
Implicit Simulation of FNC Algorithms

Daniel Sawitzki∗

University of Dortmund, Computer Science 2
D-44221 Dortmund, Germany

daniel.sawitzki@cs.uni-dortmund.de

http://ls2-www.cs.uni-dortmund.de/~sawitzki/

February 12, 2007

Abstract

Implicit algorithms work on their input’s characteristic functions and
should solve problems heuristically by as few and as efficient functional op-
erations as possible. Together with an appropriate data structure to rep-
resent the characteristic functions they yield heuristics which are success-
fully applied in numerous areas. It is known that implicit algorithms which
execute t(N) functional operations while using at most k log2 N Boolean
variables can be simulated by CREW-PRAMs with O(Nk) processors and
parallel runtime O((t(N))2). In this paper we consider the opposite case
and present a simulation of FNC algorithms by implicit OBDD-based algo-
rithms with polylog(N) functional operations and O(log N) Boolean vari-
ables.

1 Introduction

For
�

:= {0, 1}, let us denote the ith character of a binary string x ∈
�

n by xi and
let |x| identify its length n. The class of Boolean functions f : {0, 1}n → {0, 1}
will be denoted by Bn. We define the characteristic Boolean function χI ∈ Bn of
some I ∈

�
N by χI(x) := Ix for n := dlog2 Ne, x ∈

�
n, and IN , . . . , I2n−1 := 0.

The input I ∈
�

N of Implicit Algorithms is given by the characteristic func-
tion χI ∈ Bn of I. We then want so solve problems on I without extracting
too much explicit information from it. Instead, most work should be done by
functional operations on χI and further intermediate results. Finally, also the
problem’s solution O ∈

�
M should be presented as χO ∈ Bm for m := dlog2 Me.

∗Supported by DFG grant We 1066/10-3.

1

Electronic Colloquium on Computational Complexity, Report No. 28 (2007)

ISSN 1433-8092

The purpose of this approach is to create practically successful heuristics on
inputs which are large and structured at the same time. Therefore, an implicit
algorithm should execute a small number t(N) of functional operations on inputs
of size N . The remaining computation steps should be of the same magnitude
as t(N). To obtain an overall efficient heuristic, each single functional operation
has to be efficient. Hence we need an appropriate data structure for the hopefully
succinct representation of all handled characteristic functions.

Ordered Binary Decision Diagrams (OBDDs) [2, 15] are a data structure for
Boolean functions which is proven as succinct representation for structured and
regular data in many practical applications. They are often used to represent
characteristic functions in implicit algorithms (e. g. for special problems in CAD
and Model Checking, see [8, 15]), because they have efficient algorithms for all
usual functional operations like binary operators, quantifications or satisfiability
tests. This efficiency is related to the corresponding operand OBDD sizes, while
the latter may grow exponentially during a short sequence of only log2 N OBDD
operations. So the analysis of OBDD-based implicit algorithms is not trivial.
In fact, their theoretical analysis has mostly been restricted to the number of
functional operations up to the present, which at last is no more than a trivial
lower bound on the real overall runtime.

Recent research tries to develop theoretical foundations on OBDD-based
graph algorithms. On the one hand, this includes the development of implicit
methods for fundamental problems like topological sorting [16] and the com-
putation of connected components [5, 6], maximum flows [9, 12], and shortest
paths [11, 11]. On the other hand, we need more sophisticated analysis tech-
niques to explain the practical success of implicit algorithms.

Problems typically get harder when their input is represented implicitly. For
circuit representations, this is shown in [1, 4, 10]. Because OBDDs may be
exponentially larger than circuits, these results do not directly carry over to
problems on OBDD-represented inputs. Feigenbaum et al. [3] prove that the
Graph Accessibility Problem is PSPACE-complete on OBDD-represented graphs.
First efficient upper bounds on time and space of implicit graph algorithms on
special inputs have been presented by Sawitzki [11, 12] and Woelfel [16]. These
results rely on restrictions on the complete OBDD width of occurring OBDDs.

In [13, 14] it is shown that implicit algorithms with a polylogarithmic
number of functional operations using O(log N) Boolean can be simulated by
CREW-PRAMS with polylogarithmic parallel time and a polynomial number of
activated processors.

In this work we consider the opposite situation and show that every problem
in the class FNC has also an according implicit algorithm. In Section 2 we
introduce OBDDs, before addressing further preliminaries in Section 3. Then we
finally present the simulation result in Section 4. Section 5 gives conclusions on
the work.

2

2 Ordered Binary Decision Diagrams

A Boolean function f ∈ Bn defined on variables x0, . . . , xn−1 can be represented
by an Ordered Binary Decision Diagram (OBDD) [2]. An OBDD G is a directed
acyclic graph consisting of internal nodes and sink nodes. Each internal node
is labeled with a Boolean variable xi, while each sink node is labeled with a
Boolean constant. Each internal node is left by two edges one labeled 0 and the
other 1. A function pointer p marks a special node that represents f . Moreover,
a permutation π ∈ Σn called variable order must be respected by the internal
nodes’ labels on every path from p to a sink. For a given variable assignment
a ∈

�
n, we compute the function value f(a) by traversing G from p to a sink

labeled with f(a) while leaving each node labeled with xi via its ai-edge.
An OBDD with variable order π is called π-OBDD. The minimal-size π-OBDD

for a function f ∈ Bn is known to be canonical and will be denoted by π-OBDD[f].
Its size size(π-OBDD[f]) is measured by the number of its nodes. Its width
width(π-OBDD[f]) is the maximum number of its nodes labeled with the same
variable. We adopt the usual assumption that all OBDDs occurring in implicit
algorithms have minimal size, since all essential OBDD operations produce min-
imized diagrams. On the other hand, finding an optimal variable order leading
to the minimum size OBDD for a given function is known to be NP-hard. Inde-
pendent of π it is size(π-OBDD[f]) ≤

(

2 + o(1)
)

2n/n for any f ∈ Bn.
OBDDs offer algorithms (called OBDD operations in the following) for

all the essential functional operations on Boolean functions, which are effi-
cient w. r. t. the size of involved OBDDs. The satisfiability of f can be de-
cided in time O(1). The negation f , the replacement of a variable xi by
some constant c (i. e., f|xi=c), and computing |f−1(1)| are possible in time
O
(

size(π-OBDD[f])
)

. The set f−1(1) of f ’s minterms can be obtained in time
O
(

n · |f−1(1)|
)

. Whether two functions f and g are equivalent (i. e., f = g)
can be decided in time O

(

size(π-OBDD[f]) + size(π-OBDD[g])
)

. The most im-
portant OBDD operation is the binary synthesis f ⊗ g for f, g ∈ Bn, ⊗ ∈ B2

(e. g., ∧, ∨); in general, it produces the result π-OBDD[f ⊗ g] in time and space
O
(

size(π-OBDD[f]) · size(π-OBDD[g])
)

. The synthesis is also used to implement
quantifications (Qxi)f for Q ∈ {∃, ∀}. Hence, computing π-OBDD

[

(Qxi)f
]

takes
time O

(

size2(π-OBDD[f])
)

in general.
Nevertheless, a sequence of only n synthesis operations may cause an expo-

nential blow-up on OBDD sizes, in general. The book of Wegener [15] gives a
comprehensive survey on different types of Binary Decision Diagrams.

3 Preliminaries

In this work we consider a search problem Π to be a map Π:
�∗ → P(

�∗) mapping
each input instance to a set of valid solutions. We formally define the problem
class with the desired kind of implicit algorithms:

3

Definition 1 P-Ops is the class of search problems Π:
�∗ → P(

�∗), for which
an implicit OBDD-based algorithm A exists that on input χI with I ∈

�
N com-

putes an output χO with O ∈ Π(I) using polylog(N) OBDD operations on
functions defined on O(log N) Boolean variables. Furthermore A may execute
polylog(N) regular computation steps besides the OBDD operations.

Because we are only interested in the number of OBDD operations, this work’s
simulation result is mainly independent of the data structure for characteristic
functions, as long as they support the same set of functional operations. There is
one exception: The simulation will rely on some supporting functions which have
to be generated first before processed by functional operations. This step will of
course depend on the OBDD size of these functions.

The following definitions are mainly taken from [7].

Definition 2 FNC is the class of search problems Π:
�∗ → P(

�∗) solved by
CREW-PRAMs in parallel time polylog(N) using poly(N) processors.

Definition 3 Boolean circuits.

(a) A Boolean circuit C is a directed acyclic graph. Each node v has a
type g(v) ∈ {I, O} ∪ B0 ∪ B1 ∪ B2. Nodes v with g(v) = I have indegree 0
and are called input. Nodes v with g(v) = O have indegree 1, outdegree 0
and are called output. Nodes v with g(v) ∈ Bi must have indegree i and
are called gate.

(b) A Boolean circuit C with inputs x0, . . . , xN−1 and outputs y0, . . . , yM−1 com-
putes a function f :

�
N →

�
M in the following way: Each input xi gets a

value b(xi) ∈
�

corresponding to the ith argument of f . The value b(v) ∈
�

of each other node v is obtained by recursively applying g(v) on the values
of nodes adjacent to v. The value of f is finally obtained by the values of
C’s outputs.

(c) The size size(C) of a Boolean circuit C is the number of its nodes. The
depth depth(C) of C is the maximum path length in C.

(d) The standard encoding of a Boolean circuit C with inputs x0, . . . , xN−1 and
outputs y0, . . . , yM−1 is a binary string C̄ ∈

�∗. This string C̄ consists
of size(C) 4-tuples (j, g, `, r) followed by both sequences of node number of
x0, . . . , xN−1 and y0, . . . , yM−1. Each tuple (j, g, `, r) represents a node v: j
is an arbitrary unique number in {0, . . . , size(C)−1} for v, g is g(v), and `
as well as r are the numbers of the up to two predecessors of v in C.

(e) A sequence C := (CN)N of Boolean circuits CN with inputs x0, . . . , xN−1

and outputs y0, . . . , yM−1 is called logarithmic space-uniform, if each C̄N

can be computed by a deterministic Turing machine MC with input N on
space O(log |C̄N |).

4

We now introduce an alternative characterization of parallel FNC algorithms,
which we will use for our simulation.

Lemma 1 (see Lemma 2.4.2 in [7]) A search problem Π:
�∗ → P(

�∗) is
computed by a sequence C := (CN)N of logarithmic space-uniform circuits of
size poly(N) and depth polylog(N) if and only if Π ∈ FNC.

Finally, we take a look at a powerful class of Boolean functions, for which
good upper bounds on their OBDD size are known.

Definition 4 Let f ∈ Bkn be defined on variable vectors x(1), . . . , x(k) ∈
�

n.
Function f is called k-variate comparison function if there are W ∈ � , t ∈ �,
and δ1, . . . , δk ∈ {−W, . . . , W}, such that

f
(

x(1), . . . , x(k)
)

=

(

k
∑

i=1

δi ·
n−1
∑

j=0

2jx
(i)
j ./ t

)

for ./ ∈ {≥, >,≤, <, =}. W is called maximum absolute weight of f . The
corresponding class of functions is denoted by �W

k,n.

Lemma 2 (see [14] or Corollary 3.7.6 in [13]) Functions f ∈ �W
k,n have

OBDDs of width poly(kW) which can be generated in linear time.

4 The Simulation Algorithm

Theorem 1 FNC ⊆ P-Ops.

Proof. We give an implicit OBDD-based algorithm A which computes and sim-
ulated logarithmic space-uniform circuits by polylog(N) functional operations
using O(log(N)) Boolean variables for input length N . First we simulate the log-
arithmic space-uniform Turing machine T which computes C̄N from N . T exists
due to Lemma 1. Then we use this implicit representation of C̄N to simulate CN .

A receives the input I ∈
�

N for the FNC problem Π in Form of the character-
istic function χI ∈ Bn with χI(x) := Ix and x ∈

�
n. In the same way, A presents

the output O ∈
�

M with O ∈ Π(I) in form of χO ∈ Bn. Due to M = poly(N)
we may assume w. l. o. g. that n = O(log N) = O(log M) is a sufficient number of
Boolean variables for encoding positions in both input and output.

First we define an appropriate implicit representation χCN
for CN . This char-

acteristic function should map exactly those binary encoded 4-tuples (j, g, `, r) of
length 4t = O(log |C̄N |) = O(log N) to 1 which are contained in C̄N in terms of
Definition 3(d).

In order to simplify the latter extraction of χCN
from T ’s output later

on, we modify T : After each circuit node encoding tuple (j, g, `, r) we out-
put 2dlog2

(4t)e − 4t more padding zeros. So we guaranty that each tuple takes

5

2dlog2
(4t)e =: T positions in the output of T , which still has polynomial length

in N . Also the logarithmic space bound of T is not violated by this.
Finally it is easy to see that T can enumerate the 4-tuples of both input nodes

and output nodes, such that v0, . . . , vN−1 corresponds to input bits I0, . . . , IN−1

and vsize(CN)−M−1, . . . , vsize(CN)−1 correspond to output bits O0, . . . , OM−1. So T
may elide to output the input and output node numbers of CN subsequent to the
tuples – their position in the vector (v0, . . . , vsize(CN) − 1) is uniquely defined.

Now we consider the parallel simulation of T by A. Due to the logarithmic
space bound, configurations of T can be encoded by m = O(log N) bits each.
We assume w. l. o. g. that the first two bits K0 and K1 of such an encoding K are
designated to T ’s output behavior: Let K0 be 1 iff T produces an output in the
current computation step. Then let K1 be this output while leaving it arbitrarily
defined else.

Moreover, let χT ∈
�

2m be the implicit configuration transition relation of T ,
which maps two configuration encodings K and K ′ to 1 if and only if they rep-
resent a computation step of T . It is easy to see that the OBDD for χT can be
generated analogously to [3, 14] or Theorem 7.2.8 in [13] in time O(m). (Read-
ing K and K ′ interleaved, the correct transition can be verified locally for any
sequence of three tape positions, which directly implies a constant OBDD width.)

Concatenating configuration transitions of a deterministic Turing machine ob-
viously is an associative operation. So we can use a simple divide-and-conquer
approach to solve the according prefix problem and, therewith, obtain T ’s con-
figuration sequence of length at most 2m = poly(N) executing only few OBDD
operations.

Hence we introduce the function χ′
T ∈ B3m, which maps binary encoded

triplets (i, K, K ′) to 1 if and only if T transforms configuration K to K ′ in
exactly i computation steps. We obtain χ′

T by iteratively computing the func-

tions χ
(k)
T ∈ B3m for k := 0, . . . , m, such that χ

(k)
T covers all triplets (i, K, K ′) ∈

(χ′
T)−1(1) with i ≤ 2k (i. e., maps them to 1).

Clearly it is χ
(0)
T = χT . The iterative step is then done in the following way:

χ
(k+1)
T (i, K, K ′) := (i ≤ 2k) ∧ χ

(k)
T (i, K, K ′)

∨
[

(2k < i ≤ 2k+1)

∧ (∃j, L)[(i = 2k + j) ∧ χ
(k)
T (2k, K, L) ∧ χ

(k)
T (j, L, K ′)]

]

.

So first we check for i > 2k if, starting from K, an intermediate configuration L
can be reached by 2k computation steps, from which in turn we can reach K ′ by
further i − 2k steps. Finally it is χ

(m)
T = χ′

T .
It is m = O(log N). The OBDD generation of supporting functions is dis-

cussed later. In each iteration there are O(1) quantification blocks over O(m)
variables each. This number dominates the overall amount of OBDD operations
and remaining runtime in each iteration. So χ′

T is known after O(log2 N) OBDD
operations.

6

Now we replace the K-argument in χ′
T by the encoding of T ’s starting con-

figuration on input N by O(m) = O(log N) OBDD operations. Moreover, using
the same number of OBDD operations we apply existential quantifications on
the variables K ′

2, . . . , K
′
m−1 and call the new function χ′′

T . It only depends on the
state index i and the output encoding variables K ′

0 and K ′
1.

This intermediate result has now to be compressed to a function χR(i, a) ∈
Bm+1 with i ∈

�
m and a ∈

�
, which maps (i, a) to 1 if and only if a is the bit at

position i of T ’s output.
Therefore, we first compute functions χS(i, j) ∈ B2m, which map (i, j) to 1

if and only if the jth output is produced in the ith computation step of T . We
iteratively compute functions χ

(k)
S (i, j) ∈ B2m for k := 0, . . . , m, which map (i, j)

to 1 if and only if exactly j outputs are generated by T during its computation
steps bi/2kc · 2k, . . . , i. So the ranks obtained in iteration k are related to an
interval of length 2k.

If and only if there happens an output in step i (i. e., K ′
0 = 1), this is the first

and only output in [i, i] (i. e. j = 1) and we initialize the computation by

χ
(0)
S (i, j) := (∃K ′

1)
[

χ′′
T (i, 1, K ′

1) ∧ (j = 1) ∨ χ′′
T (i, 0, K ′

1) ∧ (j = 0)
]

.

We consider the iteration. Let be α(i, k) := bi/2kc · 2k.

χ
(k+1)
S (i, j) :=

[

(j ≤ α(i, k + 1) + 2k) ∧ χ
(k)
S (i, j)

]

∨ (j > α(i, k + 1) + 2k) ∧ (∃i′, j′, j′′)
[

(i′ = α(i, k + 1) + 2k+1)

∧ (j = j′ + j′′) ∧ χ
(k)
S (i′, j′) ∧ χ

(k)
S (i, j′′)

]

. (1)

Let us analyze the correctness: If i lies in the “left”
part [α(i, k + 1), α(i, k + 1) + 2k] of the next larger inter-

val [α(i, k + 1), α(i, k + 1) + 2k+1], it clearly is χ
(k+1)
S (i, j) = χ

(k)
S (i, j). Else the

number j′ of outputs in the left part has to be added to the rank j′′ of i in the
right part in order to obtain the correct j.

In the same way as for χ′
T it follows, that O(log2 N) OBDD operations is

sufficient for computing χS = χ
(m)
S . Again the OBDD generation is discussed

later.
Finally we obtain χR by

χR(i, a) := (∃j)
[

χS(j, i) ∧ χ′′
T (j, 1, a)

]

.

So the output of T has an a at position i iff an a is outputted in computation
step j and this step has rank i in the output order. Due to the dominating
number of quantifications, O(log N) overall OBDD operations are executed here.

Now we have to use χR(i, a) in order to obtain χCN
(j, h, `, r), which finally

will enable us to simulate CN . We now use the property that T outputs each
4-tuple (j, g, `, r) as block of length T , which is a power of two. This implies:

7

χCN
(j, g, `, r) = (∃j∗)

t−1
∧

k=0

(∃j(1), j(2), j(3), j(4))
[

(j(1) = j∗ + k) ∧ χR(j(1), jk)

∧ (j(2) = j∗ + t + k) ∧ χR(j(2), gk) ∧ (j(3) = j∗ + 2t + k) ∧ χR(j(3), `k)

∧ (j(4) = j∗ + 3t + k) ∧ χR(j(4), rk)
]

. (2)

We consider the correctness: The variables i0, . . . , im−log
2

T−1 of position ar-
gument i of χR(i, a) corresponds to the index j∗ of a tuple (j, g, `, r), and the
variables im−log

2
T , . . . , im−1 correspond to the bit index within this tuple. So

function χCN
maps (j, g, `, r) to 1 if and only if such an index j∗ exists, and at

the corresponding output positions j∗ + k, j∗ + t + k, j∗ + 2t + k and j∗ + 3t + k
of T the bits jk, gk, `k and rk are contained.

Computing χCN
causes O(log N) OBDD operations and remaining runtime:

The number OBDD operations is dominated by O(t) = O(m) = O(log N) ex-
istential quantifications and conjunctions. The OBDD generation is discussed
later.

Remark: Without filling up the tuple blocks, the position of a tuple within
the overall output of T had to be calculated by a multiplication of a tuple index
with the tuple length 4t. For this multiplication no small OBDD size could be
guaranteed.

It remains the simulation of CN on I. Therefore we introduce a function χb ∈
Bt+1, which maps a pair (j, a) consisting of a circuit node number j ∈

�
t and

a value bit a ∈
�

to 1 if and only if b(vj) = a for input I. We compute χb

iteratively with the help of intermediate functions χ
(k)
b for k := 0, . . . , D and

D := depth(CN) = polylog(N), such that χ
(k)
b correctly represents the values up

to level k of CN .
Initially, only input nodes have a value:

χ
(0)
b (j, a) := (j < N) ∧

[

(a = 1) ∧ χI(j) ∨ (a = 0) ∧ χI(j)
]

.

For the iterative step, we moreover assume that the function χX(g, x, y, a) is
given, which maps a binary encoded gate type g ∈ B0 ∪B1 ∪B2 =: H , two input
bits x and y, and a result bit a to 1 if and only if a is the corresponding output
of a g-gate on x and y. For g ∈ B1 the function χX depends only on x, for g ∈ B0

it depends neither on x nor on y. Due to |H| = O(1) the OBDD for χX can
obviously be generated in time O(log N).

χ
(k+1)
b (j, a) := (∃a′)χ

(k)
b (j, a′) ∧ (∃g, j′, j′′, a′, a′′)

[

χCN
(j, g, j′, j′′)

∧ χ
(k)
b (j′, a′) ∧ χ

(k)
b (j′′, a′′) ∧ χX(g, a′, a′′, a)

]

8

So if b(vj) is unknown yet, while the values of its predecessor nodes vj′ and vj′′

in the circuit graph have been computed already, then the value input a has to
be equal to the output of a g-gate on the values a′ and a′′ of vj′ and vj′′ .

Finally it is χb = χ
(depth(CN))
b . By the same arguments as for the computa-

tion of χ′
T , a number of O(logdepth(CN)+1 N) OBDD operations and remaining

computation steps follows.
We still have to extract the output χO:

χO(x) := (x < M) ∧ (∃j)
[

(j = size(CN) − M + x) ∧ χb(j, 1)
]

.

This is correct since the xth output bit of CN corresponds to the circuit node
with number size(CN) − M + x. The circuit size in turn can be obtained by
counting the number of satisfying inputs of the function (∃g, `, r)χCN

(j, g, `, r) by
executing O(log N) OBDD operations.

By consideration of each single phase of A we conclude an overall number
of O(logdepth(CN)+1 N) = polylog(N) OBDD operations, while the remaining run-
time is of the same order. We still have to discuss the OBDD size of all supporting
functions like (j(4) = j∗ +3t+k) (see Equation 2). However, each of these clearly
can be expressed as multivariate comparison function with constant maximum
absolute weight W and a constant number k of variable vectors (see Definition 4).
Due to Lemma 2, these functions have OBDDs of constant width and, therefore,
can be constructed in time O(log N) by A.

We have to take a closer look at Equation 1: In contrast to the original
definition of multivariate comparison functions, the argument i appears in form
of α(i, k) = bi/2kc ·2k. But this operation just replaces the k least significant bits
by zero. So corresponding OBDD nodes testing these bits resp. variables have
just to be replaced by their 0-edge — this does not enlarge the OBDD size. �

5 Conclusions

Together with the previous result P-Ops ⊆ FNC from [13, 14], this work’s simu-
lation result finally shows P-Ops = FNC. While for some problems the existence
of P-Ops algorithms follows by intuition, for other problems (e. g. planarity test)
only involved FNC algorithms are known which do not allow an obvious con-
version to implicit algorithms. In these cases, the new simulation result directly
implicates the existence of corresponding P-Ops algorithms and can be used to
construct them.

Acknowledgments.

Thanks to Martin Sauerhoff and Ingo Wegener for helpful discussions.

9

References

[1] J. L. Balcázar and A. Lozano. The complexity of graph problems for suc-
cinctly represented graphs. In Graph-Theoretic Concepts in Computer Sci-
ence 1989, volume 411 of Lecture Notes in Computer Science, pages 277–285.
Springer, 1989.

[2] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35:677–691, 1986.

[3] J. Feigenbaum, S. Kannan, M. Y. Vardi, and M. Viswanathan. Complexity
of problems on graphs represented as OBDDs. In Symposium on Theoret-
ical Aspects of Computer Science 1998, volume 1373 of Lecture Notes in
Computer Science, pages 216–226. Springer, 1998.

[4] H. Galperin and A. Wigderson. Succinct representations of graphs. Infor-
mation and Control, 56:183–198, 1983.

[5] R. Gentilini, C. Piazza, and A. Policriti. Computing strongly connected
components in a linear number of symbolic steps. In Symposium on Discrete
Algorithms 2003, pages 573–582. ACM Press, 2003.

[6] R. Gentilini and A. Policriti. Biconnectivity on symbolically represented
graphs: A linear solution. In International Symposium on Algorithms and
Computation 2003, volume 2906 of Lecture Notes in Computer Science, pages
554–564. Springer, 2003.

[7] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computa-
tion. Oxford University Press, 1995.

[8] G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.
Kluwer Academic Publishers, 1996.

[9] G. D. Hachtel and F. Somenzi. A symbolic algorithm for maximum flow in
0–1 networks. Formal Methods in System Design, 10:207–219, 1997.

[10] C. H. Papadimitriou and M. Yannakakis. A note on succinct representations
of graphs. Information and Control, 71:181–185, 1986.

[11] D. Sawitzki. A symbolic approach to the all-pairs shortest-paths problem.
In Graph-Theoretic Concepts in Computer Science 2004, volume 3353 of
Lecture Notes in Computer Science, pages 154–167. Springer, 2004.

[12] D. Sawitzki. Implicit flow maximization by iterative squaring. In SOFSEM
2004: Theory and Practice of Computer Science, volume 2932 of Lecture
Notes in Computer Science, pages 301–313. Springer, 2004.

10

[13] D. Sawitzki. Algorithmik und Komplexität OBDD-repräsentierter Graphen.
PhD thesis, Lehrstuhl Informatik 2, Universität Dortmund, 2006.

[14] D. Sawitzki. The complexity of problems on implicitly represented inputs.
In SOFSEM 2006: Theory and Practice of Computer Science, volume 3831
of Lecture Notes in Computer Science, pages 471–482. Springer, 2006.

[15] I. Wegener. Branching Programs and Binary Decision Diagrams. Mono-
graphs on Discrete Mathematics and Applications. SIAM Press, 2000.

[16] P. Woelfel. Symbolic topological sorting with OBDDs. In Mathematical
Foundations of Computer Science 2003, volume 2747 of Lecture Notes in
Computer Science, pages 671–680. Springer, 2003.

11

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

