
S-T Connectivity on Digraphs with a Known Stationary

Distribution∗

Kai-Min Chung†

Harvard University

School of Engineering and Applied Science

33 Oxford St, Cambridge, MA

kmchung@fas.harvard.edu

Omer Reingold‡

Weizmann Institute of Science

Dept. of Computer Science

Rehovot 76100, Israel

omer.reingold@weizmann.ac.il

Salil Vadhan §

Harvard University

School of Engineering and Applied Science

33 Oxford St, Cambridge, MA

salil@eecs.harvard.edu

March 28, 2007

Abstract

We present a deterministic logspace algorithm for solving S-T Connectivity on di-
rected graphs if (i) we are given a stationary distribution for random walk on the graph
and (ii) the random walk which starts at the source vertex s has polynomial mixing time.
This result generalizes the recent deterministic logspace algorithm for S-T Connectivity

on undirected graphs [15]. It identifies knowledge of the stationary distribution as the gap
between the S-T Connectivity problems we know how to solve in logspace (L) and those
that capture all of randomized logspace (RL).

∗This paper will appear in CCC 07 [4].
†Supported by NSF grant CCF-0133096.
‡Supported by US-Israel BSF grant 2002246.
§Supported by US-Israel BSF grant 2002246, NSF grant CCF-0133096, and ONR grant N00014-04-1-047.

1

Electronic Colloquium on Computational Complexity, Report No. 30 (2007)

ISSN 1433-8092

1 Introduction

There is a long and beautiful line of work in complexity theory, starting with [3, 22, 13]
giving evidence that randomized algorithms are not much more powerful than deterministic
algorithms. That is, under a variety of natural complexity assumptions, every randomized
algorithm can be fully derandomized with only a small loss in efficiency (e.g. time and space).
Like many research directions in complexity theory, a major long-term goal is to obtain similar
results unconditionally. Unfortunately, recent results loosely show that, when we measure
efficiency by time, derandomization (e.g. BPP = P) implies superpolynomial circuit lower
bounds (for NEXP), and thus unconditional results may be out of reach [7, 9].

However, when we measure efficiency by space, it seems that there is hope for unconditional
derandomization, even showing that RL = L. Indeed, there are highly nontrivial and uncondi-
tional deterministic simulations of RL. Most notably, using Nisan’s pseudorandom generator
for logspace computation [12], Saks and Zhou [18] showed that RL ⊆ L3/2, where L3/2 denotes
the class of problems solvable in space O(log3/2 n). But proving RL = L has remained elusive;
in fact, there has been no improvement to the Saks and Zhou theorem in over a decade.

Hope for further progress on RL vs. L was recently renewed, when Reingold [15] showed
how to fully derandomize the classic and most notable example of an RL algorithm, namely
the random-walk algorithm of [1] for Undirected S-T Connectivity. (Independently, Tri-
fonov [21] gave an deterministic algorithm for this problem using space O(log n · log log n).)
It is well-known that general RL computations can be viewed as some restricted form of the
S-T Connectivity problem on directed graphs (a.k.a. digraphs). (S-T Connectivity on
general digraphs is NL-complete, and RL algorithms correspond to a restricted class of NL
algorithms.) Thus, one can attack the RL vs. L question by trying to close the gap be-
tween undirected graphs (solvable in L by [15]) and the types of digraphs corresponding to RL
machines. This approach was pursued in [16].

The first question in this approach is to identify a class of digraphs whose S-T Connec-

tivity problems capture RL. In [16], it was shown that S-T Connectivity on digraphs
where the random walk converges to the stationary distribution in a polynomial number of
steps is complete for RL. For short, we refer to such graphs as poly-mixing, and the resulting
computational problem as Poly-Mixing S-T Connectivity.1 The poly-mixing condition
captures what is needed for the random-walk algorithm of [1] to work.2 Consequently, proving
RL = L amounts to derandomizing this algorithm, and we may hope to do so by closing the
gap between poly-mixing graphs and undirected graphs.

There are two general ways we might hope to place Poly-Mixing S-T Connectivity

in L, corresponding to two common settings for derandomization in general. In the explicit
setting, we design an algorithm that is given full access to the input graph and can do arbitrary

1Technically, this is a promise problem, and thus is complete for the promise-problem analogue of RL.
2Technically, we also require that s and t have non-negligible stationary probability, but only require fast

mixing on the strongly connected component containing s.

1

logspace computations on it. This is the most general approach, in the sense that it is equiva-
lent to proving RL = L. However, many derandomization results are actually done in a more
restricted oblivious setting. Here the algorithm is not given explicit access to the input graph.
Instead, based on just the size and degree of the input graph, it generates “pseudorandom”
bits to be used in the randomized algorithm. If the pseudorandom bits are generated from a
short seed, then we can get a deterministic algorithm by enumerating all seeds. For example,
any pseudorandom generator for space-bounded computation, such as Nisan’s [12], yields an
oblivious derandomization. (But Nisan’s pseudorandom generator does not imply RL = L be-
cause the seed length is O(log2 n) rather than O(log n).) As noted in [16], to put Poly-Mixing

S-T Connectivity (and hence all of RL) in L, a somewhat weaker notion of pseudorandom
generator suffices. Specifically, we only need a method for generating pseudorandom walks
on poly-mixing graphs that ensures that the final vertex is distributed close to the stationary
distribution; we refer to such a generator as a pseudorandom walk generator. Oblivious meth-
ods for derandomization tend to be interesting in their own right, and have many applications
beyond just proving RL = L, such as [8, 10, 6, 20]. However, they can be harder to obtain.
For example, the derandomization of Saks and Zhou [18] is not oblivious.

The main results of [16] concern the oblivious setting. First, extending the techniques of
[15], they exhibit a pseudorandom walk generator for regular digraphs that are consistently
labelled. Regular means that all the in-degrees and out-degrees are the same, and consistently
labelled means that it is never the case that the i’th neighbor of u is the same as the the
i’th neighbor of v for distinct vertices u and v. Second, they show that a pseudorandom walk
generator for arbitrarily labelled regular digraphs implies a pseudorandom walk generator for
poly-mixing digraphs, and thus RL = L. Thus, dealing with inconsistent labelling is the “only”
obstacle to proving RL = L in the oblivious setting.

In this work, we focus on the explicit setting. Recall that Reingold [15] gave a deterministic
logspace algorithm for Undirected S-T Connectivity in this setting. In [16], this was
extended to (arbitrarily labelled) regular digraphs, and more generally Eulerian digraphs (where
every vertex has the same in-degree as out-degree). This result is obtained by noting that there
is a simple reduction from S-T Connectivity in Eulerian digraphs to S-T Connectivity

in consistently labelled regular digraphs, and then applying the pseudorandom walk generator
for consistently labelled regular digraphs mentioned above. Thus, after [15, 16], the gap in the
explicit setting is between regular or Eulerian digraphs (which are in L) and general poly-mixing
digraphs (which are complete for RL).

Regular and Eulerian digraphs have a few properties not shared by general poly-mixing
digraphs. It is easy to obtain a stationary distribution for the random walk on such graphs: the
uniform distribution in the case of regular graphs, and assigning each vertex mass proportional
to its degree in the case of Eulerian digraphs. In addition, this stationary distribution can be
computed exactly in logspace and every vertex has non-negligible probability in it (at least
1/(#edges)).

In this work, we show that in general, knowing a stationary distribution of the random walk

2

is sufficient to solve Poly-Mixing S-T Connectivity in deterministic logspace. That is, we
consider a further restriction of Poly-Mixing S-T Connectivity, where we are given the
stationary probabilities as part of the input, and show that the resulting (promise) problem,
Known-Stationary S-T Connectivity, is in L. We allow the possibility that some vertices
have exponentially small stationary probability, and the estimates only need to be accurate to
within a 1/poly(n) additive error. We view this result as clarifying the property that makes
Reingold’s algorithm and its generalizations possible, and suggesting that future attempts to
prove RL = L might focus on dealing with unknown stationary distributions.

Problem Oblivious Explicit

Regular digraph with consistent labelling L L

Regular digraph with arbitrary labelling RL L

Poly-mixing digraph with known stationary distribution RL L
(our result)

Poly-mixing digraph (RL complete) RL RL

Table 1: S-T Connectivity problems and RL vs. L
An entry of L means that there is a deterministic logspace solution for the given class of graphs
in the given setting (oblivious or explicit). An entry of RL means that such a solution would
imply RL = L.

It is interesting to note the very different behavior of the oblivious setting and explicit
setting, as summarized in Table 1. Our result shows that in the explicit setting, the gap
between L and RL centers around whether the stationary distribution is known. But in the
oblivious setting, this is not an essential property, as the results of [16] show that handling
(arbitrarily labelled) regular digraphs, where the stationary distribution is uniform, suffices
to solve all of RL. Instead, in the oblivious setting the key property seems to be consistent
labelling; note that this property is irrelevant for the explicit setting, where there is a simple
reduction from arbitrarily labelled regular graphs to consistently labelled ones.

The idea of restricting to the case that estimates of the stationary probabilities are known
is inspired by the work of Raz and Reingold [14], who studied derandomization of RL machines
when estimates of the state probabilities of the RL machine are known. Our model and results
are incomparable to those of [14]. They require estimates of the probabilities on walks of every
length (in a layered graph), whereas we only require the estimates of the long-term behavior (in
a poly-mixing graph). On the other hand, they require only weak multiplicative estimates of
the probabilities, whereas we require good additive estimates. Finally, they only derandomize
walks of length roughly 2

√
log n, whereas our work allows the walk length/mixing time to be

poly(n).
Our algorithm for Known-Stationary S-T Connectivity is obtained by giving a logspace

3

reduction from the case of poly-mixing digraphs with known stationary probabilities to the case
of nearly regular digraphs, and then showing that the algorithm of [16] works even if the graph
is nearly regular. This reduction is inspired by the result of [16] showing that a pseudorandom
walk generator for (arbitrarily labelled) regular digraphs implies a pseudorandom walk gen-
erator for all poly-mixing digraphs. The proof of their theorem works by showing that every
poly-mixing digraph can be ‘blown up’ to a regular digraph such that pseudorandom walks on
the regular digraph project down to pseudorandom walks on the poly-mixing digraph. The
‘blow up’ procedure of [16] is only done in the analysis, and thus need not be computable
in logspace (the logspace algorithm only needs to do the projection of walks, which is very
simple). Much of the work in our result is in showing that a similar blow up can in fact be
done in logspace if estimates of the stationary probabilities are known. To do this, we need to
find alternatives to some of the steps taken in the construction of [16], and settle for getting a
nearly regular rather than exactly regular graph at the end.

Organization. The rest of the paper is organized as follows. We discuss technical prelimi-
naries about random walks on digraphs and Markov chains in Section 2. In Section 3, we give
the formal statement of our main result and a high-level overview of the proof. Finally, we
present the proof of the main theorem in Section 4.

2 Preliminaries

In this paper, we consider directed graphs (digraphs for short) G = ([n], E), and allow them
to have multiple edges and self-loops. A graph G is outregular if every vertex has the same
number d of edges leaving it; d is called the out-degree. G is regular if it is both outregular
and inregular. We say G is a d-(out)regular graph if G is a n-vertex (out)regular graph of
(out-)degree d.

Given a graph G on n vertices, we consider the random walk on G described by the transition
matrix MG whose (u, v)’th entry equals the number of edges from u to v, divided by the out-
degree of v. MG is a Markov chain on state space [n]. Since we are interested in random walks
on graphs, when we refer to a Markov chain M , there is always an underlying graph G with
MG = M .

We say M is a-lazy if M(v, v) ≥ a for every v, and M is lazy if M is a-lazy for some a > 0.
A distribution π on [n] is stationary for M if πM = π. For a distribution α on [n], denote the

support of α by supp(α)
def
= {v : α(v) > 0}. Note that the support of a stationary distribution

is always the union of disjoint strongly connected components since stationary implies that if
there is a path from u ∈ supp(π) to v, then there is also a path from v to u.

We are interested in the rate at which a Markov chain M converges to a stationary distribu-
tion. In terms of random walk on the graph, how many steps does it take to reach a stationary
distribution? It is well-known that for undirected graphs, the rate of convergence is character-

4

ized by the second largest (in absolute value) eigenvalue λ2(M) of the matrix M . More precisely,
let αt denote the distribution of a random walk after t-th step, and π be the stationary distri-
bution αt converges to, then the variation distance of αt to π will decrease in the rate λ2(M)t

(For two distributions α, β on [n], their variation distance is ∆(α, β)
def
= (1/2)

∑

v |α(v)−β(v)|.)
However, for directed graphs, λ2(M) may even not exist. To estimate the mixing time,

Mihail [11] and Fill [5] introduce a generalized parameter, which we call the spectral expansion
λπ(M), and is equal to λ2(M) when G is undirected.

Definition 2.1 Let M be a Markov chain and π a stationary distribution for M . We define
the spectral expansion of M with respect to π to be

λπ(M)
def
= max

x∈Rn:
∑

v∈supp(π) x(v)=0

‖xM‖π

‖x‖π
,

where ‖x‖π
def
=

∑

v∈supp(π) x(v)2/π(v).

The following lemma shows that, like λ2, λπ measures the rate of convergence to the sta-
tionary distribution π.

Lemma 2.2 (cf. [16]) Let M be a Markov chain on [n] and π a stationary distribution with
λπ(M) < 1. Let αt denote the distribution of a random walk after t steps starting from distri-
bution α0 with supp(α0) ⊂ supp(π). Then,

∆(αt, π) ≤ λπ(M)t · ‖α0 − π‖π.

In particular, the walk αt converges to π.

Since the above lemma implies that random walks starting at any vertex in supp(π) converge
to π, it follows that supp(π) consists of a single strongly connected component and that π is
the unique stationary distribution supported on this component.

Sometimes it is convenient to use the spectral gap γπ(M)
def
= 1−λπ(M). We will often bound

λπ(M) (or γπ(M)) by the conductance of M .

Definition 2.3 Let M be a Markov chain with n vertices and π a stationary distribution. The
conductance of M with respect to π is defined to be

hπ(M)
def
= min

A:0<π(A)≤1/2

∑

u∈A,v 6∈A π(u)M(u, v)

π(A)
.

Observe that the denominator π(A) is the probability mass contained in A, and the numerator
∑

u∈A,v 6∈A π(u)M(u, v) is the probability mass flowing out from A. The conductance is a lower
bound of the fraction of probability mass in A leaving A. Intuitively, if the conductance is
large, then the probability mass will mix quickly. Indeed, the following lemma formalizes this
intuition.

5

Lemma 2.4 ([19, 11, 5]) Let M be a connected, 1/2-lazy Markov chain and π a stationary
distribution. Then γπ(M) ≥ hπ(M)2/2.

To estimate the conductance, we introduce another useful measure of mixing time which is
implicitly used in [16].

Definition 2.5 Let M be a Markov chain, and s be a vertex of M . The visiting length of
s, denoted `s(M), is the smallest number ` such that for every vertex v reachable from s, a
random walk of length ` from v visits s with probability at least 1/2.

The length for v to visit s as defined above is related to the access time, which is the
expected time to visit s from v. We use visiting length because it extends naturally to a more
general notion that we need in Section 4. Intuitively, if s has a short visiting length, then there
must be a lot of flow towards s, which can be used to bound the conductance.

Lemma 2.6 ([16]) Let M be a 1/2-lazy Markov chain. Let s be a vertex of M with visiting
length `. Then M has a stationary distribution π (with s ∈ supp(π)) such that the conductance
satisfies hπ(G) ≥ 1/(2`), and hence the spectral gap satisfies γπ(G) ≥ 1/(8`2).

Since spectral gap and visiting length are both measures of mixing time, it is not surprising
that we can also bound visiting length by spectral gap.

Lemma 2.7 (implicit in [16]) Let M be a Markov chain with n vertices such that the un-
derlying graph is d-regular, and π be a stationary distribution with γπ(M) > 1/k. Let s be a
vertex of M with π(s) > 1/k, then the visiting length `s(M) is at most O(nk3 log d).

3 Main theorem and proof overview

Our main result is a deterministic logspace algorithm to solve S-T Connectivity problem for
digraphs with polynomial mixing time when a good approximation of a stationary distribution is
available. Formally, we study the following problems, and solve them in deterministic logspace.

δ-Known-Stationary S-T Connectivity:

• Input: (G, p1, . . . , pn, s, t, 1k), where G = ([n], E) is a d-outregular digraph, s, t ∈ [n] =
V , and k ∈ N

• YES instances:

1. There is a stationary distribution π such that π(s), π(t) ≥ 1/k, and for each v ∈ [n]
that can reach s, |pv − π(v)| ≤ δ.

2. If we let πs be the restriction of π to the strongly connected component of supp(π)
containing s,3 then γπs

(G), πs(s), πs(t) ≥ 1/k.

3That is, if S ⊂ supp(π) is the strongly connected component containing s, then πs(v) = π(v)/(
∑

w∈S
π(w))

6

• NO instances: There is no path from s to t in G.

δ-Known-Stationary Find Path:

• Input: (G, p1, . . . , pn, s, t, 1k), where G = ([n], E) is a d-outregular digraph, s, t ∈ [n] =
V , and k ∈ N

• Promise:

1. There is a stationary distribution π such that π(s), π(t) ≥ 1/k, and for each v ∈ [n]
that can reach s, |pv − π(v)| ≤ δ.

2. If we let πs be the restriction of π to the strongly connected component of supp(π)
containing s, then γπs

(G), πs(s), πs(t) ≥ 1/k.

• Output: A path from s to t in G.

In both of the above problems, (p1, . . . , pn) is called the input stationary distribution, and
δ can be a function of the input parameters n, d, and k. We note that if we remove Condition
1 (regarding the accuracy of the stationary distribution), then the resulting problems, Poly-

Mixing S-T Connectivity and Poly-Mixing Find Path become complete for the promise
and search version of RL, respectively [16].

Note that the input stationary distribution (p1, . . . , pn) does not necessarily reveal the
solution to the decision problem, because (p1, . . . , pn) can be arbitrary on NO instances (in
particular, pt can be larger than 1/k). Moreover, even if we required Condition 1 (regarding
the accuracy of the stationary distribution) to hold on NO instances, pt could be arbitrary in
case that there is no path from t to s. However, when there is a path from t to s, but no path
from s to t, any stationary distribution π has to have π(t) = 0, and so pt ≤ δ. In this case the
decision problem becomes trivial, but the search version is still interesting. We remark that
the reduction from arbitrary RL problems to Poly-Mixing S-T Connectivity presented in
[16] always gives such instances.

Theorem 3.1 There is a polynomial p such that (1/p(n, d, k))-Known-Stationary S-T Con-

nectivity and (1/p(n, d, k))-Known-Stationary Find Path can be solved in logarithmic
space.

To prove Theorem 3.1, it suffices to provide a deterministic logspace algorithm for Known-

Stationary Find Path as we can check whether the path found leads from s to t in order
to decide Known-Stationary S-T Connectivity. Let G be an input graph satisfying the
promise. Note that the promise implies that supp(πs) is a strongly connected component
containing s and t. Our goal is to find a path from s to t in G. To simplify the presentation,
we first set δ = 0, and use π(·) to denote the input stationary distribution. We will explain
why the proof still works for some δ = 1/poly(n, d, k) at the end.

7

Recall the idea mentioned in introduction. We first blow up G to a graph G′′ that is “close”
to a consistently labelled regular graph Gcon, and then apply the pseudorandom walk generator
of [16] for consistently labelled regular graphs to G′′. The pseudorandom walk generator will
produce a path in G′′ which can be projected to a path in G, which will visit t with non-negligible
probability. Since the pseudorandom walk generator uses a seed of logarithmic length, we can
enumerate all possible seeds and find a path from s to t in deterministic logspace.

Although the idea is natural, the construction and analysis are somewhat delicate. The
main challenge is that we need to preserve the mixing time throughout the construction. Since
the pseudorandom walk generator works for consistently labelled regular graphs, but G′′ is only
close to such a graph Gcon, there is some “error” accumulated along the pseudorandom walk.
It is important to minimize the error produced in each step (by making G′′ closer to Gcon)
while keeping the walk short by maintaining the mixing time.

We divide the construction into four stages. The algorithm will actually construct two
graphs G′ and G′′, and for the purpose of analysis, we will define two regular graphs Greg

and Gcon. Before we discuss the construction, we first discuss two properties of G we want to
preserve throughout the construction. Let ε be a small error parameter (which we will later
set to be 1/poly(n, d, k).)

1. All four graphs preserve the s-t connectivity of G: Each vertex v in G will become a cloud
of vertices in each of the four graphs. The existence of a path from s to t in G implies the
existence of a path from the cloud of s to the cloud of t in the four graphs. Furthermore,
every path from the cloud of s to the cloud of t in G′ or G′′ can be projected to a path
from s to t in G in logspace.

2. G′, Greg, and Gcon preserve the mixing time of G: We want the spectral gaps γ(G′), γ(Greg),
γ(Gcon) ≥ 1/poly(n, d, k) for some fixed polynomial independent of ε. In this case, we
say G′, Greg, and Gcon have short mixing time.

We describe the goal of each stage below.

STAGE 1 We improve the regularity of G in this stage. We convert G to a nearly dD-regular
digraph G′ with roughly N vertices in logspace, where N,D are blow up factors depending on
ε. We use the input stationary distribution to determine how much to blow up each vertex
and edge so that G′ is nearly regular. More precisely, nearly regular means that except for an
O(ε) fraction of bad vertices in G′, every vertex has in-degree and out-degree (1 ± O(ε))dD.
We emphasize that G′ has short mixing time.

STAGE 2 This stage is a mental experiment for the sake of the analysis and is not used by the
algorithm. We define a regular graph Greg “close” to G′ by adding an O(kε) fraction of edges
to G′. Adding only a small number of edges is the key property to show that the behavior of

8

pseudorandom walk generator of [16] on G′′ and Gcon are almost the same in Stage 4 below.
Since G′ is nearly regular, it is easy to get a regular graph by adding small number of edges.
The main challenge is to ensure that Greg has short mixing time, which we do by using a
generalization of the notion of visiting length.

STAGE 3 Now we have (near-)regularity, we work on consistent labelling. There is a simple
graph operation that converts a regular graph Greg to a consistently labelled graph Gcon. The
operation will preserve both the connectivity and mixing time. Note that the algorithm applies
the operation to G′ to construct G′′ instead of applying the operation to Greg, as we do not
know how to construct Greg in logspace.

STAGE 4 The algorithm now applies pseudorandom walk generator of [16] to G′′. If the
pseudorandom walk generator is applied to Gcon, then by the property of pseudorandom walk
generator and short mixing time of Gcon, a short pseudorandom walk will end inside the cloud
of t with non-negligible probability. It can be shown that the behavior of pseudorandom walk
on G′′ and Gcon are almost the same. (The error is roughly ε times the length of walk, which
can be made small because the walk is short.) Hence, the pseudorandom walk on G′′ will end
inside the cloud of t with positive probability as well. By enumerating all seeds, the algorithm
can find a path from the cloud of s to the cloud of t in G′′, which can then be projected to a
path from s to t in G.

As mentioned in the introduction, our algorithm is inspired by and shares a similar structure
of the result of [16] showing that a pseudorandom walk generator for (arbitrarily labelled)
regular digraphs implies a pseudorandom walk generator for all poly-mixing digraphs. There
are several reasons that the proof in [16] is not directly applicable:

1. In [16], G′ is only part of the analysis and does not to be explicitly constructed by the
algorithm in logspace. The reason is that G′ and Greg can be labelled in such a way
that the projection of walks from G′ to G can be done without actually knowing G.
However, this labelling is far from consistent (on Greg), which is ok because the result
of [16] assumes the existence of a pseudorandom walk generator for arbitrary labellings.
Here we only want to use the (known) pseudorandom walk generator for consistently
labelled graphs. To get a consistent labelling, we construct G′ explicitly and then apply
Stage 3.

2. Even with knowledge of stationary probability, it is not clear how to carry out the con-
struction of G′ in [16] in logspace. In the first step of the proof of [16], they add some
edges to G to make the stationary probability of every vertex non-negligible. However,
it is not clear how to compute the new stationary distribution in logspace. Therefore,
we skip this step and deal with vertices having exponentially small stationary probability
directly in our analysis.

9

4 Proof of the main theorem

We prove the main theorem by solving the path finding problem in this section following the
outline in the previous section. Let G be an input graph satisfying the promise. That is, G
is a n-vertex, d-outregular digraph, and vertices s and t in G are connected. Furthermore, let
π(·) be an (accurate4) input stationary distribution, and πs(·) be the restriction of π to the
strongly connected component of supp(π) containing S. We have γπs

, πs(s), πs(t) ≥ 1/k.
Let ε = (ndk)−c for a constant c to be determined later. Let N = d5n/ε2e, and D = d5N/εe

be blow up factors for vertices and edges. By adding self-loops, we may assume without loss
of generality that the out-degree d is divisible by 4, and G is 3/4-lazy.

4.1 Construct nearly regular graph G
′ from G

Roughly speaking, our goal is to improve the regularity of G while preserving the mixing
time. From G, we will construct in logspace a nearly regular digraph G′ with a few additional
properties. We want to preserve the connectivity of G, and want to be able to project a path
in G′ to a path in G. We want G′ to have short mixing time, and by the way we control the
mixing time, we also need G′ to be 1/2-lazy.

Let us start with regularity. We can think of a random walk on G from a stationary
distribution π as a flow with no source or sink. Each vertex v has probability mass π(v). Each
edge (v, u) carries π(v)/d flow from v to u. Note that regular graphs are characterized by the
stationary distribution π being uniform — every vertex has equal mass 1/n, and each edge
carries equal flow 1/(nd). Observing this, it is natural to attempt to split each vertex and edge
proportional to the mass contained in each vertex and the flow carried by each edge.

For motivation, we begin by describing an ideal construction in which we ignore round-off
errors. Specifically, we convert G to a N -vertex dD-regular graph G′ as follows. For each vertex
v in G, we blow it up to a cloud of π(v)N vertices Cv so that each new vertex contains exactly
1/N probability mass. For each edge (v, u) in G, we blow it up by a factor D for each vertex
in Cv. More precisely, for each edge (v, u) in G, and each v̂ ∈ Cv, (v, u) induces D outgoing
edges from v̂ to Cu and we spread these edges uniformly over Cu. That is, each û ∈ Cu receives
D/|Cu| edges from v̂. Note that (v, u) carries π(v)/d flow in G, and blows up to π(v)N ·D edges
in G′, so each induced edge shares (π(v)/d)/(π(v)N · D) = 1/(dDN) flow from the original
edge. Intuitively, since each vertex has equal probability mass (namely, 1/N) and each edge
carries equal flow (namely, 1/(dDN)), we expect G′ to be regular.

However, we cannot actually perform the ideal construction, because π(v)N and D/|Cu|
may not be integers. Thus we consider a more general construction. Let a(v) be the vertex
blow-up factor and b(v) be the edge blow-up factor of vertex v in G. Now, for each vertex v,
we blow up it into a cloud of a(v) vertices Cv. For each edge (v, u), and each v̂ ∈ Cv, (v, u)

4As mentioned in the previous section, we will deal with approximate input stationary distribution in Section
4.5.

10

induces b(v) outgoing edges from v̂ to Cu, spread as uniformly as possible. That is, each û ∈ Cu

receives either db(v)/a(u)e or bb(v)/a(u)c incoming edges from v̂. Phrased in this way, the ideal
construction sets a(v) = π(v)N , and b(v) = D for every v.

It is natural to set a(v) = dπ(v)Ne; we will discuss how to set b(v) shortly. Note that each
edge (v, u) in G carries flow π(v)/d, and induces a(v) · b(v) edges in G′. So each induced edge
shares (π(v)/d)/(a(v)·b(v)) flow from (v, u). It turns out that if every edge in G′ shares roughly
1/(dDN) flow, then the stationary distribution of G′ will be well-behaved, and we can show that

indeg(v̂) ≈ outdeg(v̂) for every v̂ ∈ G′. Thus, we set b(v) =
⌈

π(v)N
a(v) D

⌉

. Note that when π(v)

is not too small, a(v) = dπ(v)Ne ≈ π(v)N , b(v) ≈ D, and (π(v)/d)/(a(v) · b(v)) ≈ 1/(dDN),
similar to the ideal construction.

It can be shown that setting a(v) = dπ(v)Ne, and b(v) =
⌈

π(v)N
dπ(v)NeD

⌉

indeed makes G′

nearly dD-regular in the following sense: Except for at most εN bad vertices in G′, every
vertex v̂ satisfies (1 − O(ε))dD ≤ indeg(v̂), outdeg(v̂) ≤ (1 + O(ε))dD.

Before we actually prove this claim, we discuss one more technical twist to make G′ 1/2-
lazy. Recall that G is 3/4-lazy, so each vertex v has at least 3d/4 self-loops. We transfer d/2
self-loops of v in G to b(v) · (d/2) self-loops for each v̂ in G′, and use the aforementioned rule
to transfer the remaining d/2 edges. This clearly makes G′ 1/2-lazy.

Formally, the algorithm to convert G to G′ is as follows.

1. For each vertex v in G, we blow up v to a cloud Cv in G′ with size a(v) = dπ(v)Ne.

2. For each vertex v in G, and each v̂ ∈ Cv, d/2 self-loops of v induce b(v) · (d/2) self-loops
on v̂, and each remaining outgoing edge (v, u) induces b(v) edges which are spread as
uniformly as possible from v̂ to Cu; that is, every û ∈ Cu gets db(v)/a(u)e or bb(v)/a(u)c
corresponding edges from v̂.

It is not hard to see that given G and the input stationary distribution π(·), G′ can be
constructed in logspace: For each vertex v, the blow-up factors a(v) and b(v) are easy to
compute since the arithmetic only involves numbers of logarithmic bit-length,5 and it is easy
to spread b(v) edges to a cloud of size a(u). Note that Cs and Ct have size at least N/k, and G′

has at most N + n vertices, so the density of Cs and Ct is at least 1/2k. The following lemma
says that the in-degree and out-degree of any v̂ in G′ are close.

Lemma 4.1 For every v̂ ∈ Cv, we have outdeg(v̂) ≤ dD, and:

dD ·

(

π(v)N

dπ(v)Ne

)

≤ outdeg(v̂) ≤ dD ·

(

π(v)N

dπ(v)Ne
+ ε

)

,

dD ·

(

π(v)N

dπ(v)Ne
− ε

)

≤ indeg(v̂) ≤ dD ·

(

π(v)N

dπ(v)Ne
+ ε

)

.

5Recall that 1/poly(n, d, k)-approximation of π(·) is suffices (which we will argue in the end), so π(·) can be
expressed in logarithmic bits.

11

Proof. The out-degree of v̂ is just d · b(v) = d ·
(⌈

π(v)N
dπ(v)NeD

⌉)

. Since π(v)N
dπ(v)Ne ≤ 1, we have

outdeg(v̂) ≤ dD. Furthermore,

dD ·

(

π(v)N

dπ(v)Ne

)

≤ outdeg(v̂) ≤ dD ·

(

π(v)N

dπ(v)Ne
+

1

D

)

≤ dD ·

(

π(v)N

dπ(v)Ne
+ ε

)

.

To compute the in-degree, recall that for each (u, v) ∈ E, each û ∈ Cu will give v̂ either
bb(u)/a(v)c or db(u)/a(v)e incoming edges. Therefore, the in-degree of v̂ is bounded by

∑

(u,v)∈E

a(u)

(

b(u)

a(v)
− 1

)

≤ indeg(v̂) ≤
∑

(u,v)∈E

a(u)

(

b(u)

a(v)
+ 1

)

.

Thus,

indeg(v̂) ≥
∑

(u,v)∈E

a(u)

(

b(u)

a(v)
− 1

)

≥
∑

(u,v)∈E

a(u)

(

1

a(v)

(

π(u)N

a(u)
D

)

− 1

)

≥
∑

(u,v)∈E

(

π(u)N

a(v)
D

)

−
∑

(u,v)∈E

a(u)

≥ dD ·

(

π(v)N

a(v)

)

−
∑

(u,v)∈E

(π(u)N + 1) [since
∑

(u,v)∈E

π(u) = d · π(v).]

= dD ·

(

π(v)N

a(v)

)

− (d · π(v)N + dn)

= dD ·

(

π(v)N

dπ(v)Ne
−

π(v)N + n

D

)

≥ dD ·

(

π(v)N

dπ(v)Ne
− ε

)

12

Similarly,

indeg(v̂) ≤
∑

(u,v)∈E

a(u)

(

b(u)

a(v)
+ 1

)

≤
∑

(u,v)∈E

a(u)

(

1

a(v)

(

π(u)N

a(u)
D + 1

)

+ 1

)

≤
∑

(u,v)∈E

(

π(u)N

a(v)
D

)

+ 2
∑

(u,v)∈E

a(u)

≤ dD ·

(

π(v)N

dπ(v)Ne
+ 2

(

π(v)N + n

D

))

≤ dD ·

(

π(v)N

dπ(v)Ne
+ ε

)

The lemma implies that when π(v)N
dπ(v)Ne is close to 1, v̂ is nearly dD-regular. This leads to

the definition of good/bad vertex.

Definition 4.2 A vertex v in G is good if π(v) > 1/(εN) = Θ(ε/n) v is bad otherwise.

The following two simple lemmas show that good vertices are nearly dD-regular, and the
number of bad vertices is small.

Lemma 4.3 For every good vertex v̂ in G′, we have

outdeg(v̂) ∈ [(1 − ε)dD, dD]

indeg(v̂) ∈ [(1 − 2ε)dD, (1 + ε)dD]

Proof. π(v) > 1/(εN) implies ε > 1/(π(v)N). So

1 ≥
π(v)N

dπ(v)Ne
≥

π(v)N

π(v)N + 1
≥ 1 −

1

π(v)N
> 1 − ε.

The lemma follows by applying Lemma 4.1.

Lemma 4.4 The number of bad vertices in G′ is at most εN .

Proof. There are at most n bad vertices in G. Each of them blows up to at most d(1/εN) · Ne ≤
((1/ε) + 1) vertices in G′. So the number of bad vertices is at most n · ((1/ε) + 1) ≤ εN .

Let us study the relation between G and G′. Note that G′ is obtained by blowing up each
vertex and edge of G by a certain factor, on the cloud level, G′ has the same structure as G.

13

That is, for every two vertices u, v of G and every û ∈ Cu, the fraction of edges leaving û that
enter Cv equals the fraction of edges leaving u that lead to v. Therefore, we can project a path
from û ∈ Cu to v̂ ∈ Cv in G′ to a path from u to v in G, and project a stationary distribution
of G′ to a stationary distribution of G. Furthermore, a random walk on G′ is projected to a
random walk on G.

Conversely, a path (resp., a stationary distribution) on G can be lifted to a path (resp., a
stationary distribution) on G′. By lifting we mean the projection of a lifted object is again the
original object. It is easy to see that for any path from u to v in G, there exists lifted paths
from some û ∈ Cu to some v̂ ∈ Cv. Given a stationary distribution π of G, we can obtain
a lifted stationary distribution of G′ by the stationary distribution of a random walk starting
from certain distribution. Let α be a distribution on G′ defined as follows. For each vertex
v ∈ G, set α(v̂) = π(v) for some v̂ ∈ Cv and α(v̂′) = 0 for all other v̂′ ∈ Cv. Since G′ is
1/2-lazy, the random walk started at α converges to a stationary distribution π′. Note that the
projection of this random walk is a random walk on G starting from stationary distribution π.
Hence, the projected distribution is always π, and in particular, the projection of π′ is π.

Let π′ and π′
s be lifted stationary distributions of the input stationary distribution π and

πs respectively. For the above discussion, we know that G′ preserves the connectivity of Cs and
Ct, and on the cloud level, preserves the visiting length, which leads to the following definition.

Definition 4.5 Let M be a Markov chain, and S be a set of vertices in M . The generalized
visiting length of S, denoted `S(M), is the smallest number ` such that from every vertex v
reachable from S, a random walk of length ` from v visits S with probability at least 1/2.

The above discussion implies that the generalized visiting length `Cs
(G′) in G′ is equal to

the visiting length `s(G) in G. Note that by Lemma 2.7, `s(G) = O(nk3 log d) = poly(n, d, k)
is short in the sense that it is independent of ε. Hence, on the cloud level, the mixing time of
G′ should be short as well. Moreover, the cliques induced by at least d/4 self-loops on each
vertex should imply quick mixing inside each cloud. We may thus expect G′ to have short
mixing time. The following lemma formalize this intuition.

Lemma 4.6 Let M be a 1/2-lazy Markov chain. Suppose there is a vertex set S with general-
ized visiting length ` satisfies M(s1, s2) ≥ 1/(8|S|) for every s1, s2 ∈ S. Then M has a station-
ary distribution π (with S ⊂ supp(π)) such that the conductance satisfies hπ(M) ≥ 1/(32`),
and hence the spectral gap satisfies γπ(M) ≥ 1/(211 · `2).

Proof. Let π be a stationary distribution of a random walk starting from any s ∈ S. Since
every vertex reachable from S can reach S, S ⊂ supp(π), and π is the unique stationary
distribution supported on the strongly connected component containing S.

Let A be any set with 0 < π(A) ≤ 1/2. Observe that
∑

u∈A,v 6∈A π(u)M(u, v)

π(A)
=

Pr[X ∈ A ∧ X ′ /∈ A]

π(A)
= Pr[X ′ /∈ A|X ∈ A],

14

where X is a vertex chosen randomly according to π, and X ′ is a random step from X. Let
SA = S ∩ A, and SĀ = S ∩ Ā. Consider a random walk X1, . . . ,X`+1 of length ` + 1 starting
from the stationary distribution π. We lower bound Pr[X ′ /∈ A|X ∈ A] by the following two
cases.

Case I:|SĀ| ≥ |SA|

` · Pr[X ∈ A ∧ X ′ /∈ A] ≥ Pr[∃i ≤ `s.t.Xi ∈ A ∧ Xi+1 /∈ A]

≥ Pr[X1 ∈ A and ∃i ≤ `s.t.(Xi ∈ S ∧ Xi+1 ∈ SĀ)]

≥ π(A) ·
1

2
·
|SĀ|

8|S|

≥
1

32
π(A)

where the second-to-last inequality follows by the following observation. The event in the
second line says that the walk (i) starts from A, (ii) visits some vertex s ∈ S at some point,
and then (iii) goes to SĀ from s ∈ S in the next step. Since X1 is drawn from the stationary
distribution π, (i) happens with probability π(A). By the definition of generalized visiting
length, (ii) happens with probability at least 1/2. Finally, since M(s1, s2) ≥ 1/(8|S|) for every
s1, s2 ∈ S, (iii) happens with probability at least |SĀ|/(8|S|). Similarly,

Case II:|SA| > |SĀ|

` · Pr[X ∈ A ∧ X ′ /∈ A] = ` · Pr[X ∈ Ā ∧ X ′ /∈ Ā]

≥ Pr[∃i ≤ `s.t.Xi ∈ Ā ∧ Xi+1 /∈ Ā]

≥ Pr[X1 ∈ Ā and ∃i ≤ `s.t.(Xi ∈ S ∧ Xi+1 ∈ SA)]

≥ π(Ā) ·
1

2
·
|SA|

8|S|

≥
1

32
π(A)

Therefore, we can conclude that Pr[X ′ /∈ A|X ∈ A] ≥ 1/(32 ·`) for any A such that 0 < π(A) ≤
1/2, and hence hπ(M) ≥ 1/(32`).

Let M ′ be the transition matrix for the random walk on G′. Note that for all ŝ1, ŝ2 ∈ Cs,
M ′(ŝ1, ŝ2) ≥ 1/(6|Cs|) > 1/(8|Cs|) is satisfied by the cliques on Cs induced by d/4 self-loops of
s ∈ G. A straightforward application of Lemma 4.6 shows that γπ′

s
(G′) ≥ 1/(211 · (`Cs

(G′))2) =
1/poly(n, d, k), which means G′ has short mixing time, as desired.

To summarize, in this stage we construct G′ from G in logspace with the following properties.

1. G′ is nearly dD-regular: There are at most εN bad vertices in G′, and for all good vertices
v̂ ∈ G′, (1 − O(ε))dD ≤ indeg(v̂), outdeg(v̂) ≤ (1 + O(ε))dD.

2. G′ preserves the connectivity of Cs and Ct, and every path from Cs to Ct in G′ can be
projected to a path from s to t in G in logspace.

15

3. G′ has short mixing time: The generalized visiting length of Cs in G′ is O(nk3 log d) =
poly(n, d, k), M ′(ŝ1, ŝ2) ≥ 1/(6|Cs|) for all ŝ1, ŝ2 ∈ Cs, and the spectral gap of G′ satisfies
γπ′

s
(G′) ≥ 1/(211 · (`′)2).

4. The sizes of Cs and Ct are at least N/k, and their density are at least 1/(2k).

4.2 G′ is close to a regular graph Greg

We emphasize that this stage is a mental experiment for the sake of the analysis and so the
algorithm does nothing in this stage. We show in analysis that by adding at most O(kεdDN)
edges, we can get a regular graph Greg with short mixing time.

Since the out-degree and in-degree of every vertex v̂ in G′ are bounded by (1+O(ε))dD, we
can make G′ (1+O(ε))dD-regular by adding (1+O(ε))dD−outdeg (v̂) outgoing edges from each
vertex v̂. Doing so adds at most O(εdDN) edges because (1 + O(ε))dD − outdeg(v̂) = O(εdD)
for each good vertex v̂, and there are at most εN bad vertices. However, note that the stationary
distribution of a regular graph is uniform, while there might be some (bad) vertices v̂ in G′

with exponentially small stationary probability. Thus, the stationary distribution might change
dramatically under this operation, making it difficult to directly relate the spectral gap of G′

and Greg. Instead, we control the mixing time by maintaining the generalized visiting length
and clique structure of Cs, as well as the laziness of the entire graph.

To maintain the generalized visiting length of Cs, we do not allow the set of vertices reach-
able from Cs to increase when we add edges. Let V1 be the set of vertices reachable from s in
G, V2 the set of vertices that can reach s but are not reachable from s, and V3 = V − V1 − V2.
Note that for every stationary distribution π of G, π(V2) = 0. Hence, for every v ∈ V2, its
vertex blow-up factor a(v) is 0, which means v is “deleted” in G′.6 Let V ′

1 and V ′
3 be the set of

vertices in G′ corresponding to V1 and V3, respectively. We have V ′ = V ′
1 ∪ V ′

3 , and V ′
1 and V ′

3

are disconnected, so we can make V ′
1 regular by adding edges from V ′

1 to V ′
1 itself, which will

not increase the set of vertices reachable from Cs. We use the following procedure to make V ′
1

regular.

1. Make out-degree of each vertex at least (1 − ε)dD. For each bad vertex v̂ ∈ V ′
1 with

outdeg(v̂) < (1 − ε)dD, do the following:

(a) Add b((1 − ε)dD − outdeg(v̂))/2c self-loops to v̂.

(b) Add d((1 − ε)dD − outdeg(v̂))/2e outgoing edges from v̂ to V ′
1 , spread as uniformly

as possible. That is, every v̂′ gets t or t + 1 edges from v̂ for some integer t. We
always let ŝ ∈ Cs get t + 1 edges when it is possible.

6This is no longer true when the input stationary distribution is not accurate; we will deal with this issue in
Section 4.5.

16

2. Make the graph regular: Arbitrarily add edges in V ′
1 to make the graph (1 + 2kε)dD-

regular.

3. Make the graph 1/2-lazy: Add 4kεdD self-loops to each v̂ ∈ V ′
1 .

We need to argue that this procedure is always possible, but first provide some intuition
for the construction. If we add only small number of outgoing edges to every vertex, then a
short random walk will use original edges with high probability. In this case, the generalized
visiting length should not change too much. However, a bad vertex v̂ may have small out-
degree. We need to add many outgoing edges to v̂ to make the graph regular. To make sure
that v̂ does not increase the in-degree of other vertices too much, and that a random walk
can visit Cs from v̂ easily, it is natural to spread the extra outgoing edges of v̂ as uniformly
as possible. In particular, a one-step random walk from v̂ using new outgoing edges of v̂ will
visit Cs with probability at least |Cs|/|V

′
1 | = Ω(1/k). Therefore, we can expect the generalized

visiting length of Cs remains short.
We now argue that the above procedure is always possible. That is, after the first step,

the in-degree and out-degree of each vertex is less than (1 + 2kε)dD. The out-degree part
is trivial. For the in-degree part, let us first upper bound the number of incoming edges
added in step 1b. The number of bad vertices is at most εN . Since Cs ⊂ V ′

1 , |V ′
1 | ≥ N/k.

Each bad vertex adds at most d(dD/2)/|V ′
1 |e ≤ dD/(N/k) = kdD/N to the in-degree of each

v̂ ∈ V ′
1 . Hence the in-degree is increased by at most (εN) · (kdD/N) = kεdD in step 1b. For

a good vertex v̂, v̂ does not get any self-loops in step 1a. By Lemma 4.3, the in-degree of v̂
is at most (1 + ε)dD + kεdD ≤ (1 + 2kε)dD after step 1b. For a bad vertex v̂, by Lemma
4.1, indeg(v̂) ≤ outdeg(v̂) + εdD, so after step 1a, indeg(v̂) ≤ (1 + ε)dD, and after step 1b,
indeg(v̂) ≤ (1 + 2kε)dD. We also note that the resulting graph is 1/2-lazy because G′ is 1/2-
lazy and for each vertex, at least half of the outgoing edges added by the above procedure are
self-loops.

We now deal with V ′
3 . Since V ′

3 does not affect the generalized visiting length of Cs, we
can make it regular in the naive way described at beginning. To summarize, we construct a
1/2-lazy, (1 + 6kε)dD-regular digraph Greg = (Vreg, Ereg) from G′ as follows.

• Vreg = V ′
1 ∪ V ′

3 .

• We make V ′
1 1/2-lazy and regular by the above procedure.

• We make V ′
3 1/2-lazy and regular by first adding (1 + 5kε)dD − outdeg(v̂) self-loops to

each v̂ ∈ V ′
3 , and then make V ′

3 (1 + 6kε)dD-regular arbitrarily.7

The construction preserves the connectivity of Cs and Ct because the set of vertices reach-
able from Cs remains the same. We next bound the generalized visiting length of Cs. To

7The reason that we can not apply the algorithm for V ′
1 to V ′

3 is that |V ′
3 | may be too small. In this case,

after step 1, the in-degree will be too large.

17

simplify the presentation, we introduce the following notation. Let G̃′ = (V ′
1 , E

′
1) be the sub-

graph of G′ induced by V ′
1 , and G̃reg be the (strongly) connected component V ′

1 in Greg. Let B1

be the edge set added to V ′
1 in step 1 above, and B2 be the edge set added to V ′

1 in steps 2 and 3.
Hence, G̃reg = (V ′

1 , E′
1 ∪B1∪B2). Let `′ = `Cs

(G̃′) = `Cs
(G′), and `reg = `Cs

(G̃reg) = `Cs
(Greg)

be the generalized visiting length of Cs in G′ and Greg, respectively. Then we have:

Lemma 4.7 `reg = O(`′k).

Proof. Let ` = 3a`′k for some constant a to be determined later. Let v̂ be any vertex
reachable from Cs. Let w denote an `-step random walk in G̃reg from v̂. We need to show
Prw[w visits Cs] ≥ 1/2. Consider the following three events:

• E1: w uses at least ak edges in B1, and never visits Cs.

• E2: w uses at least one edge in B2, and never visits Cs.

• E3: w uses less than ak edges in B1, no edge in B2, and never visits Cs.

Clearly, Prw[w does not visit S] ≤ Prw[E1] + Prw[E2] + Prw[E3]. Let us upper bound the
three events.

Since each vertex û in G̃reg has at most an O(kε) fraction of outgoing edges from B2, for
each step the probability that w uses a B2 edge is at most O(kε). By a union bound,

Pr
w

[E2] ≤ O(kε) · ` = O(aε`′k2).

To bound Prw[E1], we consider the following experiment: Let w′ be a random walk starting
from the same vertex v̂ that continues until it uses ak edges in B1. Each time that w′ uses a
B1 edge, w′ visits Cs with probability at least 1/(4k) (at least 1/2 chance to use an edge added
in step 1b, and the density of Cs is at least 1/(2k)). It follows that

Pr
w′

[w′ never visits Cs] ≤

(

1 −
1

4k

)ak

≤ e−a/4.

To justify this bound, we can think of the random walk in the following way. At each step w′

first tosses a biased coin to decide to use edge in B1 or in E ∪ B2, and then chooses an edge
from the chosen set uniformly. Note that the biased coin depends on the fraction of B1 edges
leaving the current vertex. Each time that w′ decides to choose a B1 edge, w′ will hit Cs with
probability at least 1/(4k).

Now we can analyze the original walk w as follows:

Pr
w

[E1] = Pr
w′

[w′ never visits Cs and |w′| ≤ `] ≤ Pr
w′

[w′ never visits Cs] ≤ e−a/4.

18

To bound Prw[E3], we start with the following observation. Let r be an `′-step random walk
from any vertex v̂ on G̃reg and r′ be an `′-step random walk from the same v̂ on G′. We have

Pr
r

[r only uses edges in E′
1 and never visits Cs] ≤ Pr

r′
[r′ never visits Cs] ≤

1

2
,

since each walk contained in the LHS event is also contained in the RHS event, and the walk
has greater probability mass in the RHS than in the LHS.

We now think of w as 3ak consecutive `′-step random walks in G̃reg. We call each `′-step
random walk a segment. We say that a segment is bad if the walk in that segment only uses
edges in E′

1 and never visits Cs. From the above observation, a segment is bad with probability
at most 1/2, even conditioned on the previous segments of the walk. By a Chernoff bound, we
have

Pr
w

[# of bad segments ≥ 2ak] ≤ 2−Ω(ak)

However, note that any walk in E3 contains at least 2ak bad segments, so

Pr
w

[E3] ≤ Pr
w

[# of bad segments ≥ 2ak] ≤ 2−Ω(ak).

In sum, we have

Pr
w

[w does not visit S] ≤ Pr
w

[E1] + Pr
w

[E2] + Pr
w

[E3] ≤ O(aε`′k2) + e−a/4 + 2−Ω(ak) <
1

2

for ε = (ndk)−c and a sufficiently large choice of the constants c and a.

Let Mreg be the transition matrix for the random walk on Greg, and let πreg be the (uniform)
stationary distribution on the (strongly) connected component V ′

1 of Greg. As Greg is 1/2-lazy,
to apply Lemma 4.6, it remains to check Mreg(ŝ1, ŝ2) ≥ 1/(8|Cs|) for all ŝ1, ŝ2 ∈ Cs. Recall that
M ′(ŝ1, ŝ2) ≥ 1/(6|Cs|). Note that we do not remove any edges in V ′

1 in the construction, and
the out-degree increases by only 1 + O(kε) factor. So Mreg(ŝ1, ŝ2) ≥ 1/((1 + O(kε)) · 6|Cs|) ≥
1/(8|Cs|). Therefore, by Lemma 4.6, γπreg(Greg) ≥ 1/(211 · (`reg)

2) = 1/poly(n, d, k).
Let Nreg be the number of vertices in Greg, and Dreg = (1 + 6kε)dD be the degree of Greg.

We summarize the properties of Greg as follows.

1. Greg has at most O(kεDregNreg) additional edges to G′.

2. Greg preserves the connectivity of Cs and Ct.

3. Greg has short mixing time. The spectral gap of Greg is γπreg(Greg) = 1/poly(n, d, k).

4. |Cs|, |Ct| ≥ N/k ≥ Nreg/(2k), and πreg(Cs), πreg(Ct) ≥ 1/(2k).

19

4.3 Obtain a consistent labelling

The goal of this stage is to obtain a “consistent labelling” of edges so that we can apply the
pseudorandom walk generator of [16] in next stage. We achieve it by applying a simple lift
operation to the graph.8 Given a labelled graph H, the operation will output a labelled graph
L(H) preserving the connectivity of H. When H is d-regular, the lifted graph L(H) is simply
the (“tensor” or “AND”) product with a d-clique (with self-loops), so L(H) has the same
spectral gap as H. Furthermore, we can consistently label L(H). Hence, if we applied the
operation to Greg, the resulting graph Gcon = L(Greg) would be a consistently labelled regular
graph with short mixing time.

However, since we do not know how to compute Greg in logspace, our algorithm will compute
G′′ = L(G′) instead. G′′ is not regular and we do not know its mixing time. Fortunately, we
are able to argue that the behavior of short (pseudo)random walks on G′′ and Gcon are very
“similar”, so that we can apply the pseudorandom walk generator to G′′ instead of Gcon.

We start with a discussion about labellings.

Labelling. Let H be a digraph with n vertices such that every vertex has out-degree at
most dout and in-degree at most din. A two-way labelling of H gives each edge (v,w) ∈ H an
outgoing label of v in [dout], and an incoming label of w in [din] such that the outgoing (resp.,
incoming) labels of each vertex v ∈ H are all distinct. Such a graph together with its two-way
labelling can be specified by a rotation map RotH : [n] × [dout] → ([n] × [din]) ∪ {⊥}, where
RotH(v, i) = (w, j) if there is an edge numbered i leaving v and it equals the edge numbered
j entering w, and RotH(v, i) = ⊥ if there is no edge numbered i leaving v. We say a rotation
map RotH has degree d if din = dout = d.

Note that we can compute a degree-Dreg rotation map RotG′ of G′ in logspace. Furthermore,
RotG′ can be extended to a rotation map RotGreg of Greg in such a way that for every edge
present in both G′ and Greg, it has the same outgoing and incoming labels in G′ and Greg. In
the following discussion, we assume G′ and Greg are associated with rotation maps RotG′ and
RotGreg that are compatible in this sense.

A consistent labelling of a d-regular graph H gives each edge only one label in [d] such that
for each vertex v ∈ H, all of the edges leaving (resp., entering) v have distinct labels. Hence,
in terms of rotation maps, RotH defines a consistent labelling iff for all v, i, RotH(v, i) = (w, i)
for some w.

We define the lift operation in terms of rotation maps as follows.

Definition 4.8 Let H is a two-way labelled graph on n vertices with rotation map RotH :
[n] × [d] → [n] × [d]. The lift L(H) is a graph on [n] × [d] vertices whose rotation map
RotL(H) : ([n] × [d]) × [d2] → ([n] × [d]) × [d2] is as follows:

8The lift operation defined here is not the same as the “lifts” of [2]

20

RotL(H)((v, k), (i, j)):

1. If RotH(v, k + i) = (w, l), output ((w, l + j mod d), (i, j))

2. If RotH(v, k + i) = ⊥, output ⊥.

where all arithmetic on elements of [d] is taken modulo d.

It is clear that RotL(H) can be computed in logspace if RotH can. We can think of the
operation as follows. The operation lifts each vertex in H to a cloud in L(H). A vertex (v, k)
in L(H) is the k-th vertex in the cloud of v. Staying at vertex (v, k) in L(H) can be interpreted
as staying at vertex v in H and facing toward the k-th edge. Phrased in this way, the (i, j)-th
neighbor of vertex (v, k) is obtained by the following steps. Starting at vertex v and facing
toward k-th edge in H, we (i) turn to (k+ i)-th edge, (ii) go across the (k+ i)-th edge to vertex
w and face to the l-th edge, and then (iii) turn to the (l + j)-th edge of w. We call step (ii) the
H-step of RotL(H)((v, k), (i, j)). Note that a H-step is simply following an edge of H.

It is easy to check that RotL(H) is a legal two-way labelling. All incoming edges of vertex
(w, l) have distinct incoming labels because the above procedure is invertible. Indeed, if an
incoming edge of (w, l) is labelled (i, j), then in the second step, it must come from an edge
with incoming label l − j at vertex w in H. Since H is two-way labelled, there is at most one
such edge, say, from the k-th outgoing edge of vertex v. Thus, the only edge incident to (w, l)
with incoming label (i, j) is (v, k − i).

Lemma 4.9 If H is d-regular, then

1. L(H) is consistently labelled.

2. γ(L(H)) = γ(H).

Proof.(sketch) The first statement follows because RotL(H)((v, k), (i, j)) is of the form (·, (i, j))
unless it outputs ⊥, which will never happen when H is d-regular.

Intuitively, the second statement holds because a random neighbor of (v, k) in L(H) is of
the form (w, l) where w is a random neighbor of v in H and l is uniform and independent of
(v, k). Thus, the first component mixes at the same rate as in H, and the second component
mixes perfectly in one step. Formally, this can be proved by observing that the transition
matrix of L(H) equals the tensor product of the transition matrices of H and the d-clique with
self-loops (or as a special case of the zig-zag theorems of [17, 16]).

By Lemma 4.9, Gcon = L(Greg) is a consistently labelled (Nreg · Dreg)-vertex, D2
reg-regular

graph with the same spectral gap as Greg (with respect to the (uniform) stationary distribution
πcon on the union of clouds corresponding to vertices in V ′

1 .) Let C̃s = Cs × [Dreg] and C̃t =
Ct× [Dreg] be the cloud of s and t in G′′. We have πcon(C̃s) = πreg(Cs) and πcon(C̃t) = πreg(Ct).
Let us now consider G′′ = L(G′). It is easy to check from the definition that G′′ preserves the

21

connectivity of C̃s and C̃t, and every path from C̃s to C̃t in G′′ can be projected to a path from
s to t in G.

We now study the difference between Gcon and G′′. From the fact that the rotation maps
of Greg and G′ are compatible, it follows that the rotation maps of their lifts Gcon = L(Greg)
and G′′ = L(G) are also compatible. Moreover, RotG′′((v, k), (i, j)) = ⊥ iff RotG′(v, k+ i) = ⊥.
That is, an edge of Gcon is missing in G′′ iff the corresponding Greg-step is missing in G′. Let
B be the set of pairs (v, k) ∈ [Nreg] × [Dreg] such that RotG′(v, k) = ⊥. Note that the size of
B is only O(kεDregNreg).

To summarize, in this stage the algorithm first computes a rotation map RotG′ of G′, and
then computes G′′ = L(G′) in logspace. Let Ncon = Nreg · Dreg be the number of vertices in
Gcon, and Dcon = D2

reg be the degree of Gcon. We have the following properties.

1. Gcon has short mixing time. The spectral gap of Gcon is γπcon(Gcon) = γπreg(Greg) =
1/poly(n, d, k).

2. In both G′′ and Gcon, the clouds C̃s and C̃t are connected, and every path from C̃s to C̃t

in G′′ can be projected to a path from s to t in G in logspace.

3. An edge of Gcon is also an edge of G′′ iff the Greg-step of the edge is not in B. The size
of B is only O(kεDregNreg).

4. |C̃s|, |C̃t| ≥ Ncon/(2k), and πcon(C̃s), πcon(C̃t) ≥ 1/(2k).

4.4 Find a path using the pseudorandom walk generator of [16]

We are ready to apply the pseudorandom walk generator of [16] to G′′ to find a path from s to
t in G.

Lemma 4.10 ([16]) For every N,D ∈ N, δ,γ > 0, there is a generator PRG = PRGN,D,δ,γ :
{0, 1}r → [D]` with seed length r = O(log(ND/δγ)), and walk length ` = poly(1/γ)·log(ND/δ),
computable in space O(log(ND/δγ)) such that for every (connected) consistently labelled N -
vertices D-regular digraph G with spectral gap γ and every vertex s in G, taking walk PRG(Ur)
from s ends at a distribution δ-close to uniform (in variation distance).

Let us first apply the above PRG to Gcon. Set δ = 1/(4k). Note that Ncon,Dcon =
poly(n, d, k, 1/ε), and γ = γπcon(Gcon) = poly(n, d, k). Hence, PRG is computable in logspace,
the seed length r is logarithmic, and the walk length ` = poly(1/γ) · log(ND/δ) ≤ (ndk)a for
some constant a (independent of the constant c in ε = (ndk)−c.) Let us apply PRG(Ur) to
Gcon with initial distribution uniform over C̃s. Therefore, the probability that the walk ends in
C̃t is at least 1/(2k) − δ = 1/(4k). In particular, this implies there is a vertex s̃ ∈ C̃s, a vertex
t̃ ∈ C̃t, and a seed x ∈ {0, 1}r such that PRG(x) is a path from s̃ to t̃ in Gcon.

22

We next show that the PRG can produce a path from C̃s to C̃t such that all edges in the
path are also edges in G′′. It implies that when we apply PRG to G′′, we can find a path from
C̃s to C̃t, which can be projected to a path from s to t in G, as desired.

Let p0 be the uniform distribution on C̃s. Let (e1, . . . , e`) ∈ [Dcon]` be any fixed sequence
of edge labels specifying a walk. Starting from p0, let p1, . . . , p` be the distribution after each
step. Since Gcon is consistently labelled, each pi is a uniform distribution on some set of
size |C̃s|. Now, consider one step that goes from pi to pi+1 using edge label ei. Note that
for any two distinct ṽ1, ṽ2 ∈ Gcon, the Greg-steps of RotGcon(ṽ1, ei) and RotGcon(ṽ2, ei) are
also distinct, so the probability that the Greg-step of i-th step is in B is at most |B|/|C̃s| ≤
O(kεNcon)/(Ncon/(2k)) = O(k2ε). By a union bound, the probability that an `-step walk ever
uses an edge whose Greg-step is in B is at most

` · O(k2ε) ≤ (ndk)a · O(k2 · (ndk)−c) �
1

4k

where we set c = a+3. Note that if a walk only uses edges whose Greg-step is not in B, then all
edges are actually in G′′ and thus the walk is also a walk in G′′. Since the above inequality holds
for every fixed walk (e1, . . . , e`), it holds for a pseudorandom walk starting from p0. Hence,

Pr[PRG(Ur) ends in C̃t and uses only edges in G′′] ≥
1

4k
− ` · O(k2ε) > 0.

We summarize the algorithm and show how it uses PRG to solve Known-Stationary

Find Path in deterministic logspace.

1. Compute G′ from G as described in stage 1.

2. Compute a two-way labelling of G′ and G′′ = L(G′) as described in stage 3.

3. For each vertex s̃ ∈ C̃s and seed x ∈ {0, 1}r , compute the walk PRG(x) starting from s̃
in G′′, and project the path to G (which might fail due to there being no edge with a
particular label.

4. If we find a path from s to t, then output the path.

The algorithm runs in deterministic logspace because every step does. Since the probability
that a pseudorandom walk in Gcon starting from uniform distribution on C̃s ends in C̃t and
uses only edges in G′′ is positive, there exists some s̃ ∈ C̃s and x ∈ {0, 1}r such that the
walk PRG(x) starting from s̃ will end in C̃t. Such a path can be found by our algorithm and
projected to a path from s to t in G.

23

4.5 Tolerating additive error in the input stationary distribution

We show that our algorithm still works when the input stationary distribution has a small
additive error δ = 1/poly(n, d, k). There are two places in the proof we need to take care of
this error.

Observe that the only place our algorithm uses the input stationary distribution is in the
first stage. We used the input stationary distribution to define the vertex and edge blow-
up factors a(v) and b(v), and showed in Lemma 4.1, 4.3, and 4.4 that G′ is nearly regular.
As the purpose of that analysis is to tolerate the round-off error as compared to the ideal
construction, we can expect that our algorithm will still work when the error of the input
stationary distribution is as small as the round-off error. Formally, it is not hard to check that
when δ is small enough (e.g., δ = 1/ND), the above three lemmas are still true.

In Stage 2, we argued that since π(V2) = 0, all vertices v ∈ V2 are “deleted” in G′. When
the input stationary distribution has some additive error, the corresponding vertex set V ′

2 in
G′ will be nonempty because the blow-up factors a(·) and b(·) are no longer zero. However, as
long as the size of V ′

2 is small, say O(εN) vertices and O(εND) edges, we can simply delete
V ′

2 from G′, and still set Vreg = V ′
1 ∪ V ′

3 , while maintaining all properties listed at the end of
Section 4.2. When the error δ is small enough, say δ ≤ 1/ND, we have a(v) = dpv · Ne = 1
and b(v) = dpv · NDe = 1 for every v ∈ V2, so we delete at most n ≤ O(εN) vertices and
nd ≤ O(εND) edges in G′.

Note that in the rest of the proof, we do not use the input stationary distribution. Therefore,
our algorithm solves δ-Known-Stationary S-T Connectivity and δ-Known-Stationary

Find Path for δ = 1/ND in deterministic logspace.

Acknowledgements

We thank the CCC ’07 reviewers for helpful comments on the presentation.

References

[1] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random walks, universal
traversal sequences, and the complexity of maze problems. In 20th Annual Symposium on
Foundations of Computer Science, pages 218–223, San Juan, Puerto Rico, 29–31 Oct.
1979. IEEE.

[2] A. Amit, N. Linial, J. Matousek, and E. Rozenman. Random lifts of graphs. In SODA,
pages 883–894, 2001.

[3] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13(4):850–864, Nov. 1984.

24

[4] K.-M. Chung, O. Reingold, and S. Vadhan. S-t connectivity on digraphs with a known
stationary distribution. In IEEE Conference on Computational Complexity, 2007.

[5] J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible markov
chains with an application to the exclusion process. Annals of Applied Probability, 1:62–
87, 1991.

[6] I. Haitner, D. Harnik, and O. Reingold. On the power of the randomized iterate. In
CRYPTO, pages 22–40, 2006.

[7] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: exponen-
tial time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

[8] P. Indyk. Stable distributions, pseudorandom generators, embeddings and data stream
computation. In 41st Annual Symposium on Foundations of Computer Science (Redondo
Beach, CA, 2000), pages 189–197. IEEE Comput. Soc. Press, Los Alamitos, CA, 2000.

[9] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[10] E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (almost)
independent permutations. In APPROX-RANDOM, pages 354–365, 2005.

[11] M. Mihail. Conductance and convergence of markov chains: a combinatorial treatment of
expanders. In Proc. of the 37th Conf. on Foundations of Computer Science, pages 526–531,
1989.

[12] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[13] N. Nisan and A. Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, Oct. 1994.

[14] R. Raz and O. Reingold. On recycling the randomness of the states in space bounded
computation. In Proceedings of the Thirty-First Annual ACM Symposium on the Theory
of Computing, Atlanta, GA, May 1999.

[15] O. Reingold. Undirected st-connectivity in log-space. In Proceedings of the 37th ACM
Symposium on Theory of Computing, pages 376–385, 2005.

[16] O. Reingold, L. Trevisan, and S. Vadhan. Pseudorandom walks in regular digraphs and
the RL vs. L problem. In Proceedings of the 38th Annual ACM Symposium on Theory of
Computing (STOC ‘06), pages 457–466, 21–23 May 2006. Preliminary version on ECCC,
February 2005.

25

[17] O. Reingold, S. Vadhan, and A. Wigderson. Entropy waves, the zig-zag graph product, and
new constant-degree expanders. Annals of Mathematics, 155(1), January 2001. Extended
abstract in FOCS ‘00.

[18] M. Saks and S. Zhou. BPhSPACE(S) ⊆ SPACE(S). Journal of Computer and System
Sciences, 58(2):376–403, 1999. 36th IEEE Symposium on the Foundations of Computer
Science (Milwaukee, WI, 1995).

[19] A. Sinclair and M. Jerrum. Approximate counting, uniform generation and rapidly mixing
Markov chains. Inform. and Comput., 82(1):93–133, 1989.

[20] D. Sivakumar. Algorithmic derandomization via complexity theory. In Proceedings of the
Thirty-Fourth Annual ACM Symposium on Theory of Computing, pages 619–626 (elec-
tronic), New York, 2002. ACM.

[21] V. Trifonov. An O(log n log log n) space algorithm for undirected st-connectivity. In
STOC, pages 626–633, 2005.

[22] A. C. Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd
Annual Symposium on Foundations of Computer Science, pages 80–91, Chicago, Illinois,
3–5 Nov. 1982. IEEE.

26

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

