
Approximating Covering Problems by Randomized

Search Heuristics Using Multi-Objective Models

Tobias Friedrich∗ Jun He† Nils Hebbinghaus∗

Frank Neumann∗ Carsten Witt‡

February 6, 2007

Abstract

The main aim of randomized search heuristics is to produce good
approximations of optimal solutions within a small amount of time.
In contrast to numerous experimental results, there are only a few
theoretical results on this subject. We consider the approximation
ability of randomized search for the class of covering problems and
compare single-objective and multi-objective models for such prob-
lems. For the VertexCover problem, we point out situations where
the multi-objective model leads to a fast construction of optimal so-
lutions while in the single-objective case even no good approximation
can be achieved within expected polynomial time. Examining the more
general SetCover problem we show that optimal solutions can be ap-
proximated within a factor of log n, where n is the problem dimension
using the multi-objective approach while the approximation quality ob-
tainable by the single-objective approach in expected polynomial time
may be arbitrarily bad.

1 Introduction

Randomized search heuristics have been shown to be very successful when
dealing with problems from combinatorial optimization. The general aim

∗Max-Planck-Institut für Informatik, Saarbrücken, Germany
†University of Birmingham, Birmingham, United Kingkom. Financial support by the

UK Engineering and Physical Research Council under Grant No. EP/C520696/1.
‡LS2, Fachbereich Informatik, University of Dortmund, Dortmund, Germany. Finan-

cial support by the Deutsche Forschungsgemeinschaft (DFG) in terms of the Collaborative
Research Center “Computational Intelligence” (SFB 531).

1

Electronic Colloquium on Computational Complexity, Report No. 27 (2007)

ISSN 1433-8092

of these heuristics is to produce within a small amount of time good ap-
proximations of optimal solutions. In contrast to their success reported in
numerous experiments, there are only a few rigorous results on the approxi-
mation ability of randomized search heuristics [15]. Our aim is to study the
following question. Is it possible that a multi-objective model of a single-
objective optimization problem leads to better approximations for NP-hard
combinatorial optimization problems?

This question is inspired by a recent work of Neumann and Wegener
[13], where they have shown that minimum spanning trees can be com-
puted more easily in a multi-objective model than in a single-objective one.
We follow this interesting new research direction by comparing single- and
multi-objective models for an important class of NP-hard combinatorial op-
timization problems. Our investigations concern covering problems which
appear in many important real world applications such as the design of
boolean circuits or the construction of timetables.

Covering problems are from a natural point of view single-objective op-
timization problems and there is always one single optimal objective value
that should be computed and for which a corresponding solution should
be produced. In multi-objective optimization, there is usually a trade-off
between optimizing different objectives. In this case, one is looking for a
set of trade-offs such that improving one objective leads to a disadvantage
with respect to at least one other objective. The set of these optimal ob-
jective vectors is called the Pareto front. The number of different trade-offs
possible determines the population size of the multi-objective evolution-
ary algorithms (EAs). The population size of a multi-objective model for
a single-objective problem is a crucial point when designing multi-objective
models since an exponential population size may prevent the algorithm from
being efficient. Multi-objective models for single-objective problems should
include the single-objective problem itself as this is the task which has to
be solved. Then the population size may slow down the optimization pro-
cess compared with the single-objective one. Assuming that the population
size is polynomially bounded, in the worst case the process is slowed down
by a polynomial factor. In contrast to this, the multi-objective model ad-
mits to direct the search in a better way as shown in [13]. In particular
multi-objective models may make randomized search heuristics behave in a
greedily. Greedy algorithms play an important role in the classical design
of algorithms [1]. Adding this ability to randomized search heuristics may
lead to a significant improvement.

We compare simple randomized search heuristics for single-objective op-
timization with their multi-objective counterparts by rigorous runtime anal-

2

yses. In the last years, a lot of progress has been made in analyzing simple
evolutionary algorithms with respect their runtime behavior on artificial
pseudo-boolean functions [3, 8] as well as some well-known combinatorial
optimization problems [12, 13, 5, 15, 11]. Most of these results consider ex-
act optimization while the main aim of general search heuristics is to obtain
good approximations of optimal solutions in a small amount of time. Ana-
lyzing these algorithms with respect to approximability, we are interested in
the worst-case approximation ratio that can be achieved within an expected
polynomial number of steps.

As a special case of the more general SetCover problem we examine
the computation of a minimum vertex cover in a given undirected graph. We
present a multi-objective model whose set of different trade-offs is always
linear in the number of vertices. This seems to be a comfortable situation
for multi-objective EAs when dealing with single-objective problems. We do
not expect the multi-objective EA to outperform the single-objective one in
any case as it has to cope with a larger population size. First, we point out
simple situations where this leads to a disadvantage for the multi-objective
approach compared with the single-objective one. After that, we present
situations for the single-objective case where there is a local optima with a
large inferior neighborhood. These local optima can have values that are far
from the global optimum. In particular, we present a class of instances where
the single-objective model does not lead to an approximation factor better
n1−δ, for each δ with 0 < δ < 1, within an expected polynomial number of
steps while the corresponding multi-objective EAs are even able to compute
the Pareto front in a small amount of time. Afterwards we consider the more
general SetCover problem which is hard to approximate within a multi-
plicative factor better than log n [14]. For the single-objective approach, we
show that the approximation ratio obtainable in expected polynomial time
is unbounded. In contrast to this non-approximability result for the single-
objective approach, we point out that the multi-objective model leads to a
factor O(log n)-approximation for the SetCover problem which is best we
can hope for under certain assumptions from complexity theory [14].

The outline of the paper is as follows. In Section 2 we introduce the
algorithms that are the subject of our investigations. Section 3 compares the
different approaches for the VertexCover problem. In Section 4 we show
that the multi-objective approach leads to a factor O(log n)-approximation
for the SetCover problem while the approximation ratio achievable by
the single-objective approach is unbounded. Finally, we finish with some
conclusions.

3

2 Algorithms

We consider simple multi-objective evolutionary algorithms and compare
them with their single-objective counterparts. The algorithm called SEMO
(Simple Evolutionary Multi-objective Optimizer) has already been discussed
for the optimization of pseudo-boolean functions [4, 9] and for different kinds
of spanning tree problems [11, 13]. It starts by choosing a solution uniformly
at random from the search space {0, 1}n. This individual is added to the
population P and in each step an individual x is chosen uniformly at random
from P to produce an offspring x′. This is done by flipping one random bit of
x. The offspring is included in the population iff it is not dominated by any
other search point of P . In the case of minimizing a multi-objective function
f : {0, 1}n → R

k, a solution y dominates a solution x iff f(y) ≤ f(x) and
f(y) 6= f(x). f(y) ≤ f(x) holds iff fi(y) ≤ fi(x) for all i ∈ {1, . . . , k}. This
definition can easily be adjusted to multi-objective problems, where the aim
is to maximize the value of some objectives.

Algorithm 1. SEMO

1. Choose x ∈ {0, 1}n uniformly at random.

2. Determine f(x).

3. P ← {x}.

4. Repeat

• Choose x ∈ P uniformly at random.

• Create x′ by flipping one randomly chosen bit of x.

• Determine f(x′).

• If x′ is not dominated by any other search point in P , include
x′ into P and delete all other solutions z ∈ P with f(x′) ≤ f(z)
from P .

Choosing a single-objective fitness function which should be optimized
for SEMO, the algorithm equals the well-known single-objective randomized
search heuristic called Randomized Local Search (RLS). As there is a total
order on the search points in the single-objective case, RLS works at each
time step with a single solution. We can describe RLS as follows.

4

Algorithm 2. Randomized Local Search (RLS)

1. Choose x ∈ {0, 1}n uniformly at random.

2. Repeat

• Create x′ by flipping one randomly chosen bit of x.

• If f(x′) ≤ f(x), set x := x′.

In most cases evolutionary algorithms have the ability to flip more than
one bit in the mutation step. Often the following operator is used leading
to more general algorithms.

Algorithm 3. General mutation operator

• Create x′ by flipping each bit of x with probability 1/n.

The (1+1) EA and the Global SEMO are the generalized counterparts of
RLS and SEMO, respectively. They differ from Algorithms 1 and 2 above by
using the more general mutation operator shown in Algorithm 3. There, each
bit of the considered search point is flipped with probability 1/n. Flipping
more than one bit in each step allows the algorithm to leave local optima.
Another property of this operator is that the probability of sampling an op-
timal solution is always positive. This implies that the algorithms (1+1) EA
and Global SEMO converge to optimal solutions.

Our aim is to analyze the introduced algorithms by a rigorous runtime
analysis until they have produced good solutions for the class of covering
problems. The measure of interest is the number of constructed solutions
until certain goals have been achieved. In the case of single-objective op-
timization, one is often interested in the expected number of constructed
solutions until an optimal one has been obtained for the first time. In
the context of multi-objective optimization, the expected optimization time
equals the expected number of constructed solutions until the population
contains for the first time a solution for each objective vector belonging to
the Pareto front. Using multi-objective models for single-objective optimiza-
tion problems, sometimes one might be only interested in one single solution.
In this case it is enough to bound the number of constructed solutions until
a single solution with a certain objective value has been obtained.

Most of our investigations consider the approximation ability of the pro-
posed algorithms. The worst-case approximation ratio of an algorithm A
for a given minimization problem R is defined as maxI∈R

A(I)
OPT(I) where A(I)

denotes the value obtained by A when applied to an instance I of R and

5

OPT(I) denotes the value of an optimal solution for the given instance. We
are mainly interested in upper and lower bounds for the number of con-
structed solutions until a certain approximation ratio has been achieved by
the introduced algorithms.

3 The VertexCover Problem

The VertexCover problem is one of the well-known NP-hard combina-
torial optimization problem. Given an undirected graph G = (V,E) where
|V | = n and |E| = m the aim is to find a subset V ′ ⊆ V of minimum
cardinality such that for each e ∈ E, e ∩ V ′ 6= ∅ holds. Many simple ap-
proximation algorithms achieve a worst-case approximation ratio of 2 (see
e.g. [1]). For example such an approximation can be achieved in polynomial
time by computing a maximum matching in the given graph and choosing
for each edge of the matching the corresponding two vertices. Considering
bipartite graphs the VertexCover problem can be solved in polynomial
time using another correspondence between a maximum matching and a
minimum vertex cover given by König’s theorem (see e.g. [2]). In this case
the number of edges in a maximum matching equals the number of vertices
in a minimum vertex cover.

Considering the algorithms of Section 2 for the VertexCover problem,
each bit xi of a solution x corresponds to a vertex vi ∈ V . The vertex vi is
chosen in the current solution x if xi = 1 and otherwise it is unchosen. We
use the fitness function considered by He, Yao, and Li [7]. Denote by |x|1 and
|x|0 the number of ones respectively of zeros in a bitstring x. The fitness of a
search point x is given by f(x) = (u(x), |x|1) where u(x) denotes the number
of uncovered edges of the solution x. In the case of RLS and the (1+1) EA,
the function should be minimized with respect to the lexicographic order.
Hence, the first aim is to minimize the number of uncovered edges such that
a vertex cover is obtained. Afterwards the aim is to produce a vertex cover
by minimizing the number of ones under the condition that the solution is
still a vertex cover. In the case of SEMO and Global SEMO both objectives
should be optimized at the same time.

We compare RLS with SEMO and the (1+1) EA with Global SEMO
by rigorous runtime analyses. He, Yao, and Li [7] have already examined
a single objective EA on the fitness function proposed for the (1+1) EA.
Their algorithm works with a larger population size and in addition with
a crossover operator. They have shown that their algorithm finds a vertex
cover in a number of O(n2) generations. We show that the expected time

6

until RLS and the (1+1) EA have produced a vertex cover is O(n log n).
A similar proof can be found in [6]. In addition, we show that this bound
is tight by presenting a worst case example. As there is always a constant
probability, in the EA analyzed by He, Yao, and Li [7], to use only mutation
the upper bound of O(n log n) also holds in their scenario.

Theorem 1. The expected time until RLS and the (1+1) EA have produced
a (not necessarily minimum) vertex cover is O(n log n)

Proof. We prove the theorem for the (1+1) EA using the method of the
expected multiplicative weight decrease developed in [12]. As the proof only
works with 1-bit flips and all 1-bit flips are equally likely, the result also holds
for RLS. Choosing all vertices is certainly a vertex cover and each vertex
which has not been chosen before and that is incident to an uncovered edge
leads to an improvement with respect to the fitness function. Let k be the
number of vertices that are incident to at least one uncovered edge. The
number of uncovered edges is reduced from u(x) to 0 by these k accepted
1-bit flips. As the prior aim is to minimize the number of uncovered edges,
there are no accepted steps increasing the number of uncovered edges. Non-
accepted 1-bit flips contribute a value of 0 to the reduction of the number
of uncovered edges. We consider the expected decrease of an arbitrary 1-bit
flip. Note that the probability of such steps is at least 1/e. Choosing a
1-bit flip uniformly at random among all 1-bit flips, the expected number of
uncovered edges after this step is at most (1 − 1/n) · u(x) and after t steps
this expected value is at most (1 − 1/n)t · u(x). Choosing t∗ = cn log n, c
an appropriate constant, this value is strictly less than 1/2. As the number
of uncovered edges is an integer, the probability of having obtained a vertex
cover after t∗ 1-bit flips is at least 1/2 using Markov’s inequality. This
implies that the expected number of 1-bit flips to obtain a vertex cover is
at most 2t∗ = O(n log n). The result follows as the probability of flipping a
single bit in the next mutation step is at least 1/e and the expected waiting
time for this event is therefore upper bounded by e.

In the following we show that the given upper bound is best possible.
In the case that RLS and the (1+1) EA have to flip Θ(n) bits to obtain
an optimal solution from an initial one, a lower bound of Ω(n log n) follows
easily using the results of the Coupon Collectors theorem [10]. For the
vertex cover problem we make this precise by considering the complete graph
C = (V,E) on n vertices. Each subset of V containing exactly n−1 vertices
is a minimum vertex cover of C.

7

Theorem 2. The expected time until RLS and the (1+1) EA has produced
a (minimum) vertex cover of C is Θ(n log n).

Proof. Due to Theorem 1, a vertex is produced after an expected number of
O(n log n) steps. This solution is either a minimum vertex cover (contains
exactly n − 1 vertices) or a non optimal one (containing n vertices). In
the second case, exactly one arbitrary bit has to flip. The expected waiting
time for this event is at most e which shows the upper bound. For the lower
bound, we use the following observation. In the initial solution at most 2

3 ·n
vertices are chosen with high probability using Chernoff bounds [10]. As
at least n − 1 vertices are contained in each vertex cover at least n/3 − 1
bits have to flip. The probability of non flipping one of these n/3 − 1 bits
during c n log n steps, c an appropriate constant, is bounded from below by
a positive constant using the ideas of the coupon collector’s theorem [3, 10],
which completes the proof.

Global SEMO has to cope with a larger population size than the (1+1) EA.
In particular situations, this can lead to a larger expected optimization time.
In the case of the graph C, the number of vertices for each vertex cover is
at least n− 1 and the (1+1) EA can easily produce such a cover by adding
sequentially vertices to the currently best solution. In the case of Global
SEMO, the set of possible trade-offs might be linear in the number of ver-
tices and this can slow down the time to produce a vertex cover. We show
that the expected time for Global SEMO to produce a vertex cover of C is
significantly larger than the one shown for the (1+1) EA.

Theorem 3. The expected time until Global SEMO has produced a (mini-
mum) vertex cover of C is Θ(n2 log n).

Proof. The population size is O(n) as there are n+1 different values for the
number of ones in a search point x. The upper bound follows by considering
in each step the solution with the smallest number of uncovered edges in
the population and using the ideas also used in the proof of Theorem 1. It
remains to show the lower bound. The initial search point consists of at
most 2

3 · n vertices with high probability using Chernoff bounds [10]. Let
amax denote the maximal number of vertices of one element in the current
population. We consider the time where amax ∈ [23n, 3

4n] and show that from
this time the population size is Θ(n) with probability at least 1/2. The
graph C has the following property for our multi-objective model. Each
search point x with |x|1 = k, 0 ≤ k ≤ n − 1 is Pareto optimal and its
objective vector is f(x) = (k, (n − k)(n − k − 1)/2) as the set of uncovered

8

edges consists of all edges between the unchosen vertices. Let us consider
only steps that increase amax. We show that the expected increase of amax

in all such steps in the phase amax ∈ [23n, 3
4n] is bounded by 2. To obtain

from a step that increases amax by i a step that increases amax by i + 1 one
of the remaining (at most 1

3 · n) zeros has to be flipped. The probability for
this extra flip is at most n

3 /n = 1
3 . Thus, the expected increase of amax in

such steps is at most 2 (geometric series). Therefore, the average increase
of amax in the phase amax ∈ [23n, 3

4n] is larger than 4 with probability less
than 1/2. It follows that with probability at least 1/2 the population size is
Θ(n) when having obtained for the first time a solution with at least 3

4 · n

vertices. With high probability amax is less than or equal to n − 2n1/4 at
this time. In other words, we can assume that there are at least 2n1/4 zeros
left in every element of the current population of size Θ(n).

Let x be the solution in the population with the largest number of ones.
Steps leading to a solution z with |z|1 > |x|1 are essential to obtain a vertex
cover as in each vertex cover of C the number of ones is at least n− 1. Let
r = |x|0 and consider the time to reduce r from n1/4 to 1. The probability
to produce from a solution y with |y|0 > r + n1/4 an improving z is upper

bounded by en1/4

and therefore such an event does not happen within a
polynomial number of steps with probability close to 1. We call a step
a k-step iff it creates a solution z with |z|1 > |x|1 by flipping k 0-bits.
The probability to flip k 0-bits in a single mutation step of a solution y

with |y|0 ≤ r + n1/4 is upper bounded by
(

r+n1/4

n

)k
= O(n−3k/4) and the

probability to do this for a specific solution y with r ≤ |y|0 ≤ r + n1/4 is
O(n−1−3k/4) as the population size is Θ(n). Hence, for k ≥ 2 this does not
happen within Θ(n2 log n) steps with probability 1 − o(1) using Markov’s
inequality. This implies that with probability 1 − o(1) a solution z with
|z|1 > |x|1 can only be produced by mutating x. The expected time to
reduce the value r of zeros to r−1 zeros by 1-steps under the condition that
x has been chosen for mutation is n

r . Thus, the expected time to reduce the

value r from n1/4 to 1 is of order

Θ(n)

n1/4

∑

r=2

(r

n

)−1
= Θ(n2 log n).

This proves an expected time Ω(n2 log n) to find a vertex cover of C.

We have shown by a rigorous runtime analysis that there are cases where
the population size of Global SEMO slows down the optimization process.

9

Figure 1: The considered complete bipartite graph B = (V,E) for n = 9
and ε = 1

3 .

Considering dense graphs that have δn2 edges, δ > 1/4, the initial solution
of both algorithms does not represent a vertex cover and Θ(n) vertices have
to be chosen to obtain such a solution.

In the following, we want to point out a situation where the multi-
objective approach is superior. Consider a complete bipartite graph B =
(V,E), where V = V1 ∪ V2 consists of two sets of non equal size and the
edge set E = { {vi, vj} | vi ∈ V1 ∧ vj ∈ V2} consists of all edges that con-
nect these two sets. W. l. o. g. we assume |V1| < |V2|. A minimum vertex
cover is the set V1 but both algorithms have a chance to determine the set
V2 as vertex cover. We consider the case |V1| = εn and |V2| = (1 − ε)n,
ε < 1/2 and not necessarily constant. The usual aim of randomized search
heuristics is to produce near optimal solutions. In the following we point
out that the single-objective approach does not admit a good approximation
of an optimal solution for the graph B while the multi-objective one leads
a polynomial expected optimization time. If RLS has chosen all vertices of
V2 but some vertices of V1 are missing, the algorithm can not produce an
approximation better than a factor (1−ε)

ε .
On the graph B the expected optimization time of RLS is infinite as the

next theorem shows.

Theorem 4. With probability ε, RLS cannot obtain an approximation better
than a factor (1− ε)/ε for B within a finite number of steps. In particular,
the expected time to produce an approximation better than a factor (1− ε)/ε
on B is infinite.

10

For the proof of Theorem 4 we will use the following lemma which may
be of independent interest.

Lemma 1. A bin contains k red and l blue balls. We take out the balls
at random from the bin without replacement until there is either no red or
no blue ball left. With probability k

l+k there is no blue ball left, and with

probability l
l+k there is no red ball left.

Proof. Let us modify the model a little bit. Instead of taking out the balls
until there is either no red or no blue ball left, we take out the balls at
random from the bin without replacement until there is no ball left in the
bin. The color of the last ball taken out of the bin clearly determines the
ball color firstly removed from the bin. Since every of the

(

l+k
k

)

orders of

taking out all balls is equally likely and there are
(l+k−1

k

)

orders in which
the last ball taken out is blue, the probability that the last ball is blue is

(l+k−1
k

)

/
(l+k

k

)

= (l+k−1)!l!k!
k!(l−1)!(l+k)! = l

l+k

and the lemma is proved.

Using this lemma we are now able to prove Theorem 4.

Proof of Theorem 4. In the phase until the larger or the smaller vertex set
are chosen completely by RLS, only steps that increase the number of ver-
tices are accepted. This is because a reduction of the number of vertices
in this phase reduces also the number of covered edges and thus the fitness
value. Moreover, if the larger vertex set is the vertex set that is first deter-
mined completely by RLS, there is no chance for RLS to determine the the
optimal solution, since henceforward only steps that reduce the number of
vertices in the larger vertex set are accepted. In this situation the optimiza-
tion time is infinite. Therefore, we have to prove that this happens with
positive probability.

For this purpose, we like to apply Lemma 1. But this is not possible in
a direct way because of the initialisation phase in RLS. To overcome this
obstacle, we model the initialization phase in the following way. Instead of
choosing every vertex with probability 1/2, we choose a k ∈ {0, 1, . . . , n}
following the binomial distribution B(n, 1/2). In other words, we choose
k with probability

(

n
k

)

(1
2)n. Afterwards, we choose successively k of the n

vertices without repetition. To justify this model, we have to show that the
number of chosen vertices in this model has the same probability distribution
as in the real model of the initialisation phase and that each vertex is chosen

11

with probability 1/2 in this model. The probability that we choose exactly
k balls in the new model is given as

(n
k

)

(1
2)n. And the probability for every

vertex to be chosen as one of the k balls is clearly k
n . Thus, the probability

for each ball to be chosen in the new model is

n
∑

k=0

k
n

(n
k

)

(1
2)n =

n
∑

k=1

k
n

(n
k

)

(1
2)n =

n
∑

k=1

k
n

(n−1
k−1

)

(1
2)n

= 1
2

n−1
∑

k=0

k
n

(n−1
k

)

(1
2)n−1 = 1

2 .

Hence, we have justified this model, and we can assume that, starting with
the empty subgraph, all vertices are chosen successively with equal proba-
bility. We can apply Lemma 1. (Instead of taking out a ball, we choose
a vertex that was not chosen so far.) Therefore, the probability that the
larger set of vertices is the first set that is completely chosen by RLS is ε.
This proves the theorem.

Theorem 4 shows that the approximability of RLS for the vertex cover
problem can be arbitrarily bad. Choosing, e. g., ε = 1/n, leads to a graph
where V1 consists of one single vertex. In this case RLS does not obtain an
approximation better than a factor of n−1 with probability 1/n. Note that
an approximation of almost that quality can be obtained for an arbitrary
graph by choosing all vertices of the given input.

After having obtained the vertex set V2 and discarding the set V1, the
(1+1) EA can not obtain a better approximation ratio than (1−ε)/ε without
flipping at least εn bits. If ε is not too small, the (1+1) EA can only leave
this local optimum in the next mutation step with a probability that is
exponentially small. Therefore, the expected optimization time under the
condition that such a solution has been produced before having obtained the
optimal solution is exponential. The following theorem shows that this can
lead to almost arbitrarily bad approximation ratios of roughly n1−δ, δ > 0
a constant.

Theorem 5. Let δ > 0 be a constant and nδ−1 ≤ ε < 1/2. The expected
optimization time of the (1+1) EA on B (with |V1| = εn and |V2| = (1−ε)n)
is exponential. In particular, the expected time to produce an approximation
better than a factor (1− ε)/ε is exponential.

Proof. We investigate a run of two phases. In the first phase we examine
the probability that a vertex cover including all vertices of V2 with at least

12

one vertex missing in V1 is constructed. In the second phase give a lower
bound for the probability that a local optimum is obtained by removing all
vertices of V1. This local optimum can only be left by including all vertices
of V1 and removing at least εn vertices of V2.

The first phase consists of 12en ln n mutation steps. First we prove that
the (1+1) EA obtains a vertex cover within this phase with probability at
least 1/4. We restrict ourselves to the effect of 1–bit flips of vertices in V2.

The probability for a 1–bit flip of a vertex in V2 is (1−ε)n
n (1− 1

n)n−1 ≥ (1−ε)
e .

Thus, the average waiting time for such a mutation step is at most e
(1−ε)

and with probability at least 1/2 there are in k steps of the (1+1) EA at

least k(1−ε)
2e 1–bit flips in V2 by Markov’s inequality. Moreover, there are

(1 − ε)n of such 1–bit flips concerning V2 (one for each vertex). We apply
the method of expected multiplicative weight decrease in a more precise way
than in Theorem 1. Let N be the current number of uncovered edges. All
1–bit flips adding a vertex of V2 are accepted and the total weight decrease
of these steps is N . 1–bit flips removing vertices of V2 contribute a weight
decrease of 0. Thus, flipping a single 0-bit of V2 decreases the number of
uncovered edges edges by an expected factor of 1− 1

(1−ε)n ≤ (1− 1
n). Taking

into account that the number of uncovered edges is at most εn(1−ε)n ≤ n2,
the expected number of uncovered edges after k 1–bit flips in V2 is at most
(1 − 1

n)k · n2. Considering a phase of 12en ln n steps the expected number
of uncovered edges after this phase is strictly less than 1/2. Hence, by
Markov’s inequality, a cover is produced with probability at least 1

2
1
2 = 1

4 in
this phase.

Now we prove a lower bound on the probability that after 12en ln n steps
of the (1+1) EA at least one vertex of V1 has not been chosen. Since all
our considerations up to now concerned only vertices in V2 and all our con-
siderations from now on are concerned only with vertices in V1, these two
events are independent, and we can later on easily estimate the probabil-
ity that both events occur simultaneously. This is exactly the case if the
(1+1) EA completely discovers V2 before completely discovering V1. By

Chernoff bounds, there are with probability 1 − 2−Ω(εn) = 1 − 2−Ω(nδ) at
least |V1|/3 = εn/3 ≥ nδ/3 unchosen vertices in V1 in the initial solution.
The probability that after 12en ln n mutation steps of the (1+1) EA a single
vertex is chosen at least once is 1 − (1 − 1

n)12en ln n. Thus, the probability
that at least one of the initially not chosen vertices of V1 is not chosen after

13

12en ln n mutation steps of the (1+1) EA is

1−
(

1−
(

1− 1
n

)12en lnn
)

nδ

3

≥ nδ−13e

6 .

Altogether, the probability that the (1+1) EA chooses all vertices of V2

before choosing all vertices of V1 is bounded from below by nδ−13e

24 . Hence,
the probability is as wanted at least bounded by an inverse polynomial.

We consider a second phase of n3/2 mutation steps and show that all
vertices of V1 are removed with probability at least 1/15. Let us assume
that we start this phase with all vertices of V2 and all but one vertex of V1

in the current solution. This is the worst case for our analysis. In this phase
(all vertices of V2 and some vertices of V1 chosen) the only mutation steps
accepted by the (1+1) EA are the following. Either all missing vertices of V1

are chosen and at least as many vertices of V2 are removed, or all vertices of
V2 are kept and the number of vertices in V1 is decreased (or stays the same
by adding and removing some vertices). The former mutation step has a
probability of at most n−k, where k denotes the current number of missing
vertices in V1. For the latter kind of mutation steps we restrict ourselves to
1–bit flips reducing the number of vertices in V1. The probability for such a
mutation step is at least εn−k

en ≥ 1
en . For our calculations we take only those

two kind of mutation steps into account, the “good event” with probability
at least εn−k

en and the “bad event” with probability at most n−k, since all
other accepted mutation steps reduce or preserve the number of vertices in
V1. The probability that the “good event” occurs before the “bad event” is
at least 1

en/(1
en +n−k) = 1− e

nk−1+e
. Thus, the probability that the vertices

of V1 were all removed by the (1+1) EA before the “bad event” occurs is at
least

εn−1
∏

k=1

(1− e
nk−1+e

) ≥ 1
1+e(1−

e
n)

n−1

2 ≥ e−e/2

1+e > 1
15 .

The expected waiting time for removing all vertices of V1 by the (1+1) EA
is O(n log n) and therefore all vertices of V1 are removed within n3/2 steps
with probability 1 − o(1) using Markov’s inequality (always assuming that
the “bad event” does not occur during this phase). Hence, the probability
that the (1+1) EA determines the local minimum V2 as vertex cover is at

least nδ−13e

360 . But if the current solution is V2, every accepted mutation step
has to add all the vertices of V1 (and remove at least |V1| vertices of V2).

This occurs with probability at most n−εn = n−Ω(nδ). Thus, the expected
time until an approximation better than a factor (1− ε)/ε is determined is

14

at least
nδ−13e

360 nΩ(nδ) = nΩ(nδ).

This proves the theorem.

In contrast to RLS and the (1+1) EA, SEMO and Global SEMO have
the ability to overcome this obstacle. The main reason for that is that the
multi-objective model makes the algorithm behave in a greedy way. Note
that each vertex of V1 is incident to (1 − ε)n edges while each vertex of
V2 is incident to εn edges. A greedy algorithm that starts with the empty
vertex set and adds in each step a vertex which covers a largest number
of up to now uncovered edges ends up with V1 and produces therefore an
optimal solution. It is well-known that many covering problems have worst
case approximation ratio log n using algorithms of that kind.

Theorem 6. The expected optimization time of SEMO and Global SEMO
on B is O(n2 log n).

Proof. We prove the theorem for Global SEMO. All subsets of V1 are Pareto
optimal. The objective vector of a subset V ′ ⊆ V1 with |V ′| = k is (m −
k (1 − ε)n, k). The Pareto front contains of |V1| + 1 = εn + 1 objective
vectors (m, 0), (m − (1 − ε)n, 1), (m − 2 (1 − ε)n, 2), . . . , (0, εn), where
m = ε (1 − ε)n2. The population size is bounded by O(n) as a population
will never contain two individuals with equal number of vertices.

First, we determine the time till the Pareto optimal searchpoint (m, 0)
is found. Since it is the only one with |x|1 = 0, it is never removed from
the population again. One possibility for Global SEMO to get “closer” to
(m, 0) is to select the individual with the smallest |x|1-value from the current
population and mutate it such that the |x|1-value decreases. By the Coupon
Collector’s theorem [10] this shows that (m, 0) is included in the population
after O(n2 log n) steps with high probability since the population size is
bounded by O(n).

We now bound the time to discover the whole Pareto set after (m, 0) is
found. Since the probability of flipping a single bit in one step is at least
1/e, the probability to get from one Pareto optimal solution (m − k (1 −
ε)n, k) to the “next” Pareto optimal solution (m− (k +1) (1− ε)n, k +1) is
(εn − k)/(e n). Using again the linear size of the population, the expected
number of steps to gain the whole Pareto front is at most

∑

(e n2)/(εn−k) =
O(n2 log n), which completes the proof. As only 1-bit flips are used in the
proof, the result also holds for SEMO.

15

4 The SetCover Problem

As a generalization of the VertexCover problem we consider the well-
known SetCover problem and examine the approximation ability of the
multi-objective with the single-objective approach. Given a ground set S =
{S1, . . . , Sm} and a collection C1, . . . , Cn of subsets of S with corresponding
positive costs c1, . . . , cn. We denote by cmax = maxi ci the maximum cost of
a subset for a given instance. The goal is to find a minimum-cost selection
Ci1 , . . . , Cik , 1 ≤ ij ≤ n and 1 ≤ j ≤ k, of subsets such that all elements
of S are covered. The SetCover problem can not be approximation better
than by a factor log n unless certain assumptions from complexity theory do
not hold. It is well known that simple greedy algorithms achieve a worst-
case approximation ratio of O(log n). In the following, we want to strengthen
our claim that a multi-objective model might be superior to a corresponding
single-objective approach as it has the ability to simulate a greedy approach.

Considering the algorithms introduced in Section 2 a search point x ∈
{0, 1}n encodes a selection of subsets. p(x) =

∑n
i=1 cixi measures the total

cost of the selection and u(x) denotes the number of elements of S that are
uncovered. Considering RLS and the (1+1) EA for the SetCover problem,
the fitness of a search point x is given by the vector f(x) = (u(x), p(x))
which should be minimized with respect to the lexicographic order. In our
multi-objective setting, we would like to minimize u(x) and p(x) at the same
time.

We start by showing the RLS and the (1+1) EA are not able to compute
solutions that achieve more than a trivial approximation ratio. This is done
by generalizing our negative results for the single-objective approach of the
previous section to the SetCover problem. The VertexCover problem
for a given graph G = (V,E) is a special SetCover problem where S = E
and Ci denotes the set of edges incident to vertex vi and ci = 1 for i ∈
{1, . . . , n}.

We consider a generalization of the graph B given in the previous section
to the SetCover problem and show that the approximation ratio achievable
by the single-objective algorithms can be unbounded.

The idea is to consider subsets Ci, 1 ≤ i ≤ n, that correspond to the
set of edges incident to the different vertices of B and assign large costs
to subsets corresponding to vertices in V2 and small costs corresponding to
vertices in V1. We make this precise and denote our class of instance by C∗.

16

Let

S = {{v1, vεn+1}, . . . , {v1, vn},

{v2, vεn+1}, . . . , {v2, vn},

. . .

{vεn, vεn+1}, . . . , {vεn, vn}}

be the ground set,

Ci = {{vi, vεn+1}, . . . , {vi, vn}}

with ci = 1, 1 ≤ i ≤ εn, and

Ck = {{vk, v1}, . . . , {vk, vεn}}

with ck = cmax, εn + 1 ≤ k ≤ n, be the subsets with associated costs, where
cmax is a large value (e.g. cmax = 2n).

Theorem 4 can be generalized to the C∗ in the following way using the
same proof ideas.

Theorem 7. With probability ε, RLS cannot obtain an approximation better
than a factor ((1− ε)cmax)/ε for C∗ within a finite number of steps. In
particular, the expected time to produce an approximation better than a factor
((1 − ε)cmax)/ε on C∗ is infinite.

In a similar way, we can adapt Theorem 5 to the instance C∗ of the
SetCover problem.

Theorem 8. Let δ > 0 be a constant and nδ−1 ≤ ε < 1/2. The expected
optimization time of the (1+1) EA on C∗ (with |V1| = εn and |V2| = (1−ε)n)
is exponential. In particular, the expected time to produce an approximation
better than a factor ((1− ε)cmax)/ε is exponential.

Theorem 7 and 8 show that the approximation quality achievable in ex-
pected polynomial time can be made arbitrarily bad as long as cmax grows.
We therefore say that RLS and the (1+1) EA have a worst case approx-
imation ratio obtainable in expected polynomial time for the SetCover

problem that is unbounded.
In contrast to this we show that the expected optimization time of SEMO

and Global SEMO on C∗ is polynomial. The following properties hold for
the multi-objective model of the SetCover problem. The all-zeros string
is Pareto-optimal since it covers no elements at zero cost. Moreover, any
population of the multi-objective algorithms, which is a set of mutually
non-dominating search points, can have at most m elements.

17

Theorem 9. The expected optimization time of SEMO and Global SEMO
on C∗ is O(mn(log cmax + log n)).

Proof. To prove the theorem we generalize some ideas already used in the
proof of Theorem 6. The Pareto front consists of the objective vectors
(m, 0), (m−(1−ε)n, 1), (m−2(1−ε)n, 2), (0, εn) and a solution corresponding
to the objective vector (m − i(1 − ε)n, i), 1 ≤ i ≤ εn, chooses exactly i
subsets from the set {C1, . . . , Cεn} of subsets with costs 1. We first consider
the time the search point 0n with Pareto optimal objective vector (m, 0) has
been included into the population.

To estimate this time, we consider the expected multiplicative decrease of
the minimum p-value for the current population. The probability of choosing
an individual with minimum p-value among all individuals in the population
is at least 1/m as the population size is bounded above by m. Since flipping
a single bit decreases the p-value by an expected factor of 1 − 1/(en) or
better, the expected time until the all-zeros string is reached is bounded
above by O(mn(log cmax + log n)).

After having obtained a Pareto optimal solution x with objective vector
(m − k(1 − ε)n, k), 0 ≤ k < εn there are εn − k subsets of costs 1 that
can be chosen to obtain a Pareto-optimal solution whose objective vector is
(m− k(1− ε)n, k). Taking into account the upper bound on the population
size as well as flipping one of the desired bits in x, the probability that
such a step happens in the next iteration is at least εn−k

enm . Hence, the
expected time to obtain for the “next” Pareto optimal objective vector a
corresponding solution is upper bounded by O((mn)/(εn − k)). Summing
up over the different values of k a solution for each Pareto optimal objective
vector has been produced after an expected number of O(mn log n) steps
under the condition that the search point 0n has been obtained before, which
completes the proof.

Up to now, we have pointed out classes of problems where the multi-
objective approach achieves better approximations than the single-objective
one. We have also shown, that the single-objective algorithms can not
achieve a better than non-trivial approximation ratio within an expected
polynomial number of steps. In contrast to this we point out in the follow-
ing that the multi-objective model leads to good approximations within an
expected polynomial number of steps. Here, we are in particular interested
in the expected number of steps until a solution x with u(x) = 0 has been
produced that is a good approximation of an optimal one.

We will show that SEMO and Global SEMO are able to efficiently find
approximate solutions to arbitrary instances of the NP-hard SetCover

18

problem. The approximation quality is, up to a constant factor, the best we
can hope for in polynomial time for arbitrary instances.

Theorem 10. For any instance of the SetCover problem and any ini-
tial search point, SEMO and Global SEMO find an O(log m)-approximate
solution in an expected number of O(m2n + mn(log n + log cmax)) steps.

Proof. The proof idea is to show that SEMO is able to proceed along the
lines of the greedy algorithm for SetCover [14]. Let Hm :=

∑m
i=1 1/i

be the m-th Harmonic number and Rk := Hm − Hm−k, 0 ≤ k ≤ m, the
sum of the last k terms of Hm. While the greedy algorithm is able to find
Hm-approximate solutions, SEMO creates Rk-approximate solutions that
cover k elements for increasing values of k, i. e., it arrives at intermedi-
ate solutions that are at least as good as in the greedy algorithm. The
expected time until the all-zeros string is reached is bounded above by
O(mn(log cmax + log n)) using the same ideas as in the proof of Theorem 9.

Let OPT be the cost of an optimal solution. Let c(x) = m−u(x) be the
number of elements of S covered in a solution x. The remainder of the proof
studies the so-called potential of the current population, which measures the
largest k such that there is an individual x in the population where c(x) = k
and |x|1 ≤ Rk · OPT. The potential is well defined since now the all-zeros
string is always in the population.

It is easy to see that the potential cannot decrease. We examine the
expected time until the potential increases at least by 1. To this end, we
apply the analysis of the greedy algorithm by [14] and use the notion of cost-
effectiveness of a set, defined at the cost of the set divided by the number
of newly covered elements. If there are n − k elements left to cover and
we add the most cost-effective set to cover some of these, all newly covered
elements are covered at relative cost of at most OPT /(n− k). Hence, if the
cost of the selection was bounded above by Rk ·OPT before and k′ ≥ k + 1
elements are covered after the step, the cost is at most Rk′ ·OPT afterwards.
The probability of choosing an individual that defines the current potential
is bounded below by 1/m. The probability of adding a most cost-effective
set is bounded below by 1/(en) as it suffices to flip a certain bit. Since
the potential can increase at most m times, the expected time is O(m2n)
until an Rm-optimal, i. e., Hm-optimal, individual covering all elements is
created.

19

5 Conclusions

The general purpose of randomized search heuristics is to compute good
approximations within a small amount of time. In contrast to many exper-
imental results, only a few theoretical investigations have been carried out
up to now. We have investigated the approximation ability of randomized
search heuristics for the important class of covering problems. Comparing
single-objective and multi-objective models our results show that the multi-
objective model leads to a better approximation ability of randomized search
heuristics. The main reason for this is that the multi-objective approach has
the ability to act in a greedy way. In the case of the VertexCover prob-
lem we have pointed out situations where this can make a difference between
obtaining optimal solutions and the inapproximability within an expected
polynomial number of steps. For the SetCover problem we have shown
that randomized search heuristics using a multi-objective model are able to
compute a factor O(log n)-approximation which is best possible while the
use of a single-objective one has a worst case approximation ratio within an
expected polynomial number of steps that is unbounded.

References

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, 2. edition, 2001.

[2] R. Diestel. Graph Theory. Springer, 3rd edition, 2005.

[3] S. Droste, T. Jansen, and I. Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theor. Comput. Sci., 276:51–81, 2002.

[4] O. Giel. Expected runtimes of a simple multi-objective evolutionary
algorithm. In Proc. of CEC 2003, IEEE Press, pages 1918–1925, 2003.

[5] O. Giel and I. Wegener. Evolutionary algorithms and the maximum
matching problem. In Proc. of STACS 2003, volume 2607 of LNCS,
pages 415–426, 2003.

[6] O. Glaser. Evolutionary algorithms and the vertex cover problem (in
german). Department of Computer Science, University of Kiel, 2005.

[7] J. He, X. Yao, and J. Li. A comparative study of three evolution-
ary algorithms incorporating different amounts of domain knowledge

20

for node covering problem. IEEE Transactions on Systems, Man, and
Cybernetics, Part C, 35(2):266–271, 2005.

[8] T. Jansen and I. Wegener. Evolutionary algorithms - how to cope
with plateaus of constant fitness and when to reject strings of the same
fitness. IEEE Trans. Evolutionary Computation, 5(6):589–599, 2001.

[9] M. Laumanns, L. Thiele, and E. Zitzler. Running time analysis of mul-
tiobjective evolutionary algorithms on pseudo-boolean functions. IEEE
Trans. Evolutionary Computation, 8(2):170–182, 2004.

[10] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[11] F. Neumann. Expected runtimes of a simple evolutionary algorithm
for the multi-objective minimum spanning tree problem. In Proc. of
PPSN 2004, volume 3242 of LNCS, pages 80–89, 2004.

[12] F. Neumann and I. Wegener. Randomized local search, evolution-
ary algorithms, and the minimum spanning tree problem. In Proc.
of GECCO 2004, volume 3102 of LNCS, pages 713–724, 2004.

[13] F. Neumann and I. Wegener. Minimum Spanning Trees Made Easier
Via Multi-Objective Optimization. Natural Computing, 5(3):305–319,
2006.

[14] V. Vazirani. Appromixation Algorithms. Springer, 2001.

[15] C. Witt. Worst-case and average-case approximations by simple ran-
domized search heuristics. In Proc. of STACS 2005, volume 3404 of
LNCS, pages 44–56, 2005.

21

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

