These reductions provide the opportunity for a systematic study of the com-
plexity of tracatable CSPs. In Section 3, we begin by proving that if CSP(Γ ) is
not first-order definable, then the problem is in fact L-hard. This result can be
viewed as a first step towards more general dichotomy theorems as it exhibits
a gap in the complexity of CSP. In Section 4, we use tame congruence theory
and deep classification results of idempotent strictly simple algebras to obtain
a number of hardness results for CSP(Γ ). Specifically, we consider the variety
V generated by A(Γ ) and give sufficient conditions on V for CSP(Γ ) to be NL-
hard, ModpL-hard and P-hard. These also translate into necessary conditions for
¬CSP(Γ ) to be definable in Datalog, linear Datalog and symmetric Datalog. For



a given Γ it is possible to decide whether or not V fits each of these criteria [20].
In Section 5, we demonstrate the usefulness of the results by revisiting the results
of [1] on CSPs over the boolean domain and by classifying the complexity of a
number of CSP(Γ ) when A(Γ ) is the idempotent reduct of a preprimal algebra.

Because of space constraints, technical proofs appear in the appendix.

1 Preliminaries

We first set the notation and present the required basics. We refer the reader
to [11] and [7] for algebraic and clone-theoretic results, to [12] for an introduction
to finite model theory and descriptive complexity and to [4] for a survey on the
algebraic approach to CSP.

Let σ = {R1, . . . , Rr, c1, . . . , cs} be a signature, where each Ri is a relational
symbol of arity ai and each ci is a constant symbol. A structure H of signature σ
is a tuple H = 〈H ;R1(H), . . . , Rr(H), c1(H), . . . , cs(H)〉 where H , the universe
of H, is a non-empty set, and for each i Ri(H) is a relation on H of arity ai, and
ci(H) is some fixed element of H . We use the usual convention of using G,H, . . .
to denote the universe of the structure G,H, . . . . Unless otherwise mentioned the
signatures we deal with in this paper are purely relational (i.e. without constant
symbols).

Let σ be a (relational) signature. Given two σ-structures G and H, a map f
from G to H is a homomorphism from G to H if f(Ri(G)) ⊆ Ri(H)) for all i,
where for any relation R of arity r we have

f(R) = {(f(x1), . . . , f(xr)) : (x1, . . . , xr) ∈ R}.

Two structures H and H′ are homomorphically equivalent if there exist homo-
morphisms H→ H′ and H′ → H. A structure H is a core if the only homomor-
phisms H→ H are automorphisms, or, equivalently, if it is of minimal size in its
class of homomorphically equivalent structures. Every finite structure is equiva-
lent to a structure of minimal size, and it is easy to verify that any two minimal
structures are isomorphic, hence we can talk about the core of a structure.

Let Γ be a constraint language, i.e. a finite set of relations on the set H .
Let Γ denote a relational structure on H whose set of basic relations is Γ and
let σ be its signature. We denote as Hom(Γ) the class of all finite structures
of type σ that admit a homomorphism to Γ. In this setting Γ is called the
target structure. Alternatively, we may use the notation CSP(Γ ) for this decision
problem: indeed the constraints in an instance of CSP(Γ ) can be regarded as
defining a σ-structure C on the set of variables and a satisfying assignment is a
homomorphism from C to Γ. Obviously, if Γ′ is the core of Γ then Hom(Γ) =
Hom(Γ′). We thus assume throughout the paper that the target structures under
consideration are cores.

1.1 Algebras and varieties

An n-ary operation on a set A is a map from An to A. The n-ary operation f on
A preserves the k-ary relation θ on A (equivalently, we say that θ is invariant



under f) if the following holds: given any matrix M of size k×n whose columns
are in θ, applying f to the rows of M will produce a k-tuple in θ. Given a set
Γ of relations on A, Pol(Γ ) denotes the set of all operations on A that preserve
all relations in Γ .

An algebra is a pair A = 〈A;F 〉 where A is a non-empty set, called the
universe of A, and F is a set of operations on A, called the basic operations of A.
For a constraint language Γ over A, we denote by A(Γ ) the algebra 〈A;Pol(Γ )〉,
and call it the algebra associated to CSP (Γ ).

The terms (polynomials) of an algebra are the operations that can be built
from its basic operation (and the constants) using composition and projections.
Two algebras are term (polynomially) equivalent if they have the same terms
(polynomials). An operation f is idempotent if it satisfies f(x, . . . , x) = x for all
x. The idempotent reduct of the algebra A is the algebra with the same universe
and whose basic operations are the idempotent terms of A.

Subalgebras, homomorphic images and products of algebras are defined in
a natural way, as for groups or rings. Technically we require the algebras to
be indexed and of the same signature to define these notions, see [11]. A class
of similar algebras is a variety if it is closed under formation of homomorphic
images (H), subalgebras (S) and products (P). The variety generated by A is
denoted by V(A); it is known that V(A) = HSP (A), i.e. that every member C

of the variety is obtained as a homomorphic image of a subalgebra of a power of
A; furthermore this power can be taken to be finite if C is finite.

Tame Congruence Theory, developed by Hobby and McKenzie [11], is a pow-
erful tool for the analysis of finite algebras. Every finite algebra has a typeset,
which describes the local behaviour of the algebra, which contains one or more
of the following 5 types: (1) the unary type, (2) the affine type, (3) the Boolean
type, (4) the lattice type and (5) the semilattice type. There is a very tight
connection between the kind of equations that are satisfied by the algebras in a
variety and the types that are admitted (omitted) by a variety, i.e. those types
that (do not) appear in the typeset of some algebra in the variety. The theory
for idempotent algebras is somewhat more streamlined, and we now present the
two results we shall require.

An algebra is strictly simple if it is simple and has no non-trivial subalgebras
(a subalgebra is trivial if it is either the algebra itself or is 1-element.) Because a
strictly simple algebra is simple it has a unique type from 1 to 5 associated to it.
The next lemma (Lemma 3.1 [20]) will allow us to connect typesets of varieties
to the complexity of CSP’s:

Lemma 1.1. Let A be a finite, idempotent algebra such that V(A) admits type
i. Then there exists a strictly simple algebra of type at most i in HS(A) where
“at most i” refers to the ordering 1 < 2 < 3 > 4 > 5 > 1.

Szendrei has characterised all idempotent strictly simple algebras, ([19] The-
orem 6.1): we need the following special cases. The 2-element set is the 2-element
algebra with no basic operations 〈{0, 1}; ∅〉. The 2 element semilattices are the 2-
element algebras with a single binary operation 〈{0, 1};∧〉 and 〈{0, 1};∨〉. The 2



element lattice is the 2 element algebra with two binary operations 〈{0, 1};∨,∧〉.
An algebra is affine if there is an abelian group structure on its base set set such
that (i) m(x, y, z) = x − y + z is a term of the algebra and (ii) every term
of the algebra is affine, i.e. commutes with the operation m. Equivalently, an
idempotent algebra is affine iff it is the idempotent reduct of a module.

Lemma 1.2. Let A be a strictly simple idempotent algebra.

– If A has unary type (type 1) then it is term equivalent to the 2-element set;
– If A has affine type (type 2) then it is an affine algebra;
– if it is of semilattice (type 5) it is term equivalent to a 2 element semilattice;
– if A has lattice type (type 4) it is polynomially equivalent to the 2 element

lattice.

This can be used to obtain:

Corollary 1.1. Let A be a finite, idempotent, strictly simple algebra.

1. If A is of affine type, then there exists an Abelian group structure on the base
set of A such that the relation {(x, y, z) : x+ y = z} is a subalgebra of A3;

2. if A is of semilattice type, then up to isomorphism the universe of A is {0, 1}
and the relation θ = {(x, y, z) : (y ∧ z)→ x} is a subalgebra of A3;

3. if A is of lattice type, then up to isomorphism the universe of A is {0, 1} and
the relation ≤ = {(0, 0), (0, 1), (1, 1)} is a subalgebra of A2.

1.2 Fragments of Datalog

Datalog was originally introduced as a database query language. We view it here
simply as a means to define sets of σ-structures. A Datalog program over the
signature σ consists of a finite set of rules of the form h← b1∧. . .∧bk where each
of the bi and h are atomic formulas of the form R(xj1 , . . . , xjr

). We distinguish
two types of relational predicates occurring in the program: predicates R that
occur at least once in the head of a rule are called intensional database predicates
(IDBs) and are not part of σ. The other predicates which occur only in the
body of a rule are called extensional database predicates and must all lie in σ.
Precise definitions of the semantics of Datalog can be found in [14, 5, 8]: we
simply illustrate the basics of the formalism with the following example.

Let σ be a signature consisting of a single binary relational symbol E (so that
a σ-structure is a graph) and consider the Datalog program consisting of the rules
(1) P (x, y)← E(x, y) (2) P (x, y)← P (x, z) ∧ P (z, y) and (3) G(x) ← P (x, x).
The program Q is providing a recursive specification of the IDB predicates P,G
in terms of E,P and G. The predicate P is intended to include (x, y) if there is
a path from x to y. The first rule states that this holds if (x, y) is an edge and
the second that, recursively, this holds if there is a path from x to some z and
from z to y. The predicate G then contains the x such that there is a directed
cycle around x. One of the IDBs of the Datalog program is chosen as a target
and we say that a σ-structure is accepted by the program if that target IDB is



non-empty. The program above with G as its goal thus defines the set of graphs
with a directed cycle.

Rules which contain only EDBs in their body (such as (1) above) are called
non-recursive rules and those containing at most one IDB in their body (such
as (1) and (3)) are linear. Although the above example contains the non-linear
rule (2), it is easy to see that an equivalent linear program could be obtained
by replacing (2) with P (x, y) ← P (x, z) ∧ E(z, y). A program is said to be
symmetric if it is linear and such that each recursive rule R is accompanied by
its symmetric Rr, where Rr is obtained by exchanging from R by exchanging
the roles of the IDBs in its head and body. The symmetric of the above rule
would be P (x, z)← P (x, y) ∧ E(z, y).

The expressive power of Datalog and its linear, symmetric and non-recursive
fragments have been important tools in the study of CSP. A very nice result
of [2] shows that CSP(Γ ) is definable by a first-order sentence iff ¬CSP(Γ ) is
definable by a non-recursive Datalog program and consequently all such CSP(Γ )
are solvable in co-NLogtime. Moreover, expressibility of ¬CSP(Γ ) in symmet-
ric, linear and general Datalog is a sufficient (and wide-encompassing) condition
for CSP(Γ ) to lie in respectively L [8], NL [5] and P [9].

2 Nature of the algebraic and clone-theoretic reductions

The following theorem is our starting point for a fine-grained analysis of the
complexity of constraint satisfaction problems. A relation θ is irredundant if for
each two distinct coordinates i and j there exists a tuple x of θ with xi 6= xj .

Theorem 2.1. Let Γ be a finite set of relations on A such that Γ is a core. Let
A denote the idempotent reduct of the algebra associated to Γ .

1. Let C be a finite algebra in V(A), and let Γ0 be a finite set of relations invari-
ant under the basic operations of C. Then there exists a logspace many-one
reduction of CSP(Γ0) to CSP(Γ ). Furthermore, if ¬CSP (Γ ) is expressible
in (linear, symmetric) Datalog, then so is ¬CSP (Γ0).

2. If furthermore C ∈ HS(A) and the relations in Γ0 are irredundant, then the
above reduction is first-order.

The proof, although not conceptually difficult, is technical and is given in
the appendix in full detail. The constructions are given for ten basic reductions
which can be composed to obtain the two claims above: their principles are
not new [13, 3] although most were never explicitly shown to be first order or to
preserve expressibility in the linear and symmetric fragments of Datalog (the case
of Datalog is treated in [17]). It should be noted that logspace reductions are the
best we can hope for in the first half of the statement: indeed, it is straightforward
from the definitions to see that if Γ0 = Γ ∪ {=} then one has A(Γ ) = A(Γ0).
But if CSP(Γ ) is first-order definable then CSP(Γ0) is L-complete (see e.g. [8])
and so there can be no first-order reduction from CSP(Γ0) to CSP(Γ ).



3 CSP’s that are not FO are L-hard

In this section we show that for every finite set Γ , if CSP (Γ ) is not first-order
expressible then it is L-hard. We require a characterisation of first-order definable
CSP’s from [15]. Consider the signature σ = {R1, . . . , Rr} whereRi is a relational
symbol of arity ai. For an integer n the n-link of type σ is the σ-structure

Ln = 〈{0, 1, . . . , n};R1(Ln), . . . , Rr(Ln)〉,

such that Ri(Ln) = ∪n
j=1{j−1, j}ai for i = 1, . . . , r. Intuitively, a link is obtained

from a path 0, 1, . . . , n by replacing each edge by the relational structure of type
σ on 2 elements whose basic relations are of maximal size.

Let A and B be two σ-structures. The A-th power of B is the σ-structure

BA = 〈BA;R1(B
A), . . . , Rr(B

A)〉,

where BA is the set of all maps from A to B, and for i = 1, . . . , r the rela-
tion Ri(B

A) consists of all tuples (f1, . . . , fai
) such that (f1(x1), . . . , fai

(xai
)) ∈

Ri(B) whenever (x1, . . . , xai
) ∈ Ri(A).

Let π1 and π2 denote the two projections from A2 to A.

Lemma 3.1 ([15]). Let Γ be a finite set of relation on A such that Γ is a core.
Then CSP (Γ ) is first-order definable if and only if for some n there exists a

homomorphism P : Ln → Γ(Γ2) such that P (0) = π1 and P (n) = π2.

Theorem 3.1. For any finite constraint language Γ the problem CSP (Γ ) is
either first-order definable or is L-hard.

Proof (Sketch). We assume that Γ is a core. Let σ = {R1, . . . , Rr} be the sig-
nature of the structure Γ and let Γ ′ = Γ ∪ {{a} : a ∈ A}. For a ∈ A let Sa

be a relational symbol for {a}, and let σ′ = {R1, . . . , Rr} ∪ {Sa : a ∈ A} be
the signature of the structure Γ′. It suffices to show that if CSP (Γ ) is not first-
order definable then CSP (Γ ′) is L-hard (see Lemma 6.4): for this we construct
a first-order reduction of NOT st-connectivity (which is L-hard under first-order
reductions [12]) to CSP (Γ ′). Consider the vocabulary of graphs with two spec-
ified vertices, τ = {E, s, t} where E is a binary relational symbol and s and
t are constant symbols. We shall describe a first-order interpretation I of σ′

into τ assigning to each graph G with distinguished vertices s and t a structure
K = I(G) of type σ′ such that K admits a homomorphism to Γ′ precisely when
s and t are not connected in G.

It is clear that the following defines a symmetric relation ∼ on Γ(Γ2): let

g ∼ h if there exists a homomorphism F : L1 → Γ(Γ2) such that F (0) = g and
F (1) = h. It is also clear by definition of the links that Lemma 3.1 shows this:
for a core Γ, CSP (Γ ) is first-order definable precisely when the projections are
connected in the graph defined by ∼.

We simply describe the reduction and argue in the appendix that it is indeed
first-order. Given a graph G with specified vertices s and t, we construct a σ-
structure H which is obtained from G by replacing each edge by the link L1 (in



the same manner that links are obtained from paths). Consider now the product
σ-structure H×Γ2, that we transform into the σ′-structure K = I(G) as follows:
for each a ∈ A we define Sa(K) to contain all elements (g, c, d) such that g = s

and c = a OR g = t and d = a. We first show that the above is indeed a reduction
of NOT st-connectivity to CSP (Γ ′). Suppose there is a homomorphism f from
K to Γ′: in particular it is a homomorphism of σ-structures f : H × Γ2 → Γ,
which, by the natural property of products, induces a homomorphism F from H
to ΓΓ

2

; by definition of the relations Sa(K), it is easy to verify that F (s) = π1

and F (t) = π2. Indeed, we have F (s)(c, d) = f(s, c, d) = c and F (t)(c, d) =
f(t, c, d) = d. Since CSP (Γ ) is not first-order definable, there is no path in
Γ between the projections, hence there cannot be a path in G from s to t.
Conversely, suppose there is no such path in G. Then define a map f from
H × Γ2 to Γ by setting f(g, c, d) = c if there is a path in G from s to g and
f(g, c, d) = d otherwise. This is clearly well-defined, and obviously preserves all
the relations Sa. It is easy to see that f also preserves all relations Ri: indeed,
the map F : H→ ΓΓ

2

induced by f maps all elements to one of two projections
which are “loops” in any power structure.

4 Main Theorems

We present our two main theorems. The first provides sufficient algebraic criteria
for the hardness of CSP(Γ ) for a number of natural complexity classes. The
second expresses these same lower bounds in descriptive complexity terms.

Theorem 4.1. Let Γ be a finite set of relations on A such that Γ is a core, and
let A = A(Γ ). Then:

1. If V(A) admits the unary type, then CSP(Γ ) is NP-complete under FO re-
ductions.

2. If V(A) omits the unary type but admits the affine type, then there exists a
prime p such that CSP(Γ ) is ModpL -hard under FO reductions.

3. If CSP(Γ ) is not FO, then it is L-hard under FO reductions.
4. If V(A) omits the unary, and semilattice types, but admits the lattice type,

then CSP(Γ ) is NL-hard under FO reductions.
5. If V(A) omits the unary type, but admits the semilattice type, then CSP(Γ )

is P-hard under FO reductions.

Proof (Sketch). (3) is the content of Theorem 3.1, and (1) follows from a result
of [3]: the reduction there is actually first-order by Theorem 2.1.

It follows from results in [11] that if A satisfies the hypothesis of one of
(2), (4) or (5) then so does its idempotent reduct, which we denote by B. By
Lemma 1.1, if B satisfies the hypothesis (i) then there exists a strictly simple
algebra C ∈ HS(A) of type (i). By Corollary 1.1 it means that, in case (2),
there exists an Abelian group structure on the base set of B such that the 3-
ary relation µ = {(x, y, z) : x + y = z} is invariant under the operations of B.
Consider the set Γ ′ that consists of the relation µ, the unary relation B = {b}



where b is some non-zero element of B such that pb = 0 for some prime p, and
the unary relation Z = {0}. Then by Theorem 2.1 there is a first-order reduction
of CSP(Γ ′) to CSP(Γ ) and by Lemma 10.1 (in the appendix) CSP(Γ ) is mod-p
L hard under FO reductions.

We proceed as in the other two cases. In case (4), we find an FO reduction
of CSP(Γ ′) to CSP(Γ ) where Γ ′ = {≤, {0}, {1}}. There is a straightforward
FO-reduction from the directed graph unreachability problem to CSP(Γ ′) and
the former problem is NL-complete under first-order reductions [12].

In case (5) we find a first-order reduction of CSP(Γ ′) to CSP(Γ ) where
Γ ′ = {θ, {0}, {1}} where θ = {(x, y, z) : (y∧ z)→ x}. It is again straightforward
to show that CSP(Γ ′) admits a natural FO reduction from Horn-3-Sat which
is P-hard under FO-reductions [12].

Similar arguments lead to an analogous result in which hardness is replaced
by non-expressibility for fragments of Datalog. Note that (1) is shown in [17],
while (2) and (3) rely on the fact that ¬CSP({≤, {0}, {1}}) and ¬CSP({θ, {0}, {1}})
are not definable in, respectively, symmetric and linear Datalog [6].

Theorem 4.2. Let Γ be a finite set of relations on A such that Γ is a core, and
let A = A(Γ ). Then:

1. If V(A) admits the unary or affine types, then ¬CSP (Γ ) is not in Datalog.
2. If V(A) omits the unary type, but admits the semilattice type, then ¬CSP (Γ )

is not in linear Datalog.
3. If V(A) omits the unary and semilattice types, but admits the lattice type,

then ¬CSP (Γ ) is not in symmetric Datalog.

5 Applications

Because the algebraic criteria used in Theorems 4.1 and 4.2 are all decidable [20],
they are a very convenient first step when studying the complexity of CSP(Γ )
for a specific Γ or a specific class of them. We first show that our criteria match
Allender et al.’s [1] description of the complexity of Boolean CSP’s and line up
exactly with the expressibility in restrictions of Datalog. We finally use them to
study CSPs linked to preprimal algebras.

5.1 Boolean CSP’s

Theorem 5.1. Let Γ be a set of relations on {0, 1} such that Γ is a core. Let
V denote the variety generated by A(Γ ).

1. If V admits the unary type then CSP (Γ ) is NP-complete, and ¬CSP (Γ ) is
not expressible in Datalog.

2. If V omits the unary type but admits the affine type, then CSP (Γ ) is ⊕L-
complete and ¬CSP (Γ ) is not expressible in Datalog.

3. if V admits only the Boolean type, CSP (Γ ) is either first-order definable or
L-complete; if Γ is finite, ¬CSP (Γ ) is expressible in symmetric Datalog;



4. if V omits the unary, affine and semilattice types, but admits the lattice type,
then CSP (Γ ) is NL-complete; if Γ is finite, then ¬CSP (Γ ) is expressible in
linear Datalog, but not in symmetric Datalog;

5. if V omits the unary and affine types, but admits the semilattice type, then
CSP (Γ ) is P-complete; if Γ is finite then ¬CSP (Γ ) is expressible in Datalog,
but not in linear Datalog.

5.2 Preprimal algebras

We now use our results to investigate the descriptive and computational com-
plexity of CSP’s whose associated algebra is the idempotent reduct of a preprimal
algebra. A finite algebra A is preprimal if its clone of term operations is maximal
in the lattice of clones, i.e. is properly contained in the set of all operations on the
base set A but there is no clone strictly between these. Maximal clones satisfy re-
markable properties, for instance every clone is contained in some maximal clone
and they are finite in number. They were completely classified by I.G. Rosenberg
(see [7]), thereby furnishing an explicit criterion to determine if a set of opera-
tions generates all operations on a finite set A by composition. Alternatively, one
may view CSP’s whose algebra is preprimal as those whose constraint language
is minimal, in the sense that it is non-trivial but every of its constraints can be
inferred from any other non-trivial constraint in the language. It is easy to see
that any maximal clone may be expressed in the form Pol (θ) for some relation θ;
we shall investigate problems CSP(Γ ) where Pol(Γ ) = Pol({θ}∪{{a} : a ∈ A}),
i.e. such that the associated algebra of the problem CSP (Γ ) is the idempotent
reduct of a preprimal algebra. We follow Rosenberg’s classification of the rela-
tions θ that yield maximal clones, see pages 230-231 of [7]. We also require an
effective characterisation of FO definable CSP’s from [15]. Let G be a relational
structure and let a, b ∈ G. We say that b dominates a in G if for any basic
relation R of G, and any tuple t ∈ R, replacement of any occurrence of a by b
in t will yield a tuple of R. If Γ is a relational structure on A, we say that the
structure Γ2 dismantles to the diagonal if one may obtain, by successive removals
of dominated elements of Γ2, the diagonal {(a, a) : a ∈ A}.

Lemma 5.1 ([15]). Let Γ be a set of relations such that Γ is a core. Then
CSP (Γ ) is first-order expressible if and only if Γ2 dismantles to the diagonal.

(P) (Permutation) Here θ = π◦ for some permutation π which is fixed point
free and of prime order. In this case ¬CSP (Γ ) is expressible in symmetric Dat-
alog by [8]. In particular CSP(Γ ) is in L and in fact is L-complete: it is easy to
show that Γ2 does not dismantle to the diagonal and thus that CSP(Γ ) is not
FO-definable and L-hard by Theorem 3.1.

(E) (Equivalence) Here θ is a non-trivial equivalence relation on A; fol-
lowing [8] the problem ¬CSP (Γ ) is expressible in symmetric Datalog. Hence
CSP(Γ ) is in L, and again L-complete because one can also show that Γ2 does
not dismantle to the diagonal.

(A) (Affine) In this case θ = {(a, b, c, d) : a + b = c + d} where 〈A; +, 0〉 is
some Abelian p-group for some prime p. Notice that the associated algebra is



affine (in the sense defined earlier) and so the variety it generates admits the
affine type, and hence by Theorems 4.2 and 4.1 CSP(Γ ) is not in Datalog, and
it is ModpL-hard and in fact ModpL-complete (see appendix).

(C) (Central) Here θ is a k-ary relation (k ≥ 1) different from Ak that must
(among other things) have a central element, i.e. there is some c ∈ A such that
θ contains every tuple with an occurrence of c. In that case Γ2 does dismantles
to the diagonal and CSP(Γ ) is FO-definable. It follows from Theorem 5 of [8]
that ¬CSP (Γ ) is in symmetric Datalog, and if Γ does not contain a so-called
biredundant relation then CSP(Γ ) is actually first-order definable [15].

(R) (Regular) Here θ is a k-ary (k ≥ 3) regular relation defined as follows. Let
S denote the structure with universe {1, . . . , k} and one basic relation θ(S) of
arity k, consisting of all tuples (x1, . . . , xk) with at least one repeated coordinate.
Operations that preserve this relation are known to be the following: all non-
surjective operations and all essentially unary operations i.e. that depend on
only one variable [7]. In particular, no non-trivial idempotent operation preserves
θ(S). For any positive integer m let Sm denote the m-th power of this structure.
A k-ary relation on the set A is regular if there exists some positive integer m,
and a surjective map µ from A to Sm such that θ = µ−1(θ(Sm)). Clearly, in this
case, the structure 〈A; θ〉 retracts onto Sm, and it is easy to see that Sm retracts
onto S (S embeds in Sm via the map x 7→ (x, 1, . . . , 1).) From results in [17], the
relation θ cannot be invariant under a so-called Taylor operation, and thus A(Γ )
generates a variety that admits the unary type and CSP(Γ ) is NP-complete.

(O) (Order) In this last case, θ is a bounded order relation, i.e. a reflexive,
antisymmetric, transitive relation ≤ with elements 0 and 1 such that 0 ≤ x ≤ 1
for all x ∈ A. In that case the variety generated by the associated algebra admits
type 4 or 5 and hence by Theorems 4.2 and 4.1 ¬CSP (Γ ) is not expressible in
symmetric Datalog, and CSP(Γ ) is NL-hard. There is not much that is known
at this time on these CSP’s, either from the algebraic or the complexity point of
view: the class of so-called order-primal algebras is vast and quite complex. There
are posets for which the problem is NP-complete, others for which the problem is
NL-complete: the examples known to be in NL have their complement definable
in linear Datalog. It is also possible to construct, from a non-bounded example
found in [17], a bounded poset whose associated problem is tractable and mod-p
L hard. Similarly, from an example found in [16], one may construct a tractable
example whose variety admits type 5 and hence is P-complete.

Our case analysis can be summarized as follows.

Theorem 5.2. Let Γ be a finite set of relations such that Pol(Γ ) = Pol({θ} ∪
{{a} : a ∈ A}) where Pol(θ) is a maximal clone. If the maximal clone is of type
(P), (E), (A), (C), (R), (O), then CSP (Γ ) satisfies the properties given in the
following:
(P) (Permutation) Symmetric Datalog; L-complete.
(E) (Equivalence) Symmetric Datalog; L-complete.
(A) (Affine) not Datalog; ModpL-complete for some prime p.
(C) (Central) Symmetric Datalog; first-order definable if Γ contains no biredun-
dant relation, L-complete otherwise.



(R) (Regular) NP-complete.
(O) (Order) not in symmetric Datalog; NL-hard; some cases are known to be
NP-complete, some known to be NL-complete, some P -complete.
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Appendix

We provide in this appendix the technical arguments which were left out of the
main body of the paper.

6 Reductions

The next two sections provide the intermediate results required to prove Theo-
rem 2.1. We first introduce some terminology. We shall use the notion of first-
order interpretation with parameters which Atserias used in a similar context
in [2].
Definition. Let σ and τ = (R1, . . . , Rs) be two relational vocabularies. A k-
ary first-order interpretation with p parameters of τ in σ is an (s + 1)-tuple
I = (φU , φR1

, . . . , φRs
) of first-order formulas over the vocabulary σ, where

φU = φU (x, y) has k+ p free variables x = (x1, . . . , xk) and y = (y1, . . . , yp) and
φRi

= φRi
(x1, . . . , xr, y) has kr + p free variables where r is the arity of Ri and

each xj = (x1
j , . . . , x

k
j ) and y = (y1, . . . , yp).

Let G be a σ-structure. A tuple c = (c1, . . . , cp) of elements of G i s said to
be proper if ci 6= cj when i 6= j. Let c = (c1, . . . , cp) be proper. The interpretation
of G through I with parameters c, denoted by I(G, c), is the τ -structure whose
universe is

{a ∈ Gk : φU (a, c)}

and whose interpretation for Ri is

{(a1, . . . , ar) ∈ (Gk)r : φU (a1, c) ∧ · · · ∧ φU (ar, c) ∧ φRi
(a1, . . . , ar, c)}.

If each formula in I is quantifier-free then we say that I is a quantifier-free
interpretation.
Definition. Let σ and τ be finite relational vocabularies, let C be a class of
σ-structures and let D be a class of τ -structures closed under isomorphisms. We
say that a first-order (resp. quantifier-free) interpretation I with p parameters
of τ in σ is a first-order (resp. quantifier-free) reduction from C to D if for every
σ-structure G with at least p points the following two equivalences hold:

1. G ∈ C ⇔ I(G, c) ∈ D for every proper c,
2. G ∈ C ⇔ I(G, c) ∈ D for some proper c.

All our first-order reductions will have added structure that we will exploit
to show they preserve expressibility in symmetric Datalog:
Definition. We say that a first-order reduction is positive if it satisfies the
following conditions:

1. φU is quantifier-free;
2. for every θ in τ , φθ is built from atomic formulas and equalities using only

the existential quantifier, disjunction and conjunction.

Note that we allow the constants FALSE and TRUE as atomic formulas in
our reductions.



6.1 The algebraic reductions

Lemma 6.1. Let Γ0 be a finite set of relations on C, let µ : B → C be a
surjective map. Let Γ1 = {µ−1(θ) : θ ∈ Γ0}. Then Hom(Γ0) = Hom(Γ1), in
particular there is a positive quantifier-free reduction of CSP(Γ0) to CSP(Γ1).

Proof. This is straightforward: let C′ denote a subset of B that maps bijectively
to C via µ; then the substructure of Γ1 induced by C′ is obviously isomorphic
to Γ0 via µ; hence Γ0 and Γ1 are homomorphically equivalent hence Hom(Γ0) =
Hom(Γ1). The last statement is trivial.

Lemma 6.2. Let Γ1 be a finite set of relations on B, and suppose that B is a
subset of A. Let Γ2 = {B} ∪ Γ1 where B is viewed as a unary relation on A

and the relations in Γ1 are viewed as relations on A. Then there is a positive
quantifier-free reduction of CSP(Γ1) to CSP(Γ2).

Proof. This is also quite easy: let σ = {R1, . . . , Rs} be the type of the structure
Γ1 and let τ = {R0, R1, . . . , Rs} be the type of the structure Γ2. Let G be
a structure of type σ, and define the structure G′ of type τ as follows: it has
the same universe G as G, and let R0(G

′) = G, and Ri(G
′) = Ri(G

′) for all
1 ≤ i ≤ s. It is obvious that there is a homomorphism of G to Γ1 if and only if
there is one from G′ to Γ2; furthermore the reduction is clearly quantifier-free
and positive.

To state our next lemma we require the following notation: if θ is a k-ary
relation on A2, define a 2k-ary relation on A by

θ̃ = {(x1
1, x

2
1, . . . , x

1
k, x

2
k) : ((x1

1, x
2
1), . . . , (x

1
k, x

2
k)) ∈ θ}.

Lemma 6.3. Let Γ2 be a finite set of relations on A2. Let Γ3 = {θ̃ : θ ∈ Γ2}.
Then there is a positive quantifier-free reduction of CSP(Γ2) to CSP(Γ3).

Proof. Let σ = {R1, . . . , Rs} be the type of the structure Γ2 and let τ =

{R̃1, . . . , R̃s} be the type of the structure Γ3. The reduction is straightfor-
ward: given a structure G of type σ, we create two disjoint copies of it, G′ =
G× {0} ∪G× {1}, and define for each 1 ≤ i ≤ s

Ri(G
′) = {((a1, 0), (a1, 1), (a2, 0), . . . , (ak, 0), (ak, 1)) : (a1, . . . , ak) ∈ Ri(G)}.

It is not difficult to verify that there is a homomorphism from G to Γ2 if and
only if there is one from G′ to Γ3. It remains to show that the reduction is
positive and quantifier-free; it is in fact 2-ary with 2 parameters: let

φU (x1, x2, y0, y1) ≡ (x2 = y0)
∨

(x2 = y1)

and if θ ∈ σ of arity r let

φ
θ̃
(x1

1, x
2
1, . . . , x

1
2r, x

2
2r , y

0, y1) ≡

≡
[
(x1

1, x
1
3, . . . , x

1
2r−1) ∈ θ̃

]∧ ∧

1≤i≤r

[
(x1

2i−1 = x1
2i)
∧

(x2
2i−1 = y0)

∧
(x2

2i = y1)
]
.



6.2 The “core to idempotent” reduction

Lemma 6.4. Let Γ0 be a finite set of relations on A such that Γ0 is a core.
Let Γ1 = Γ0 ∪ {{a} : a ∈ A}. Then there is an |A|-ary, 2-parameter positive
quantifier-free reduction of CSP(Γ1) to CSP(Γ0).

Proof. Let σ be the signature of Γ1 and let τ be the signature of Γ0. Let G1 be
a structure of type σ. We construct a τ -structure G0 as follows: it is a copy of
G1 from which we remove all relations in Γ ′ − Γ , together with a copy of Γ0.
To this we add the following: if an element g of G1 is constrained to value a,
then for each θ ∈ τ we add to θ(G0) all tuples obtained from a tuple of θ(Γ0)
by replacing all occurrences of a by x. Then G1 admits a homomorphism to
Γ1 if and only if G0 admits a homomorphism to Γ0: indeed one direction is
immediate. Suppose now that there is a homomorphism f : G0 → Γ0; we need
to prove that if an element g ∈ G is constrained to {a} then f(g) = a. Because
Γ0 is a core, the restriction of f to the copy of Γ0 in G0 is an isomorphism,
and hence we may find an automorphism α of Γ′

0 such that α ◦ f is the identity.
Consider the substructure of G0 induced by the copy of Γ0, minus the element
a plus the element g: by construction it is isomorphic to the core Γ0, and the
restriction of α ◦ f to it has all elements of A in its image except possibly a :
this means that f(g) = a.

We now proceed to show that this reduction is indeed described by an |A|-ary,
2-parameter positive quantifier-free interpretation of τ in σ. Let h = |A|. The
universe of G0 is defined as the diagonal of Gh (the copy of G1) together with
all tuples of the form (y0, . . . , y0, y1, y0, . . . , y0) where y1 is in the a-th position
(the copy of Γ0).

Let φU (x1, . . . , xh, y0, y1) be the formula φD
U ∨ φ

Y
U where

φD
U (x1, . . . , xh, y0, y1) ≡

∧

i6=j

(
xi = xj

)

and

φY
U (x1, . . . , xh, y0, y1) ≡

∨

a∈A


∧

j 6=a

(xj = y0) ∧ (xa = y1)


 .

Let θ be in τ , of arity r. We define φθ(x1, . . . , xr , y
0, y1) as follows: it is

φD
θ ∨ φ

Y
θ ∨ φ

M
θ where

φD
θ (x1, . . . , xr, y

0, y1) ≡


 ∧

1≤i≤r

φD
U (x1

i , . . . , x
h
i , y

0, y1)


 ∧ (x1

1, . . . , x
1
r) ∈ θ

and

φY
θ (x1, . . . , xr, y

0, y1) ≡
∨

(a1,...,ar)∈θ(Γ0)


 ∧

1≤i≤r

∧

j 6=ai

(xai

i = y1) ∧ (xj
i = y0)


 ,



and

φM
θ (x1, . . . , xr, y

0, y1) ≡
∨

a∈A

∨

(a1,...,ar)∈θ(Γ0)

[
∧

i:ai=a

φD
U (x1

i , . . . , x
h
i , y

0, y1) ∧ (x1
i ∈ {a})

]
∧

∧


 ∧

i:ai 6=a


 ∧

j 6=ai

(xai

i = y1) ∧ (xj
i = y0)




 .

6.3 The reductions for “inferred” constraints

Let Γ be a set of relations and suppose that Pol(Γ ) ⊆ Pol(θ). We shall require
the following combinatorial descriptions of the relation θ in terms of those in Γ
(see e.g. [4]).

Lemma 6.5. Let Γ and Γ ′ be sets of relations on A. Then the following condi-
tions are equivalent:

1. Pol(Γ ) ⊆ Pol(Γ ′);
2. for every θ ∈ Γ ′ of arity k there exists a (primitive positive) formula

φ(x1, . . . , xk) ≡ ∃y1, . . . ,∃ymψ(x1, . . . , xk, y1, . . . , ym)

where ψ is a conjunction of atomic formulas with relations in Γ ∪ {=} such
that (a1, . . . , ak) ∈ θ if and only if φ(a1, . . . , ak) holds;

3. there exists a finite sequence Γ = Γ0, . . . , Γs = Γ ′ such that each set of rela-
tions Γi is obtained from the preceding one by one of the following operations:
(a) removing a relation,
(b) adding a relation obtained by permuting the variables of a relation,
(c) adding the intersection of two relations of the same arity,
(d) adding the product of two relations,
(e) adding a relation obtained by projecting an n-ary relation to its first n−1

variables,
(f) adding the equality relation.

We now prove that the first 5 constructions described above induce positive
first-order reductions. The 6th one, adding the equality, although not first-order,
does preserve expressibility in all restrictions of Datalog we use, see [8]. See also
[17] Lemma 3.1 for the proof that all 6 are indeed reductions.

Lemma 6.6. Let Γ be a finite set of relations on A, let θ ∈ Γ and let Γ ′ =
Γ \ {θ}. Then there is a positive, 1-ary 0-parameter quantifier-free reduction of
CSP(Γ ′) to CSP(Γ ).

Proof. This is obvious: given a structure G let G′ be the same as G and further
set θ(G′) = ∅.



Lemma 6.7. Let Γ be a finite set of relations on A, let θ ∈ Γ be r-ary. Let
Γ ′ = Γ ∪{θ1} where θ1 = {(xπ(1), . . . , xπ(r)) : (x1, . . . , xr) ∈ θ} for some permu-
tation π of {1, . . . , k}. Then there is a 1-ary, 0-parameter positive quantifier-free
reduction of CSP(Γ ′) to CSP(Γ ).

Proof. Given a structure G let G′ be obtained from G by removing θ1 but
adding to θ(G′) all appropriate permutations of tuples in θ1(G). Formally, the
interpretation is defined as follows: φU ≡ TRUE and for every k-ary ρ 6= θ in
the signature of Γ, let φρ ≡ (x1, . . . , xk) ∈ ρ and define

φθ(x1, . . . , xr) ≡ (x1, . . . , xr) ∈ θ
∨

(xπ(1), . . . , xπ(r)) ∈ θ1.

Lemma 6.8. Let Γ be a finite set of relations on A, let α, β ∈ Γ be r-ary and
let γ = α ∩ β. Let Γ ′ = Γ ∪ {γ}. Then there is a 1-ary, 0-parameter positive
quantifier-free reduction of CSP(Γ ′) to CSP(Γ ).

Proof. Given a structure G let G′ be obtained from G by removing γ but adding
to α(G′) and β(G′) all tuples in γ(G). Formally the interpretation is defined
as follows: φU ≡ TRUE and for every k-ary ρ 6= α, β in the signature of Γ, let
φρ ≡ (x1, . . . , xk) ∈ ρ and let

φα(x1, . . . , xr) ≡ (x1, . . . , xr) ∈ α
∨

(x1, . . . , xr) ∈ γ

and

φβ(x1, . . . , xr) ≡ (x1, . . . , xr) ∈ β
∨

(x1, . . . , xr) ∈ γ.

Lemma 6.9. Let Γ be a finite set of relations on A, let α, β ∈ Γ be k- and
r-ary respectively. Let γ = {(x1, . . . , xk, y1, . . . , yr) : x ∈ α, y ∈ β}, and let
Γ ′ = Γ ∪ {γ}. Then there is a 1-ary, 0-parameter positive first-order reduction
of CSP(Γ ′) to CSP(Γ ).

Proof. Given a structure G let G′ be obtained from G by removing γ but adding
to α(G′) and β(G′) the appropriate projection of all tuples in γ(G). Formally
the interpretation is defined as follows: φU ≡ TRUE and for every k-ary ρ 6= α, β

in the signature of Γ, let φρ ≡ (x1, . . . , xk) ∈ ρ, and

φα(x1, . . . , xk) ≡ (x1, . . . , xk) ∈ α
∨
∃z1, . . . , zr(x1, . . . , xk, z1, . . . , zr) ∈ γ

and

φβ(x1, . . . , xr) ≡ (x1, . . . , xr) ∈ β
∨
∃z1, . . . , zk(z1, . . . , zk, x1, . . . , xr) ∈ γ.

Lemma 6.10. Let Γ be a finite set of relations on A, let θ ∈ Γ be k–ary and let
θ1 = {(x1, . . . , xk−1) : ∃xk x ∈ θ}. Let Γ ′ = Γ ∪{θ1}. Then there is a (k+1)-ary,
2-parameter positive quantifier-free reduction of CSP(Γ ′) to CSP(Γ ).



Proof. Given a structure G, let G′ be obtained from G by removing θ1, and
adding to its universe, for each tuple t = (x1, . . . , xk−1) of θ(G) a new element
xt, and adding to θ(G′) the tuple (x1, . . . , xk−1, xt).

Formally the interpretation is defined as follows. Let τ be the type of Γ and
let σ be the type of Γ′. Define φU (x1, . . . , xk+1, y0, y1) to be the formula φD

U ∨φ
E
U

where
φD

U (x1, . . . , xk+1, y0, y1) ≡
∧

i6=j

(
xi = xj

)

and
φE

U (x1, . . . , xk+1, y0, y1) ≡
[
(xk = y0) ∧ (xk+1 = y1)

]
.

Hence the universe of G′ is defined as the diagonal of Gk+1 (the copy of G)
together with all tuples of the form (x1, . . . , xk−1, y0, y1).

For each r-ary µ ∈ τ , if µ 6= θ then

φµ(x1, . . . , xr, y
0, y1) ≡


 ∧

1≤i≤r

φD
U (x1

i , . . . , x
k+1
i , y0, y1)


 ∧ (x1

1, . . . , x
1
r) ∈ µ.

Finally define

φθ(x1, . . . , xk, y
0, y1) ≡

∧

1≤i≤k−1

φD
U (x1

i , . . . , x
k+1
i , y0, y1)

∧
(x1

1, . . . , x
1
k−1) ∈ θ1

∧

∧

1≤j≤k−1

(xj
k = x1

j)
∧

(xk
k = y0)

∧
(xk+1

k = y1)

7 Preserving Datalog and its restrictions

In what follows we shall require the following definition (see [5]). Let σ be a
vocabulary, and let S1, . . . , Sl be relation symbols. Consider a second-order for-
mula

Ψ ≡ ∃S1 . . . Sl∀v1 . . . vmψ

where ψ is a quantifier-free first-order formula over the vocabulary σ∪{S1, . . . , Sl}:
assume that ψ is in CNF. In particular we may write each conjunct of ψ as a
disjunct of the form

Φ ≡ φ
∨
Σ

where φ is a disjunct of atomic formulas over σ (we also allow equalities) and Σ
is a disjunct of atomic formulas involving only the Si (we allow Σ to be “empty”,
i.e. FALSE.)

We say that Ψ is restricted Krom if each Σ contains at most one positive
occurrence of some Si and at most one negative occurrence of some Sj , i.e. it is
of the form (i) “empty”, (ii) x ∈ Si, (iii) ¬(x ∈ Sj) or (iv) (x ∈ Si) ∨ ¬(y ∈ Sj).
We say that Ψ is monotone if every disjunct of every φ is negated, i.e. each φ is
of the form

φ ≡ ¬(x ∈ θ) ∨ · · ·



where the θ are relational symbols in σ. We say that Ψ is symmetric if, whenever
the disjunct

Φ ∨ (x ∈ Si) ∨ ¬(y ∈ Sj)

appears then its “symmetric” also appears as a conjunct, namely

Φ ∨ (y ∈ Sj) ∨ ¬(x ∈ Si).

We say that a class of σ-structures C is definable in restricted, monotone,
symmetric Krom SNP if there exists a formula of this form whose models are
precisely the members of C. We say that C is definable in restricted, monotone,
symmetric Krom SNP with equalities if the same holds, but the formula is over
the vocabulary σ ∪ {=}, i.e. we allow some of the disjuncts in φ to be of the
form ¬(x = y) or also (x = y) (of course equality is interpreted normally in each
structure).

The following result is an adaptation of Lemma 1 in [5], with parts of the
proof of Lemma 3 of [10] peppered in (consult [8] for a detailed proof of the
equivalence of the first two conditions). Datalog(6=)is defined as follows: it is
the same as Datalog, but we also allow equalities and disequalities as EDB’s
(see [14].) A class C of structures is homomorphism closed if G′ ∈ C whenever
G ∈ C and G admits a homomorphism to G′.

Lemma 7.1. Let C be a collection of σ-structures. Then conditions (1) and (2)
are equivalent, as are (3) and (4):

1. C is definable in linear (symmetric) Datalog;
2. ¬C is definable in restricted, monotone, (symmetric) Krom SNP;
3. C is definable in linear (symmetric) Datalog( 6=);
4. ¬C is definable in restricted, monotone, (symmetric) Krom SNP with equal-

ities.

Furthermore, if C is homomorphism closed, then all the above conditions are
equivalent.

Proof. The equivalence of (1) and (2) for linear Datalog can be found in Lemma
1 of [5]. In fact, inspection of the proof there shows that it also proves the
equivalence of (3) and (4), and that symmetry is preserved. In fact, monotonicity
is also preserved, i.e. if every atomic formula (except the equalities) appears
negated in the Krom formula, then by Dalmau’s construction they will appear
positively in the Datalog program.

We must take care of the presence of the constants TRUE and FALSE, but
this is not difficult: we are dealing with conjuncts of the form

∨

Q

¬φq

so if some φq = TRUE, we can simply remove it, and if some φq = FALSE,
then we may simply remove the whole conjunct that contains it.



It is clear that (1) and (2) imply (3) and (4), so it remains to show the
converse, i.e. we show that if C is homomorphism closed and is definable in linear
(symmetric) Datalog(6=) then it is definable in linear (symmetric) Datalog. Let
P be a Datalog(6=) program for C; we may assume that it contains no equalities,
and that all variables appearing in the scope of an IDB are distinct (see Lemma
3 of [10]: it is not hard to verify that if P is linear or symmetric, then so is the
resulting program of the transformation given there). We may also clearly remove
any rule which contains some disequality of the form x 6= x. Now let P ′ be the
program obtained from P by simply deleting from every rule all disequalities;
clearly it is linear (symmetric) if P is. It is proved in Lemma 3 [10] that P ′ is
actually a program for C.

Remark. As we noted in the proof of the previous lemma, we may assume our
Datalog programs do not contain equalities; consequently, by the construction
in [5], (see also [8]), we obtain that if a class of structure is definable in monotone,
restricted, (symmetric), Krom SNP, then we may assume that in the defining
Krom formula, equalities are never used.

Proposition 7.1. Let C be a class of structures of signature σ and let D be a
class of structures of signature τ . Let I = (φU , φθ(θ ∈ τ)) be a positive first-
order reduction with p parameters from C to D. If D is definable in monotone,
restricted, (symmetric), Krom SNP, then the set of structures C+ consisting of
all σ-structures with less than p points together with all structures in C with at
least p points is definable in monotone, restricted, (resp. symmetric), Krom SNP
with equalities.

Proof. Suppose that D is definable in monotone, restricted, (symmetric), Krom
SNP. Then there is a formula Ψ defining it, of the following form:

Ψ ≡ ∃S1 . . . Sl∀v1 . . . vmψ

where ψ is

ψ ≡
∧

T

(φt ∨Σt)

where for each t ∈ T , φt is a disjunct of negated atomic formulas over τ , and
each Σt is a disjunct of at most one positive and one negated atom with symbols
in {S1, . . . , Sl}. As we noted earlier, we may assume that all atomic formulas in
the φ’s do not use equality.

Let I be our k-ary reduction with p parameters from C to D, with associated
formulas φU , φθ for each θ ∈ τ . Consider the following procedure (inspired by
Lemma 1 of [2]): our new formula Ψ ′ will have first-order variables vi

1, . . . , v
i
k for

each 1 ≤ i ≤ m and also y1, . . . , yp, and variables u1, . . . , us: we assume that all
quantified variables in the formulas φθ of our reduction appear in this list, and
furthermore we assume that no variable ui appears in more than one φθ. It will
also have second-order variables S′

1, . . . , S
′
l .

Let θ be a relational symbol from τ , and let δ ≡ (vi1 , . . . , vir ) ∈ θ be an
atomic formula with symbol θ and variables among v1, . . . , vm. We define a σ-
formula I(δ) as follows:



– if φθ is quantifier-free, let

I(δ) ≡ φθ(v
i1
1 , . . . , v

i1
k , . . . , v

ir

1 , . . . , v
ir

k , y
1, . . . , yp);

– if φθ ≡ ∃ui1 . . . uiw
µθ where µθ is quantifier-free, let

I(δ) ≡ µθ(v
i1
1 , . . . , v

i1
k , . . . , v

ir

1 , . . . , v
ir

k , ui1 , . . . , uiw
, y1, . . . , yp).

For each φt let I(φt) denote the result of the above substitutions on the disjuncts
of φt.

Let Si be a second-order variable. If δ ≡ (vi1 , . . . , vir ) ∈ Si define the σ-
formula

I(δ) ≡ (vi1
1 , . . . , v

i1
k , . . . , v

ir

1 , . . . , v
ir

k ) ∈ S′
i;

for each t let Σ′
t denote the result of this substitution on the disjuncts of Σt.

Furthermore, define the following σ-formulas: let

Y ≡
∨

1≤i6=j≤p

yi = yj ;

and let

Z ≡
∨

1≤i≤m

¬(φU (vi
1, . . . , v

i
k, y

1, . . . , yp)).

Now we define Ψ ′ as follows:

Ψ ′ ≡ ∃S′
1 . . . S

′
l∀v

1
1 . . . v

1
k, . . . , v

m
1 . . . vm

k ∀y
1 . . . yp∀u1 . . . us ψ′

where ψ′ is

ψ′ ≡
∧

T

(I(φt) ∨ Y ∨ Z ∨Σ
′
t) .

In the following 3 claims, we shall prove that this formula has the desired
form and that it precisely captures the structures in C+; from the presence of
formula Y it is obvious that every σ-structure with less than p points satisfies
Ψ ′, hence it will suffice to prove that for structures with at least p points, it
is precisely those in C that satisfy it. In the following we will abuse notation
slightly and use the names of variables for values assigned to them.

Claim 1. Ψ ′ is restricted, monotone Krom with equalities. It is symmetric if
Ψ is.

Proof of Claim 1. Fix some t ∈ T , and suppose that

φt ≡ ¬δ1 ∨ · · · ∨ ¬δq

where the δi are atoms. By the hypothesis on our reductions and by construction,
each I(δi) is a positive Boolean combination of atoms (atoms some of which may
be equalities). Writing each I(δi) in DNF and applying the negation, one easily



sees that I(φt) can be expressed as a positive Boolean combination of negated
atoms. Hence we may easily rewrite the conjunct I(φt)∨Y ∨Z ∨Σ′

t in the form

∧

K

[(
∨

L

εkl

)
∨ Y ∨ Z ∨Σ′

t

]

where the εkl are negated atoms. Now it is clear that our formula is monotone,
restricted Krom with equalities.

For symmetry, notice that any conjunct of Ψ ′

(
∨

L

εkl

)
∨ Y ∨ Z ∨Σ′

t

is obtained from some conjunct
φt ∨Σt

of Ψ , which appears only if its symmetric φt ∨ Σt appears as a conjunct in Ψ ,
which means that the conjunct

(
∨

L

εkl

)
∨ Y ∨ Z ∨Σ′

t

appears in Ψ ′ (obviously the symmetric of Σ′
t is Σ′

u if Σt = Σu).

Claim 2. Let G be a σ-structure with at least p points, and let c be proper.
Suppose that I(G, c) satisfies Ψ . Then G satisfies Ψ ′.

Proof of Claim 2. By definition of our reductions the choice of c is immaterial,
i.e. I(G, c) satisfies Ψ for any proper c.

We must find relations S′
i on G: take the obvious choice, namely, if Si is

r-ary, let S′
i = Si viewed as a kr-ary relation on G (rather than a r-ary relation

on I(G, c) ⊆ Gk), i.e.

(x1
1, . . . , x

1
k, . . . , x

r
1, . . . , x

r
k) ∈ S′

i

precisely if
((x1

1, . . . , x
1
k), . . . , (xr

1, . . . , x
r
k)) ∈ Si.

Now choose any v1
1 , . . . , v

1
k, . . . , v

m
1 , . . . , v

m
k , y

1, . . . , yp, u1, . . . , us in G, and pick
any conjunct

I(φt) ∨ Y ∨ Z ∨Σ
′
t

of Φ′: we must show that for this choice of values this conjunct is satisfied.
Suppose then that none of Y , Z nor Σ′

t is satisfied: we must show that I(φt)
holds.

We make a couple of useful observations:

1. Since our values do not satisfy Y , we have that c = (y1, . . . , yp) is proper.
Hence I(G, c) satisfies Ψ for c = (y1, . . . , yp).



2. Since our values do not satisfy Z, it means that each tuple vi = (vi
1, . . . , v

i
k)

is in the universe of I(G, c) (i.e. satisfies φU .)

Since I(G, c) satisfies the conjunct

φt ∨Σt

with v1, . . . , vm, by definition of the S′
i and Σ′

t it follows immediately that Σt is
not satisfied by v1, . . . , vm, hence I(G, c) satisfies φt (with v1, . . . , vm.)

There is some index set Q such that

φt ≡
∨

Q

¬(γq)

where each γq is an atomic formula with relational symbol in τ . Since I(G, c)
satisfies it there exists some q ∈ Q such that γq does not hold. Let

γq ≡ (vi1 , . . . , vir ) ∈ θ

and suppose first that φθ is quantifier-free. By (2) and the definition of interpre-
tation it is immediate that G does not satisfy the corresponding occurrence of
φθ in I(φt). Similarly, if φθ is not quantifier-free, say

φθ ≡ ∃ui1 . . . uiw
µθ

is not satisfied, which means that for the values u1, . . . , us we have, µθ is not
satisfied, and hence G does not satisfy the corresponding occurrence in I(φt).
Hence we’re done.

Claim 3. Let G be a σ-structure with p distinct points. If G satisfies Ψ ′ then
I(G, c) satisfies Ψ for any proper c.

Proof of Claim 3. Choose some proper c = (z1, . . . , zp). For each 1 ≤ i ≤ l

let Si be the r-ary relation that consists of those tuples of S′
i that are in the

universe of I(G, c), i.e.

((x1
1, . . . , x

1
k), . . . , (xr

1, . . . , x
r
k)) ∈ Si

if and only if
(x1

1, . . . , x
1
k, . . . , x

r
1, . . . , x

r
k) ∈ S′

i

and φU (xi
1, . . . , x

i
k, y

1, . . . , yp) holds for all 1 ≤ i ≤ m.
Choose some elements vi = (vi

1, . . . , v
i
k) in the universe of I(G, c) (i.e. they

all satisfy φU ), and choose some conjunct φt∨Σt of Ψ . Suppose that Σt does not
hold: we must show that φt does (for our choice of vi’s). Now by definition of
the Si and Σ′

t it is immediate that Σ′
t isn’t satisfied either. Hence Y ∨Z ∨I(φt)

holds for any choice of u1, . . . , us. However, by choice of the zi all distinct and
the vi, we have that neither Y nor Z is satisfied, which means that I(φt) holds
for any choice of u1, . . . , us. We will conclude that φt holds in I(G, c): in fact
the argument is quite similar to the one used in the last claim. As above let

φt ≡
∨

Q

¬(γq)



where each γq is an atomic formula with relational symbol in τ . Suppose for a
contradiction that every γq holds in I(G, c). Choose some q ∈ Q and suppose
first that

γq ≡ (vi1 , . . . , vir ) ∈ θ

where φθ is quantifier-free. As we argued in Claim 2 it is immediate that G
satisfies the corresponding occurrence of φθ in I(φt). Now suppose that φθ is
not quantifier-free, say

φθ ≡ ∃ui1 . . . uiw
µθ

this means that we can find ui1 . . . uiw
in G that satisfy µθ; since no variable

ui appears in more than one of the φθ, it means we may find an assignment of
values u1, . . . , us such that every atomic formula appearing in I(φt) is satisfied,
i.e. so that G does not satisfy I(φt), contradicting our hypothesis.

From the 3 claims we can now conclude what we wanted: if G contains at
least p distinct points, G ∈ C iff there exists some proper c such that I(G, c) ∈ D
iff I(G, c) satisfies Ψ iff G satisfies Ψ ′.

Corollary 7.1. Let C be homomorphism closed. Suppose that ¬C reduces to ¬D
via a positive first-order reduction. If D is definable in linear (symmetric) Dat-
alog, then C is definable in linear (symmetric) Datalog.

Proof. By Lemma 7.1, if D is definable in linear (symmetric) Datalog, then ¬D
is definable in restricted, monotone, (symmetric) Krom SNP. Since ¬C reduces
to ¬D via a positive first-order reduction, by Proposition 7.1 we conclude that
for some p ≥ 0, the set consisting of all σ-structures with less than p points
or that are in ¬C with at least p points is definable in restricted, monotone,
(symmetric) Krom SNP with equalities. It follows from another application of
Lemma 7.1 that the set of all structures in C with at least p points is definable in
linear (symmetric) Datalog (6=). To the program accepting this set of structures,
and for every structure G ∈ C with less than p points, add the rule

P ()← φ(x1, . . . , xk)

where P () is the goal predicate of the original program, x1, . . . , xk represent the
elements of G and φ is the conjunction of all relations that hold in G. Obviously
the new program will now accept every structure in C, and it is easy to see that
since C is homomorphism closed, no other structure can be accepted. It is also
obvious that if the original program is linear or symmetric, so is the new one.
Hence C is definable in linear (symmetric) Datalog (6=); we invoke Lemma 7.1
one last time to conclude that it is definable in linear (symmetric) Datalog.

The arguments of the previous two sections are now sufficient to prove The-
orem 2.1.

Theorem. (2.1) Let Γ be a finite set of relations on A such that Γ is a core.
Let A denote the idempotent reduct of the algebra associated to Γ .



1. Let C be a finite algebra in V(A), and let Γ0 be a finite set of relations invari-
ant under the basic operations of C. Then there exists a logspace many-one
reduction of CSP(Γ0) to CSP(Γ ). Furthermore, if ¬CSP (Γ ) is expressible
in (linear, symmetric) Datalog, then so is ¬CSP (Γ0).

2. If furthermore C ∈ HS(A) and the relations in Γ0 are irredundant, then the
above reduction is first-order.

Proof. (1) We shall define a sequence of CSP’s each of which reduces to the next
in the proper fashion for our needs. We note that all reductions we use preserve
expressibility in plain Datalog by [17]. By hypothesis on the algebra C there exist
an integer m, a subalgebra B of Am and a surjective homomorphism µ : B→ C.

Let Γ1 = {µ−1(θ) : θ ∈ Γ0}. By Lemma 6.1 there is a first-order reduction
from CSP(Γ0) to CSP(Γ1) which by Corollary 7.1 preserves expressibility in
(linear, symmetric) Datalog. Furthermore, it is easy to see that all relations in
Γ1 are invariant under the operations of B.

Next define Γ2 = Γ1∪{B}, viewed as relations on Am. By Lemma 6.2 we have
a first-order reduction of CSP(Γ1) to CSP(Γ2) which preserves expressibility in
(linear, symmetric) Datalog by Corollary 7.1. Furthermore, it is easy to see that
all relations in Γ2 are invariant under the operations of Am.

Now define Γ3 = {θ̃ : θ ∈ Γ2} (see definition just before Lemma 6.3.) Once
again we obtain a first-order reduction from CSP(Γ2) to CSP(Γ3) preserving
expressibility in restrictions of Datalog by Lemma 6.3 and Corollary 7.1.

It is easy to see that the relations in Γ3 are invariant under the basic opera-
tions of A. Since these are precisely the idempotent operations that preserve all
relations in Γ , we obtain that Pol(Γ ′) ⊆ Pol(Γ3) where Γ ′ = Γ ∪{{a} : a ∈ A}.
There exists a finite sequence of sets Γ ′ = Λ0, . . . , Λs = Γ3 such that each set is
obtained from the previous by one of the 6 constructions described in Lemma 6.5
(3). By Lemmas 6.6 to 6.10 and Corollary 7.1, the first 5 constructions induce
first-order reductions that preserve expressibility in the various restrictions of
Datalog we need. The 6th reduction is proved to be logspace in [13], and also
preserves expressibility by [8]. Hence we have a logspace reduction of CSP(Γ3)
to CSP(Γ ′), that preserves expressibility.

Finally we invoke Lemma 6.4 to obtain a first-order reduction of CSP(Γ ′) to
CSP(Γ ) which preserves expressibility by Corollary 7.1.

(2) Now we prove the second statement: notice that in the above argument
we would have obtained a first-order reduction had it not been for the reduction
associated to adding the equality relation. So we show that if the relations in
Γ0 are irredundant and we do not use the reduction associated to powers, then
we need not use it. Follow the above construction letting m = 1 and thus Γ3 =
Γ2; it is clear that in the above construction the relations in this set must be
irredundant if those in Γ0 are. Now we show that in the sequence of sets Λi

we never need to add the equality relation. Indeed, by part (2) of Lemma 6.5
for every γ ∈ Γ3 there exists a primitive positive formula defining it in terms
of the relations in Γ ′. We claim that if γ is irredundant then we need not use
equality in our formula. Indeed, suppose that the atom x = y appears in the
formula: if either of the two variables is quantified, say x, we may simply rename



it everywhere in the formula to y and remove ∃x. Repeating this, we obtain
a formula in which equalities can occur only between free variables, which is
impossible since the relation defined is irredundant. It remains to be seen that
we can achieve this by using only the 5 other reductions: it is clear that γ is
obtained as a projection of a relation defined by a quantifier-free formula, which
consists of a conjunction of atomic formulas of the form x ∈ θj for relations
θj ∈ Γ . So let’s say that x1, . . . , xh is a list of all distinct variables appearing in
the formula. For each conjunct (xi1 , . . . , xis

) ∈ θj the relation

{(x1, . . . , xh) : (xi1 , . . . , xis
) ∈ θj}

is obtained by a permutation of the product Ah−s × θj .
1 Finally, our relation is

the intersection of all these relations.

8 The Reduction in Theorem 3.1 is First-Order

We described in the proof of Theorem 3.1 a reduction from NOT st-connectivity
to CSP(Γ ′) where Γ ′ = Γ∪{{a} : a ∈ A} and CSP(Γ ) is not first-order definable.
We complete the proof of the theorem by showing that the reduction is indeed
FO.

Proof. Pick an integerm such that 2m ≥ |A|2 and fix an encoding of the elements
of A2 as sequences of length m over {s, t}.

- The universe of I(G) = K is the subset of G×Gm consisting of all tuples
(g;x1, . . . , xm) such that g ∈ G and (x1, . . . , xm) is the encoding of an element of
A2. Notice that this is first-order defined, since we may simply list all possibilities,
i.e.

[(x1 = s) ∧ · · · ∧ (xm = t)]
∨
· · · .

- Fix 1 ≤ i ≤ r and let a = denote the arity of Ri; we define the relation
Ri(K) as the set of all tuples

[(g1;x
1
1, . . . , x

m
1 ), . . . , (ga;x1

a, . . . , x
m
a )]

such that

1. there exists x, y ∈ G such that xEy and {g1, . . . , ga} ⊆ {x, y}
a, and

2. (y1, . . . , ya) ∈ Ri(Γ
2) where yj is the element of A2 indexed by (x1

j , . . . , x
m
j )

for every j.

It is easy to see that both these conditions are describable by a first-order for-
mula: indeed, for the first condition, simply notice can we can list all possible
subsets of {x, y}a and so the formula will be of the form

∃x, y (xEy) ∧
[
{g1 = x ∧ g2 = x ∧ · · · ∧ ga = x}

∨
· · ·
]
.

- For the unary relations Sa we proceed as follows: for a fixed a ∈ A, define
Sa(K) to be the set all tuples (g;x1, . . . , xm) such that either

1 Of course, here we are assuming the obvious fact that we may add the unary relation
A to any CSP with base set A without changing anything.



1. g = s and (x1, . . . , xm) is the index of a tuple of A2 of the form (a, y) for
some y, or

2. g = t and (x1, . . . , xm) is the index of a tuple of A2 of the form (x, a) for
some x.

Once again it is easy to see that these are first-order defined as we may simply
list all possible indices of tuples that we require.

9 2 element case

We give a detailed proof of Theorem 5.1:

Theorem. (5.1) Let Γ be a set of relations on {0, 1} such that Γ is a core. Let
A be the algebra associated to CSP (Γ ) and let V denote the variety generated
by A.

1. If V admits the unary type then CSP (Γ ) is NP complete, and ¬CSP (Γ ) is
not expressible in Datalog.

2. If V omits the unary type but admits the affine type, then CSP (Γ ) is ⊕L
complete and ¬CSP (Γ ) is not expressible in Datalog.

3. if V omits the unary and affine types, but admits the semilattice type, then
CSP (Γ ) is P complete; if Γ is finite then ¬CSP (Γ ) is expressible in Datalog,
but not in linear Datalog.

4. if V omits the unary, affine and semilattice types, but admits the lattice type,
then CSP (Γ ) is NL complete; if Γ is finite, then ¬CSP (Γ ) is expressible
in linear Datalog, but not in symmetric Datalog;

5. if V admits only the Boolean type, then CSP (Γ ) is either first-order definable
or L complete; if Γ is finite, then ¬CSP (Γ ) is expressible in symmetric
Datalog.

Proof. All statements of non-expressibility follow directly from Theorem 4.2. We
give the details of the correspondence between typesets of varieties and Boolean
clones that will allow us to invoke the completeness results from [1]: all references
to special operations on {0, 1} and clones in Post’s lattice use the notation from
that reference.

Fix Γ a (not necessarily finite) set of relations on {0, 1} such that Γ is a
core, i.e. the clone Pol(Γ ) contains no constant operation. Let A denote the 2-
element algebra associated to the problem CSP (Γ ), and let V denote the variety
generated by A. We consider the possibilities for the clone of terms Pol(Γ ) of
the algebra A.

We shall first consider the case where A is not idempotent. Direct inspection
of the Post lattice shows that are exactly three clones that contain no constants
but contain a non-trivial permutation: these are D (self-dual operations, i.e.
those that commute with negation), L3 (the clone of affine operations) and N2

(the clone generated by the negation). If the clone of A is N2 then V admits the
unary type; if the clone of A is L3 then V admits the affine type but not the



unary type; if the clone of A is D then V admits only the Boolean type. In all 3
cases, the complexity of the associated problem is as expected: NP-complete for
the unary type, ⊕L-complete for the affine type, and L-complete for the Boolean
type. The clone D corresponds to the 2-colouring problem, whose complement
is in symmetric Datalog, see [8].

Now suppose A is idempotent. Clearly A is strictly simple and hence we may
use Lemma 1.1 and Corollary 1.1 to get a precise description of A.

- Suppose that V admits the unary type. This means that A is a set (i.e. has
no non-trivial operations) and hence its clone of terms is the clone of projections
I2. We conclude that CSP (Γ ) is NP-complete.

- Suppose that V omits the unary type but admits the affine type, so that
A is affine. Its clone of terms must then contain the operation x + y + z and
all its operations are linear; thus the clone must be L2. Hence CSP (Γ ) is ⊕L
complete.

- Suppose that V omits both the unary and affine types but admits the
semilattice type. This means that A is term equivalent to a semilattice, and thus
its clone is either V2 or E2. Hence CSP (Γ ) is P complete. If Γ is finite, the
problem is HORN k-SAT which is in (1, k)-Datalog [9].

- Suppose that V omits the unary, affine and semilattice types but admits
the lattice type. Then A is polynomially equivalent to the 2 element lattice. In
particular, its clone C is idempotent and contains only monotone operations,
i.e. is contained in M ∩R: this leaves only the clones S00, S

n
00, D2, S10, S

n
10,M2.

It is a simple exercise to verify that adding the constants to any of the clones
D2, S00 and S10 will generate the clone of all monotone operations, i.e. each
of the clones in the list is polynomially equivalent to the 2 element lattice. For
each of these clones, the problem CSP (Γ ) is NL-complete. For expressibility in
linear Datalog: it suffices to do it for the clones S10 (S00 is identical) and D2;
this last case follows from [5] since it contains a majority operation. As for S10,
the argument is as follows: (1) if we take Γ finite such that Pol(Γ ) contains S10

then Pol(Γ ) is above some Sn
10 and thus contains the near-unanimity operation

hn; then expressibility in linear Datalog follows from [5].
- Suppose that V omits all types but the Boolean type. It follows from [19]

Theorem 6.1 that there are three possibilities:

1. A is a discriminator algebra, i.e. it admits the term operation t(x, y, z) = z

if x = y and t(x, y, z) = x otherwise; this operation generates the clone
D1, hence the clone of terms of our algebra must be D1 or R. The problem
CSP (Γ ) is thus L complete or first-order definable.

2. There exists an element, let’s suppose without loss of generality that it is 0,
and an integer k such that the operations in the clone are precisely those
idempotent operations that preserve the relation

Rk = {(a1, . . . , ak) : ∃i ai = 0}.

We claim that the clones in question are the Sk
12 and that in fact for each

k we have Sk
12 = Pol(Rk). Indeed it is trivial to verify that the operation



x ∧ (y ∨ z) preserves each Rk and hence

S12 ⊆ Pol(Rk) ⊆ R

so obviously Pol(Rk) is one of the Sn
12. The rest is easy: the operation hk

is a k+ 1-ary near-unanimity operation which clearly cannot preserve Rk+1

since this relation is not determined by its projections onto k factors; hence
Sk

12 6= Pol(Rk+1). On the other hand, a simple application of the pigeonhole
principle shows that hk preserves Rk. It follows that the problem CSP (Γ )
is either L-complete or first-order definable.

3. the clone is that of all idempotent operations preserving all the relations Rk

described above, i.e. it is S12 (or S02). It follows that the problem CSP (Γ )
is L-complete.

If Γ is finite, then we are in case (1) or (2) and expressibility in symmetric
Datalog follows from [8].

10 ModpL Hardness

In this section we outline the proof that, if V(A(Γ )) admits the unary or affine
type then there exists a prime p such that CSP(Γ ) is ModpL-hard under FO
reductions. Recall that ModpL is the class of languages recognized by Modp-
counting non-deterministic logspace machines. Formally, K ∈ ModpL is there
exists a non-deterministic logspace machine M such that w ∈ K iff the number
of accepting paths of M on w is divisible by p. When p = 2, the corresponding
class is usually denoted as ⊕L.

These classes contain a number of natural problems related to modular
arithmetic such as solving systems of linear equations over Zp (see e.g. Bun-
trock, Damm, Hertrampf and Meinel: Structure and importance of logspace-MOD
classes. Mathematical Systems Theory, 25(3):223–237, 1992.). In particular, it
can be shown from their work that solving systems of linear equations modulo pk

is also in ModpL and so the CSP(Γ ) analyzed for the affine case of Theorem 5.2
is indeed ModpL-complete.

Let p be any prime number. We denote by NOT p − GAP the set of all
digraphs with two distinguished nodes s and t such that the number of paths
from s to t is divisible by p. We assume that these structures are ordered, in such
a way that if (i, j) is an edge then i ≤ j, and such that 1 = s and n = t where
n is the largest element of the universe. Note that we may assume throughout
that all digraphs considered are without loops: indeed, given any digraph G with
edge relation θ(G) we may “remove” all loops by defining a new digraph G′ on
the same universe with edge relation θ(G′) defined by the first-order formula
φθ(x, y) ≡ (x, y) ∈ θ ∧ x 6= y. Obviously the number of paths between s and t

remains the same.

Lemma 10.1. The problem NOT p − GAP is mod-p L complete under first-
order reductions.



This result is more or less folklore, although most completeness proofs use
NC1 reductions. The reduction can be made FO using a straightforward adap-
tation of the NL-completeness of REACH under FO reductions. (Theorem 3.16
of Immerman’s book)

Lemma 10.2. Let A = 〈A; +, 0〉 be a finite Abelian group with at least 2 ele-
ments. Consider the set Γ that consists of (i) the 3-ary relation µ = {(x, y, z) ∈
A3 : x + y = z}, (ii) the unary relation B = {b} where b is some non-zero
element of A such that pb = 0 for some prime p, and (iii) the unary relation
Z = {0}. Then CSP(Γ ) is mod-p L hard under first-order reductions.

Proof. By the last result, it will suffice to find a first-order reduction of NOT
p−GAP to CSP(Γ ). The basic idea is rather straightforward: Let G be a digraph
with specified vertices s and t. Recall that (a) we may assume all our digraphs
have no loops, and (b) we may access the ordering relation on G, which has the
property that edges are monotone and 1 = s and n = t. Notice further that
we may also invoke the successor relation which is first-order definable from the
ordering; for ease of notation in formulas we shall denote the successor of i simply
by i + 1. We construct a system of equations over the group A, that admits a
solution precisely if the number of paths from s to t is divisible by p. The system
has variables xi,j for all i ≤ j in G: we shall set up the equations so that we
interpret the value of xi,j in any solution (which will turn out to be unique) as
the number of paths in G from 1 to j that goes through an edge (k, j) for some
k ≤ i. Here are the equations:

1. for every 1 ≤ j, let x1,j = b if (1, j) is an edge of G, and otherwise let
x1,j = 0.

2. For i+ 1 < j, let xi,j + xi+1,i+1 = xi+1,j if (i+ 1, j) is an edge of G, and let
xi,j = xi+1,j otherwise;

3. for every i < n let xi,i+1 = xi+1,i+1;
4. finally, also put xn,n = 0.

It is not hard to convince oneself that the following holds: the unique solution
(if it exists) is the following: xi,j = mb where m is the number of paths in G
from 1 to j that goes through an edge (k, j) for some k ≤ i. Thus, the system
has a solution if and only if the number of paths from 1 to n (i.e. from s to t) in
G is divisible by p.

We now show that the above construction is first-order. Let G be a digraph
with edge relation θ(G) and vertices 1 = s and t = n. Let τ = 〈ρ,B, Z〉 denote
the signature of the target structure of our CSP. We construct a structure H of
type τ that will admit a homomorphism to the target structure if and only if
the number of paths from s to t in G is divisible by p. It should be clear how to
translate back and forth from the relational description to a system of equations:
for instance the equation x+ y = b is equivalent to (x, y, z) ∈ ρ and z ∈ B.

Define the universe of H by the following formula:

φU (i, j) ≡ i ≤ j;



in other words, the pair (i, j) stands for the variable xi,j . Next, define the unary
relations B(H) and Z(H) by the following formulas:

φB(i, j) ≡ [(i = s) ∧ ((i, j) ∈ θ)]

and
φZ(i, j) ≡ [(i = s) ∧ ¬((i, j) ∈ θ)]

∨
[(i = t) ∧ (j = t)] ;

we have just encoded all equations in (1) and (4). Next we encode the equations
described in (2) and (3): define the relation ρ(H) by the formula

φρ ≡ φ
(2)
ρ

∨
φ(3)

ρ

where

φ(2)
ρ (i, j, i′, j′, i′′, j′′) ≡ {(i+ 1 ≤ j) ∧ ¬(i+ 1 = j)}

∧

{
[(i+ 1, j) ∈ θ) ∧ (i′ = i+ 1) ∧ (j′ = j + 1) ∧ (i′′ = i′) ∧ (j′′ = j)]

∨

[¬((i+ 1, j) ∈ θ) ∧ (i′ = t) ∧ (j′ = t) ∧ (i′′ = i+ 1) ∧ (j′′ = j)]}

and

φ(3)
ρ (i, j, i′, j′, i′′, j′′) ≡ [(i+ 1 = j) ∧ (i′ = t) ∧ (j′ = t) ∧ (i′′ = j) ∧ (j′′ = j)] .

[Notice the convenient use of the equation xt,t = 0 to encode equalities.]
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