
Sub-Constant Error Probabilistically Checkable Proof of

Almost-Linear Size

Dana Moshkovitz ∗ Ran Raz †

November 19, 2006

Abstract

We show a construction of a PCP with both sub-constant error and almost-linear size.
Specifically, for some constant 0 < α < 1, we construct a PCP verifier for checking satisfia-
bility of Boolean formulas that on input of size n uses log n + O((log n)1−α) random bits to

query a constant number of places in a proof of size n · 2O((log n)1−α) over symbols consisting
of O((log n)1−α) bits and achieves error 2−Ω((log n)α).

The construction is by a new randomness-efficient version of the aggregation through
curves technique [1]. Its main ingredients are a recent low degree test with both sub-constant
error and almost-linear size [12] and a new method for constructing a short list of balanced
curves.

∗
dana.moshkovitz@weizmann.ac.il. Department of Computer Science and Applied Mathematics, The Weiz-

mann Institute, Rehovot, Israel.
†
ran.raz@weizmann.ac.il. Department of Computer Science and Applied Mathematics, The Weizmann

Institute, Rehovot, Israel.

1

Electronic Colloquium on Computational Complexity, Report No. 26 (2007)

ISSN 1433-8092

1 Introduction

The notion of proofs is of fundamental interest to the theory of Computer Science. One defines
NP to be the class of all languages L in which membership can be proved efficiently. That is,
there is an algorithm (called a verifier) that given input x of size n, as well as a proof π of
size polynomial in n for the statement “x ∈ L”, runs in time polynomial in n and behaves as
follows: (i) if indeed x ∈ L, then there exists a proof π for which the verifier accepts; while (ii)
if x /∈ L, then for any alleged proof π, the verifier rejects.

The PCP Theorem [2, 1] (PCP for Probabilistically Checkable Proofs) states that all lan-
guages L in NP have proofs of polynomial size that can be verified probabilistically by querying
only a constant number of places in the proof. A PCP verifier, when given access to an input x
and to a proof π, tosses r coins, uses them to pick only a constant number of queries q to π and
satisfies the following: (i) if x ∈ L, then, as before, there exists a proof π that the verifier always
accepts; while (ii) if x /∈ L, then for any alleged proof π, the verifier accepts with probability at
most ε. The term ε is called the error of the PCP .

The formal definition of a PCP verifier is as follows:

Definition 1 (PCP Verifier). A PCP verifier for a language L with size s : N → N, ran-

domness complexity r : N → N, query complexity q : N → N, answer size a : N → N, perfect

completeness and error ε : N → (0, 1), is a probabilistic polynomial time Turing machine, that
given access to an input x ∈ {0, 1}n, as well as an oracle access to a proof π of size s(n) con-

taining symbols from {0, 1}a(n), (i) tosses r(n) random coins; (ii) picks q(n) indices in π; (iii)
queries each index to obtain the corresponding answer of length a(n); (iv) decides whether to
accept or reject; and satisfies the following properties:

• Completeness: if x ∈ L, then there exists a proof π, on which the verifier always accepts.

• Soundness: if x /∈ L, then given access to any proof π, the verifier accepts with probability
at most ε(n).

Other than being a surprising result about the power of proofs, the PCP Theorem has a
tight connection to hardness of approximation. This connection enabled a vast body of results
showing that approximating many optimization problems to within various factors is NP-hard.
The PCP Theorem and the techniques used for its proof also motivated and inspired many
influential notions such as local testing and local decoding.

Given the importance of the PCP Theorem, there has been a long line of research trying to
improve it.

1.1 Decreasing The Error

The original PCP Theorem [2, 1] gave error ε = 1
2 . A natural goal is to reduce the error,

preferably to sub-constant error o(1).
However, the error of a verifier that makes q queries to the proof, where each symbol of

the proof is a single bit, is at least 2−q. Thus, to allow sub-constant error, we consider proofs
in which each symbol consists of a bits, where a is non-constant. For applications (e.g., to
hardness of approximation [4]), many times even a logarithmic answer size a (corresponding to
a polynomial sized alphabet) is permissible, while it is desired to keep the number of queries q
constant.

2

This path of research is taken in several works [4, 14, 3, 9]. The state of the art is by [9],
who construct, for any constant 0 < α < 1, a PCP verifier that on input of size n uses O(log n)
random bits to query a constant number of places in a proof of size polynomial in n over symbols
consisting of at most O((log n)α) bits and achieves sub-constant error 2−Ω((log n)α).

1.2 Decreasing The Size

The original PCP Theorem [2, 1] gave proofs of size polynomial in the input size, nc, for a large
constant c. A natural goal is to reduce the size, preferably to almost-linear in the input size
n1+o(1).

This path of research is taken in works such as [13, 11, 7, 6, 5, 8]. The state of the art is
by Dinur [8] who constructs a PCP verifier for checking satisfiability of Boolean formulas of
size n with almost-linear size n ·poly log n, randomness log n+O(log log n), constant number of
queries, constant answer size and constant error.

1.3 Sub-Constant Error and Almost-Linear Size

The question of whether there exist PCP s with both sub-constant error and almost-linear size
was open. A step in this direction is taken in [12], where a low degree test of sub-constant
error and almost-linear size is constructed. Low degree tests are an important ingredient in
most PCP constructions, and it seemed that the construction of [12] should also yield PCP s
with sub-constant error and almost-linear size. This work confirms this conjecture. Our main
theorem is as follows.

Theorem 2 (Main). There exists a constant 0 < α < 1, for which there is a PCP verifier
for checking satisfiability of Boolean formulas that on input of size n uses log n + O((log n)1−α)
random bits to query 7 places in a proof of size n · 2O((log n)1−α) over symbols consisting of
O((log n)1−α) bits. The verifier has perfect completeness and error 2−Ω((log n)α).

We note that the error and the size achieved by our construction are not as good as the best
error and size known for each parameter separately. We achieve size n · 2O((log n)1−α) for a small
constant α, which is indeed almost-linear n1+o(1), however, the size of Dinur’s construction [8]
is only n · 2O(log log n). We achieve error 2−Ω((log n)α) for some small constant 0 < α < 1, which
is indeed sub-constant o(1), however, the error of the construction by [9] can be made as low
as 2−Ω((log n)α) for any constant 0 < α < 1. The question of whether one can optimize the two
parameters, size and error, simultaneously remains open.

1.4 Overview

Our construction consists of three conceptual steps:

1. Amplification: this step takes a PCP verifier that has constant error and produces a
PCP verifier that has sub-constant error 2−Ω((log n)α), but makes a non-constant number
of queries O((log n)α) to the proof.

2. Aggregation: this step takes a PCP verifier that makes a non-constant number of queries
O((log n)α) to the proof and produces a PCP verifier that makes only a constant number

of queries, but to a proof with large answer size 2(log n)O(α)
.

3

3. Reduction of answer size: this step reduces the answer size of the PCP verifier con-
structed in the previous step to O((log n)1−α).

The input to the amplification step is a PCP verifier with constant error that has low random-
ness complexity and almost-linear size, i.e., it uses only (1 + o(1)) log n random bits to query
a proof of size n1+o(1). Any one of a number of existing constructions can be used for this
purpose. We use the construction of Dinur [8].

The important point is that we implement the three steps in a way that maintains low
randomness complexity and small size.

The amplification step is standard and uses random walks on expanders. The aggregation
step is the main new step and we discuss it below. For the reduction of answer size we use ideas
from [14, 9] for testing and reading of low degree polynomials. Notably, differing from previous
constructions, this step is done without recursive composition of PCP verifiers.

Aggregation. The aggregation step is the main new step of the construction, and it is done
via a new randomness-efficient version of the aggregation through curves technique of [1].

This technique assumes a PCP verifier V that makes q queries to a proof of size s, and
constructs a new PCP verifier V ′ making a constant number of queries to a somewhat larger
proof with a large answer size. Let us give a short description of the basic technique and the
difficulty in using it in a way that maintains low randomness complexity and almost-linear size.

For sufficiently large finite field F and dimension m, a proof for V can be encoded by a low
degree polynomial in F

m (its so-called low degree extension). The indices {1, . . . , s} are identified
with points in F

m and the evaluation of the polynomial on these points gives the value of the
proof in the corresponding positions.

A valid proof π for V ′ contains the evaluation of a low degree extension of a proof for V on
all points in F

m, as well as its restriction to certain subspaces and curves in F
m. The verifier

V ′ simulates V using a constant number of queries to the proof as follows:

1. V ′ tosses coins for V . Suppose ~x1, . . . , ~xq ∈ F
m are the q points corresponding to the proof

positions that V queries upon the outcome of the coin tosses.

2. V ′ passes a curve c of degree q through ~x1, . . . , ~xq and through a point ~xq+1 chosen
uniformly at random from F

m. V ′ queries the proof for the restriction π(c) of the low
degree extension to the curve c. This is a polynomial of degree at most q times the degree
of the low degree extension.

3. V ′ chooses a uniformly random point ~x on the curve c among those that were not set
to be ~x1, . . . , ~xq. V ′ uses low degree testing to check that the evaluation of π(c) on ~x is
consistent with the low degree extension.

[Note that if π(c) is consistent with a low degree polynomial over F
m on many points

on c, then it is consistent with the polynomial on all points on c, and, in particular, on
~x1, . . . , ~xq.]

4. V ′ uses the evaluation of π(c) on ~x1, . . . , ~xq to simulate V .

The verifier V ′ makes only a constant number of queries: one query to π(c) and a constant
number of queries required for low degree testing. Those queries are made to a proof with a
large answer size: containing restrictions to subspaces and curves.

4

V ′ is not randomness-efficient, since, in addition to the coin tosses for V , it chooses another
independent uniformly distributed point ~xq+1 ∈ F

m to pass a curve through. The resulting
proof size is at least quadratic, since per fixing of the coin tosses for V , it contains entries for
|Fm| curves. [recall that |Fm| ≥ s].

The reason that the additional uniformly distributed point ~xq+1 ∈ F
m is required is that the

low degree testing works well only on average. To have low error probability, the verifier should
apply low degree testing on a point ~x that is uniformly distributed in F

m (or close to such). When
~xq+1 is uniformly distributed, it indeed holds that all the points on the curve, but those set to
be ~x1, . . . , ~xq, are uniformly distributed in F

m. The challenge is to have ~x uniformly distributed
in F

m (or close to such) without using an additional independent uniformly distributed point.

Balancing Curves. We provide an efficient deterministic algorithm for constructing a short
list of curves through the (arbitrary) query points of V , such that the distribution of a random
point on a curve chosen uniformly at random from the list is ε-close (in the l1-norm) to uniform
over F

m. For approximation parameter ε > 0, assuming there are N tuples of query points,
the algorithm produces a list of size at most O(N + |Fm|

ε2). This enables randomness-efficient
verification and almost-linear proof size.

The algorithm iteratively goes over all the tuples of query points. For each tuple, it chooses
in a greedy manner curves through this tuple. For this purpose, it maintains, for each point
~x ∈ F

m, the number d(~x) of times that curves constructed thus far hit ~x. The algorithm is as
follows:

1. For every ~x ∈ F
m, set d(~x) = 0

2. For each tuple of query points ~x1, . . . , ~xq, do the following O(η/ε2) times, where η denotes
the ratio |Fm| /N :

• Go over the curves through ~x1, . . . , ~xq and through an additional point ~xq+1 ∈ F
m

(|Fm| curves). Choose a curve c that minimizes the sum
∑

~x∈C d(~x), where C is the
multi-set of all points ~x on c, but those set to one of ~x1, . . . , ~xq.

• For every point ~x on c, increase d(~x) by the multiplicity of ~x in the multi-set C.

Note that the algorithm runs in time polynomial in N , |Fm| and 1
ε
.

1.5 Organization

The first sections provide the means for reduction of answer size and serve as an introduction to
low degree testing and reading [in our terminology, low degree reading is the process of obtaining
evaluations consistent with a low degree polynomial on arbitrary points ~x1, . . . , ~xq].

The low degree tester of [12] and its adaptation to our setting are described in section 3. A
low degree reader (i.e., an algorithm for low degree reading) using standard (not randomness-
efficient) aggregation through curves is required as a procedure and described in section 4. An
adaptation of it using an idea from [9] is presented in section 5. This machinery allows us to
construct a sub-constant error low degree tester of almost-linear size with small answer size in
section 6.

The aggregation step is enabled by a low degree reader presented in section 7. This low
degree reader is implemented in a randomness-efficient manner, along the lines of the above
description, and uses the techniques developed in the previous sections to reduce answer size.
Section 7 also contains the algorithm for constructing balanced curves and its analysis.

5

The amplification step and finally the PCP verifier promised in our main theorem are pre-
sented in section 8.

2 Preliminaries

2.1 Polynomials

An m-variate polynomial over a field F is a function Q : F
m → F of the form

Q(x1, . . . , xm) =
∑

i1,...,im

ai1,...,imxi1
1 · · · xim

m

where all the coefficients ai1,...,im are in F. The expressions ai1,...,imxi1
1 · · · xim

m are called the
monomials of the polynomial.

The degree of Q is deg Q
def
= max

{

∑m
j=1 ij | ai1,...,im 6= 0

}

, where the degree of the identically

zero polynomial is defined to be 0.

Proposition 2.1. Fix a field F and a dimension m. Let Q1, Q2 : F
m → F be two polynomials.

Then, Q1 + Q2 and Q1 · Q2 are m-variate polynomials over F, such that

1. deg(Q1 + Q2) ≤ max {deg Q1,deg Q2}.

2. deg(Q1 · Q2) ≤ deg Q1 + deg Q2.

[and thus for polynomials Q1, . . . , Qk : F
m → F, we have deg(

∑k
i=1 Qi) ≤ max {deg Q1, . . . ,deg Qk}

and deg(
∏k

i=1 Qi) ≤
∑k

i=1 deg Qi]

For a dimension m, a degree d and a field F, we let Pm,d,F denote the family of all m-variate
polynomials of degree at most d over F.

The Schwartz-Zippel lemma shows that different low degree polynomials differ on most points,

Proposition 2.2 (Schwartz-Zippel). Fix a finite field F, a dimension m and a degree d. For
two different polynomials Q1, Q2 : F

m → F of degree at most d,

Pr
~x∈Fm

[Q1(~x) = Q2(~x)] ≤ d

|F|

The Schwartz-Zippel lemma immediately implies a list decoding property,

Proposition 2.3 (list decoding). Fix a finite field F and a dimension m. Let f : F
m → F

be some function and consider some degree d ≤ |F|. Then, for any δ ≥ 2
√

d
|F| , if Q1, . . . , Ql :

F
m → F are different polynomials of degree at most d, and for every 1 ≤ i ≤ l, the polynomial

Qi agrees with f on at least δ fraction of the points, i.e., Pr~x∈Fm [Qi(~x) = f(~x)] ≥ δ, then l ≤ 2
δ
.

Proof. Let δ ≥ 2
√

d
|F| , and assume on way of contradiction that there exist l = b2

δ
c+ 1 different

polynomials Q1, . . . , Ql : F
m → F as stated.

For every 1 ≤ i ≤ l, let Ai
def
= {~x ∈ F

m | Qi(~x) = f(~x)}. By inclusion-exclusion,

|Fm| ≥
∣

∣

∣

∣

∣

l
⋃

i=1

Ai

∣

∣

∣

∣

∣

≥
l
∑

i=1

|Ai| −
∑

i6=j

|Ai ∩ Aj |

6

By Schwartz-Zippel, for every 1 ≤ i 6= j ≤ l, |Ai ∩ Aj | ≤ d
|F| · |Fm|. Therefore, by the premise,

|Fm| ≥ lδ |Fm| −
(

l

2

)

d

|F| |F
m|

On one hand, since l > 2
δ
, we get lδ > 2. On the other hand, since 2

δ
≤
√

|F|
d

and d ≤ |F|, we

get
(

l
2

)

≤ |F|
d

. This results in a contradiction.

Interpolation. Fix a finite field F. For univariate polynomials over F, for every fixing of
values to k points, there exists a polynomial of degree at most k− 1 that agrees with this fixing
(and this polynomial is unique by Schwartz-Zippel). Let us develop some machinery to argue
that.

Proposition 2.4. For a finite subset T ⊆ F and t0 ∈ T , let IT,t0 : F → F be as follows: for
every x ∈ F,

IT,t0(x) =

∏

t∈T−{t0}
(x − t)

∏

t∈T−{t0}
(t0 − t)

Then, IT,t0 is a univariate polynomial of degree at most |T |−1 over F, such that (i) IT,t0(t0) = 1;
(ii) for every t1 ∈ T − {t0}, it holds that IT,t0(t1) = 0; (iii) for every x ∈ F − T , it holds that
IT,t0(x) 6= 0.

Proof. First note that IT,t0 is of degree at most |T | − 1, since t0 ∈ T , and by proposition 2.1.

1. IT,t0(t0) =

∏

t∈T−{t0}
(t0−t)

∏

t∈T−{t0}
(t0−t) = 1.

2. Let t1 ∈ T − {t0}. Then
∏

t∈T−{t0}
(t1 − t) = (t1 − t1) ·

∏

t∈T−{t0,t1}
(t1 − t) = 0. So,

IT,t0(t1) = 0.

3. If IT,t0(x) = 0, then
∏

t∈T−{t0}
(x − t) = 0. Thus, for some t ∈ T − {t0}, it holds that

(x − t) = 0. This does not hold if x /∈ T .

Proposition 2.5 (univariate interpolation). For different scalars t1, . . . , tk ∈ F, as well as
x1, . . . , xk ∈ F, let Pt1,...,tk,x1,...,xk

: F → F be as follows: for every t ∈ F,

Pt1,...,tk,x1,...,xk
(t) =

k
∑

i=1

I{t1,...,tk},ti(t) · xi

Then, Pt1,...,tk ,x1,...,xk
is a univariate polynomial of degree at most k − 1 over F, such that for

every 1 ≤ i ≤ k, it holds that Pt1,...,tk,x1,...,xk
(ti) = xi.

Proof. Let 1 ≤ i0 ≤ k. Then, by proposition 2.4, (i)+(ii),

Pt1,...,tk,x1,...,xk
(ti0) =

k
∑

i=1

I{t1,...,tk},ti(ti0)·xi = I{t1,...,tk},ti0
(ti0)·xi0+

∑

i∈{1,...,k}−{i0}

I{t1,...,tk},ti(ti0)·xi = xi0

7

Lemma 2.6 (multivariate interpolation). Let m be a dimension. Consider a finite subset
H ⊆ F. Then, any function f : Hm → F can be extended into a polynomial Qf : F

m → F of
degree at most m(|H| − 1) in a way that for every ~x ∈ Hm, it holds that Qf (~x) = f(~x).

Proof. We use the notation from proposition 2.4 used for univariate interpolation. For every
(x1, . . . , xm) ∈ F

m, let

Qf (x1, . . . , xm) =
∑

h1,...,hm∈H

IH,h1(x1) · · · IH,hm
(xm)f(h1, . . . , hm)

Then Qf : F
m → F is a polynomial of degree at most m(|H| − 1), since, by proposition 2.4, for

every 1 ≤ i ≤ m, the polynomial IH,hi
(xi) is of degree at most |H| − 1.

Moreover, for every (h′
1, . . . , h

′
m) ∈ Hm, it holds that

Qf (h′
1, . . . , h

′
m) =

∑

h1,...,hm∈H

IH,h1(h
′
1) · · · IH,hm

(h′
m)f(h1, . . . , hm) = f(h′

1, . . . , h
′
m)

since for every h1, . . . , hm ∈ H such that (h1, . . . , hm) 6= (h′
1, . . . , h

′
m), there exists 1 ≤ i ≤ m

such that hi 6= h′
i, and thus, by proposition 2.4, IH,hi

(h′
i) = 0, while IH,h′

1
(h′

1) · · · IH,h′
m

(h′
m) = 1.

2.2 Curves

Fix a finite field F and a dimension m.

Definition 3 (curve). A curve in F
m is a function c : F → F

m, such that there exist univariate
polynomials c1, . . . , cm : F → F, for which, for every t ∈ F, c(t) = (c1(t), . . . , cm(t)). The degree

of the curve is the maximal degree of the polynomials: deg c
def
= max {deg ci | 1 ≤ i ≤ m}.

We let Cm,F
k denote the family of all curves of degree at most k in F

m.
The restriction of a polynomial Q : F

m → F to a curve c : F → F
m is Q|c : F → F which is

defined, for every t ∈ F, by Q|c(t) = Q(c(t)).

Proposition 2.7 (polynomial restricted to curve). Fix a field F and a dimension m. For
any polynomial Q : F

m → F and any curve c : F → F
m, the restriction Q|c is a univariate

polynomial of degree at most deg c · deg Q.

Proof. Denote Q(x1, . . . , xm) =
∑

i1,...,im
ai1,...,imxi1

1 · · · xim
m . Let c1, . . . , cm : F → F be polyno-

mials such that for every t ∈ F, it holds that c(t) = (c1(t), . . . , cm(t)). Then, for every t ∈ F,
we have Q|c(t) = Q(c(t)) = Q(c1(t), . . . , cm(t)) =

∑

i1,...,im
ai1,...,im(c1(t))

i1 · · · (cm(t))im . By

proposition 2.1, for every 1 ≤ l ≤ m, the degree of (cl(t))
il is at most deg cl · il ≤ deg c · il, and

the degree of (c1(t))
i1 · · · (cm(t))im is at most

∑m
l=1 deg c · il ≤ deg c ·∑m

l=1 il ≤ deg c · deg Q.
Hence, by proposition 2.1, the degree of Q|c is at most deg c · deg Q.

Interpolation. For different scalars t1, . . . , tk ∈ F and (not necessarily different) points ~x1, . . . , ~xk ∈
F

m, we will define a curve ct1,...,tk ,~x1,...,~xk
: F → F

m, such that for every 1 ≤ i ≤ k, the curve
evaluates to ~xi at ti, i.e., ct1,...,tk,~x1,...,~xk

(ti) = ~xi.
For every 1 ≤ i ≤ k, denote ~xi = (xi,1, . . . , xi,m).

8

Proposition 2.8 (curve interpolation). Let ct1,...,tk ,~x1,...,~xk
: F → F

m be such that for every
t ∈ F,

ct1,...,tk,~x1,...,~xk
(t) =

(

Pt1,...,tk,x1,1,...,xk,1
(t), . . . , Pt1,...,tk,x1,m,...,xk,m

(t)
)

[Recall that the definition of Pt1,...,tk,x1,l,...,xk,l
appeared in proposition 2.5] Then,

1. ct1,...,tk,~x1,...,~xk
is a curve of degree at most k − 1.

2. For every 1 ≤ i ≤ k, ct1,...,tk,~x1,...,~xk
(ti) = ~xi.

Proof. Item 1 follows since for every 1 ≤ l ≤ m, Pt1,...,tk,x1,l,...,xk,l
is of degree at most k − 1 by

proposition 2.5. Item 2 follows since for every 1 ≤ i ≤ k, for every 1 ≤ l ≤ m, we have, again
from proposition 2.5, Pt1,...,tk ,x1,l,...,xk,l

(ti) = xi,l.

3 Randomness-Efficient Low Degree Tester With Large Answer

Size

In this section we describe a low degree tester based on the sub-constant error low degree test
of almost-linear size from [12]. The tester is essentially the same as in [12], only we formulate
it in a way more convenient for us and prove a slightly different soundness guarantee.

The purpose of the tester is to verify that a function f : F
m → F evaluates to (one of few)

low degree polynomials, by making only a constant number of queries to f and to an additional
proof. The tester gets as input a point ~x ∈ F

m, makes some probabilistic test in which it queries
f and the additional proof, and decides whether to accept or reject. If f is indeed a low degree
polynomial, the tester, when provided an adequate proof, should accept with probability 1 any
input. Moreover, no matter which function f and proof are provided, for almost all points
~x ∈ F

m, with high probability over the randomness of the tester, whenever the tester accepts, it
is guaranteed that f(~x) is the evaluation on ~x of one of few low degree polynomials associated
with f .

How is the testing done? If f is of low degree, then its restriction to any affine subspace in
F

m is a polynomial of low degree. Thus, as a proof, low degree tests usually ask for low degree
polynomials that are supposedly the restrictions of f to some family of low dimensional affine
subspaces. Then, a subspace s that contains ~x is picked from the family in some randomized
manner, and f(~x) is compared against the evaluation of the polynomial assigned to s at ~x.

The family of affine subspaces used in [12] is the family of all three-dimensional linear sub-
spaces in F

m that are spanned by a vector over F and two vectors over a subfield K of F. It is
shown there that it is enough to take the subfield to be of small size: |K| = poly(m), resulting
in a family (and a proof) of size lower than |F|m · |K|2m = |Fm| · mO(m). For the field F and
dimension m we use, this is indeed a small family.

The answer size of the proof is the number of bits required to describe a 3-variate low
degree polynomial over F. For the degree parameter we use, this answer size will be too large.
Subsequent sections will allow us to reduce it.

Remark 3.1. It will be more convenient for us [here and throughout the paper] to address the
randomness complexity of the algorithm, rather than its proof size. Note that effectively the size
of the proof needed for an algorithm that uses r random bits to query q positions of its proof is
at most q · 2r. Thus, for algorithms making a constant number of queries to their proof (like all
algorithms presented here), the size is bounded (up to a constant factor) by 2r.

9

Canonical Representations. We would like to use canonical representations for the three
dimensional linear subspaces, so the restriction of a function f : F

m → F to a subspace s will
be defined uniquely as a function f|s : F

3 → F. For this purpose, let us recall a few facts from
linear algebra.

For a matrix M over a field F, the row space of M is the linear subspace spanned by its rows.
The rank of M is the dimension of its row space. Two matrices of the same dimensions over a
field F are said to be row-equivalent, if they have the same row space.

Definition 4 (row canonical form). We will say that a matrix over a field is in row canonical

form, if it satisfies the following requirements:

• All nonzero rows are above any rows of all zeros.

• The leading coefficient of a nonzero row is always to the right of the leading coefficient of
the row above it (if such row exists).

• The leading coefficients are the only nonzero entries in their column.

• All leading coefficients are 1.

Fact 3.2. The rank of a matrix in row canonical form is exactly the number of nonzero rows
in it.

Fact 3.3. Every matrix over a field has a unique row-equivalent matrix in row canonical form.
Moreover, the Gaussian elimination algorithm finds it using a polynomial (in the dimensions of
the matrix) number of field operations.

For dimensions k,m and field F, let Mk,m,F be the family of all k × m matrices over F that
are in row canonical form.

Since every linear subspace s ⊆ F
m of dimension at most 3 is the row space of some 3 × m

matrix over F, by the above discussion, for every linear subspace s ⊆ F
m of dimension at most

3, there is a unique matrix in M3,m,F whose row space is s. We denote this matrix by Ms and
use it to represent s.

This allows us to define the restriction of a function f : F
m → F to s uniquely to be f|s :

F
3 → F, where for every ~t ∈ F

3, f|s(~t) = f(MT
s
~t).

Note that given vectors ~v1, ~v2, ~v3 ∈ F
m that span s, one can obtain the matrix Ms by applying

Gaussian elimination on a matrix whose rows are ~v1, ~v2, ~v3. Moreover, for every ~x ∈ s, one can
find a linear combination ~t ∈ F

3 for which MT
s
~t = ~x (which will be unique if s is of dimension

exactly 3) using poly(m) field operations, again using Gaussian elimination.
The algorithm is as follows.

Algorithm Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K.

Requirements. m ≥ 3 is a dimension parameter. d is a degree parameter. F is a finite field
and K ⊆ F is a subfield of it, such that all field and subfield operations (addition, multiplication,
sampling of a field element, etc.) can be done in time poly log |F|.

10

Oracles. The algorithm has oracle access to the following:

1. A function f : F
m → F.

2. An auxiliary proof oracle π : M3,m,F → P3,d,F, supposedly assigning each matrix the
polynomial of degree at most d which is the restriction of f to the row space of the
matrix.

Input. A point ~x ∈ F
m on which we wish to test f .

Output. Either accept, or reject.

Guarantee (to be proven below).

• Completeness: For every function f which is a polynomial of degree at most d, there
exists an auxiliary proof oracle π, such that for every input ~x, the tester accepts with
probability 1.

• Soundness: Let εm,d,F,K = 27m
(

8

√

1
|K| + 4

√

md
|F|

)

. For any function f , for any δ ≥ 2
√

d
|F| ,

there are l ≤ 2/δ polynomials Q1, . . . , Ql : F
m → F of degree at most d, such that for

every auxiliary proof oracle π, when ~x is uniformly distributed in F
m, the probability –

over ~x and over the randomness of the tester – that the tester accepts although f(~x) /∈
{Q1(~x), . . . , Ql(~x)} is at most δ + 3εm,d,F,K + d+1

|F| .

Process.

1. Pick three-dimensional subspace through ~x. Pick uniformly at random ~y1, ~y2 ∈ K
m.

Obtain the matrix M ∈ M3,m,F in row canonical form whose row space is the linear
subspace over F spanned by ~x, ~y1, ~y2. If ~x, ~y1, ~y2 are linearly dependent, accept.

2. Query subspace. Query π on M and obtain its evaluation on the point ~x by computing
~t ∈ F

3 such that MT~t = ~x and evaluating y = π(M)(~t).

3. Compare to point. Query f on ~x and compare the two evaluations, if y = f(~x), accept ;
otherwise, reject.

Running Time. Step 1: Picking ~y1, ~y2 can be done in time poly(m, log |F|). Obtaining the
matrix M in row canonical form associated with the linear subspace over F spanned by ~x, ~y1, ~y2

can be done in time poly(m, log |F|) using Gaussian elimination. Checking the linear dependence
between ~x, ~y1, ~y2 amounts to checking if the last row in M is zero, which can be checked in time
poly(m, log |F|).

Step 2: Computing ~t ∈ F
3 such that MT~t = ~x can be done using Gaussian elimination in

time poly(m, log |F|). Evaluating the polynomial π(M) on ~t can be done in time poly(d, log |F|).
Step 3: Comparing the field elements can be done in time poly log |F|.
The total running time of the algorithm is hence poly(m,d, log |F|).

Randomness. The tester requires 2m log |K| random bits to pick ~y1, ~y2 in step 1. Note that
we do not count the randomness that may be required to pick the point ~x, which is given as
input.

11

Query Complexity. The tester makes one query to the function f on the point ~x and one
query to the auxiliary proof oracle π, which is a total of two queries.

Answer Size. The answer size is poly(d, log |F|).

Correctness.

Lemma 3.4 (Completeness). For every function f which is a polynomial of degree at most
d, there exists an auxiliary proof oracle π, such that for every input ~x, the tester accepts with
probability 1.

Proof. Fix a function f which is a polynomial of degree at most d. For every matrix M ∈
M3,m,F, define π(M) to be the restriction of f to the subspace of dimension at most three
over F represented by M , namely, let, for every ~t ∈ F

3, π(M)(~t) = f(MT~t). Note that indeed
π(M) ∈ P3,d,F. For every input ~x, in the only event in which the tester rejects, there exist a
matrix M ∈ M3,m,F and a scalar ~t ∈ F

3, such that MT~t = ~x and π(M)(~t) 6= f(~x), but this
cannot happen since π(M)(~t) = f(MT~t).

Lemma 3.5 (Soundness). Let εm,d,F,K = 27m
(

8

√

1
|K| + 4

√

md
|F|

)

. For any function f , for any

δ ≥ 2
√

d
|F| , there are l ≤ 2/δ polynomials Q1, . . . , Ql : F

m → F of degree at most d, such that for

every auxiliary proof oracle π, when ~x is uniformly distributed in F
m, the probability – over ~x and

over the randomness of the tester – that the tester accepts although f(~x) /∈ {Q1(~x), . . . , Ql(~x)}
is at most δ + 3εm,d,F,K + d+1

|F| .

Proof. Fix a function f : F
m → F and δ ≥ 2

√

d
|F| . Let Q1, . . . , Ql be all the different poly-

nomials Qi of degree at most d that agree with f on fraction of at least δ of the points,
Pr~x∈Fm [Qi(~x) = f(~x)] ≥ δ. By proposition 2.3, there are few such polynomials: l ≤ 2/δ.

Assume on way of contradiction that there exists an auxiliary proof oracle π, such that, when
~x is uniformly distributed in F

m, the probability – over ~x and over the randomness of the tester –

that the tester accepts although f(~x) /∈ {Q1(~x), . . . , Ql(~x)} is more than δ′
def
= δ+3εm,d,F,K+ d+1

|F| .

Let us say that ~x ∈ F
m is explained if f(~x) ∈ {Q1(~x), . . . , Ql(~x)}. We will construct a new

function f ′ : F
m → F that identifies with f on all points, except that it assigns explained points

values that do not correspond to a polynomial of degree at most d. We can do that by choosing
an arbitrary polynomial Q′ : F

m → F of degree precisely d + 1, and letting f ′ assign explained
points ~x ∈ F

m the value Q′(~x).
By the contradicting assumption, for a uniformly distributed ~x ∈ F

m, the probability – over
~x and over the randomness of the tester – that it accepts, given oracle access to f ′ and to π, on
input ~x, is more than δ′.

By [[12], Theorem 2, Decoding], there exists a polynomial Q : F
m → F of degree at most d,

such that
Pr

~x∈Fm

[

Q(~x) = f ′(~x)
]

≥ δ′ − 3εm,d,F,K

The polynomials Q and Q′ are necessarily different, as they have different degrees. Moreover,
they both have degrees at most d + 1. Thus, by the Schwartz-Zippel lemma,

Pr
~x∈Fm

[

Q(~x) = Q′(~x)
]

≤ d + 1

|F|

12

Therefore, the fraction of points ~x ∈ F
m on which Q(~x) = f ′(~x) and Q(~x) 6= Q′(~x) is at least

δ′−3εm,d,F,K− d+1
|F| = δ. Whenever Q(~x) = f ′(~x) and Q(~x) 6= Q′(~x), we also have f ′(x) 6= Q′(~x),

and thus f ′(~x) = f(~x). Hence, there is a fraction of at least δ of the points ~x ∈ F
m for which

(i) Q(~x) = f(~x); (ii) f(~x) /∈ {Q1(~x), . . . , Ql(~x)}. But this cannot happen: the fact that (i)
happens for a fraction of at least δ of the points implies that there exists 1 ≤ i ≤ l, such that Q
identifies with Qi. On the other hand, the fact that (i) and (ii) occur for a positive fraction of
the points implies the existence of a point ~x ∈ F

m on which Qi(~x) /∈ {Q1(~x), . . . , Ql(~x)}, which
is a contradiction.

Remark 3.6 (comparison with list-decoding version of [12]). Note that the soundness
claim does not follow directly from the list decoding version appearing in [[12], Theorem 2, List
decoding], because (in one sense) the assertion there is weaker: it only implies that for every
function f and auxiliary proof oracle π, there exists a list decoding. Here we assert that for
every function f , there exists a list-decoding [the same for all π].

On the other hand, the notion of list decoding appearing in [[12], Theorem 2, List decoding] is
stronger than what is required here: there it is shown that the probability of accepting, although
the polynomial assigned to the tested subspace is not the restriction of one of Q1, . . . , Ql to the
subspace, is small. We only wish to argue this for the tested point.

4 Low Degree Reader With Large Answer Size

In this section we present an algorithm called a low degree reader. The algorithm has oracle
access to π, supposedly encoding a low degree polynomial Q : F

m → F. The purpose of the
algorithm is to evaluate the low degree polynomial on points ~x1, . . . , ~xk ∈ F

m it gets as input
by making only a constant number of queries to π. If the algorithm detects that π is not a valid
encoding of a low degree polynomial, it is allowed to reject.

The encoding and the reader should have the following two properties:

• Every polynomial is realizable: For every polynomial Q : F
m → F, there exists π

that encodes it. Given access to that π, the reader, on input ~x1, . . . , ~xk ∈ F
m, outputs

Q(~x1), . . . , Q(~xk) (with probability 1).

• A low degree polynomial is evaluated with high probability: With every π, a
few low degree polynomials Q1, . . . , Ql : F

m → F are associated (list decoding). For every
tuple ~x1, . . . , ~xk ∈ F

m, with high probability, whenever the reader does not reject and does
output a1, . . . , ak, for some 1 ≤ i ≤ l we must have a1 = Qi(~x1), . . . , ak = Qi(~xk) [the
same i for the entire tuple!].

The algorithm uses the low degree tester of section 3 and applies the technique of aggregation
through curves. It is not the final reader we construct, since it has two flaws:

1. The answer size of π is too large: it depends polynomially on the degree, which will be
too large for the degree parameter we use.

2. Its randomness complexity is too high: it needs more than m log |F| random bits per input
tuple ~x1, . . . , ~xk.

13

4.1 Random Curves

The algorithm passes a curve through the points ~x1, . . . , ~xk it gets as input and through an
additional uniformly distributed point in F

m. The following proposition shows that each of the
points on the curve, but those forced to be ~x1, . . . , ~xk, is uniformly distributed in F

m.
We use the notation of proposition 2.8.

Proposition 4.1 (random curve). Let t1, . . . , tk ∈ F be different scalars, and let ~x1, . . . , ~xk ∈
F

m. Let tk+1 ∈ F be some scalar different than t1, . . . , tk. Let Xk+1 be uniformly distributed in
F

m. Then, for every t ∈ F−{t1, . . . , tk}, the distribution of ct1,...,tk,tk+1,~x1,...,~xk,Xk+1
(t) is uniform

in F
m.

Proof. Fix t ∈ F−{t1, . . . , tk}. Denote Xk+1 = (Xk+1,1, . . . ,Xk+1,m), where Xk+1,1, . . . ,Xk+1,m

are uniformly and independently distributed in F.
Recall that

ct1,...,tk,tk+1,~x1,...,~xk,Xk+1
(t) =

(

Pt1,...,tk,tk+1,x1,1,...,xk,1,Xk+1,1
(t), . . . , Pt1,...,tk,tk+1,x1,m,...,xk,m,Xk+1,m

(t)
)

Let 1 ≤ l ≤ m. Let a ∈ F. We will show that there exists precisely one value x ∈ F

for Xk+1,l, such that Pt1,...,tk,tk+1,x1,l,...,xk,l,x(t) = a, and thus Pt1,...,tk,tk+1,x1,l,...,xk,l,Xk+1,l
(t) is

uniformly distributed in F. The proposition follows.
Recall that as in proposition 2.5,

Pt1,...,tk,tk+1,x1,l,...,xk,l,x(t) =

k
∑

i=1

I{t1,...,tk,tk+1},ti(t) · xi,l + I{t1,...,tk ,tk+1},tk+1
(t) · x

Denote A
def
=
∑k

i=1 I{t1,...,tk,tk+1},ti(t)xi,l. Let B
def
= I{t1,...,tk,tk+1},tk+1

(t). Both A and B are
scalars in the field. Note that, by proposition 2.4, (i)+(iii), B 6= 0, since t /∈ {t1, . . . , tk}. Then,
Pt1,...,tk,tk+1,x1,l,...,xk,l,x(t) = A+ Bx. The equation A+ Bx = a in the variable x ∈ F has exactly
one solution x = (a − A)/B ∈ F.

4.2 Low Degree Reader

Algorithm Low-Degree-Reader-With-Large-Answer-Sizem,d,F,K,k.

Requirements. m ≥ 3 is a dimension parameter. d ≥ 1 is a degree parameter. F is a
finite field and K ⊆ F is a subfield of it, such that all field and subfield operations (addition,
multiplication, sampling of a field element, retrieval of the i’th element in the field, etc.) can
be done in time poly log |F|. k is the number of points to be read. We assume that k ≤ |F| /2.

Oracles. The algorithm has oracle access to π = (π1, π2, π3) for

1. A function π1 : F
m → F, supposedly representing a polynomial of degree at most d.

2. An auxiliary proof oracle π2 : M3,m,F → P3,d,F as needed for the algorithm
Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K to test π1.

3. An oracle for curves π3 : Cm,F
k → P1,kd,F, supposedly assigning each curve the restriction

of π1 to it.

14

Input. Points ~x1, . . . , ~xk ∈ F
m.

Output. Either reject, or k scalars a1, . . . , ak ∈ F.

Guarantee (to be proven below).

• Completeness: For every polynomial Q : F
m → F of degree at most d, there exist

π1, π2, π3, such that for every input ~x1, . . . , ~xk, the reader outputs Q(~x1), . . . , Q(~xk) with
probability 1.

• Soundness: Let εm,d,F,K = 27m
(

8

√

1
|K| + 4

√

md
|F|

)

as in the soundness of the algorithm

Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K. For any

π1, π2, π3 and any δ ≥ 2
√

d
|F| , there are l ≤ 2/δ polynomials Q1, . . . , Ql : F

m → F of degree

at most d, such that the following holds: for every input ~x1, . . . , ~xk, the probability that the
reader outputs a1, . . . , ak such that there is no 1 ≤ i ≤ l, for which a1 = Qi(~x1), . . . , ak =

Qi(~xk), is at most δ + 4εm,d,F,K + k · 2
√

d
|F| .

Process.

1. Pick curve through ~x1, . . . , ~xk. Pick uniformly at random ~xk+1 in F
m. Generate a curve

through ~x1, . . . , ~xk, ~xk+1 by picking the first k + 1 scalars in the field t1, . . . , tk, tk+1 ∈ F

[recall that the first scalars can be retrieved by our requirement from the field], and letting
c = ct1,...,tk,tk+1,~x1,...,~xk,~xk+1

[recall that ct1,...,tk,tk+1,~x1,...,~xk,~xk+1
is defined in proposition 2.8,

where it is asserted that it is of degree at most k and for every 1 ≤ i ≤ k +1, it holds that
~xi = c(ti)].

2. Pick point on curve. Pick uniformly at random t ∈ F − {t1, . . . , tk}.

3. Low degree test. Run the algorithm
Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K on oracle
access to π1 and π2 and input c(t) [recall that by proposition 4.1, c(t) is uniformly dis-
tributed in F

m]. If the algorithm rejects, reject.

4. Query curve. Query π3 for the evaluations of ~x1 = c(t1), . . . , ~xk = c(tk), c(t), that is, let
a1 = π3(c)(t1), . . . , ak = π3(c)(tk), ak+1 = π3(c)(t).

5. Check curve. If ak+1 6= π1(c(t)), reject.

6. Output. Return a1, . . . , ak.

Running Time. Step 1: Picking ~xk+1 can be done in time poly(m, log |F|). Picking t1, . . . , tk, tk+1 ∈
F can be done in time poly(k, log |F|). Generating the curve can be done in time poly(m,k, log |F|).

Step 2: Picking t ∈ F − {t1, . . . , tk} can be done in time poly log |F|.
Step 3: Evaluating c(t) can be done in time poly(m,k, log |F|). Running the low degree tester

can be done in time poly(m,d, log |F|).
Step 4: Evaluating π3(c) on t1, . . . , tk, t can be done in time poly(d, k, log |F|).
Step 5: Comparing the two field elements can be done in time poly log |F| [recall that c(t)

was evaluated in an earlier stage of the algorithm].
The total running time of the algorithm is hence poly(m,d, k, log |F|).

15

Randomness. The reader requires m log |F| random bits to pick ~xk+1 ∈ F
m in step 1. The

reader requires additional log |F| random bits to pick t ∈ F − {t1, . . . , tk} in step 2. The low
degree testing in step 3 requires 2m log |K| random bits.

The total randomness complexity of the reader is (m + 1) log |F| + 2m log |K| random bits.

Query Complexity. The reader queries π1 on the point c(t) [the value is required for step 3
and for step 5]. The low degree testing in step 3 requires one more query of π2. The reader also
queries π3 on the curve c in step 4. The total number of queries made is 3.

Answer Size. The answer size required for π1 is log |F|. The answer size required for π2 is
poly(d, log |F|). The answer size required for π3 is poly(d, k, log |F|).

Thus, the answer size is poly(d, k, log |F|).

Correctness.

Lemma 4.2 (Completeness). For every polynomial Q : F
m → F of degree at most d, there

exist π1, π2, π3, such that for every input ~x1, . . . , ~xk, the reader outputs Q(~x1), . . . , Q(~xk) with
probability 1.

Proof. Let π1 be Q. Let π2 be the oracle guaranteed in the completeness of algorithm
Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K (lemma 3.4) for

π1. Let π3 assign every curve c ∈ Cm,F
k the polynomial Q|c [which is indeed a univariate poly-

nomial of degree at most kd over F, by proposition 2.7].
Let ~x1, . . . , ~xk be an input to the reader. Fix some randomness for the reader.
The reader does not reject in step 3, by the completeness of the low degree tester. The reader

does not reject in step 5, since ak+1 = π3(c)(t) = Q|c(t) = Q(c(t)) = π1(c(t)). Thus, the reader
outputs a1, . . . , ak. Moreover, for every 1 ≤ j ≤ k, it holds that aj = π3(c)(tj) = Q|c(tj) =
Q(c(tj)) = Q(~xj).

Therefore, the reader outputs Q(~x1), . . . , Q(~xk) with probability 1.

Lemma 4.3 (Soundness). Let εm,d,F,K = 27m
(

8

√

1
|K| + 4

√

md
|F|

)

as in the soundness of the al-

gorithm Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K. For

any π1, π2, π3 and any δ ≥ 2
√

d
|F| , there are l ≤ 2/δ polynomials Q1, . . . , Ql : Fm → F of degree

at most d, such that the following holds: for every input ~x1, . . . , ~xk, the probability that the reader
outputs a1, . . . , ak such that there is no 1 ≤ i ≤ l, for which a1 = Qi(~x1), . . . , ak = Qi(~xk), is at

most δ + 4εm,d,F,K + k · 2
√

d
|F| .

Proof. Fix oracles π1, π2, π3. Let δ ≥ 2
√

d
|F| . Let Q1, . . . , Ql : F

m → F be the l ≤ 2/δ polyno-

mials of degree at most d corresponding to π1 and δ that are guaranteed in the soundness of
the algorithm Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K

(lemma 3.5).
If the reader does not reject, it does not reject in step 3 and in step 5. By proposition 4.1, c(t)

is uniformly distributed in F
m. Thus, by the guarantee made on Q1, . . . , Ql in the soundness

of the low degree tester, the probability that the reader does not reject in step 3, though
π1(c(t)) /∈ {Q1(c(t)), . . . , Ql(c(t))} is at most δ + 3εm,d,F,K + d+1

|F| ≤ δ + 4εm,d,F,K (where the last

inequality follows from the definition of εm,d,F,K and the fact that m ≥ 3 and d ≥ 1).

16

If the reader does not reject in step 5, then ak+1 = π1(c(t)). We have ak+1 = π3(c)(t). Thus,
we obtain the following statement, which we will mark by (*): the probability that the reader
does not reject, though π3(c)(t) /∈ {Q1(c(t)), . . . , Ql(c(t))} is at most δ + 4εm,d,F,K.

If π3(c) is not one of Q1|c, . . . , Ql|c, then, for every 1 ≤ i ≤ l, since both π3(c) and Qi|c

are different polynomials of degree at most kd over F (see proposition 2.7), it follows from the
Schwartz-Zippel lemma that on at most kd scalars t0 ∈ F, it holds that π3(c)(t0) = Qi|c(t0).
So, π3(c)(t0) ∈ {Q1(c(t0)), . . . , Ql(c(t0))} on at most lkd scalars t0 ∈ F. Since t is uniformly
distributed in F−{t1, . . . , tk}, the probability that π3(c)(t) ∈ {Q1(c(t)), . . . , Ql(c(t))}, but π3(c)

is not one of Q1|c, . . . , Ql|c is at most lkd
|F|−k

≤ k · 2
√

d
|F| (where the last inequality follows since

k ≤ |F| /2, and, hence, d
|F|−k

≤ 2d
|F| , and l ≤ 2/δ ≤

√

|F|
d

). Let us mark this statement by (**).

Therefore, from (*) and (**), we get that the probability that the reader does not reject, but

π3(c) is not one of Q1|c, . . . , Ql|c is at most (δ + 4εm,d,F,K) + k · 2
√

d
|F| (where the first addend

bounds the probability that this happens and π3(c)(t) /∈ {Q1(c(t)), . . . , Ql(c(t))}, and the second
addend bounds the probability that this happens and π3(c)(t) ∈ {Q1(c(t)), . . . , Ql(c(t))}).

If there exists 1 ≤ i ≤ l, such that π3(c) is Qi|c, then for every 1 ≤ j ≤ k, it holds that
aj = π3(c)(tj) = Qi|c(tj) = Qi(c(tj)) = Qi(~xj). We conclude that the probability that the reader
outputs a1, . . . , ak such that there is no 1 ≤ i ≤ l, for which a1 = Qi(~x1), . . . , ak = Qi(~xk), is at

most δ + 4εm,d,F,K + k · 2
√

d
|F| .

5 Low Degree Reader For Small Dimension

The purpose of this section is to adapt the low degree reader of section 4, whose answer size
depends polynomially on d, into a low degree reader whose answer size has only a logarithmic
dependence on d.

This adaptation allows to read from dimension m by applying the reader of section 4 on
dimension md∗ for d∗ which is logarithmic in d. This adds a factor which is logarithmic in d
into the randomness complexity, thus obtaining a very randomness-wasteful low degree reader.
Nevertheless, we will only use the reader for a very small dimension m, and this way be able to
maintain a low randomness-complexity.

The adaptation is by applying the power substitution technique from [9]. To explain the idea,
let us focus on the case m = 1. Consider a univariate polynomial of degree d ≥ 1 over a field
F, and let us denote it by Q(x) =

∑d
i=0 aix

i for some coefficients a0, . . . , ad ∈ F. We can obtain
from Q a polynomial of much lower degree as follows. Let d∗ = dlog(d + 1)e denote the number
of bits required to represent a number bounded by d in binary representation. Introduce d∗

new variables x0, x1, . . . , xd∗−1 representing x raised to powers 20, 21, . . . , 2d∗−1, i.e., let x0 =

x20
, x1 = x21

, . . . , xd∗−1 = x2d∗−1
. Now, for every 0 ≤ i ≤ d, we can express xi by writing

i in binary representation i =
∑d∗−1

j=0 bi,j2
j for bi,j ∈ {0, 1}, and letting xi = x

bi,0

0 · · · xbi,d∗−1

d∗−1 .
This substitution gives a new polynomial Q∗ in as many as d∗ variables, but of degree at most

d∗ (rather than d) Q∗(x0, . . . , xd∗−1) =
∑d

i=0 aix
bi,0

0 · · · xbi,d∗−1

d∗−1 . Thus, the idea is to read a

polynomial of degree at most d∗ on F
d∗ on points of the form (x20

, x21
, . . . , x2d∗−1

) for x ∈ F. As
we saw, any univariate polynomial of degree at most d over F can be read this way. Moreover,
any polynomial of degree at most d∗ on Fd∗ translates into a polynomial of degree at most d∗d
on F.

In subsection 5.1, we describe a mapping of F
m to F

md∗ along the lines of the above description

17

for m ≥ 1. In subsection 5.2, we describe the adaptation of the low degree reader using this
mapping.

5.1 Degree-Reducing Mapping

Let F be a finite field. Let m be a dimension and let d ≥ 1 be a degree. Let d∗ = dlog(d + 1)e.
We will define a mapping ϕ : F

m → F
md∗ as follows: for every (x1, . . . , xm) ∈ F

m, let

ϕ(x1, . . . , xm) = (x20

1 , x21

1 , . . . , x2d∗−1

1 , · · · , x20

m , x21

m , . . . , x2d∗−1

m)

Proposition 5.1 (degree reducing mapping). The mapping ϕ : F
m → F

md∗ has the follow-
ing properties:

1. Given ~x ∈ F
m, one can compute ϕ(~x) using poly(m, log d) field operations.

2. For every polynomial Q : F
m → F of degree at most d, there exists a polynomial Q∗ :

F
md∗ → F of degree at most md∗, such that for every ~x ∈ F

m, it holds that Q(~x) =
Q∗(ϕ(~x)).

3. For every polynomial Q∗ : F
md∗ → F, it holds that Q

def
= Q∗ ◦ ϕ : F

m → F is a polynomial
of degree at most d · deg Q∗.

Proof. Let us prove the properties:

(1) Given (x1, . . . , xm) ∈ F
m, in order to compute ϕ(x1, . . . , xm), we need, for every 1 ≤ i ≤ m,

to raise xi to the the power of two (d∗ − 1) times. Thus the number of required field operations
is at most poly(m, log d).

(2) Assume that Q : F
m → F is a polynomial of degree at most d. Write Q(x1, . . . , xm) =

∑

i1,...,im
ai1,...,imxi1

1 · · · xim
m for coefficients ai1,...,im ∈ F. For every 0 ≤ i ≤ d, let bi,d∗−1 · · · bi,0

denote the binary representation of i, that is, i =
∑d∗−1

j=0 bi,j2
j , where bi,j ∈ {0, 1} [note that the

binary representation of i can be written this way since 2d∗−1 = 2dlog(d+1)e−1 ≥ (d+1)−1 = d].
Define Q∗ : F

md∗ → F as follows:

Q∗(x1,0, . . . , x1,d∗−1, · · · , xm,0, . . . , xm,d∗−1) =
∑

i1,...,im

ai1,...,imx
bi1,0

1,0 · · · xbi1,d∗−1

1,d∗−1 · · · · · xbim,0

m,0 · · · xbim,d∗−1

m,d∗−1

Note that the polynomial Q∗ is of degree at most md∗. Let (x1, . . . , xm) ∈ F
m. Then,

Q∗(ϕ(x1, . . . , xm)) = Q∗(x20

1 , x21

1 , . . . , x2d∗−1

1 , · · · , x20

m , x21

m , . . . , x2d∗−1

m)

=
∑

i1,...,im

ai1,...,im

(

x20

1

)bi1,0 · · ·
(

x2d∗−1

1

)bi1,d∗−1 · · · · ·
(

x20

m

)bim,0 · · ·
(

x2d∗−1

m

)bim,d∗−1

=
∑

i1,...,im

ai1,...,imx
∑d∗−1

j=0 bi1,j2j

1 · · · · · x
∑d∗−1

j=0 bim,j2j

m

=
∑

i1,...,im

ai1,...,imxi1
1 · · · · · xim

m

= Q(x1, . . . , xm)

18

(3) Let Q∗ : F
md∗ → F be a polynomial. Write

Q∗(x1,0, . . . , x1,d∗−1, · · · , xm,0, . . . , xm,d∗−1) =
∑

i1,0,...,im,d∗−1

ai1,0,...,im,d∗−1
x

i1,0

1,0 · · · xi1,d∗−1

1,d∗−1 ·· · ··x
im,0

m,0 · · · xim,d∗−1

m,d∗−1

for coefficients ai1,0,...,im,d∗−1
∈ F.

Let (x1, . . . , xm) ∈ F
m. Then,

(Q∗ ◦ ϕ)(x1, . . . , xm) = Q∗(x20

1 , x21

1 , . . . , x2d∗−1

1 , · · · , x20

m , x21

m , . . . , x2d∗−1

m)

=
∑

i1,0,...,im,d∗−1

ai1,0,...,im,d∗−1

(

x20

1

)i1,0 · · ·
(

x2d∗−1

1

)i1,d∗−1 · · ·
(

x20

m

)im,0 · · ·
(

x2d∗−1

m

)im,d∗−1

=
∑

i1,0,...,im,d∗−1

ai1,0,...,im,d∗−1
x
∑d∗−1

j=0 2j i1,j

1 · · · x
∑d∗−1

j=0 2j im,j

m

For every 0 ≤ j ≤ d∗ − 1, we have 2j ≤ 2d∗−1 = 2dlog(d+1)e−1 ≤ d [where the last inequality
holds since dlog(d + 1)e < log(d + 1) + 1, and thus 2dlog(d+1)e−1 < d + 1. Note that for d ≥ 1,
2dlog(d+1)e−1 is integer, and thus it is at most d]. Hence, for every i1,0, . . . , im,d∗−1, the degree of

the corresponding monomial is bounded by
∑m

l=1

∑d∗−1
j=0 2jil,j ≤ d ·∑m

l=1

∑d∗−1
j=0 il,j ≤ d ·deg Q∗.

Therefore, the degree of Q∗ ◦ ϕ is at most d · deg Q∗.

5.2 Low Degree Reader

Algorithm Low-Degree-Reader-For-Small-Dimensionm,d,F,K,k.

Requirements. m ≥ 1 is a dimension parameter. d ≥ 4 is a degree parameter. F is a
finite field and K ⊆ F is a subfield of it, such that all field and subfield operations (addition,
multiplication, sampling of a field element, retrieval of the i’th element in the field, etc.) can
be done in time poly log |F|. k is the number of points to be read. We assume that k ≤ |F| /2.

Notation. d∗ = dlog(d + 1)e.

Oracles. The algorithm has oracle access to the following:

1. An oracle π which is the concatenation of all oracles required for the algorithm
Low-Degree-Reader-With-Large-Answer-Sizemd∗,md∗,F,K,k. [Note that the setting of pa-
rameters, md∗,md∗, F, K, k, satisfies all the requirements set for this algorithm: d ≥ 4,
and thus d∗ ≥ 3 and md∗ ≥ 3; F is a finite field and K ⊆ F is a subfield of it as required
there; k ≤ |F| /2].

Input. Points ~x1, . . . , ~xk ∈ F
m.

Output. Either reject, or k scalars a1, . . . , ak ∈ F.

19

Guarantee (to be proven below).

• Completeness: For every polynomial Q : F
m → F of degree at most d, there exists π,

such that for every input ~x1, . . . , ~xk, the reader outputs Q(~x1), . . . , Q(~xk) with probability
1.

• Soundness: For any π and any δ ≥ 2
√

md∗

|F| , there are l ≤ 2/δ polynomials Q1, . . . , Ql :

F
m → F of degree at most md∗ ·d, such that the following holds: for every input ~x1, . . . , ~xk,

the probability the reader outputs a1, . . . , ak such that there is no 1 ≤ i ≤ l, for which

a1 = Qi(~x1), . . . , ak = Qi(~xk), is at most δ + 4εmd∗ ,md∗,F,K + k · 2
√

md∗

|F| . [recall that

εmd∗,md∗,F,K = 27md∗
(

8

√

1
|K| + 4

√

(md∗)2

|F|

)

]

Process.

1. Compute ~y1 = ϕ(~x1), . . . , ~yk = ϕ(~xk).

2. Apply the algorithm Low-Degree-Reader-With-Large-Answer-Sizemd∗,md∗,F,K,k with or-
acle access to π on input ~y1, . . . , ~yk ∈ F

md∗ . If the algorithm rejects, reject ; otherwise, if
the algorithm outputs a1, . . . , ak ∈ F, output a1, . . . , ak.

Running Time. Step 1: By proposition 5.1, computing ~y1 = ϕ(~x1), . . . , ~yk = ϕ(~xk) can be
done in time poly(m, log d, k, log |F|).

Step 2: Running the algorithm Low-Degree-Reader-With-Large-Answer-Sizemd∗,md∗,F,K,k

can be done in time poly(m, log d, k, log |F|).
The total running time is thus poly(m, log d, k, log |F|).

Randomness. The randomness complexity of the algorithm is (md∗+1) log |F|+2md∗ log |K|
random bits.

Query Complexity. The number of queries made is 3.

Answer Size. The answer size is poly(m, log d, k, log |F|).

Correctness.

Lemma 5.2 (Completeness). For every polynomial Q : F
m → F of degree at most d, there ex-

ists π, such that for every input ~x1, . . . , ~xk, the reader outputs Q(~x1), . . . , Q(~xk) with probability
1.

Proof. Fix a polynomial Q : F
m → F of degree at most d. By proposition 5.1, there exists a

polynomial Q∗ : F
md∗ → F of degree at most md∗, such that for every ~x ∈ F

m, it holds that
Q(~x) = Q∗(ϕ(~x)).

By the completeness of the algorithm Low-Degree-Reader-With-Large-Answer-Sizemd∗,md∗,F,K,k

(lemma 4.2), for this Q∗, there exists π, such that for every input ~y1, . . . , ~yk ∈ F
md∗ , the reader

outputs Q∗(~y1), . . . , Q
∗(~yk) with probability 1.

Consider this oracle π. In particular, for every ~x1, . . . , ~xk ∈ F
m, on input ϕ(~x1), . . . , ϕ(~xk),

the reader outputs Q∗(ϕ(~x1)), . . . , Q
∗(ϕ(~xk)), that is, Q(~x1), . . . , Q(~xk), with probability 1.

20

Lemma 5.3 (Soundness). For any π and any δ ≥ 2
√

md∗

|F| , there are l ≤ 2/δ polynomials

Q1, . . . , Ql : F
m → F of degree at most md∗ · d, such that the following holds: for every input

~x1, . . . , ~xk, the probability the reader outputs a1, . . . , ak such that there is no 1 ≤ i ≤ l, for

which a1 = Qi(~x1), . . . , ak = Qi(~xk), is at most δ + 4εmd∗ ,md∗,F,K + k · 2
√

md∗

|F| . [recall that

εmd∗,md∗,F,K = 27md∗
(

8

√

1
|K| + 4

√

(md∗)2

|F|

)

]

Proof. Fix oracle π and δ ≥ 2
√

md∗

|F| .

Let Q∗
1, . . . , Q

∗
l : F

md∗ → F be the l ≤ 2/δ polynomials of degree at most md∗ guaranteed
in the soundness of the algorithm Low-Degree-Reader-With-Large-Answer-Sizemd∗,md∗,F,K,k

(lemma 4.3) for π and δ.
For every 1 ≤ i ≤ l, let Qi : F

m → F be Q∗
i ◦ϕ. By proposition 5.1, the polynomials Q1, . . . , Ql

are of degree at most md∗ · d.
Let ~x1, . . . , ~xk ∈ F

m be an input to the algorithm Low-Degree-Reader-For-Small-Dimensionm,d,F,K,k.
By the design of the algorithm and the guarantee on Q∗

1, . . . , Q
∗
l , with probability at least

1 − (δ + 4εmd∗ ,md∗,F,K + k · 2
√

md∗

|F|), either the algorithm rejects, or it outputs a1, . . . , ak ∈ F,

for which there exists 1 ≤ i ≤ l with a1 = Q∗
i (ϕ(~x1)) = Qi(~x1), . . . , ak = Q∗

i (ϕ(~xk)) = Qi(~xk).

6 Randomness-Efficient Low Degree Tester

In this section we use the low degree reader for small dimension of section 5 to construct a low
degree tester with relatively small answer size. The tester is obtained from the tester with large
answer size of section 3, when instead of querying polynomials for subspaces, we use low degree
reading.

Algorithm Randomness-Efficient-Low-Degree-Testerm,d,F,K.

Requirements. m ≥ 3 is a dimension parameter. d ≥ 4 is a degree parameter. F is a
finite field and K ⊆ F is a subfield of it, such that all field and subfield operations (addition,
multiplication, sampling of a field element, retrieval of the i’th element in the field, etc.) can
be done in time poly log |F|.

Oracles. The algorithm has oracle access to the following:

1. A function f : F
m → F.

2. For every matrix M ∈ M3,m,F (representing a subspace of dimension at most 3 in F
m; see

section 3), an auxiliary proof oracle πM as needed for the algorithm
Low-Degree-Reader-For-Small-Dimension3,d,F,K,1 [note that the setting of parameters
satisfies all the requirements made for the algorithm: 3 ≥ 1, d ≥ 4, F is a finite field and
K ⊆ F is a subfield of it as required there; 1 ≤ |F| /2].

Input. A point ~x ∈ F
m on which we wish to test f .

Output. Either accept, or reject.

21

Guarantee (to be proven below).

• Completeness: For every function f which is a polynomial of degree at most d, there
exist auxiliary proof oracles {πM}M∈M3,m,F

, such that for every input ~x, the tester accepts
with probability 1.

• Soundness: Let d∗ = dlog(d + 1)e and εfinal−tester
m,d,F,K = 8

√
εm,3d∗d,F,K + 5ε3d∗,3d∗,F,K [re-

call that for every dimension m, degree d, field F and subfield K, we define εm,d,F,K =

27m
(

8

√

1
|K| + 4

√

md
|F|

)

].

For any function f , for any δ ≥ 3
√

εm,3d∗d,F,K, there are l ≤ 18/δ2 polynomials Q1, . . . , Ql :
F

m → F of degree at most 3d∗ ·d, such that for every auxiliary proof oracles {πM}M∈M3,m,F
,

when ~x is uniformly distributed in F
m, the probability – over ~x and over the randomness

of the tester – that the tester accepts although f(~x) /∈ {Q1(~x), . . . , Ql(~x)} is at most

δ + εfinal−tester
m,d,F,K .

Process.

1. Pick three-dimensional subspace through ~x. Pick uniformly at random ~y1, ~y2 ∈ K
m.

Obtain the matrix M ∈ M3,m,F in row canonical form whose row space is the linear
subspace over F spanned by ~x, ~y1, ~y2. If ~x, ~y1, ~y2 are linearly dependent, accept.

2. Query subspace. Compute ~t ∈ F
3 such that MT~t = ~x. Invoke the algorithm

Low-Degree-Reader-For-Small-Dimension3,d,F,K,1 on oracle access to πM and input ~t.
If the algorithm rejects, reject ; otherwise, let y denote its output.

3. Compare to point. Query f on ~x and compare the two evaluations, if y = f(~x), accept ;
otherwise, reject.

Running Time. Step 1: As in step 1 of the algorithm
Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,d,F,K, this step can
be done in time poly(m, log |F|).

Step 2: Computing ~t ∈ F
3 such that MT~t = ~x can be done using Gaussian elimination in time

poly(m, log |F|). The running time of the algorithm Low-Degree-Reader-For-Small-Dimension3,d,F,K,1

is at most poly(log d, log |F|).
Step 3: Comparing the field elements can be done in time poly log |F|.
The total running time of the algorithm is hence poly(m, log d, log |F|).

Randomness. The tester requires 2m log |K| random bits to pick ~y1, ~y2 in step 1. The algo-
rithm Low-Degree-Reader-For-Small-Dimension3,d,F,K,1 requires additional (3d∗ +1) log |F|+
6d∗ log |K| random bits.

Thus, the randomness complexity of the algorithm is (3d∗ + 1) log |F| + (2m + 6d∗) log |K|
[recall that we do not count the randomness that may be needed to generate ~x].

Query Complexity. The tester makes one query to the function f on the point ~x. The al-
gorithm Low-Degree-Reader-For-Small-Dimension3,d,F,K,1 makes additional 3 queries. Thus,
the query complexity of the algorithm is 4 queries.

22

Answer Size. The answer size is poly(log d, log |F|), which is required for the algorithm
Low-Degree-Reader-For-Small-Dimension3,d,F,K,1.

Correctness.

Lemma 6.1 (Completeness). For every function f which is a polynomial of degree at most d,
there exist auxiliary proof oracles {πM}M∈M3,m,F

, such that for every input ~x, the tester accepts
with probability 1.

Proof. Fix a function f which is a polynomial of degree at most d. Consider some matrix
M ∈ M3,m,F representing a subspace of dimension at most 3 in F

m. Let QM : F
3 → F

be the restriction of f to the subspace, i.e., for every ~t ∈ F
3, let QM (~t) = f(MT~t). Then,

QM : F
3 → F is a polynomial of degree at most d. Let πM be the auxiliary proof guaranteed in

the completeness of the algorithm Low-Degree-Reader-For-Small-Dimension3,d,F,K,1 for QM

(lemma 5.2).
Let ~x be an input to the algorithm Randomness-Efficient-Low-Degree-Testerm,d,F,K. Fix

some randomness for the algorithm.
The algorithm cannot reject in step 2. Moreover, it cannot reject in step 3, since this would

imply the existence of M ∈ M3,m,F and ~t ∈ F
3 for which MT~t = ~x and QM (~t) 6= f(~x), but

QM (~t) = f(MT~t) = f(~x).
Thus, the algorithm accepts with probability 1.

Lemma 6.2 (Soundness). Let d∗ = dlog(d + 1)e and εfinal−tester
m,d,F,K = 8

√
εm,3d∗d,F,K+5ε3d∗ ,3d∗,F,K

[recall that for every dimension m, degree d, field F and subfield K, we define εm,d,F,K =

27m
(

8

√

1
|K| + 4

√

md
|F|

)

].

For any function f , for any δ ≥ 3
√

εm,3d∗d,F,K, there are l ≤ 18/δ2 polynomials Q1, . . . , Ql :
F

m → F of degree at most 3d∗ · d, such that for every auxiliary proof oracles {πM}M∈M3,m,F
,

when ~x is uniformly distributed in F
m, the probability – over ~x and over the randomness of the

tester – that the tester accepts although f(~x) /∈ {Q1(~x), . . . , Ql(~x)} is at most δ + εfinal−tester
m,d,F,K .

Proof. Denote the algorithm Randomness-Efficient-Low-Degree-Testerm,d,F,K by T . Its
analysis is via comparison to the behavior of the algorithm
Randomness-Efficient-Low-Degree-Tester-With-Large-Answer-Sizem,3d∗d,F,K, which we will
denote by T (0).

Let f : F
m → F be a function, and let δ ≥ 3

√
εm,3d∗d,F,K. Define δtester = δ2/9 and δreader =

δ/3.
Let Q1, . . . , Ql : F

m → F be the l ≤ 2/δtester = 18/δ2 polynomials of degree at most 3d∗d

guaranteed for f and δtester ≥ 2
√

3d∗d
|F| in the soundness of T (0) (lemma 3.5).

Let {πM}M∈M3,m,F
be auxiliary proof oracles. For every M ∈ M3,m,F, let QM,1, . . . , QM,lM :

F
3 → F be lM ≤ 2/δreader polynomials of degree at most 3d∗d guaranteed for πM and δreader ≥

2
√

3d∗

|F| in the soundness of the algorithm Low-Degree-Reader-For-Small-Dimension3,d,F,K,1

(lemma 5.3). Let us assume without loss of generality that all the lists (for all M ∈ M3,m,F)
are of the same length lM = l′ for some l′ ≤ 2/δreader [as we can add dummy polynomials of
degree at most 3d∗d to shorter lists].

Assume on way of contradiction that on input ~x uniformly distributed in F
m, the probability

– over ~x and over the randomness of T – that T accepts although f(~x) /∈ {Q1(~x), . . . , Ql(~x)} is

more than δ + εfinal−tester
m,d,F,K .

23

Consider a new (imaginary) tester T (1) that behaves the same as T , except that we add an
additional check to step 2:

2. Query subspace. Compute ~t ∈ F
3 such that MT~t = ~x. Invoke the algorithm

Low-Degree-Reader-For-Small-Dimension3,d,F,K,1 on oracle access to πM and input ~t.
If the algorithm rejects, reject ; otherwise, let y denote its output.
If y /∈

{

QM,1(~t), . . . , QM,l′(~t)
}

, reject.

When invoked with oracle access to f and {πM}M∈M3,m,F
, on the same input ~x and random-

ness, the probability that T accepts, but T (1) rejects, is at most δreader +4ε3d∗,3d∗,F,K +2
√

3d∗

|F| ≤
δreader + 5ε3d∗,3d∗,F,K.

Thus, on oracle access to f and to {πM}M∈M3,m,F
, and input ~x uniformly distributed in F

m,

the probability – over ~x and over the randomness of T (1) – that T (1) accepts although f(~x) /∈
{Q1(~x), . . . , Ql(~x)}, is more than δ + εfinal−tester

m,d,F,K − δreader −5ε3d∗ ,3d∗,F,K = 2δ/3+8
√

εm,3d∗d,F,K.

Now consider another (imaginary) tester T (2) that behaves the same as T (1), except that we
add an additional random decision to step 3:

3. Compare to point. Pick i ∈ [l′] uniformly at random. Query f on ~x and compare the
two evaluations, if y = f(~x) and y = QM,i(~t), accept ; otherwise, reject.

Assume that T (1) and T (2) are invoked on oracle access to f and to {πM}M∈M3,m,F
, on the

same input ~x uniformly distributed in F
m and on the same randomness (let us think of T (1) as

simply ignoring the additional randomness required for T (2)). Let Bad denote the event that
f(~x) /∈ {Q1(~x), . . . , Ql(~x)}.

Pr
[

T (1), T (2) accept ∧ Bad
]

= Pr
[

T (1), T (2) accept in step 1 ∧ Bad
]

+ Pr
[

T (1), T (2) accept in step 3 ∧ Bad
]

We have Pr
[

T (1), T (2) accept in step 1 ∧ Bad
]

= Pr
[

T (1) accepts in step 1 ∧ Bad
]

. Moreover,

Pr
[

T (1), T (2) accept in step 3 ∧ Bad
]

=

Pr
[

T (1) accepts in step 3 ∧ Bad
]

· Pr
[

T (2) accepts in step 3|T (1) accepts in step 3 ∧ Bad
]

≥
Pr
[

T (1) accepts in step 3 ∧ Bad
]

· 1
l′
. Hence,

Pr
[

T (1), T (2) accept ∧ Bad
]

≥ Pr
[

T (1) accepts in step 1 ∧ Bad
]

+ Pr
[

T (1) accepts in step 3 ∧ Bad
]

· 1

l′

≥ Pr
[

T (1) accepts ∧ Bad
]

· 1

l′

In particular, on oracle access to f and to {πM}M∈M3,m,F
, and input ~x uniformly distributed in

F
m, the probability – over ~x and over the randomness of T (2) – that T (2) accepts although f(~x) /∈

{Q1(~x), . . . , Ql(~x)}, is more than
(

2δ/3 + 8
√

εm,3d∗d,F,K

)

· 1
l′
. Recalling that l′ ≤ 2/δreader = 6/δ,

this probability is at least
(

2δ/3 + 8
√

εm,3d∗d,F,K

)

· δ
6 = δ2

9 + 4 δ
3
√

εm,3d∗d,F,K. Recalling that
δ ≥ 3

√
εm,3d∗d,F,K and δtester = δ2/9, the last probability is at least δtester + 4εm,3d∗d,F,K.

For every i ∈ [l′], let T
(2)
i denote an algorithm that behaves the same as T (2), only that it

deterministically picks i in step 3:

3. Compare to point. Query f on ~x and compare the two evaluations, if y = f(~x) and
y = QM,i(~t), accept ; otherwise, reject.

24

We conclude that there exists i0 ∈ [l′], such that on input ~x uniformly distributed in F
m,

the probability – over ~x and over the randomness of T
(2)
i0

– that T
(2)
i0

accepts although f(~x) /∈
{Q1(~x), . . . , Ql(~x)}, is more than δtester + 4εm,3d∗d,F,K.

Define π : M3,m,F → P3,3d∗d,F as follows: for every M ∈ M3,m,F, let π(M) be QM,i0 : F
3 → F.

Recall that indeed QM,i0 is of degree at most 3d∗d.

Now observe the behavior of T (0) when given oracle access to f and to π and of T
(2)
i0

when
given oracle access to f and to {πM}M∈M3,m,F

. Assume that both are invoked on the same input

~x uniformly distributed in F
m and on the same randomness (where T (0) ignores the additional

randomness required for T
(2)
i0

). Whenever T
(2)
i0

accepts, T (0) accepts.
Thus, on input ~x uniformly distributed in F

m, the probability – over ~x and over the ran-
domness of T (0) – that T (0) accepts although f(~x) /∈ {Q1(~x), . . . , Ql(~x)}, is more than δtester +
4εm,3d∗d,F,K ≥ δtester + 3εm,3d∗d,F,K + 3d∗d+1

|F| . This contradicts the guarantee on Q1, . . . , Ql.
The lemma follows.

7 Randomness Efficient Low Degree Reader By Balancing Curves

In this section we construct our final low degree reader. The algorithm follows that of the low
degree reader with large answer size from section 4 but differs from it in two places: (i) it
reduces the answer size by low degree reading. (ii) it saves in the randomness complexity by
guaranteeing a weaker property (which is still sufficient for our purposes) using a new technique
of balancing curves.

The weaker property is as follows. Rather than getting as input a single tuple, the reader
gets as input a collection of N tuples ~x1

1, . . . , ~x
1
k, . . . , ~x

N
1 , . . . , ~xN

k ∈ F
m and an index i0 ∈ [N] of

a tuple. The reader should return values a1, . . . , ak ∈ F corresponding to the evaluation of a low
degree polynomial on ~xi0

1 , . . . , ~xi0
k . However, the reader is only required to succeed with high

probability over its randomness and over the choice of a tuple i0 ∈ [N]. That is, the reader may
always produce answers that do not correspond to any low degree polynomial for a few tuples
among the N .

7.1 Balanced Curves

The following lemma is behind the technique of balancing curves. It shows how to pass curves
through each of the tuples in ~x1

1, . . . , ~x
1
k, . . . , ~x

N
1 , . . . , ~xN

k , such that for a uniformly distributed
curve among the N , the distribution of a uniformly distributed point on the curve (other than
those forced to be points from a tuple) is close to uniform in F

m. The choice of the curves is
done deterministically by a greedy algorithm.

Lemma 7.1 (balancing curves). Assume that F is a field in which all field operations can
be done in time poly log |F|. Let m be a dimension and let k < |F|. Fix different scalars
t1, . . . , tk+1 ∈ F. Let 0 < ε ≤ 1.

Given a collection of size N of k-tuples of points, ~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k ∈ F

m, where
N ≥ |Fm| /ε2, one can find, in time polynomial in N , points ~x1

k+1, . . . , ~x
N
k+1 ∈ F

m, such that
the distribution D obtained by picking uniformly and independently at random i ∈ [N] and
t ∈ F−{t1, . . . , tk} and computing ct1,...,tk+1,~xi

1,...,~xi
k+1

(t) is ε-close (in the l1-norm) to the uniform

distribution over F
m.

25

Proof. We will show how to find ~x1
k+1, . . . , ~x

N
k+1 iteratively. For every 1 ≤ i ≤ N + 1, for every

~x ∈ F
m, we let di−1(~x) denote the number of times ~x is hit by the curves constructed until the

i’th iteration, that is, di−1(~x) =
∣

∣

∣

{

1 ≤ j < i, t ∈ F − {t1, . . . , tk}
∣

∣

∣
c
t1,...,tk+1,~x

j
1,...,~x

j

k+1
(t) = ~x

}
∣

∣

∣
.

For every i ∈ [N], in the i’th iteration, we find ~xi
k+1 ∈ F

m that minimizes

∑

t∈F−{t1,...,tk}

di−1(ct1,...,tk+1,~xi
1,...,~xi

k+1
(t))

The running time of this algorithm is polynomial in N , |Fm|, |F|, m, k, and, hence, polynomial
in N .

Denote F = |F| − k.
The crucial observation is the following:

Claim 7.1.1. In every iteration i ∈ [N], we have

∑

t∈F−{t1,...,tk}

di−1(ct1,...,tk+1,~xi
1,...,~xi

k+1
(t)) ≤ (i − 1)F 2

|Fm|

Proof. Let Xi
k+1 be a random variable uniformly distributed in F

m. By proposition 4.1, for
every t ∈ F − {t1, . . . , tk}, the random variable ct1,...,tk+1,~xi

1,...,~xi
k
,Xi

k+1
(t) is uniformly distributed

in F
m.

Using the linearity of the expectation, we have

E
Xi

k+1





∑

t∈F−{t1,...,tk}

di−1(ct1,...,tk+1,~xi
1,...,~xi

k
,Xi

k+1
(t))



 =
∑

t∈F−{t1,...,tk}

E
Xi

k+1

[

di−1(ct1,...,tk+1,~xi
1,...,~xi

k
,Xi

k+1
(t))
]

=
∑

t∈F−{t1,...,tk}

1

|Fm|
∑

~x∈Fm

di−1(~x)

=
∑

t∈F−{t1,...,tk}

(i − 1)F

|Fm|

=
(i − 1)F 2

|Fm|

Therefore, there exists ~x ∈ F
m, for which

∑

t∈F−{t1,...,tk}
di−1(ct1,...,tk+1,~xi

1,...,~xi
k
,~x(t)) ≤ (i−1)F 2

|Fm| .

In particular, this holds for ~xi
k+1 that minimizes the sum. [of claim 7.1.1]

Applying the claim we can prove the following:

Claim 7.1.2. For every 0 ≤ i ≤ N ,

∑

~x∈Fm

di(~x)2 ≤ F 2i ·
(

i − 1

|Fm| + 1

)

Proof. We will prove the claim by induction on i. Note that for every ~x ∈ F
m, we have d0(~x) = 0,

so the claim holds for i = 0. Assume that the claim holds for i − 1 ≥ 0 and let us prove it for
i ∈ [N].

26

Let us denote the set of the points that are hit by the curve constructed in the i’th iteration by

Ci =
{

ct1,...,tk+1,~xi
1,...,~xi

k+1
(t) | t ∈ F − {t1, . . . , tk}

}

. Denote the multiplicity of a point ~x ∈ Ci,

i.e., the number of t ∈ F − {t1, . . . , tk} for which ~x = ct1,...,tk+1,~xi
1,...,~xi

k+1
(t), by mi,~x. Then,

∑

~x∈Fm

di(~x)2 =
∑

~x∈Fm−Ci

di(~x)2 +
∑

~x∈Ci

di(~x)2

=
∑

~x∈Fm−Ci

di−1(~x)2 +
∑

~x∈Ci

(

di−1(~x) + mi,~x

)2

=
∑

~x∈Fm

di−1(~x)2 +
∑

~x∈Ci

2di−1(~x)mi,~x +
∑

~x∈Ci

m2
i,~x

≤
∑

~x∈Fm

di−1(~x)2 + 2
∑

~x∈Ci

di−1(~x)mi,~x + F
∑

~x∈Ci

mi,~x

=
∑

~x∈Fm

di−1(~x)2 + 2
∑

~x∈Ci

di−1(~x)mi,~x + F 2

By claim 7.1.1,

∑

~x∈Fm

di(~x)2 ≤
∑

~x∈Fm

di−1(~x)2 +
2(i − 1)F 2

|Fm| + F 2

By the induction hypothesis,

∑

~x∈Fm

di(~x)2 ≤ F 2(i − 1) ·
(

i − 2

|Fm| + 1

)

+
2(i − 1)F 2

|Fm| + F 2

= F 2i ·
(

i − 1

|Fm| + 1

)

It follows that the claim holds for every 0 ≤ i ≤ N . [of claim 7.1.2]
Recall that D is the distribution obtained by picking uniformly at random i ∈ [N] and

t ∈ F − {t1, . . . , tk} and computing ct1,...,tk+1,~xi
1,...,~xi

k+1
(t). Note that for every ~x ∈ F

m the

probability that D assigns to ~x is exactly dN (~x)
NF

. From claim 7.1.2, we can bound the square of
the distance in the l2-norm of D from uniform:

∑

~x∈Fm

(

dN (~x)

NF
− 1

|Fm|

)2

=
1

(NF)2

∑

~x∈Fm

dN (~x)2 − 2

|Fm|
∑

~x∈Fm

dN (~x)

NF
+
∑

~x∈Fm

1

|Fm|2

≤ F 2N

(NF)2
·
(

N − 1

|Fm| + 1

)

− 2

|Fm| +
1

|Fm|

=
1

N
− 1

|Fm| ·
(

1 − N − 1

N

)

≤ 1

N

We now use Jensen’s inequality to bound the distance in the l1-norm. Since the square function
is convex, we have

(

1

|Fm|
∑

~x∈Fm

∣

∣

∣

∣

dN (~x)

NF
− 1

|Fm|

∣

∣

∣

∣

)2

≤ 1

|Fm|
∑

~x∈Fm

∣

∣

∣

∣

dN (~x)

NF
− 1

|Fm|

∣

∣

∣

∣

2

27

Therefore, we can bound the distance in the l1-norm by

∑

~x∈Fm

∣

∣

∣

∣

dN (~x)

NF
− 1

|Fm|

∣

∣

∣

∣

≤

√

√

√

√|Fm|
∑

~x∈Fm

(

dN (~x)

NF
− 1

|Fm|

)2

≤
√

|Fm|
N

≤ ε

7.2 Low Degree Reader

Algorithm Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N.

Requirements. m ≥ 3 is a dimension parameter. 4 ≤ d ≤ |F| is a degree parameter. F is a
finite field and K ⊆ F is a subfield of it, such that all field and subfield operations (addition,
multiplication, sampling of a field element, retrieval of the i’th element in the field, etc.) can
be done in time poly log |F|. k ≥ 1 is the number of points to be read. We assume that
(k + 1) ≤ |F| /2. N is the number of k-tuples from which the tuple to be read is chosen. We
assume that N ≥ |Fm|.

Oracles. The algorithm has oracle access to the following:

1. A function π : F
m → F, supposedly representing a polynomial of degree at most d.

2. Auxiliary proof oracles {πM}M∈M3,m,F
as needed for the algorithm

Randomness-Efficient-Low-Degree-Testerm,d,F,K, allowing us to test π.

3. For every curve c ∈ Cm,F
k , a proof oracle πc as required for the algorithm

Low-Degree-Reader-For-Small-Dimension1,kd,F,K,k+1, allowing us to read from polyno-
mials on c.

Input. A collection of N tuples of points ~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k ∈ F

m and an index
i0 ∈ [N], supposedly uniformly distributed in [N].

Output. Either reject, or k scalars a1, . . . , ak ∈ F.

Guarantee (to be proven below).

• Completeness: For every polynomial Q : F
m → F of degree at most d, there exist π,

{πM}M∈M3,m,F
, {πc}c∈Cm,F

k

, such that for every input ~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k and every

i0 ∈ [N], the reader outputs Q(~xi0
1), . . . , Q(~xi0

k) with probability 1.

• Soundness: There exist explicit constants 0 < c1, c2 ≤ 1 and explicit polynomials
p1(·, ·, ·), p2(·, ·, ·), such that for

ε = p1(m, log d, log k)

(

1

|K|

)c1

+ p2(m, log d, k)

(

d

|F|

)c2

the following holds.

For any π, {πM}M∈M3,m,F
, {πc}c∈Cm,F

k

, for any δ ≥ ε, there are l ≤ O(1/δ2) polynomials

Q1, . . . , Ql : F
m → F of degree at most dpoly = O(d log d), such that for every input

28

~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k , for i0 uniformly and independently distributed in [N], the

probability – over i0 and over the randomness of the reader – that the reader outputs
a1, . . . , ak such that there is no 1 ≤ i ≤ l for which a1 = Qi(~x

i0
1), . . . , ak = Qi(~x

i0
k), is at

most δ + ε +

√

|Fm|
N

.

Process.

1. Pick curve through ~xi0
1 , . . . , ~xi0

k .

Let t1, . . . , tk, tk+1 ∈ F denote the first k + 1 scalars in the field F.

For the collection ~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k ∈ F

m given as input, find, as in lemma 7.1,
~x1

k+1, . . . , ~x
N
k+1 ∈ F

m, such that the distribution D obtained by picking uniformly and inde-
pendently at random i ∈ [N] and t ∈ F− {t1, . . . , tk} and computing ct1,...,tk+1,~xi

1,...,~xi
k+1

(t)

is

√

|Fm|
N

-close (in the l1-norm) to the uniform distribution over F
m.

Let c = c
t1,...,tk ,tk+1,~x

i0
1 ,...,~x

i0
k

,~x
i0
k+1

[recall that by proposition 2.8, c is a curve in F
m of degree

at most k].

2. Pick point on curve. Pick uniformly at random t ∈ F − {t1, . . . , tk}.
3. Low degree test. Run the algorithm Randomness-Efficient-Low-Degree-Testerm,d,F,K

on oracle access to π and {πM}M∈M3,m,F
and input c(t). If the algorithm rejects, reject.

4. Query curve. Run the algorithm Low-Degree-Reader-For-Small-Dimension1,kd,F,K,k+1

on oracle access to πc and input t1, . . . , tk, t. If the algorithm rejects, reject ; otherwise, let
a1, . . . , ak, ak+1 denote its output.

5. Check curve. If ak+1 6= π(c(t)), reject.

6. Output. Return a1, . . . , ak.

Running Time. Step 1: Picking t1, . . . , tk, tk+1 ∈ F can be done in time poly(k, log |F|).
Finding ~x1

k+1, . . . , ~x
N
k+1 can be done in time polynomial in N , by lemma 7.1. Generating the

curve c can be done in time poly(m,k, log |F|).
Step 2: Picking t ∈ F − {t1, . . . , tk} can be done in time poly log |F|.
Step 3: Evaluating c(t) can be done in time poly(m,k, log |F|). Running the algorithm

Randomness-Efficient-Low-Degree-Testerm,d,F,K can be done in time poly(m, log d, log |F|).
Step 4: Running the algorithm Low-Degree-Reader-For-Small-Dimension1,kd,F,K,k+1 can

be done in time poly(log d, k, log |F|).
Step 5: Comparing the two field elements can be done in time poly log |F| [recall that c(t)

was evaluated in an earlier stage of the algorithm].
Recalling that N ≥ |Fm| and k, d ≤ |F|, the running time of the algorithm is polyN .

Randomness. We denote (kd)∗ = dlog(kd + 1)e.
The algorithm requires log |F| random bits to pick t ∈ F − {t1, . . . , tk} in step 2. The low

degree testing in step 3 requires (3d∗ + 1) log |F| + (2m + 6d∗) log |K| random bits. The low
degree reading in step 4 requires ((kd)∗ + 1) log |F| + 2(kd)∗ log |K| random bits.

The total randomness complexity of the algorithm is ((kd)∗ +3d∗ +3) log |F|+2(m+(kd)∗ +
3d∗) log |K| random bits [Note that we do not count here the randomness required to generate
i0 ∈ [N] given as input].

29

Query Complexity. The algorithm queries π on the point c(t) [the value is required for
step 3 and for step 5]. The low degree tester in step 3 makes additional 3 queries. The low
degree reader in step 4 makes 3 more queries. The total number of queries made is 7.

Answer Size. The answer size required for π is log |F|. The answer size required for {πM}M∈M3,m,F

is poly(log d, log |F|). The answer size required for {πc}c∈Cm,F
k

is poly(log d, k, log |F|). Thus, we

have a bound of poly(log d, k, log |F|) on the answer size.

Correctness.

Lemma 7.2 (Completeness). For every polynomial Q : F
m → F of degree at most d, there

exist π, {πM}M∈M3,m,F
, {πc}c∈Cm,F

k

, such that for every input ~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k and

i0 ∈ [N], the reader outputs Q(~xi0
1), . . . , Q(~xi0

k) with probability 1.

Proof. Let Q : F
m → F be a polynomial of degree at most d. Take π to be Q. Let {πM}M∈M3,m,F

be the auxiliary proof oracles guaranteed in the completeness of algorithm
Randomness-Efficient-Low-Degree-Testerm,d,F,K (lemma 6.1) for π.

By proposition 2.7, for every curve c ∈ Cm,F
k , the polynomial Q|c : F → F is a polynomial

of degree at most kd. Let πc be the oracle guaranteed by the completeness of the algorithm
Low-Degree-Reader-For-Small-Dimension1,kd,F,K,k+1 (lemma 5.2) for Q|c.

Consider some ~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k and i0 ∈ [N] given as input to the algorithm

Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N. Fix some randomness for the algo-
rithm.

The algorithm does not reject in step 3, by the completeness of the low degree tester. The
algorithm does not reject in step 4, by the completeness of the low degree reader. Moreover,
a1 = Q|c(t1), . . . , ak = Q|c(tk), ak+1 = Q|c(t). Thus, ak+1 = Q|c(t) = Q(c(t)) = π(c(t)), so the
algorithm does not reject in step 5. Finally, by the choice of c and from proposition 2.8, the
algorithm returns a1 = Q|c(t1) = Q(c(t1)) = Q(~xi0

1), . . . , ak = Q|c(tk) = Q(c(tk)) = Q(~xi0
k).

We conclude that the algorithm outputs Q(~xi0
1), . . . , Q(~xi0

k) with probability 1.
The guarantee on the soundness of the algorithm follows from the following lemma.

Lemma 7.3 (Soundness). Let d∗ = dlog(d + 1)e; (kd)∗ = dlog(kd + 1)e. Define a de-
gree bound for polynomials dpoly = 3d∗d and a degree bound on curves dcurves = 3(kd)∗kd.
Recall that for every dimension m, degree d, field F and subfield K, we define εm,d,F,K =

27m
(

8

√

1
|K| + 4

√

md
|F|

)

and εfinal−tester
m,d,F,K = 8

√
εm,3d∗d,F,K + 5ε3d∗ ,3d∗,F,K (see in lemma 6.2).

For any π, {πM}M∈M3,m,F
, {πc}c∈Cm,F

k

and any δ ≥ max
{

6
√

εm,dpoly ,F,K, 9 6

√

dcurves

|F|

}

, there

are l ≤ 72/δ2 polynomials Q1, . . . , Ql : F
m → F of degree at most dpoly, such that the following

holds: for every input ~x1
1, . . . , ~x

1
k, · · · , ~xN

1 , . . . , ~xN
k , for i0 uniformly and independently distributed

in [N], the probability – over i0 and over the randomness of the reader – that the reader outputs
a1, . . . , ak such that there is no 1 ≤ i ≤ l, for which a1 = Qi(~x

i0
1), . . . , ak = Qi(~x

i0
k), is at

most δ + ebalance + etester + ereader + eagree, where ebalance =
√

|Fm| /N , etester = εfinal−tester
m,d,F,K ,

ereader = 4ε(kd)∗,(kd)∗,F,K + (k + 1)2
√

(kd)∗

|F| and eagree =
√

dcurves

|F| .

Proof. Fix oracles π, {πM}M∈M3,m,F
, {πc}c∈Cm,F

k

and let δ ≥ max
{

6
√

εm,dpoly ,F,K, 9 6

√

dcurves

|F|

}

.

30

Let Q1, . . . , Ql : F
m → F be l ≤ 18/(δ

2)2 = 72/δ2 polynomials of degree at most dpoly guaran-

teed for π and δ
2 ≥ 3

√
εm,dpoly ,F,K in the soundness of Randomness-Efficient-Low-Degree-Testerm,d,F,K

(lemma 6.2).
Consider input ~x1

1, . . . , ~x
1
k, · · · , ~xN

1 , . . . , ~xN
k to Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N.

Let ~x1
k+1, . . . , ~x

N
k+1 be the corresponding points as being computed in step 1.

Claim 7.3.1. For i0 uniformly distributed in [N], the probability – over i0 and the randomness of
the algorithm – that the algorithm does not reject in step 3, although π(c(t)) /∈ {Q1(c(t)), . . . , Ql(c(t))},
is at most δ

2 + ebalance + etester.

Proof. Denote the algorithm Randomness-Efficient-Low-Degree-Testerm,d,F,K invoked with
oracle access to π and {πM}M∈M3,m,F

by T . We define an error function for T , denoted µ :

F
m → [0, 1], as follows: for every ~x ∈ F

m, let µ(~x) be the probability over the randomness of T
that T accepts when given input ~x, although π(~x) /∈ {Q1(~x), . . . , Ql(~x)}.

By the choice of Q1, . . . , Ql and etester, we have 1
|Fm|

∑

~x∈Fm µ(~x) ≤ δ
2 + etester.

For every ~x ∈ F
m, let D(~x) denote the probability, when picking i ∈ [N] and t ∈ F−{t1, . . . , tk}

uniformly and independently at random, of getting ~x = ct1,...,tk+1,~xi
1,...,~xi

k+1
(t). By lemma 7.1,

∑

~x∈Fm

∣

∣

∣
D(~x) − 1

|Fm|

∣

∣

∣
≤ ebalance.

Therefore,

∑

~x∈Fm

D(~x)µ(~x) =
∑

~x∈Fm

1

|Fm|µ(~x) +
∑

~x∈Fm

(

D(~x) − 1

|Fm|

)

µ(~x)

≤ 1

|Fm|
∑

~x∈Fm

µ(~x) +
∑

~x∈Fm

∣

∣

∣

∣

D(~x) − 1

|Fm|

∣

∣

∣

∣

≤ δ

2
+ etester + ebalance

By the design of the algorithm, when i0 is uniformly and independently distributed in [N],
the probability that the algorithm accepts in step 3, although π(c(t)) /∈ {Q1(c(t)), . . . , Ql(c(t))}
is
∑

~x∈Fm D(~x)µ(~x) ≤ δ
2 + ebalance + etester. [of claim 7.3.1]

For every c ∈ Cm,F
k , let Qc,1, . . . , Qc,lc : F → F denote lc ≤ 4/δ polynomials of degree at most

(kd)∗kd ≤ dcurves as guaranteed for πc and δ
2 ≥ 2

√

(kd)∗

|F| [recall that δ ≥ 9 6

√

dcurves

|F| and (kd)∗ ≤
dcurves] by the soundness of the algorithm Low-Degree-Reader-For-Small-Dimension1,kd,F,K,k+1

(lemma 5.3).
Assume on way of contradiction that the probability – over i0 uniformly distributed in [N]

and over the randomness of the algorithm – that the algorithm outputs a1, . . . , ak, such that
there is no 1 ≤ i ≤ l for which a1 = Qi(~x

i0
1), . . . , ak = Qi(~x

i0
k) is larger than δ+ebalance +etester +

ereader + eagree.
Then, by claim 7.3.1 and the soundness of Low-Degree-Reader-For-Small-Dimension1,kd,F,K,k+1

in step 4, the probability – over i0 and over the randomness of the algorithm – that the following
events happen simultaneously is larger than eagree:

1. The algorithm outputs a1, . . . , ak, such that there is no 1 ≤ i ≤ l for which a1 =
Qi(~x

i0
1), . . . , ak = Qi(~x

i0
k).

2. π(c(t)) ∈ {Q1(c(t)), . . . , Ql(c(t))}.

31

3. There exists 1 ≤ i ≤ lc, for which a1 = Qc,i(t1), . . . , ak = Qc,i(tk), ak+1 = Qc,i(t).

In addition, when the above events happen, by the check in step 5 [ak+1 = π(c(t))], we
also have for the i from the previous item:

4. Qc,i(t) ∈ {Q1(c(t)), . . . , Ql(c(t))}.

Hence, there exists i0 ∈ [N], such that the probability over the randomness of the algorithm
that the above events happen is larger than eagree. Fixing i0 fixes the choice of the curve c in
step 1.

For 1 ≤ i ≤ lc, let us say that a polynomial Qc,i is bad if it is not one of Q1|c, . . . , Ql|c.
By proposition 2.7, the degree of Q1|c, . . . , Ql|c is at most kdpoly ≤ dcurves [since d∗ ≤ (kd)∗

for k ≥ 1]. The polynomials Qc,1, . . . , Qc,lc are all of degree at most dcurves. Hence, by the
Schwartz-Zippel lemma, for every 1 ≤ i ≤ lc such that Qc,i is bad, for every 1 ≤ j ≤ l, the
polynomial Qc,i agrees with Qj|c on at most dcurves scalars in F. Thus, there are at most

lc · l · dcurves ≤ 4
δ
· 72

δ2 · dcurves scalars t ∈ F − {t1, . . . , tk} for which there exists 1 ≤ i ≤ lc such
that Qc,i is bad, but Qc,i(t) ∈ {Q1(c(t)), . . . , Ql(c(t))}. Let us denote this bad set of scalars by
B.

Hence, the probability that t chosen in step 2 uniformly at random in F − {t1, . . . , tk} falls

into B is at most 288
δ3 · dcurves

|F|−k
≤
√

dcurves

|F| = eagree [where we use k ≤ |F| /2 and δ ≥ 9 6

√

dcurves

|F|].

Therefore there exists a fixing of i0 ∈ [N] and randomness for the algorithm for which t /∈ B
and all the events above occur. In particular,

1. The algorithm outputs a1, . . . , ak, such that there is no 1 ≤ i ≤ l for which a1 =
Qi(~x

i0
1), . . . , ak = Qi(~x

i0
k).

2. There exists 1 ≤ i ≤ lc, for which a1 = Qc,i(t1), . . . , ak = Qc,i(tk), ak+1 = Qc,i(t).

3. For the i from the previous item, Qc,i(t) ∈ {Q1(c(t)), . . . , Ql(c(t))}, and hence (since
t /∈ B), Qc,i is not bad, i.e., there exists 1 ≤ j ≤ l such that Qc,i is Qj|c.

But from items 2 and 3 we get that a1 = Qj|c(t1) = Qj(c(t1)) = Qj(~x
i0
1), . . . , ak = Qj|c(tk) =

Qj(c(tk)) = Qj(~x
i0
k), which is a contradiction to item 1. The lemma follows.

8 The Final Verifier

In this section we present the PCP verifier implying Theorem 2.

Theorem 2 (Main). There exists a constant 0 < α < 1, for which there is a PCP verifier
for checking satisfiability of Boolean formulas that on input of size n uses log n + O((log n)1−α)
random bits to query 7 places in a proof of size n · 2O((log n)1−α) over symbols consisting of
O((log n)1−α) bits. The verifier has perfect completeness and error 2−Ω((log n)α).

The verifier uses the low degree reader from section 7.

32

8.1 Initial Verifier

Our starting point is the work of Dinur [8] that constructs a randomness-efficient PCP with
constant error.

Theorem 5 ([8]). There exist constants q and a, such that there is a PCP verifier for checking
satisfiability of Boolean formulas of size n with size s(n) = n ·poly log n, randomness complexity
r(n) = log n + O(log log n), query complexity q(n) = q, answer size a(n) = a, perfect complete-
ness and error ε(n) = 1

2 .

We can amplify the error of the PCP by enlarging its query complexity. This can be done at
a reasonable cost in the randomness complexity via the use of randomness efficient hitters (cf.
[10]).

Lemma 8.1 (randomness-efficient amplification). If a language L has a PCP verifier with
size s : N → N, randomness complexity r : N → N, query complexity q : N → N, answer size
a : N → N, perfect completeness and error 1

2 , then, for any error ε : N → (0, 1), L has a PCP
verifier with the same size s and the same answer size a, randomness complexity r + O(log 1

ε
),

query complexity q ·O(log 1
ε
), perfect completeness and error ε. The running time of the verifier

is polynomial in n and in log 1
ε
.

Proof. Let V be the PCP verifier for L ensured in the premise of the lemma. Consider some
ε : N → N, and let us describe a new PCP verifier V ′ for L with error at most ε.

As V , V ′ is given an input x of size n and an oracle access to a proof π of length s(n)
with answer size a(n). V ′ invokes the efficient Expander-Walk Hitter described in [10], that

uses r(n) + O(log 1
ε(n)) random bits to sample k = O(log 1

ε(n)) elements w1, . . . , wk ∈ {0, 1}r(n)

in time polynomial in n and in log 1
ε(n) . Those elements have the property that for every set

A ⊆ {0, 1}r(n) whose size is at least half of the size of {0, 1}r(n), at least one of the elements

w1, . . . , wk hits A, with probability larger than 1 − ε(n), i.e., Pr
[

∧k
i=1 (wi /∈ A)

]

< ε(n).

V ′ then simulates V on random strings w1, . . . , wk and accepts if V accepts for every random
string wi for i = 1, . . . , k.

If x ∈ L, then there exists a proof π that V always accepts, and hence, for this proof π, V ′

always accepts. Moreover, if x /∈ L, then for any proof π, for at least half of the random strings
in {0, 1}r(n) V rejects, hence the probability that V ′ does not encounter a random string on
which V rejects, is less than ε(n).

Thus, L has a PCP verifier with the same size s and the same answer size a, randomness
complexity r + O(log 1

ε
), query complexity q ·O(log 1

ε
), perfect completeness and error ε, whose

running time is polynomial in n and in log 1
ε
.

Corollary 8.2 (initial verifier). There exists a constant a, such that for any error ε : N →
(0, 1), there is a PCP verifier for checking satisfiability of Boolean formulas of size n with size
s(n) = n · poly log n, randomness complexity r(n) = log n + O(log log n) + O(log 1

ε(n)), query

complexity q(n) = O(log 1
ε(n)), answer size a(n) = a, perfect completeness and error ε(n). The

running time of the verifier is polynomial in n and in log 1
ε(n) .

8.2 Simulating The Initial Verifier

We now describe a PCP verifier for checking satisfiability of Boolean formulas that achieves
sub-constant error by making only 7 queries to a proof of almost-linear size.

33

Specifically, for input size n, the verifier achieves error ε
def
= 2−(log n)

c
2 , for a constant 0 < c ≤ 2

5
to be determined later. The verifier simulates the initial verifier from corollary 8.2 for error ε3.
This verifier makes a non-constant number of queries. To simulate it using a constant number
of queries, the final verifier makes use of the low degree reader of section 7.

Let us denote the verifier of corollary 8.2 for error ε3 by V . Let ϕ be an input of size n. Let
s be the size of the proof that V queries. Let r be the number of random bits that V uses.
Let q be the number of queries that V makes, and let a be the answer size of the proof. For
R ∈ {0, 1}r, denote by Q(ϕ,R, 1), . . . , Q(ϕ,R, q) ∈ [s] the queries made by the verifier on input
ϕ and randomness R. For answers a1, . . . , aq ∈ {0, 1}a, denote by V (ϕ,R, a1, . . . , aq) the verdict
of the verifier (accept/reject) when, on queries Q(ϕ,R, 1), . . . , Q(ϕ,R, q), the verifier receives
answers a1, . . . , aq.

The new verifier chooses appropriate finite field F and dimension m. It identifies the indices
{1, . . . , s} of a proof for V with s points in F

m by choosing a set H ⊆ F of size h ≈ s
1
m and

defining an injection E : [s] → Hm. With the proof itself it identifies a low degree polynomial Q :
F

m → F by identifying proof symbols in {0, 1}a with field elements. Specifically, by multivariate

interpolation as in lemma 2.6, a proof extends to a polynomial of degree at most d
def
= m(h−1).

Let us give a short overview of the new verifier. To simulate V , the new verifier chooses
a random R ∈ {0, 1}r and reads the value of a low degree polynomial (that supposedly en-

codes a proof for V) in the k
def
= q points corresponding to V ’s queries on randomness R,

E(Q(ϕ,R, 1)), . . . , E(Q(ϕ,R, q)). This is done using the low degree reader from section 7. If
the verifier receives answers a1, . . . , aq that indeed correspond to elements of {0, 1}a, it decides
according to V (ϕ,R, a1, . . . , aq).

For the low degree reader, the verifier needs to choose a finite field F that has a subfield K.
To this end, the verifier picks two natural numbers g1, g2 (of appropriate sizes) such that g1|g2,
and takes F to be GF (2g2) and K to be the subfield of F of order 2g1 .

Computations in the field. Before formally presenting the new verifier, let us discuss the
issue of efficient computation in the field and subfield.

To explicitly handle F, we pick an irreducible polynomial r(x) ∈ GF (2)[x] of degree g2 (such
exists and can be found in a preprocessing stage by exhaustive search in time polynomial in
2g2). We let F = GF (2)[x]/〈r(x)〉, or, equivalently, let F be the set of all formal polynomials in
x of degree less than g2 over GF (2), where addition and multiplication are done modulo r(x).
Note that the field elements can be represented as binary strings of length g2 and addition and
multiplication can be done in time polynomial in g2.

We can implement operations such as retrieval of the i’th element in the field or sampling of
an element in the field via the representation of field elements as binary strings. We, however,
take a different approach, which will allow us to implement these operations for the subfield as
well.

A primitive element of a finite field F is an element α ∈ F, which is a generator of the cyclic
multiplicative group F − {0}, namely, α,α2, α3, ... are all the field elements but 0.

We pick a primitive element α of the field (such exists and can be found in a preprocessing
stage in time polynomial in 2g2), and regard αi as the i’th element of the field for 1 ≤ i ≤ 2g2−1.
We consider the zero element of the field to be the 2g2 ’th element in it.

Proposition 8.3. Let F be a finite field and let α ∈ F. Then, given natural i ≥ 1, one can
compute αi in time polynomial in log i and in the time required for multiplication in the field.

34

Proof. Given natural i ≥ 1, compute α20
, . . . , α2blog ic

by repeated squaring starting from α20
=

α. This can be done in time polynomial in log i and in the time required for multiplication in
the field.

Now compute a binary representation of i, namely, b0, . . . , bblog ic ∈ {0, 1}, such that i =
∑blog ic

j=0 bj2
j . This can be done in time polynomial in log i.

We have αi = (α20
)b0 · · · (α2blog ic

)bblog ic . Computing this requires at most blog ic multiplica-
tions in the field.

Hence, retrieving the i’th element in the field, for every 1 ≤ i ≤ 2g2 can be done in time
polynomial in g2.

Now, let us discuss the handling of the subfield. It is known from the theory of finite fields

that the (unique) subfield of F of order 2g1 is given by K
def
=
{

x ∈ F
∣

∣ x2g1 = x
}

. Let β = α
2g2−1
2g1−1 .

Note that since g1|g2, the power 2g2−1
2g1−1 is natural, and equals 1 + 2g1 + (2g1)2 + . . . + (2g1)

g2
g1

−1
,

so β ∈ F. Moreover, β is a primitive element of K, because:

1. β ∈ K, since β2g1 = β2g1−1 · β =

(

α
2g2−1
2g1−1

)2g1−1

· β = α2g2−1 · β = β.

2. β1, β2, . . . , β2g1−1 are all distinct elements, since for every 1 ≤ i ≤ 2g1 − 1, we have

βi =

(

α
2g2−1
2g1−1

)i

= α
i

2g1−1
·2g2−1

, where i
2g1−1 · (2g2 − 1) is a natural number between 1 and

2g2 − 1, and since α1, α2, . . . , α2g2−1 are all distinct.

So we can also retrieve the i’th element of the subfield for every 1 ≤ i ≤ 2g1 , and sample an
element in the subfield, in time polynomial in g2 (again we use the convention that the 2g1 ’th
element of the subfield is the zero element).

The Verifier

Given as input a Boolean formula ϕ of size n.

Parameter Setting and Preprocessing. Set the error to be ε
def
= 2−(log n)

c
2 , for a constant

0 < c ≤ 2
5 to be determined later.

The rest of the parameters are set with respect to the parameters of the verifier V from
corollary 8.2 for input size n and error ε3, which are: size s = n · poly log n, randomness
r = log n + O((log n)

c
2), number of queries q = O((log n)

c
2) and answer size a = O(1).

m
def
= max

{

d(log s)1−ce, 3
}

; h
def
= max

{

d2(log s)ce, 3
}

; d
def
= m(h − 1); k

def
= q.

For the constants 0 < c1, c2 ≤ 1 and polynomials p1(·, ·, ·), p2(·, ·, ·) from the guarantee on the
soundness of the reader in section 7, set lower bounds on the size of the field and subfield:

K0
def
= max

{

2,

(

p1(m, log d, log k)

ε

)
1
c1

}

; F0
def
= d · max

{

2(k + 1), 2a,

(

p2(m, log d, k)

ε

)
1
c2

}

These are chosen with the intent of bounding the error terms from the low degree reading that

depend on 1
|K| and d

|F| by ε. Set g1
def
= dlog K0e and g2

def
= g1 · d log F0

g1
e [note that g1 and g2 are

natural (non-zero) numbers satisfying g1|g2]. Let F = GF (2g2) and let K =
{

x ∈ F
∣

∣ x2g1 = x
}

be the subfield of F of order 2g1 . Find an irreducible polynomial of degree g2 over GF (2) and

35

a primitive element α of the field F (see the above discussion about computations in the field).

Let N
def
= 2r · l for a multiplier l = d 1

2r |Fm| /ε2e. This is chosen with the intent of bounding the
error term from the low degree reading that depends on N by ε.

We have the following bounds:

• m ≤ (log n)1−c + O(log log n)

• h ≤ 2(log n)c+O(log log n)

• d ≤ 2(log n)c+O(log log n)

• k ≤ O((log n)
c
2)

• |K| ≤ 2O((log n)
c
2)

• |F| ≤ 2(log n)c+O((log n)
c
2)

• |Fm| ≤ 2log n+O((log n)1−
c
2)

• N ≤ 2log n+O((log n)1−
c
2)

Mapping [s] to F
m. Let H be the first h elements in the field F [note the |F| ≥ d ≥ h]. We

define an injection E : [s] → Hm that is computable in time polynomial in log n as follows:
For i ∈ [s], consider a representation of i − 1 in base h, bm−1, . . . , b0 ∈ {0, . . . , h − 1}, where
i− 1 =

∑m−1
j=0 bjh

j [note that since hm − 1 ≥ s− 1, such representation exists]. Let E(i) be the
m-tuple composed of the (b0 + 1)’th element in the field, the (b1 + 1)’th element in the field,
etc. Note that E indeed maps [s] to Hm.

• E is injective: since the representation in base h is unique and the ordering of the field
elements is fixed.

• E is computable in time polynomial in log n: given i ∈ [s], computing the repre-
sentation of i − 1 in base h ≥ 2 can be done in time polynomial in log i and in log h.
Retrieving the appropriate m elements in the field can be done in time poly(m, log |F|).
For our parameters, the computation can be done in time polynomial in log n.

Proof Oracle. The verifier has oracle access to the following:

1. An oracle π which is a concatenation of all oracles required for the algorithm
Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N [Note that the setting of param-
eters satisfies the requirements for the algorithm: m ≥ 3; 4 ≤ d ≤ |F|; F is a finite field
and K ⊆ F is a subfield of it, such that all field and subfield operations can be done in
time poly log |F|; k ≥ 1; (k + 1) ≤ |F| /2; N ≥ |Fm|].

Process.

1. Generate Collection of Queries. For every R ∈ {0, 1}r, make l copies of the q-tuple
E(Q(ϕ,R, 1)), . . . , E(Q(ϕ,R, q)) ∈ F

m corresponding to the queries of the verifier V on
input ϕ and randomness R. Denote by ~x1

1, . . . , ~x
1
q , . . . , ~x

N
1 , . . . , ~xN

q the resulting N = 2r · l
tuples.

36

2. Make Queries. Pick uniformly and independently at random R ∈ {0, 1}r and i ∈ [l].
Let i0 ∈ [N] index the i’th copy of the q-tuple associated with R, and invoke algorithm
Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N on oracle access to π and on in-
put ~x1

1, . . . , ~x
1
q , . . . , ~x

N
1 , . . . , ~xN

q and i0. If the algorithm rejects, reject. Otherwise, let
a1, . . . , aq ∈ F denote its output.

3. Verify. If at least one of a1, . . . , aq does not correspond to an element in {0, 1}a, reject.
Otherwise, accept or reject as V (ϕ,R, a1, . . . , aq).

Running Time. Setting parameters, preprocessing: Setting the parameters can be done in
time polynomial in log n. Finding an irreducible polynomial and a primitive element for the field
can be done in time polynomial in the size of the field [see the discussion regarding computations
in the field]. Thus, this phase can be done in time polynomial in n.

Step 1: Generating the collection of queries can be done in time polynomial in N , the running
time of V and the time needed to compute the mapping E on the q queries. Thus, this step
can be done in time polynomial in n.

Step 2: Picking R ∈ {0, 1}r and i ∈ [l] can be done in time log N . The running time of the
algorithm Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N is polynomial in N . Thus,
this step can also be done in time polynomial in n.

Step 3: Checking the q elements can be done in time polynomial in q and in log |F|. Simulating
the verifier V can be done in time polynomial in n.

The total running time is polynomial in n.

Randomness. The algorithm requires log N = log n + O((log n)1−
c
2) random bits for step 2.

The algorithm Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N, requires O((log k +
log d) log |F|)+O((m+log k +log d) log |K|) random bits. For the above parameter setting, this
becomes O((log n)1−

c
2) [recall that c ≤ 2

5].

The total number of random bits the algorithm uses is log n + O((log n)1−
c
2).

Query Complexity. The query complexity of the verifier is the same as the query complexity
of the algorithm Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N, which is 7 queries.

Answer Size. The answer size of the proof oracle is the same as the answer size for the al-
gorithm Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N, which is poly(log d, k, log |F|).
For the above parameter setting, this becomes poly((log n)c).

Correctness.

Lemma 8.4 (Completeness). If ϕ is satisfiable, then there exists π, such that the verifier
accepts with probability 1.

Proof. Assume that ϕ is satisfiable. Let π0 : [s] → {0, 1}a denote a proof on which V accepts
with probability 1. Let us define a function f : Hm → F representing this proof, by letting,
for every i ∈ [s], f(E(i)) = π0(i) [recall that E is injective and that we identify elements in
{0, 1}a with field elements (note that indeed g2 ≥ a)]. Let f assign other elements in its domain
arbitrary values in the field F. Extend f into a polynomial Qf : F

m → F of degree at most d as
in lemma 2.6. Let π be the concatenation of all oracles guaranteed in the completeness of the
low degree reader (lemma 7.2) for Qf .

37

Fix some randomness for the verifier. This fixes the choice of the randomness R and the index
i0 in step 2. Denote the queries that V makes on randomness R by i1 = Q(ϕ,R, 1), . . . , iq =
Q(ϕ,R, q) ∈ [s]. Recall that ~xi0

1 = E(i1), . . . , ~x
i0
q = E(iq) ∈ Hm are the points corresponding to

these queries.
By the choice of π, the verifier does not reject while reading, i.e., in step 2. Moreover, reading

necessarily returns a1 = Qf (~xi0
1), . . . , aq = Qf (~xi0

q), i.e., a1 = Qf (E(i1)), . . . , aq = Qf (E(iq)).
Since Qf extends f and E(i1), . . . , E(iq) ∈ Hm, we have a1 = f(E(i1)), . . . , aq = f(E(iq)), and
by the choice of f , we have a1 = π0(i1), . . . , aq = π0(iq). Hence, by the choice of the proof π0,
the elements a1, . . . , aq are all in {0, 1}a and V necessarily accepts, and so does the new verifier.

Lemma 8.5 (Soundness). If ϕ is not satisfiable, then for any π, the verifier accepts with
probability at most ε′ = O(ε).

Proof. Let π be such that on oracle access to π and input ϕ, the verifier accepts with probability
larger than ε′. Let us construct a proof π0 on which the verifier V accepts ϕ with probability
at least Ω((ε′ − 5ε)ε2). For some ε′ = O(ε), this probability is larger than ε3. By the soundness
of V , having error at most ε3, it follows that ϕ is satisfiable.

Note that by the choice of parameters

p1(m, log d, log k)

(

1

|K|

)c1

+ p2(m, log d, k)

(

d

|F|

)c2

≤ 2ε

Let Q1, . . . , Ql : F
m → F be l = O(1/ε2) polynomials guaranteed for π and δ = 2ε in the

soundness of the algorithm Randomness-Efficient-Low-Degree-Readerm,d,F,K,k,N (lemma 7.3).
For j ∈ [l], let us denote by Readj the event that the low degree reading in step 2 results

in answers agreeing with Qj, namely, that the verifier does not reject in this step and a1 =
Qj(~x

i0
1), . . . , aq = Qj(~x

i0
q). Let us denote by Read the event that at least one of Read1, . . . , Readl

occurs. Let Accept denote the event that the verifier accepts.
By our assumption on π and the choice of Q1, . . . , Ql, noting that i0 is uniformly distributed

in [N], the probability that both Accept and Read occur is larger than ε′−(δ+2ε+
√

|Fm| /N) ≥
ε′ − 5ε. We also have

Pr [Accept ∧ Read] ≤
l
∑

j=1

Pr [Accept ∧ Readj]

Therefore, there exists j0 ∈ [l] such that

Pr [Accept ∧ Readj0] ≥
1

l
· Pr [Accept ∧ Read] ≥ Ω((ε′ − 5ε)ε2) (1)

Let us define π0 such that for every i ∈ [s], the symbol in the i’th position is Qj0(E(i)), if it
corresponds to an element in {0, 1}a, and an arbitrary dummy symbol in {0, 1}a otherwise.

By the construction of the verifier and (1), with probability at least Ω((ε′ − 5ε)ε2) over
the choice of randomness R ∈ {0, 1}r, if we denote the positions Q(ϕ,R, 1), . . . , Q(ϕ,R, q) by
i1, . . . , iq ∈ [s] and denote aj0

1 = Qj0(E(i1)), . . . , a
j0
q = Qj0(E(iq)):

• aj0
1 , . . . , aj0

q all correspond to elements in {0, 1}a. Hence, π0(i1) = aj0
1 , . . . , π0(iq) = aj0

q .

• V (ϕ,R, aj0
1 , . . . , aj0

q) accepts.

Therefore, the verifier V accepts when given oracle access to π0 on input ϕ with probability at
least Ω((ε′ − 5ε)ε2). The lemma follows.

38

Main Theorem Follows. Theorem 2 is now proven by choosing 0 < c ≤ 2
5 to be a small

enough constant so that the answer size becomes O((log n)1−
c
2), and taking α = c

2 . The ran-
domness of the verifier is log n + O((log n)1−α) and the verifier makes 7 queries to its proof.
Thus, the size of the proof required for the verifier is at most n · 2O((log n)1−α). The verifier has
perfect completeness and its error is at most ε′ = 2−Ω((log n)α).

39

References

[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the
hardness of approximation problems. Journal of the ACM, 45(3):501–555, 1998.

[2] S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP.
Journal of the ACM, 45(1):70–122, 1998.

[3] S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica,
23(3):365–426, 2003.

[4] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable
proofs and applications to approximations. In Proc. 25th ACM Symp. on Theory of Com-
puting, pages 294–304, 1993.

[5] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of
proximity, shorter PCPs and applications to coding. In Proc. 36th ACM Symp. on Theory
of Computing, pages 1–10, 2004.

[6] E. Ben-Sasson and M. Sudan. Simple PCPs with poly-log rate and query complexity. In
Proc. 37th ACM Symp. on Theory of Computing, pages 266–275, 2005.

[7] E. Ben-Sasson, M. Sudan, S. P. Vadhan, and A. Wigderson. Randomness-efficient low
degree tests and short PCPs via epsilon-biased sets. In Proc. 34th ACM Symp. on Theory
of Computing, pages 612–621, 2003.

[8] I. Dinur. The PCP theorem by gap amplification. In Proc. 38th ACM Symp. on Theory
of Computing, pages 241–250, 2006.

[9] I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP characterizations of NP:
Towards a polynomially-small error-probability. In Proc. 31st ACM Symp. on Theory of
Computing, pages 29–40, 1999.

[10] O. Goldreich. Lecture Notes for the Course Randomized Methods in Computation;
Lecture 12, Hitters and Samplers, available at http://www.wisdom.weizmann.ac.il/∼
oded/rnd.html.

[11] O. Goldreich and M. Sudan. Locally testable codes and PCPs of almost-linear length.
Journal of the ACM, 53(4):558–655, 2006.

[12] D. Moshkovitz and R. Raz. Sub-constant error low degree test of almost-linear size. In
Proc. 38th ACM Symp. on Theory of Computing, pages 21–30, 2006.

[13] A. Polishchuk and D. A. Spielman. Nearly-linear size holographic proofs. In Proc. 26th
ACM Symp. on Theory of Computing, pages 194–203, 1994.

[14] R. Raz and S. Safra. A sub-constant error-probability low-degree test and a sub-constant
error-probability PCP characterization of NP. In Proc. 29th ACM Symp. on Theory of
Computing, pages 475–484, 1997.

40

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

