
Interactive PCP

Yael Tauman Kalai
∗

Weizmann Institute of Science

yael@csail.mit.edu

Ran Raz
†

Weizmann Institute of Science

ran.raz@weizmann.ac.il

Abstract

An interactive-PCP (say, for the membership x ∈ L) is a proof that can be verified by
reading only one of its bits, with the help of a very short interactive-proof. We show that for
membership in some languages L, there are interactive-PCPs that are significantly shorter than
the known (non-interactive) PCPs for these languages.

Our main result is that the satisfiability of a constant depth Boolean formula Φ(z1, . . . , zk) of
size n (over the gates ∧,∨,⊕,¬) can be proved by an interactive-PCP of size poly(k), followed by
a short interactive proof of communication complexity polylog(n). That is, we obtain interactive-
PCPs of size polynomial in the size of the witness. This compares to the known (non-interactive)
PCPs that are of size polynomial in the size of the instance. By reductions, this result extends
to many other central NP languages (e.g., SAT, k-clique, Vertex-Cover, etc.).

More generally, we show that the satisfiability of
∧n

i=1[Φi(z1, . . . , zk) = 0], where each
Φi(z1, . . . , zk) is an arithmetic formula of size n (say, over GF[2]) that computes a polyno-
mial of degree d, can be proved by an interactive-PCP of size poly(k, d), followed by a short
interactive proof of communication complexity poly(d, log n).

We give many cryptographic applications and motivations for our results. In particular, we
show the following:

1. The satisfiability of a constant depth formula Φ(z1, . . . , zk) of size n (as above) has an inter-
active zero-knowledge proof of communication complexity poly(k) (rather than poly(n))1.
As before, this result extends to many other central NP languages. This zero-knowledge
proof has some additional desired properties that will be elaborated on in the body of the
paper.

2. Alice can commit to a Boolean formula Λ of size m, by a message of size poly(m), and
later on prove to Bob any N statements of the form Λ(x1) = z1, . . . ,Λ(xN) = zN by a
zero-knowledge proof of communication complexity poly(m, log N). Moreover, if Λ is a
constant depth Boolean formula then the zero-knowledge proof has communication com-
plexity poly(log m, log N). We further motivate this application in the body of the paper.

1 Introduction

The PCP (probabilistically checkable proof) theorem states that the satisfiability of a formula
Φ(z1, . . . , zk) of size n can be proved by a proof of size poly(n) that can be verified by reading
only a constant number of its bits [AS92, ALMSS92].

∗Supported in part by NSF CyberTrust grant CNS-0430450.
†Supported by Binational Science Foundation (BSF), Israel Science Foundation (ISF) and Minerva Foundation.
1We have learnt that a similar result was proved independently (and more or less at the same time) by Ishai,

Kushilevitz, Ostrovsky and Sahai [IKOS].

Electronic Colloquium on Computational Complexity, Report No. 31 (2007)

ISSN 1433-8092

In this paper, we study a new model of proofs: interactive PCP. An interactive PCP (say, for
the membership x ∈ L) is a combination of a PCP and a short interactive proof. Roughly speaking,
an interactive PCP is a proof that can be verified by reading only a small number of its bits, with
the help of a short interactive proof.

More precisely, let L be an NP language, defined by L = {x : ∃w s.t. (x, w) ∈ RL}. Let
p, q, l, c, s be parameters as follows: p, q, l are integers and c, s are reals, s.t. 0 ≤ s < c ≤ 1.
(Informally, p is the size of the PCP, q is the number of queries allowed to the PCP, l is the
communication complexity of the interactive proof, c is the completeness parameter and s
is the soundness parameter). We think of the parameters p, q, l, c, s as functions of the instance
size n. An interactive PCP with parameters (p, q, l, c, s) for membership in L is an interactive
protocol between an (efficient2) prover P and an (efficient) verifier V , as follows:

We assume that both the prover and the verifier know L and get as input an instance x of
size n, and the prover gets an additional input w (supposed to be a witness for the membership
x ∈ L). In the first round of the protocol, the prover generates a string π of p bits. (We think
of π as an encoding of the witness w). The verifier is still not allowed to access π. The prover
and the verifier then apply an interactive protocol, where the total number of bits communicated
is l. During the protocol, the verifier is allowed to access at most q bits of the string π. After the
interaction, the verifier decides whether to accept or reject the statement x ∈ L. We require the
following (standard) completeness and soundness properties:

There exists an (efficient) verifier V such that:

1. Completeness: There exists an (efficient) prover P , such that: for every x ∈ L and any
witness w (given to the prover P as an input), if (x, w) ∈ RL then the verifier accepts with
probability at least c.

2. Soundness: For any x 6∈ L and any (not necessarily efficient) prover P̃ , and any w (given to
the prover P̃ as an input), the verifier accepts with probability at most s.

For the formal definition of interactive PCP, see Section 2.
Note that in the above definition we allow π to depend on L, x and w. However, in our results

we use π that depends only on w, and is of size polynomial in the size of w. We hence think of π
as an encoding of the witness w (and this encoding will always be efficient in our results). The fact
that π depends only on w (and not on x) is important for many of our applications.

Note also that the notion of interactive PCP is very related to the notion of multi-prover
interactive proof [BGKW88]. For example, an interactive PCP with q = 1 can be viewed as a two
provers interactive proof, where the interaction with the first prover is of only one round and is of
question size log p and answer size 1, and the interaction with the second prover is of communication
complexity l, (and where both provers are efficient).

1.1 Our Results

We show that the membership in some NP languages, with small witness size, can be proved by
short interactive PCPs with q = 1. We have two main results.

1. Let Φ(z1, . . . , zk) be a constant depth Boolean formula of size n (over the gates ∧,∨,⊕,¬).
For any constant ε > 0, the satisfiability of Φ can be proved by an interactive PCP with the

2We could also consider a model with a not necessarily efficient prover.

2

following parameters. Size of the PCP: p = poly(k). Number of queries: q = 1. Communica-
tion complexity of the interactive proof: l = poly(log n). Completeness: c = 1−ε. Soundness:
s = 1/2 + ε.

Moreover, the string π (generated by the prover in the first round of the protocol) depends
only on the witness w1, . . . , wk, and not on the instance Φ.

2. Let Φ1(z1, . . . , zk), . . . ,Φn(z1, . . . , zk) be arithmetic formulas of size n (say, over GF[2]) that
compute polynomials of degree d. For any constant ε > 0, the satisfiability of the formula

n
∧

i=1

[Φi(z1, . . . , zk) = 0]

can be proved by an interactive PCP with the following parameters. Size of the PCP: p =
poly(k, d). Number of queries: q = 1. Communication complexity of the interactive proof:
l = poly(d, log n). Completeness: c = 1. Soundness: s = 1/2 + ε.

Moreover, the string π (generated by the prover in the first round of the protocol) depends
only on the witness w1, . . . , wk (and on the parameter d), and not on Φ1, . . . ,Φn.

The result works over any other finite field.

In both results, we could actually take ε to be poly-logarithmically small. Also, the constant 1/2,
in the soundness parameter of both results, appears only because the string π is a string of bits.
We could actually take π to be a string of symbols in {1, . . . , 2k} and obtain soundness 2−k + ε.

An additional property of our constructions is that we can assume that the verifier queries the
string π before the interaction with the prover starts. This is the case, because the queries to π
are non-adaptive (i.e., they do not depend on the values returned on previous queries) and do not
depend on the interaction with the prover.

Note that many of the central NP languages can be reduced to the satisfiability of a constant
depth formula, without increasing the witness size (e.g., SAT, k-clique, Vertex-Cover, etc.). We
hence obtain short interactive PCPs for many other NP languages. Moreover, many NP languages
can be reduced to the satisfiability of a formula of the form

∧n
i=1[Φi(z1, . . . , zk) = 0] (without

increasing the witness size), where Φ1, . . . ,Φn are arithmetic formulas of small degree. In these
cases, by the second result, perfect completeness can be obtained.

1.2 Applications

1.2.1 Succinct PCPs with interaction

A central line of research in the area of PCPs is devoted to constructing short PCPs. An outstanding
open problem is: Do there exist PCPs of size polynomial in the size of the witness, rather than
polynomial in the size of the instance (think of the instance as significantly larger than the witness) ?
For example, does the satisfiability of a formula Φ(z1, . . . , zk) of size n have a PCP of size poly(k)
(think of n as significantly larger than k) ? A positive answer for this question would have important
applications in complexity theory and cryptography (see for example [HN06]), while a negative
answer would be extremely interesting from a theoretical point of view.

Our main result implies that if we allow an additional short interactive phase (of communication
complexity polylog(n)), then every constant depth Boolean formula Φ(z1, . . . , zk) of size n (over
the gates ∧,∨,⊕,¬) has a PCP of size poly(k).

3

In particular, this implies that for any NP statement x ∈ L, that can be verified by a constant
depth Boolean formula, Alice can publish a “succinct” proof for the statement x ∈ L on the internet
(where the size of the proof is polynomial in the size of the witness, rather than the size of the
instance). Later, any user who wishes to verify this statement needs to interact with Alice via a
short interactive proof of communication complexity polylog(|x|), while accessing the proof at a
single location.

1.2.2 Succinct zero-knowledge proofs

The notion of zero-knowledge proof, first introduced by Goldwasser, Micali and Rackoff [GMR85],
has become one of the central notions of modern cryptography. Goldreich, Micali and Wigderson
showed that for any language L ∈ NP, the membership x ∈ L can be proved by an interactive
zero-knowledge proof of polynomial size [GMW86]. An interesting open problem in cryptography
is: Can we significantly reduce the communication complexity of zero-knowledge protocols? Kilian
and Micali, independently, showed that for any language L ∈ NP, the membership x ∈ L can
be proved by a succinct interactive zero-knowledge argument of poly-logarithmic size [K92, M94].
Note, however, that the succinct zero-knowledge protocols of [K92, M94] are arguments, rather
than proofs, that is, their soundness property holds computationally. These works left open the
problem of constructing “short” zero-knowledge proofs for NP.

One application of our first result is that the satisfiability of a constant depth Boolean formula
Φ(z1, . . . , zk) of size n (over the gates ∧,∨,⊕,¬) can be proved by an interactive zero-knowledge
proof of size poly(k) (rather than poly(n)). That is, we obtain zero-knowledge proofs of size
polynomial in the size of the witness, rather than polynomial in the size of the instance. As before,
the result extends to many other central NP languages. Similarly, we show that the satisfiability
of the formula

∧n
i=1[Φi(z1, . . . , zk) = 0], where Φ1(z1, . . . , zk), . . . ,Φn(z1, . . . , zk) are arithmetic

formulas of size n that compute polynomials of degree d, can be proved by an interactive zero-
knowledge proof of size poly(k, d, log n).

We have learnt that similar results were proved independently (and more or less at the same
time) by Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS], using different methods.

The zero-knowledge proofs that we construct have an additional property. They consist of
two phases: The first phase is non-interactive, and depends only on the witness w (and not on the
instance x). In this phase the prover sends to the verifier a certain (non-interactive) commitment to
his witness at hand. The second phase is interactive and is very short. (It is of size poly-logarithmic
in n in the case of a constant depth Boolean formula, and it is of size poly(d, log n) in the case of
a conjunction of n degree d arithmetic formulas). In this phase the prover and verifier engage in a
zero-knowledge proof that indeed the string committed to in the first phase is a valid witness for x.
Below we list some motivations and applications for these type of succinct zero-knowledge proofs.
Many of these motivations and applications are taken from [KR06] (where succinct non-interactive
argument systems with similar properties were given).

1.2.3 How to commit to a constant depth circuit

Our results imply that for any polynomial-size constant depth circuit Λ : {0, 1}n → {0, 1} (over the
gates ∧,∨,⊕,¬), a user, Alice, can publish a commitment to an encoding of Λ. This commitment is
of size poly(t, |Λ|), where t is the security parameter. Later, Alice can prove any N statements of the
form Λ(x1) = y1, . . . ,Λ(xN) = yN , by an interactive zero-knowledge proof (rather than argument)
with communication complexity poly(t, log |Λ|, log N). Verifying this proof requires accessing the
public committed encoding only in poly(t) locations.

4

More generally, if Λ is an arithmetic formula of degree d,3 then the commitment is of size
poly(t, |Λ|, d), and the zero-knowledge proof has communication complexity poly(t, d, log N). Veri-
fying this proof requires accessing the public committed encoding in poly(t) locations.

Notice that the proofs may be significantly shorter than |Λ|. This is interesting even if we
discard the requirement of the proof being zero-knowledge (and discard the restriction of accessing
the committed encoding only in a limited number of locations), since the “witness” Λ is much
larger than the size of the interactive proof. Previously, the main positive results for “short”
interactive proofs (for NP) were in the computational model, where the prover is computationally
bounded: It was shown by Kilian and Micali [K92, M94], independently, that every language in NP
has a 4-round interactive argument of polylog(n) communication complexity (under computational
assumptions). However, for the case of proofs, mainly lower bounds were attained. In particular,
Goldreich and Hastad [GH98] and Goldreich, Vadhan and Wigderson [GVW02], showed (among
other things) that only languages who are relatively easy may have such short proof systems. In
contrast, our result shines a positive light on the possibility of attaining short interactive proofs for
some NP languages, where the communication is polylogarithmic in both the instance size and the
witness size.

The following are examples for situations where a protocol as above may be useful. The main
drawback of our protocol, in these contexts, is that it works only for Boolean formulas (or only
constant depth Boolean formulas, for better parameters), and not for Boolean circuits.

• One of the main tasks of cryptography is to protect honest parties from malicious parties in
interactive protocols. Assume that in an interaction between Alice and Bob, Alice is supposed
to follow a certain protocol Λ. That is, on an input x, she is supposed to output Λ(x, y),
where y is her secret key. How can Bob make sure that Alice really follows the protocol Λ ? A
standard solution, effective for many applications, is to add a commitment phase and a proof
phase as follows: Before the interactive protocol starts, Alice is required to commit to her
secret key y. After the interactive protocol ends, Alice is required to prove that she actually
acted according to Λ, that is, on inputs x1, . . . , xN , her outputs were Λ(x1, y), . . . ,Λ(xN , y).
In other words, Alice is required to prove N statements of the form Λ(xi, y) = zi. Typically,
we want the proof to be zero-knowledge, since Alice doesn’t want to reveal her secret key.

Thus, Alice has to prove in zero-knowledge N statements of the form Λ(xi, y) = zi. The only
known way to do this is by a proof of length N · q, where q is the size of proof needed for
proving a single statement of the form Λ(xi, y) = zi. Note that N · q may be significantly
larger than the total size of all other messages communicated between Alice and Bob.

Our main result shows that if Λ is a Boolean formula (or a constant depth Boolean circuit
for better parameters), there is a much more efficient way. Alice will commit to Λy = Λ(·, y).
Then Alice will prove to Bob N statements of the form Λy(xi) = zi, by a zero-knowledge
proof of size poly(t, |Λ|, log N) (or of size poly(t, log |Λ|, log N) in cases where Λ is a constant
depth Boolean circuit).

• Alice claims that she found a short formula for factoring integers, but of course she doesn’t
want to reveal it. Bob sends Alice N integers x1, . . . , xN and indeed Alice menages to factor
all of them correctly. But how can Bob be convinced that Alice really applied her formula,
and not, say, her quantum computer ? We suggest that Alice commits to her formula Λ, and
then prove that she actually used her formula Λ to factor x1, . . . , xN . The commitment is

3We note that any polynomial-size Boolean formula Λ : {0, 1}n → {0, 1} can be efficiently translated into a
polynomial-size arithmetic formula of degree poly(n).

5

of size poly(t, |Λ|) (where t is the security parameter), and the communication complexity of
the zero-knowledge proof is poly(t, |Λ|, log N) (or poly(t, log |Λ|, log N) in cases where Λ is a
constant depth Boolean circuit).

• We want to run a chess contest between formulas. Obviously, the parties don’t want to
reveal their formulas (e.g., because they don’t want their rival formulas to plan their next
moves according to it). Of course we can just ask the parties to send their next move at
each step. But how can we make sure that the parties actually use their formulas, and don’t
have teams of grand-masters working for them ? We suggest that each party commits to his
formula Λ before the contest starts. After the contest ends, each party will prove that he
actually played according to the formula Λ that he committed to. As before the commit-
ment is of size poly(t, |Λ|) and the communication complexity of the zero-knowledge proof is
poly(t, |Λ|, log N), where N is the number of moves in the game (or poly(t, log |Λ|, log N) in
cases where Λ is a constant depth Boolean circuit).

1.2.4 Proofs of Knowledge of a Witness

Assume that both Alice and Bob have access to a very large database [(x1, z1), . . . , (xN , zN)].
They face a learning problem: Their goal is to learn a small Boolean formula Λ that explains the
database. That is, the goal is to learn Λ such that Λ(x1) = z1, . . . ,Λ(xN) = zN . Alice claims
that she managed to learn such a formula Λ, but she doesn’t want to reveal it. It follows from
our results that Alice can prove to Bob the existence of such a Λ by a zero-knowledge proof with
communication complexity poly(t, |Λ|, log N), where t is the security parameter.

1.3 Techniques

The first result is proved by a reduction to the second result. This is done by approximating
a constant depth formula by a (family of) polynomials of degree d = poly(log n) (a well known
method in complexity theory, first used by Razborov and Smolensky [R87, S87] for proving lower
bounds for constant depth formulas). It is well known that the approximation can be done by a
relatively small family of polynomials. That is, the approximation can be done using a relatively
small number of random bits (see for example the survey paper of [B93]).

Suppose that we have a small family of polynomials of degree d = poly(log n) that approximate
the constant depth formula. After the prover generates the string π, the verifier chooses randomly
a polynomial Φ from the family, and the prover is required to prove that Φ(w1, . . . , wk) = 1 for the
witness w = (w1, . . . , wk) encoded by π. This proves that the constant depth formula is satisfied
by the witness w. We loose the perfect completeness because the low degree polynomials only
approximate the constant depth formula and are not equivalent to it.

For the proof of the second result we use methods that were previously used for constructing
PCPs and interactive proofs, together with some new techniques. The proof has two parts: The
first part shows the needed result but with q larger than 1, that is, more than one query to the
PCP. The second part shows that in any interactive PCP, the number of queries, q, can be reduced
to 1, using a short additional interaction with the prover.

For the proof of the first part, we take π to be the low degree extension of the witness w. The
verifier checks that π is indeed a low degree polynomial using a low degree test, as is frequently done
in constructions of PCPs (e.g., [BFL90, AS92, ALMSS92]). Given an arithmetic formula Φ of size n
and degree d, the verifier can verify that Φ(w1, . . . , wk) = 0 by an interactive sum-check procedure, as
is frequently done in constructions of PCPs and interactive proofs (e.g., [LFKN90, S92]). However,

6

we need to apply the sum-check procedure on a space of size > kd, which is, in most interesting
cases, super-polynomial in n. This seems to require a prover that runs in super-polynomial time.
Nevertheless, we show by induction on the structure of the arithmetic formula Φ that a variant
of the sum-check procedure can be performed by an efficient prover, even when the space is of
super-polynomial size. We hope that the new procedure may be interesting in its own right and
may have additional applications in constructions of PCPs and interactive proofs.

Note that the prover needs to prove that Φi(w1, . . . , wk) = 0 for every polynomial Φi ∈
{Φ1, . . . ,Φn}. Since this would require too much communication, we take Φ to be a (pseudo-
random) linear combination of Φ1, . . . ,Φn (using any linear error correcting code). The combination
is chosen by the verifier, and the prover is only required to prove that Φ(w1, . . . , wk) = 0.

As mentioned above, the second part of the proof of the second result is a general theorem
that shows that in any interactive PCP the number of queries q can be reduced to 1 (using some
additional interaction with the prover). This is done as follows. First, we can assume w.l.o.g.
that all the queries to π are made after the interactive protocol ends. This is because rather than
querying π, the verifier can simply ask the prover for the answers, and after the interactive protocol
ends make the actual queries and compare the answers. Second, we can assume w.l.o.g. that the
string π, generated by the (honest) prover, is a multivariate polynomial of low degree. Otherwise,
we just ask the prover to generate the low degree extension of π, rather than π itself.

We can now apply a method that is based on methods that are frequently used in constructions
of PCPs (e.g., [FL92, ALMSS92, DFKRS99, R05]). If the verifier wants to query π in q points, the
verifier takes a curve γ of degree q+1 that passes through all these points and an additional random
point. If π is a low degree polynomial, the restriction of π to γ is also a low degree polynomial.
The verifier asks the prover to send this low degree polynomial, and verifies the answer by checking
it in a single point, using a single query to π. The verifier still needs to check that π is indeed a low
degree polynomial. This is done, once again, using a low degree test. The verifier asks the prover
for the restriction of π to a low dimensional subspace ν, and verifies the answer by checking it in
a single point, using a single query to π. This, however, requires an additional query to π, while
we only allow one query altogether. We hence need to combine the two tests. That is, we need to
combine the low degree test and the test that the prover’s answer for the curve γ is correct. To do
this, the verifier actually asks the prover to send the restriction of π to a manifold spanned by both
γ and ν. The verifier verifies the answer by checking it in a single point, using a single query to π.

This shows that the verifier can make only one query to π. However, the point queried in π
contains a field element and not a single bit. To reduce the answer size to a single bit, the prover
is required to generate in π the error correcting code of each field element, rather than the element
itself. The verifier can now verify an element by querying only one bit in its error correcting code.

2 Definition of Interactive PCP

Let L be any NP language defined by L = {x : ∃w s.t. (x, w) ∈ RL}. Let p, q, `, c, s be parameters
that satisfy the following: The parameters p, q, ` : N → N are integers, and the parameters c, s :
N → [0, 1] are reals, such that for every n ∈ N, 0 ≤ s(n) < c(n) ≤ 1.

Definition 1. A pair (P, V) of probabilistic polynomial time interactive Turing machines is an
interactive PCP for L with parameters (p, q, `, c, s), if for every (x, w) ∈ RL the prover P (x, w)
generates a bit string π of size at most p(n) (where n = |x|), such that the following properties are
satisfied.

7

• Completeness: For every (x, w) ∈ RL,

Pr[(P (x, w), V π(x)) = 1] ≥ c(n)

(where n = |x|, and the probability is over the random coin tosses of P and V).

• Soundness: For every x /∈ L, every (unbounded) interactive Turing machine P̃ , and every
string π̃ ∈ {0, 1}∗,

Pr[(P̃ (x), V π̃(x)) = 1] ≤ s(n)

(where n = |x|, and the probability is over the random coin tosses of V).

• Complexity: The communication complexity of the protocol (P (x, w), V π(x)) is at most
`(n), and V reads at most q(n) bits of π.

Notation. We denote by IPCP(p, q, `, c, s) the set of all NP languages that have an interactive
PCP with parameters (p, q, `, c, s).

Remark. One can define interactive PCP where π is a string of symbols rather than bits (i.e.,
where the answer size is ≥ 1).

3 Ingredients

3.1 Low Degree Extension

Fix a field F, to be an extension field of GF[2]. Fix a subset H ⊂ F and an integer m. In what
follows, we define the low degree extension of a k-element string (w0, w1, . . . , wk−1) ∈ F

k with
respect to F, H, m, where k = |H|m.4

Fix α : Hm → {0, 1, . . . , k − 1} to be any (efficiently computable) one-to-one function. In this
paper, we take α to be the lexicographic order of Hm. We can view (w0, w1, . . . , wk−1) as a function
W : Hm → F, where W (z) = wα(z). A basic fact is that there exists a unique extension of W into

a function W̃ : F
m → F, such that W̃ is an m-variate polynomial of degree at most |H| − 1 in

each variable. Moreover, the truth table of W̃ can be computed from the truth table of W in
time poly(|F|m). The function W̃ is called the low degree extension of w = (w0, w1, . . . , wk−1) with
respect to F, H, m, and is denoted by LDEF,H,m(w).

Proposition 3.1. There exists a Turing machine that takes as input an extension field F of GF[2],
a subset H ⊂ F, an integer m, and a string w ∈ F

k, where k = |H|m, runs in time ≤ poly(|F|m),
and outputs LDEF,H,m(w) (e.g., represented by its truth table).

3.2 Low Degree Test

Fix a finite field F. Suppose that a verifier wishes to test whether a function π : F
m → F is close to

an m-variate polynomial of degree ≤ d (think of d as significantly smaller than |F|). In this work,
we think of a low degree test as an interactive proof for π being close to an m-variate polynomial
of degree ≤ d. This proof should be short (say, of size ≤ poly(|F|, m)). The verifier has only oracle
access to π, and is allowed to query π at only a few points (say, only one point).

4We can actually work with k < |H|m and pad the k-element string by zeros.

8

In this work, we need a low degree test with sub-constant error. Three such tests exist in the
literature: One due to Raz and Safra [RS97], one due to Arora and Sudan [AS97], and one due to
Moshkovitz and Raz [MR05]. For the sake of convenience, we use the latter. The low degree test
of [MR05] is described in Figure 1, and is denoted by (PLDT(π), V π

LDT).

Low Degree Test for π : F
m → F

1. The verifier chooses uniformly and independently z1, z2, z3 ∈R F
m. If they are linearly

dependent then he accepts. Otherwise, he sends the prover the triplet (z1, z2, z3).

2. The prover sends η : F
3 → F, which is supposedly the function π restricted to the subspace

U spanned by the vectors z1, z2, z3. Namely,

η(α1, α2, α3)
def
= π(α1z1 + α2z2 + α3z3).

3. The verifier checks that η is of degree at most d. If the check fails then the verifier rejects.
Otherwise, the verifier chooses a random point z in the subspace U , by choosing uniformly
α1, α2, α3 ∈R F and setting z = α1z1 + α2z2 + α3z3. He queries the oracle π at the point z,
and accepts if and only if

η(α1, α2, α3) = π(z).

Figure 1: Low degree test (PLDT(π), V π
LDT)

Lemma 3.2. For any m ≥ 3 and 1 ≤ d ≤ |F|, the low degree test (PLDT(π), V π
LDT) described in

Figure 1 has the following guarantees.

• Completeness: If π : F
m → F is an m-variate polynomial of total degree ≤ d then

Pr [(PLDT(π), V π
LDT) = 1] = 1

• Soundness (decoding): For every π : F
m → F and every (unbounded) interactive Turing

machine P̃ , if
Pr[(P̃ (π), V π

LDT) = 1] ≥ γ

then there exists an m-variate polynomial f : F
m → F of total degree ≤ d, such that

Prz∈Fm [π(z) = f(z)] ≥ γ − ε, where

ε
def
= 210m 8

√

md

|F| .

• Soundness (list-decoding): For every π : F
m → F and every δ > ε (where ε is as above),

there exist r ≤ 2/δ polynomials f1, . . . , fr : F
m → F of total degree ≤ d, such that: For every

(unbounded) interactive Turing machine P̃ ,

Pr
[

[(P̃ (π), V π
LDT) = 1] ∧ [π(z) 6∈ {f1(z), . . . , fr(z)}]

]

≤ δ + ε,

where z ∈ F
m is the random element chosen in Step 3 of the low degree test.

• Complexity: PLDT(π) is an interactive Turing machine, and V π
LDT is a probabilistic inter-

active Turing machine with oracle access to π : F
m → F. The prover PLDT runs in time

≤ poly(|F|m). The verifier V π
LDT runs in time ≤ poly(|F|, m) and queries the oracle π at a

single point. The communication complexity is ≤ poly(|F|, m).

We refer the reader to [MR05, MR06] for a proof of Lemma 3.2.

9

3.3 Point Test

Fix a finite field F. Suppose that a verifier has oracle access to a function π : F
m → F that is

“close” to an m-variate polynomial f of total degree ≤ d (think of d as significantly smaller than
|F|). The verifier wishes to test whether f(0m) = 1, and is required to be efficient, both in the
running time and in the number of oracle queries. In Figure 2 we present a test that achieves this.
We call this test the point test, and denote it by V π

PT.

Point Test for π : F
m → F

1. The verifier chooses uniformly a ∈R F
m \ {0m}. Let ` : F → F

m be the line defined by

`(t)
def
= at.

2. The verifier chooses uniformly distinct t1, . . . , td+1 ∈R F \ {0}, and sets zi = ati for every
i ∈ [d + 1].

3. The verifier queries the oracle π at the points z1, . . . , zd+1 ∈ F
m and obtains values

v1, . . . , vd+1 ∈ F.

4. The verifier computes by interpolation the univariate polynomial p : F → F of degree ≤ d,
such that p(ti) = vi for every i ∈ [d + 1], and accepts if and only if p(0) = 1.

Figure 2: Point Test V π
PT

Lemma 3.3. For every d < |F|−1 the point test described in Figure 2 has the following guarantees.

• Completeness: If π : F
m → F is an m-variate polynomial of total degree ≤ d, and π(0m) = 1

then
Pr [V π

PT = 1] = 1.

• Soundness: For every function π : F
m → F, and every γ > 0, the following holds: If there

exists an m-variate polynomial f : F
m → F of total degree ≤ d such that f(0m) 6= 1 and

Pr
z∈Fm

[π(z) = f(z)] ≥ 1 − γ,

then

Pr[V π
PT = 1] ≤ (d + 1)

(

γ +
1

|F|m
)

.

• Complexity: The verifier V π
PT is a probabilistic Turing machine with oracle access to π :

F
m → F. It runs in time ≤ poly(|F|, m), and queries the oracle π at d + 1 points.

Proof of Lemma 3.3: The completeness condition and the complexity condition follow imme-
diately from the test description. As for the soundness, fix any function π : F

m → F and any
γ > 0. Assume that there exists an m-variate polynomial f : F

m → F of total degree ≤ d such that
f(0m) 6= 1 and

Pr
z∈Fm

[π(z) = f(z)] ≥ 1 − γ.

This implies that

Pr
z∈Fm\{0m}

[π(z) = f(z)] ≥ 1 − γ − 1

|F|m .

10

Thus,

Pr[V π
PT 6= 1] ≥

Pr[∀i ∈ [d + 1], π(zi) = f(zi)] ≥
1 − (d + 1) Pr

z∈Fm\{0m}
[π(z) 6= f(z)] ≥

1 − (d + 1)

(

γ +
1

|F|m
)

.

3.4 Interactive Sum-Check Protocol

Fix a finite field F. In a sum-check protocol, a (not necessarily efficient) prover takes as input an
m-variate polynomial f : F

m → F of degree ≤ d in each variable (think of d as significantly smaller
than |F|). His goal is to convince a verifier that

∑

z∈Hm

f(z) = 0,

for a subset H ⊂ F. The verifier only has oracle access to f , and is required to be efficient in both
the running time and the number of oracle queries. In Figure 3, we review the standard sum-check

protocol, as appeared for example in [LFKN90, S92]. We denote this protocol by
(

PSC(f), V f
SC

)

.

Lemma 3.4. Let f : F
m → F be an m-variate polynomial of degree at most d in each variable,

where d < |F|. The sum-check protocol
(

PSC(f), V f
SC

)

, described in Figure 3, satisfies the following

properties.

• Completeness: If
∑

z∈Hm f(z) = 0 then

Pr
[(

PSC(f), V f
SC

)

= 1
]

= 1.

• Soundness: If
∑

z∈Hm f(z) 6= 0 then for every (unbounded) interactive Turing machine P̃ ,

Pr
[(

P̃ (f), V f
SC

)

= 1
]

≤ md

|F| .

• Complexity: PSC(f) is an interactive Turing machine, and V f
SC is a probabilistic interactive

Turing machine with oracle access to f : F
m → F. The prover PSC(f) runs in time ≤

poly(|F|m). The verifier V f
SC runs in time ≤ poly(|F|, m), and queries the oracle f at a single

point. The communication complexity is ≤ poly(|F|, m).

Proof of Lemma 3.4: The completeness condition and the complexity condition follow imme-
diately from the protocol description. As for the soundness, let f : F

m → F be a polynomial of
degree at most d in each variable, such that

∑

z∈Hm f(z) 6= 0. Assume for the sake of contradiction

that there exists a cheating prover P̃ for which

s
def
= Pr

[(

P̃ (f), V f
SC

)

= 1
]

>
md

|F| .

11

Recall that in the sum-check protocol the prover sends m univariate polynomials g1, . . . , gm, and
the verifier sends m − 1 random field elements c1, . . . , cm−1 ∈ F. For every i ∈ [m], let Ai denote
the event that

gi(x) =
∑

ti+1,...,tm∈H

f(c1, . . . , ci−1, x, ti+1, . . . , tm).

Let S denote the event that
(

P̃ (f), V f
SC

)

= 1. Notice that Pr[S|A1 ∧ . . . ∧ Am] = 0. We will reach

a contradiction by proving that

Pr[S|A1 ∧ . . . ∧ Am] ≥ s − md

|F| .

To this end, we prove by (reverse) induction that for every j ∈ [m],

Pr[S|Aj ∧ . . . ∧ Am] ≥ s − (m − j + 1)d

|F| . (1)

For j = m,

s = Pr[S] ≤ Pr[S|¬(Am)] + Pr[S|Am] ≤ d

|F| + Pr[S|Am],

where the latter inequality follows from the fact that every two distinct univariate polynomials of
degree ≤ d over F agree in at most d

|F| points. Thus,

Pr[S|Am] ≥ s − d

|F| .

Assume that Equation (1) holds for j, and we will show that it holds for j − 1.

s − (m − j + 1)d

|F| ≤Pr[S|Aj ∧ . . . ∧ Am] ≤

Pr[S|¬(Aj−1) ∧ Aj ∧ . . . ∧ Am] + Pr[S|Aj−1 ∧ Aj ∧ . . . ∧ Am] ≤
d

|F| + Pr[S|Aj−1 ∧ . . . ∧ Am],

which implies that

Pr[S|Aj−1 ∧ . . . ∧ Am] ≥ s − (m − (j − 1) + 1)d

|F| ,

as desired.

We note that our interactive PCP protocol makes use of this sum-check protocol with F
m which

is of size super polynomial. Thus, at first it seems like the prover in our protocol must run in super-
polynomial time. However, we bypass this barrier by exploiting special properties of the function
f , on which we apply the sum-check protocol, and obtain a prover with polynomial running time.
See Lemma 4.5 in Section 4 for further details.

4 Interactive PCP for Arithmetic Formulas: Part I

Fix a parameter d ∈ N. Fix a field F to be an extension field of GF[2], such that |F| > d. Fix a
subset H ⊂ F and an integer m. Let (w1, . . . , wk) ∈ F

k be a string of length k, where k+1 = |H|m.5

5As mentioned in Subsection 3.1, we can also work with k + 1 < |H|m and pad it by zeros.

12

Let W̃ : F
m → F be the low degree extension of (1, w1, . . . , wk) with respect to F, H, m (as defined

in Subsection 3.1). Let Ψ : F
k → F be an arithmetic formula of syntactic degree ≤ d (for the

definition of syntactic degree see Definition 2 below). Assume w.l.o.g. that |Ψ| ≥ k, d. Assume
that addition and multiplication over F are operations of complexity ≤ poly(log |F|).

We show how a prover can interactively prove to a verifier that Ψ(w) = 0. The formula Ψ is
known to both the prover and the verifier. The string w ∈ F

k is known only to the prover, and
the verifier is given oracle access to the low degree extension W̃ . The communication complexity is
≤ poly(|F|, m), and the verifier queries the oracle W̃ at exactly d points. Moreover, the prover and
the verifier are both probabilistic interactive Turing machines that run in time ≤ poly(|Ψ|, |F|m).
Note that if F satisfies |F| ≤ poly(|H|), then their running time is actually ≤ poly(|Ψ|).

Throughout this section, it will be convenient to assume that all the arithmetic formulas are
syntactically homogeneous.

4.1 Syntactically Homogeneous Arithmetic Formulas

We start by defining the syntactic degree of an arithmetic formula, a notion that is used extensively
in this section and throughout the paper. Intuitively, the syntactic degree of an arithmetic formula
is its degree (as a polynomial) if one ignores cancelations of monomials.

Definition 2. Let Ψ : F
k → F be an arithmetic formula. Its syntactic degree is defined by

recursion on Ψ. If Ψ is a constant, then its syntactic degree is 0. If Ψ is a variable, then its
syntactic degree is 1. If Ψ is of the form Ψ = Ψ1 + Ψ2, then its syntactic degree is the maximum
of the syntactic degrees of Ψ1 and Ψ2. If Ψ is of the form Ψ = Ψ1 ·Ψ2, then its syntactic degree is
the sum of the syntactic degrees of Ψ1 and Ψ2.

Definition 3. An arithmetic formula Φ : F
k → F is syntactically homogeneous if for all its

sub-formulas of the form Φ1 + Φ2, the syntactic degrees of Φ1 and Φ2 are the same.

For convenience, from now on we abuse notation: whenever we refer to a homogeneous formula,
we actually mean a syntactically homogeneous formula.

Converting arithmetic formulas to homogeneous ones. For a given degree d and an arith-
metic formula Ψ : F

k → F of syntactic degree dΨ ≤ d, we show how to convert Ψ into a homogeneous
arithmetic formula of syntactic degree exactly d. Loosely speaking, this is done by adding a dummy
variable x0. We think of x0 as the constant 1. For each sub-formula of the form Ψ1 + Ψ2, if the
syntactic degree of Ψ1 is d1, and the syntactic degree of Ψ2 is d2 > d1, then we multiply Ψ1 by
xd2−d1

0 . This increases the syntactic degree of Ψ1 to be d2. The case that d1 > d2 is treated in a
similar manner. This results with a homogeneous formula of syntactic degree dΨ ≤ d. We then
multiply this formula by xd−dΨ

0 , and get a homogeneous formula of syntactic degree exactly d.
This conversion is formalized below.

Proposition 4.1. There exists a Turing machine M that takes as input an integer d ∈ N and an
arithmetic formula Ψ : F

k → F of syntactic degree dΨ ≤ d. The Turing machine M(d, Ψ) runs in
time ≤ poly(d, |Ψ|). It outputs a homogeneous arithmetic formula Φ : F

k+1 → F of syntactic degree
d, such that for every x1, . . . , xk ∈ F,

Φ(1, x1, . . . , xk) = Ψ(x1, . . . , xk).

13

Proof of Proposition 4.1: Fix an integer d ∈ N and an arithmetic formula Ψ : F
k → F of

syntactic degree dΨ ≤ d. We begin by defining M for the case that dΨ = d.
The Turing machine M(dΨ, Ψ) works recursively on Ψ. If dΨ = 1, i.e., Ψ(x1, . . . , xk) = c0 +

∑k
i=1 cixi, then M(dΨ, Ψ) outputs

Φ(x0, x1, . . . , xk)
def
= c0x0 +

k
∑

i=1

cixi =
k

∑

i=0

cixi.

If dΨ > 1, then we distinguish between two cases.

1. Case 1: Ψ = Ψ1 · Ψ2. Denote by d1 and d2 the syntactic degrees of Ψ1 and Ψ2, respec-
tively. The Turing machine M(dΨ, Ψ) runs M(d1, Ψ1) to compute Φ1 : F

k+1 → F, which
is the homogeneous formula of syntactic degree d1 corresponding to Ψ1. Similarly, it runs
M(d2, Ψ2) to compute Φ2 : F

k+1 → F, which is the homogeneous formula of syntactic degree

d2 corresponding to Ψ2. It outputs Φ
def
= Φ1 ·Φ2. Note that since Φ1 and Φ2 are homogenous

then so is Φ. Its degree is d1 + d2 = dΨ. Moreover, for every x1, . . . , xk ∈ F,

Φ(1, x1, . . . , xk) =Φ1(1, x1, . . . , xk) · Φ2(1, x1, . . . , xk) =

Ψ1(x1, . . . , xk) · Ψ2(x1, . . . , xk) =

Ψ(x1, . . . , xk).

2. Case 2: Ψ = Ψ1 + Ψ2. Denote by d1 and d2 the syntactic degrees of Ψ1 and Ψ2, respec-
tively. The Turing machine M(dΨ, Ψ) runs M(d1, Ψ1) to compute Φ1 : F

k+1 → F, which
is the homogeneous formula of syntactic degree d1 corresponding to Ψ1. Similarly, it runs
M(d2, Ψ2) to compute Φ2 : F

k+1 → F, which is the homogeneous formula of syntactic degree

d2 corresponding to Ψ2. If d1 = d2, then it outputs Φ
def
= Φ1 + Φ2. If d1 > d2, then it

outputs Φ
def
= Φ1 + xd1−d2

0 Φ2. If d2 > d1, then it outputs Φ
def
= xd2−d1

0 Φ1 + Φ2. Note that Φ is
homogeneous of syntactic degree max{d1, d2} = dΨ. As before, for every x1, . . . , xk ∈ F,

Φ(1, x1, . . . , xk) = Ψ(x1, . . . , xk).

We next consider the case that dΨ < d. In this case M(d, Ψ) runs M(dΨ, Ψ) to compute Φ0, and

outputs Φ
def
= xd−dΨ

0 ·Φ0. This increases its syntactic degree from dΨ to d. For every x1, . . . , xk ∈ F,

Φ(1, x1, . . . , xk) = 1 · Φ0(1, x1, . . . , xk) = Ψ(x1, . . . , xk).

4.2 Definition of Φ̂ and its Properties

As in the beginning of Section 4, we fix F to be an extension field of GF[2]. We fix a subset H ⊂ F

and an integer m. We let k + 1 = |H|m. In this subsection, for every homogeneous arithmetic
formula Φ : F

k+1 → F of syntactic degree d, we define a corresponding function Φ̂ : F
md → F.

This function is defined in a recursive manner. We start with the base case. If Φ : F
k+1 → F

is a homogeneous arithmetic formula of syntactic degree d = 1, i.e., Φ(x0, x1, . . . , xk) =
∑k

i=0 cixi,

then we define Φ̂ : F
m → F to be the low degree extension of (c0, c1, . . . , ck) with respect to F, H, m.

Namely, Φ̂ = LDEF,H,m(c0, c1, . . . , ck). (We refer the reader to Subsection 3.1 for the definition of
low degree extension). If Φ : F

k+1 → F is a homogeneous arithmetic formula of syntactic degree
d > 1, we define Φ̂ : F

md → F recursively, as follows:

14

1. Case 1: The top gate is an addition gate, i.e., Φ = Φ1 +Φ2. The fact that Φ is homogeneous
implies that the syntactic degree of both Φ1 and Φ2 is d, and thus Φ̂1, Φ̂2 : F

md → F. For
every z ∈ F

md,

Φ̂(z)
def
= Φ̂1(z) + Φ̂2(z).

2. Case 2: The top gate is a multiplication gate, i.e., Φ = Φ1 · Φ2. Denote by d1 and d2 the
syntactic degrees of Φ1 and Φ2, respectively. Thus, Φ̂1 : F

md1 → F and Φ̂2 : F
md2 → F. Note

that d1 + d2 = d. For every z ∈ F
md,

Φ̂(z)
def
= Φ̂1(z1) · Φ̂2(z2),

where z = (z1, z2) ∈ F
md1 × F

md2 .

Claim 4.2. If Φ : F
k+1 → F is a homogenous arithmetic formula of syntacitc degree d, then

Φ̂ : F
md → F is a polynomial of degree < m|H|d.

Proof of Claim 4.2: The proof is by induction on d. If d = 1, then the claim follows from
Subsection 3.1. Assume that the claim holds for every degree < d and we prove that it also
holds for degree d. Let Φ =

∑l
i=1 Φi,1 · Φi,2, where the syntactic degrees of Φi,1 and Φi,2, denoted

by di,1 and di,2, respectively, are both strictly smaller than d. From the induction hypothesis,
Φ̂i,1 : F

mdi,1 → F is of degree < m|H|di,1, and Φ̂i,2 : F
mdi,2 → F is of degree < m|H|di,2. This

implies that the degree of Φ̂ is < m|H|d.

Let α : Hm → {0, 1, . . . , k} be the lexicographic order of Hm.

Claim 4.3. Let Φ : F
k+1 → F be a homogeneous arithmetic formula of syntactic degree d. Let w be

any string in F
k+1, and let W̃ : F

m → F be the low degree extension of w with respect to F, H, m.
Then,

∑

z1,...,zd∈Hm

W̃ (z1) · . . . · W̃ (zd) · Φ̂(z1, . . . , zd) = Φ(w). (2)

Proof of Claim 4.3: The proof is by recursion on Φ. We start with the base case. If Φ : F
k+1 → F

is a homogeneous arithmetic formula of syntactic degree d = 1, i.e., Φ(w) =
∑k

i=0 ciwi, then

∑

z∈Hm

W̃ (z) · Φ̂(z) =
∑

z∈Hm

wα(z) · cα(z) =
k

∑

i=0

ciwi = Φ(w).

If Φ : F
k+1 → F is a homogeneous arithmetic formula of syntactic degree d > 1 then we

distinguish between two cases.

• Case 1: Φ = Φ1 + Φ2. Recall that since Φ is homogeneous, the syntactic degree of both Φ1

and Φ2 is exactly d, and thus Φ̂1, Φ̂2 : F
md → F. Assume that Equation (2) holds for Φ1 and

Φ2. Then,
∑

z1,...,zd∈Hm

W̃ (z1) · . . . · W̃ (zd) · Φ̂(z1, . . . , zd) =

∑

z1,...,zd∈Hm

W̃ (z1) · . . . · W̃ (zd) · Φ̂1(z
1, . . . , zd)+

∑

z1,...,zd∈Hm

W̃ (z1) · . . . · W̃ (zd) · Φ̂2(z
1, . . . , zd) =

Φ1(w) + Φ2(w) = Φ(w).

15

• Case 2: If Φ = Φ1 ·Φ2. We denote the syntactic degrees of Φ1 and Φ2 by d1 and d2, respectively
(where d1 + d2 = d). Assume that Equation (2) holds for Φ1 and Φ2. Then,

∑

z1,...,zd∈Hm

W̃ (z1) · . . . · W̃ (zd) · Φ̂(z1, . . . , zd) =

∑

z1,...,zd1∈Hm

W̃ (z1) · . . . · W̃ (zd1) · Φ̂1(z
1, . . . , zd1)

 ·

∑

z1,...,zd2∈Hm

W̃ (z1) · . . . · W̃ (zd2) · Φ̂2(z
1, . . . , zd2)

 =

Φ1(w) · Φ2(w) = Φ(w).

Claim 4.4. There exists a Turing machine that takes as input a homogeneous arithmetic formula
Φ : F

k+1 → F of syntactic degree d and a tuple (z1, . . . , zd) ∈ (Fm)d, runs in time ≤ poly(|Φ|, |F|m),
and outputs Φ̂(z1, . . . , zd).

Proof of Claim 4.4: Let Φ : F
k+1 → F be a homogeneous arithmetic formula of syntactic

degree d, and let z ∈ F
md. We construct a Turing machine M that on input (Φ, z) outputs Φ̂(z).

The Turing machine M(Φ, z) works recursively on Φ. If d = 1 then M(Φ, z) computes Φ̂(z) by
computing the low degree extension of its k + 1 coefficients on the point z. From Proposition 3.1,
this can be done in time ≤ poly(|F|m). For d > 1, M(Φ, z) computes Φ̂(z) as follows:

1. If Φ = Φ1 + Φ2 then M(Φ, z) computes Φ̂1(z) and Φ̂2(z), and adds the results.

2. If Φ = Φ1 ·Φ2 then let d1 and d2 be the syntactic degrees of Φ1 and Φ2, respectively. M(Φ, z)
computes Φ̂(z), where z = (z1, z2) ∈ F

md1 × F
md2 , by computing Φ̂1(z1) and Φ̂2(z2), and

multiplying the results.

4.3 The Protocol

Parameters. d, F, H, m, as defined in the beginning of Section 4.

Input. Both the prover and the verifier take as input an arithmetic formula Ψ : F
k → F of syntac-

tic degree ≤ d, where k +1 = |H|m. The prover takes an additional input w = (w1, . . . , wk) ∈
F

k. Fix w0
def
= 1. The verifier is given oracle access to π

def
= LDEF,H,m(w0, w1, . . . , wk), which

is guaranteed to be the low degree extension of (w0, w1, . . . , wk) with respect to F, H, m.

We show how the prover can interactively prove to the verifier that Ψ(w) = 0. The prover
and verifier run in time ≤ poly(|Ψ|, |F|m). The verifier queries the oracle π at d points. The
communication complexity is ≤ poly(|F|, m).

The protocol can be divided into two parts.

16

1. Converting Ψ to a homogeneous formula.

Both the prover and the verifier (separately) convert Ψ to a homogeneous formula Φ : F
k+1 →

F of syntactic degree d, as described in Subsection 4.1. From Proposition 4.1,

Φ(w0, w1, . . . , wk) = Ψ(w1, . . . , wk).

2. Proving that Φ(w0, w1, . . . , wk) = 0.

Let fΦ,π : F
md → F be the function defined as follows: For every z1, . . . , zd ∈ F

m,

fΦ,π(z1, . . . , zd)
def
= π(z1) · . . . · π(zd) · Φ̂(z1, . . . , zd).

Claim 4.3 implies that,

∑

z1,...,zd∈Hm

fΦ,π(z1, . . . , zd) = Φ(w0, w1, . . . , wk).

In order to prove that Φ(w0, w1, . . . , wk) = 0, the prover and verifier engage in the interactive

sum-check protocol (PSC(fΦ,π), V
(fΦ,π)
SC), described in Subsection 3.4, for proving that

∑

t1,...,tmd∈H

fΦ,π(t1, . . . , tmd) = 0.

If (PSC(fΦ,π), V
(fΦ,π)
SC) = 1 then the verifier accepts. Otherwise, the verifier rejects. Note that

the verifier can compute fΦ,π on a given input by querying the oracle π at d points. Thus, π
can serve as an oracle to fΦ,π.

We will analyze the properties of this protocol in Theorem 1 below. Note that applying the sum-
check protocol naively results with the prover running in time |F|md > kd (i.e., time exponential
in d). To reduce the running time of the prover, we will use the Turing machine M defined in the
following lemma, when running the sum-check protocol.

Lemma 4.5. There exists a Turing machine M that takes as input a homogeneous arithmetic
formula Φ : F

k+1 → F of syntactic degree d, a function π : F
m → F (e.g., by its truth table), an

integer i ∈ {0, 1, . . . , md}, and elements c1, . . . , ci ∈ F, runs in time poly(|Φ|, |F|m), and outputs

∑

ti+1,...,tmd∈H

fΦ,π(c1, . . . , ci, ti+1, . . . , tmd). (3)

Note that in the sum-check protocol, the prover only needs to compute expressions of the same
form as Expression (3). The prover can hence use the Turing machine M from Lemma 4.5. We
denote the protocol described above by

(P1(w, Ψ), V π
1 (Ψ)).

A succinct description of it appears in Figure 4.

17

Proof of Lemma 4.5: By definition,

fΦ,π(c1, . . . , ci, ti+1, . . . , tmd) = πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂(c1, . . . , ci, ti+1, . . . , tmd),

where,

πd(x1, . . . , xmd)
def
= π(x1, . . . , xm) · π(xm+1, . . . , x2m) · . . . · π(xm(d−1)+1, . . . , xmd).

We construct a Turing machine M for the task described in Lemma 4.5. The Turing machine
M(Φ, π, i, c1, . . . , ci) works recursively on Φ. We start with the base case. If Φ is of syntactic
degree d = 1, then Claim 4.4 implies that M(Φ, π, i, c1, . . . , ci) can compute Expression (3) in time
≤ poly(|Φ|, |F|m). For a general syntactic degree d > 1, the Turing machine M(Φ, π, i, c1, . . . , ci)
computes Expression (3) recursively, as follows.

• Case 1: Φ = Φ1 + Φ2. The fact that Φ is homogeneous implies that the syntactic degree of
both Φ1 and Φ2 is exactly d. Thus, Φ̂1, Φ̂2 : F

md → F.

∑

ti+1,...,tmd∈H

πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂(c1, . . . , ci, ti+1, . . . , tmd) =

∑

ti+1,...,tmd∈H

πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂1(c1, . . . , ci, ti+1, . . . , tmd)+

∑

ti+1,...,tmd∈H

πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂2(c1, . . . , ci, ti+1, . . . , tmd)

In this case, M(Φ, π, i, c1, . . . , ci) computes Expression (3) recursively: It computes separately
the part that corresponds to Φ̂1 and the part that corresponds to Φ̂2, and then adds the results.

• Case 2: Φ = Φ1 · Φ2.

Let d1 be the syntactic degree of Φ1 (and d−d1 be the syntactic degree of Φ2). We distinguish
between the following two subcases:

– Case 2a: i ≤ md1.

∑

ti+1,...,tmd∈H

πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂(c1, . . . , ci, ti+1, . . . , tmd) =

∑

ti+1,...,tmd∈H

πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂1(c1, . . . , ci, ti+1, . . . , tmd1) · Φ̂2(tmd1+1, . . . , tmd) =

∑

ti+1,...,tmd1
∈H

πd1(c1, . . . , ci, ti+1, . . . , tmd1) · Φ̂1(c1, . . . , ci, ti+1, . . . , tmd1)

 ·

∑

tmd1+1,...,tmd∈H

πd−d1(tmd1+1, . . . , tmd) · Φ̂2(tmd1+1, . . . , tmd)

18

– Case 2b: i > md1.

∑

ti+1,...,tmd∈H

πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂(c1, . . . , ci, ti+1, . . . , tmd) =

∑

ti+1,...,tmd∈H

πd(c1, . . . , ci, ti+1, . . . , tmd) · Φ̂1(c1, . . . , cmd1) · Φ̂2(cmd1+1, . . . , ci, ti+1, . . . , tmd) =

πd1(c1, . . . , cmd1) · Φ̂1(c1, . . . , cmd1)·

∑

ti+1,...,tmd∈H

πd−d1(cmd1+1, . . . , ci, ti+1, . . . , tmd) · Φ̂2(cmd1+1, . . . , ci, ti+1, . . . , tmd)

In both subcases M(Φ, π, i, c1, . . . , ci) computes Expression (3) recursively: It computes sep-
arately the part that corresponds to Φ̂1 and the part that corresponds to Φ̂2, and then it
multiplies the results.

Theorem 1. Fix parameters d, F, H, m. Let Ψ : F
k → F be an arithmetic formula of syntactic

degree ≤ d < |F|. Let w = (w1, . . . , wk) ∈ F
k, and let π = LDEF,H,m(1, w1, . . . , wk) be the low

degree extension of (1, w1, . . . , wk) with respect to F, H, m. Then the protocol (P1(w, Ψ), V π
1 (Ψ))

has the following guarantees.

• Completeness: If Ψ(w) = 0 then

Pr[(P1(w, Ψ), V π
1 (Ψ)) = 1] = 1

• Soundness: If Ψ(w) 6= 0 then for every (unbounded) interactive Turing machine P̃ ,

Pr[(P̃ (w, Ψ), V π
1 (Ψ)) = 1] ≤ (m · |H| · d)2

|F|

• Complexity: The prover and the verifier run in time ≤ poly(|Ψ|, |F|m). The verifier queries
the oracle π at d points. The communication complexity is ≤ poly(|F|, m).

Moreover,6 the verifier can partition his work into two phases: In the first phase he runs in
time ≤ poly(|Ψ|, |F|m), and generates a string h of size ≤ poly(|F|, m) of field elements. This
phase depends only on Ψ and on the parameters (and on the randomness of the verifier) and
does not depend on the oracle π or on the interaction with the prover. In the second phase,
which is the interactive phase, the verifier uses only the string h generated in the first phase
(and not the instance Ψ), and runs in time ≤ poly(|F|, m). The messages that he sends in
this phase, and the oracle queries, depend only on h and are independent of the messages sent
by the prover or the oracle answers.

6This property is not needed for the main result. It is an additional feature that may be important for applications.
We use it for the application of zero-knowledge.

19

Proof of Theorem 1: The completeness follows from Proposition 4.1, Claim 4.3, and Lemma 3.4.
As for soundness, Proposition 3.1 implies that π is of degree < m|H|. Claim 4.2 implies that Φ̂ is of
degree ≤ m|H|d. Thus, fΦ,π is of degree < 2m|H|d. Lemma 3.4 implies that for every (unbounded)
interactive Turing machine P̃ ,

Pr[(P̃ (w, Ψ), V π
1 (Ψ)) = 1] ≤ md · 2m|H|d

|F| ≤ (m · |H| · d)2

|F| .

As for the complexity: By Proposition 4.1, the verifier can compute Φ in time ≤ poly(d, |Ψ|). By
Claim 4.4, the verifier can compute Φ̂ at one point in time ≤ poly(d, |Ψ|, |F|m). By Lemma 3.4,
the verifier can run the sum-check procedure in time ≤ poly(|F|, m, d), given an oracle query to Φ̂
and oracle queries to π. In total, the verifier runs in time ≤ poly(d, |Ψ|, |F|m) ≤ poly(|Ψ|, |F|m),
and uses d oracle queries to π. These, together with Lemma 4.5, imply that the prover runs in
time ≤ poly(|Ψ|, |F|m). From Lemma 3.4, the communication complexity is ≤ poly(|F|, m, d) ≤
poly(|F|, m).

Moreover, the verifier can partition his work into two phases: In the first phase the verifier
chooses randomly z1, . . . , zd ∈R F

m, and computes Φ̂(z1, . . . , zd). He lets

h
def
= (z1, . . . , zd, Φ̂(z1, . . . , zd)).

Note that h is a string of size ≤ poly(|F|, m, d) ≤ poly(|F|, m).

In the second phase, the verifier only runs the sum-check protocol (PSC(fΦ,π), V
(fΦ,π)
SC) while

using (z1, . . . , zd) ∈ F
md as his random coin tosses. Thus, the messages that he sends during this

phase:

(c1, . . . , cmd)
def
= (z1, . . . , zd),

are independent of the messages sent by the prover. The verifier then needs to query the oracle
fΦ,π at the single point (z1, . . . , zd). The verifier (who has oracle access to π) computes

fΦ,π(z1, . . . , zd)
def
= π(z1) · . . . · π(zd) · Φ̂(z1, . . . , zd)

on his own. He queries the oracle π at the d points z1, . . . , zd ∈ F
m, computes π(z1) · . . . · π(zd),

and multiplies it with Φ̂(z1, . . . , zd) (which he computed in the first phase). Lemma 3.4 implies
that the running time of the verifier in the second phase is ≤ poly(F, m, d) = poly(F, m).

5 Interactive PCP for Arithmetic Formulas: Part II

Fix a parameter d ∈ N. In this section, we give an interactive PCP for proving the satisfiability of
formulas of the form

N
∧

i=1

[Ψi(x1, . . . , xk) = 0],

where Ψ1(x1, . . . , xk), . . . ,ΨN (x1, . . . , xk) are arithmetic formulas that compute polynomials of syn-
tactic degree ≤ d. We assume for simplicity that these formulas are over GF[2], though our results
hold over any finite field. We construct an interactive PCP with the following parameters. Size
of the PCP: p = poly(k, d). Number of queries: q = poly(log log k, d). Size of the interactive
proof: ` = poly(log k, d, log N). Completeness: c = 1. Soundness: s < 1

2 . Moreover, the string π

20

(generated by the prover in the first round of the protocol) depends only on the witness w1, . . . , wk

(and on the parameter d), and not on Ψ1, . . . ,ΨN . Actually, π will be the low degree extension
with respect to some F, H, m, specified below.

Formally, let Ek,d be the class of all arithmetic formulas Ψ : {0, 1}k → {0, 1} of syntactic degree
≤ d. Let

SATN,k,d =

{

(Ψ1, . . . ,ΨN) ∈ (Ek,d)
N :

(

∃x ∈ {0, 1}k s.t.
N
∧

i=1

[Ψi(x) = 0]

)}

.

We assume w.l.o.g. that |Ψ1| + . . . + |ΨN | ≥ k, d. Our main theorem is more general than stated
above. Note that Theorem 2 is farther improved by Theorem 5 and Theorem 6 in Section 6.

Theorem 2. For any soundness parameter7 s ≥ 2−n,

SATN,k,d ∈ IPCP(p, q, `, c, s),

with p = poly(k, d), q = poly(log log k, d, log 1
s
), ` = poly(log k, d, log N, log 1

s
), and c = 1.

Moreover, the following two properties can be attained.8

1. The string π (generated by the prover in the first round of the protocol) depends only on the
witness w = (w1, . . . , wk) and on the parameter d, and not on the instance Ψ1, . . . ,ΨN .

2. The verifier can partition his work into two phases: In the first phase he runs in time ≤
poly(|Ψ1| + . . . + |ΨN |), and generates a string h of size ≤ poly(log N, log k, d, log 1

s
). This

phase depends only on Ψ1, . . . ,ΨN and on the parameters (and on the randomness of the
verifier) and does not depend on the oracle π or on the interaction with the prover. In the
second phase, which is the interactive phase, the verifier uses only the string h generated in the
first phase (and not the instance Ψ1, . . . ,ΨN), and runs in time ≤ poly(log N, log k, d, log 1

s
).

The messages that he sends in this phase, and the oracle queries, depend only on h and are
independent of the messages sent by the prover or the oracle answers.

5.1 Preliminaries

Fix parameters N, k, d ∈ N. Before presenting our interactive PCP for SATN,k,d, we fix a few
parameters and notation that will be used in our protocol. Assume for simplicity that d · log(k +1)
is an integer which is a power of 2. This is without loss of generality, since it can be achieved
by increasing k by at most a quadratic factor and increasing d by a constant factor. Increasing
the parameter k can be done by adding dummy variables. Note that this does not change the
guarantees in the statement of Theorem 2.

Let F be an extension field of GF[2] of size (d·log(k+1))c, for some large enough constant integer

c ∈ N (to be determined below). Let H ⊂ F be a subset of size d · log(k + 1). Let m =
⌈

log(k+1)
log |H|

⌉

.

Assume for simplicity that |H|m = k + 1. This is without loss of generality since, once H and m
are fixed, we can always add dummy variables to increase k. This will increase k by at most |H|
and thus will not change the guarantees in the statement of Theorem 2. In order to make use of

7We require s ≥ 2−n in order to ensure that the prover and verifier run in time polynomial in the size of the
instance. We could take 2−n > s > 0 and then the running time is polynomial in log 1

s
8The second property is not needed for the main result. It is an additional feature that may be important for

applications. We use it for the application of zero-knowledge.

21

Lemma 3.2, we need to ensure that m ≥ 3. To this end, we assume that k ≥ d4. As before, this is
without loss of generality since we can always add d4 − k dummy variables without changing the
guarantees in the statement of Theorem 2. We also assume that k ≥ 10 and d ≥ 15.

We fix the constant c ∈ N so that the parameter ε from Lemma 3.2 (in Subsection 3.2) satisfies

ε ≤ 1

d2
, (4)

and so that
(m|H|d)2

|F| ≤ 1

d
. (5)

Notice that since F is an extension field of GF[2], we can view any arithmetic formula Ψ :
{0, 1}k → {0, 1} (over GF[2]) as an arithmetic formula Ψ : F

k → F (over F). Moreover, as
in Section 4, we assume that addition and multiplication over F are operations of complexity
≤ poly(log |F|).

5.2 The Protocol

In what follows, we describe the basic protocol that achieves soundness s ≥ 1− 1
d2 . To improve the

soundness parameter, we repeat this basic protocol sequentially.

Parameters: N, k, d, F, H, m as described in Subsection 5.1.

Input: Both the prover and the verifier take as input N arithmetic formulas Ψ1, . . . ,ΨN :
{0, 1}k → {0, 1} of syntactic degree ≤ d. The prover takes an additional input w =
(w1, . . . , wk) ∈ {0, 1}k, such that

N
∧

i=1

[Ψi(w1, . . . , wk) = 0]. (6)

1. Computing π.

Let w0
def
= 1. The prover generates

π
def
= LDEF,H,m(w0, w1, . . . , wk),

which is the low degree extension of (w0, w1, . . . , wk) with respect to F, H, m. The verifier is
given oracle access to π.9

Remarks:

(a) The fact that w0 = 1 implies that π(0m) = 1.

(b) π : F
m → F is a multivariate polynomial of degree |H| − 1 in each variable, and thus is

of total degree ≤ m · (|H| − 1).

9As opposed to the protocol (P1(w, Ψ), V π
1 (Ψ)) described in Section 4, here if the prover is dishonest then π is

arbitrary.

22

2. Running the low degree test on π.

The verifier checks that π is close to an m-variate polynomial f : F
m → F that has total

degree ≤ m ·(|H|−1). This is done by running the low degree test (PLDT(π), V π
LDT) described

in Subsection 3.2. If the test fails then the verifier rejects.

3. Running the point test on π.

The verifier checks that if π is close to an m-variate polynomial f : F
m → F then f(0m) = 1.

This is done by running the point test V π
PT described in Subsection 3.3. If the test fails then

the verifier rejects.

Note that so far the protocol depends only on w and d, and does not depend on Ψ1, . . . ,ΨN .

4. Restricting all satisfying assignments to bit strings.

In our protocol, the prover proves that Equation (6) holds for the witness w encoded by π.
In order to ensure soundness, the verifier should verify that w ∈ {0, 1}k. (Note that it may
be the case that

∧N
i=1[Ψi(w) = 0] does not have any satisfying assignment in {0, 1}k, and yet

there exists w ∈ F
k that does satisfy

∧N
i=1[Ψi(w) = 0]).

From now on, we think of Ψ1, . . . ,ΨN : F
k → F. To ensure that w ∈ {0, 1}k, we consider k

additional arithmetic formulas

ΨN+1, . . . ,ΨN+k : F
k → F.

For every i ∈ [k], the formula ΨN+i is defined by

ΨN+i(x1, . . . , xk)
def
= x2

i − xi.

The prover, instead of proving Equation (6), will prove that

N+k
∧

i=1

[Ψi(w1, . . . , wk) = 0]. (7)

Equation (7) implies in particular that w1, . . . , wk ∈ {0, 1}.

5. Applying an error correcting code.

Next, we reduce the task of proving the satisfiability of a conjunction of N + k arithmetic
formulas of syntactic degree ≤ d over F, to the task of proving the satisfiability of a single
arithmetic formula of syntactic degree ≤ d over F. For this we use a linear error correcting
code

ECC : F
N+k → F

M ,

with relative distance 1
3 and with M = O(N + k). The verifier chooses a random coordinate

j ∈R [M] and sends it to the prover. Let Ψ : F
k → F be the arithmetic formula of syntactic

degree ≤ d defined by

Ψ(x)
def
= ECC(Ψ1(x), . . . ,ΨN+k(x))j .

6. Checking that Ψ(w) = 0.

For this, the prover and the verifier run the protocol (P1(w, Ψ), V π
1 (Ψ)) described in Section 4.

23

We denote the protocol above by (P2(w, Ψ1, . . . ,ΨN), V2(Ψ1, . . . ,ΨN)). A succinct description
of it appears in Figure 5.

Theorem 3. The protocol described in Figure 5 is an interactive PCP for SATN,k,d with parameters
(p, q, `, c, s), where p ≤ poly(k, d), q ≤ poly(log log k, d), ` ≤ poly(log k, d, log N), c = 1, and
s ≤ 1 − 1

d2 .
Moreover, the protocol satisfies the following two properties.10

1. The string π (generated by the prover in the first round of the protocol) depends only on the
witness w = (w1, . . . , wk) and on the parameter d, and not on the instance Ψ1, . . . ,ΨN .

2. The verifier can partition his work into two phases: In the first phase he runs in time ≤
poly(|Ψ1| + . . . + |ΨN |), and generates a string h of size ≤ poly(log N, log k, d). This phase
depends only on Ψ1, . . . ,ΨN and on the parameters (and on the randomness of the verifier)
and does not depend on the oracle π or on the interaction with the prover. In the second phase,
which is the interactive phase, the verifier uses only the string h generated in the first phase
(and not the instance Ψ1, . . . ,ΨN), and runs in time ≤ poly(log N, log k, d). The messages
that he sends in this phase, and the oracle queries, depend only on h and are independent of
the messages sent by the prover or the oracle answers.

Proof of Theorem 3: We first note that our choice of parameters implies that |F|m = poly(k, d).
Lemma 3.2, Lemma 3.3, and Theorem 1 imply that both the prover P and the verifier V run in
time ≤ poly(|F|m, |Ψ1|+ . . .+ |ΨN |), and recall that we assume w.l.o.g. that |Ψ1|+ . . .+ |ΨN | ≥ k, d.
Thus, P and V are indeed (probabilistic) polynomial time Turing machines.

Proposition 3.1 implies that the length of π is p ≤ poly(|F|m) = poly(k, d). Lemma 3.2 and
Theorem 1 (together with the sending of the index j ∈ [M]) imply that the communication com-
plexity is ` ≤ poly(|F|, m, log M) = poly(log k, d, log N). The verifier V sends 2d + 2 oracle queries
to π: 1 during the low degree test, d + 1 during the point test, and d during the execution of
(P1(w, Ψ), V1(Ψ)). Note, however, that each query returns a field element, and thus corresponds
to O(log d + log log k) bits. thus, q ≤ poly(log log k, d). Lemma 3.2, Lemma 3.3, and Theorem 1
imply that our completeness parameter is c = 1.

We next show that the soundness parameter is s ≤ 1 − 1
d2 . Fix any (Ψ1, . . . ,ΨN) /∈ SATN,k,d,

any unbounded (cheating) prover P̃ , and any function π̃ : F
m → F. Define

(w̃0, w̃1, . . . , w̃k) ∈ F
k+1

by w̃i
def
= π̃(α−1(i)), where α : Hm → {0, 1, . . . , k} is the lexicographic order of Hm. Let S denote

the event that (P̃ (Ψ1, . . . ,ΨN), V π̃(Ψ1, . . . ,ΨN)) = 1, and let s
def
= Pr[S]. Assume for the sake of

contradiction that

s > 1 − 1

d2
. (8)

According to Lemma 3.2, there exists an m-variate polynomial f over F of degree ≤ m ·(|H|−1)
such that

Pr
z∈RFm

[π̃(z) = f(z)] ≥ s − ε,

10The second property is not needed for the main result. It is an additional feature that may be important for
applications. We use it for the application of zero-knowledge.

24

where ε is defined in Lemma 3.2. Let

γ
def
= 1 − (s − ε).

Equation (4) and Equation (8) imply that

γ ≤ 2

d2
. (9)

We next show that it must be the case that f(0m) = 1. The reason is that if f(0m) 6= 1, then
Lemma 3.3, together with the fact that |F|m ≥ d2, implies that

s ≤ Pr[V π̃
PT = 1] ≤ (d + 1)

(

γ +
1

|F|m
)

≤ (d + 1)

(

2

d2
+

1

d2

)

=
3(d + 1)

d2
< 1 − 1

d2
.

This contradicts Equation (8).
Let A denote the event that the coordinate j ∈ [M] chosen by V satisfies

Ψ(w̃)
def
= ECC(Ψ1(w̃), . . . ,ΨN+k(w̃))j 6= 0.

Then,

Pr[A] ≥ 1

3
. (10)

Recall that when running the protocol (P1(w, Ψ), V π̃
1 (Ψ)), the verifier V queries the oracle at d

points. Let B denote the event that on these d points π̃ is consistent with f . Note that

Pr[¬(B)] ≤ dγ ≤ 2

d
. (11)

From Bayes rule
s = Pr[S] ≤ Pr[S|A ∧ B] + Pr[¬(A) ∨ ¬(B)].

According to Theorem 1,

Pr[S|A ∧ B] ≤ (m · |H| · d)2

|F| .

This, together with Equation (5), implies that

Pr[S|A ∧ B] ≤ 1

d
.

The union bound, together with Equations (10) and (11), implies that

Pr[¬(A) ∨ ¬(B)] ≤ 2

3
+

2

d
.

Thus, all in all we have

s ≤ 3

d
+

2

3
< 1 − 1

d2
,

contradicting Equation (8).

It remains to show that the two additional properties, required by the statement in Theorem 3,
are attained.

25

1. The fact that π depends only on the witness w = (w1, . . . , wk) and on the parameter d, follows

immediately from the definition of π
def
= LDEF,H,m(1, w1, . . . , wk) and from the fact that the

parameters F, H, m depend only on k and d.

2. The verifier can partition his work into two phases. In the first phase he does the following:

(a) He computes ΨN+1, . . . ,ΨN+k, as in step 4.

(b) He chooses a random coordinate j ∈R [M], and computes

Ψ(x)
def
= ECC(Ψ1(x), . . . ,ΨN+k(x))j ,

as in step 5.

(c) Recall that according to Theorem 1, the verifier , V π
1 (Ψ) in the protocol (P1(w, Ψ), V π

1 (Ψ))
can also partition his work into two phases. The verifier computes h1, which is the string
computed by V1(Ψ) in the first phase of the protocol (P1(w, Ψ), V π

1 (Ψ)).

(d) He sets h
def
= (j, h1).

Note that the running time of the verifier in the first phase is ≤ poly(|Ψ1| + . . . + |ΨN |).
According to Theorem 1 the size of h1 is ≤ poly(|F|, m) = poly(log k, d), and thus the size of
h is ≤ poly(log N, log k, d).

In the second phase the verifier does the following:

(a) He runs the low degree test on π, as in step 2.

(b) He runs the point test on π, as in step 3.

(c) If both tests pass, then he sends the coordinate j ∈ [M] (computed in the first phase)
to the prover, and runs the second phase of (P1(w, Ψ), V π

1 (Ψ)), using h1 (computed in
the first phase).

Lemma 3.2, Lemma 3.3 and Theorem 1 (together with the sending of j ∈ [M]) imply that
the running time of the verifier in this phase is ≤ poly(log M, |F|, m) ≤ poly(log N, log k, d),
and that the messages that he sends are independent of the messages sent by the prover.

Proof of Theorem 2: Theorem 2 follows as a corollary of Theorem 3, by repeating steps 2-6, in
the protocol described above, sequentially poly(d, log 1

s
) times.

6 Reducing the Number of Queries

In this section, we show how to reduce the number of queries in an interactive PCP to one. We
first prove a general theorem that shows that in any interactive PCP the number of queries can be
reduced to one, with a small payment in the other parameters.

26

Theorem 4. If L ∈ IPCP(p, q, `, c, s) then for any11 ε ≥ 1/n, L ∈ IPCP(p′, q′, `′, c′, s′), with
p′ = poly(p/ε), q′ = 1, `′ = poly(`, q, log p, 1/ε), c′ = c, and s′ = 1/2 + O(6

√
s + ε).

Moreover, if (P0, V0) is an interactive PCP with parameters (p, q, `, c, s) for L, there
exists an interactive PCP (P, V) with parameters (p′, q′, `′, c′, s′) for L, s.t.:

1. The string π, generated by P , depends only on the string π0, generated by P0, and on the
parameters q, ε, and not on the instance x.

2. Assume that V0 can partition his work into two phases: In the first phase he runs in time T1,
and generates a string g of size S1. This phase depends only on x and on the parameters
(and on the randomness of V0) and does not depend on π0 or on the interaction with P0.
In the second phase, which is the interactive phase, V0 uses only the string g generated in
the first phase (and not the instance x), and runs in time T2. The messages that he sends
in this phase, and the oracle queries, depend only on g (and the randomness of V0) and are
independent of the messages sent by the prover or the oracle answers.

Then V can also partition his work into two phases, with the exact same properties and
parameters, except that the running time of the second phase is poly(T2, q, log p, 1/ε).

Proof of Theorem 4: Assume w.l.o.g. that p ≥ q (there is no reason to query more than all the
points in a string). Let h be the smallest integer that is a power of 2 and such that

h ≥ max{q, log p, 1/ε, 2}.

Assume w.l.o.g. that
p ≥ h.

Otherwise, we just increase p (to be h, which is at most max{2p, 2/ε, 2}), and note that this doesn’t
effect the parameters (p′, q′, `′, c′, s′) in the statement of the theorem. Assume w.l.o.g. that

` ≥ h.

Otherwise, we just increase ` (to be h) and once again this doesn’t effect the parameters (p′, q′, `′, c′, s′)
in the statement of the theorem.

Let (P0, V0) be an interactive PCP with parameters (p, q, `, c, s) for L. Using the above men-
tioned assumptions, we just need to show an interactive PCP for L, with parameters (p′, q′, `′, c′, s′)
with p′ = poly(p), q′ = 1, `′ = poly(`), c′ = c, and s′ = 1/2 + O(6

√
s + ε).

Let π0 be the bit string of size at most p, generated by the prover P0. Without loss of generality,
we assume that all the queries made by the verifier V0 to the string π0 are made after the end of
the interaction between P0 and V0. This can be assumed because rather than querying π0 in the
middle of the interaction, the verifier can simply ask the prover to supply the answers, and after
the interaction ends the verifier can make the actual queries to π0 and reject if the prover cheated.
This increases ` by at most poly(q, log p) ≤ poly(`), and doesn’t effect any of the other parameters.

We define π1 to be the low degree extension of π0 as follows. Recall that h is a power of 2.
Let F be an extension field of GF[2] of size hc, for some large enough constant integer c ∈ N (to

be determined later on). Let H ⊂ F be a subset of size h. Let m = max
{⌈

log p
log h

⌉

, 4
}

. (In most

11We require ε ≥ 1/n in order to ensure that the prover and verifier run in time polynomial in the size of the
instance. We could take 1/n > ε > 0 and then the running time is polynomial in 1/ε

27

interesting cases, m will be larger than a constant). Note that p ≤ |H|m ≤ poly(p). Define π′
0 to

be π0 padded by |H|m − p arbitrary elements (say, zeros), and define π1 = LDEF,H,m(π′
0). By the

definition of low degree extension (Subsection 3.1), π1 : F
m → F is a polynomial of total degree

< mh, and there is a mapping E : [p] → F
m such that for every Q ∈ [p] we have π0(Q) = π1(E(Q)).

(We think of π0 as a function from [p] to {0, 1}).
The main step in the proof of the theorem will be to give an interactive PCP (P1, V1) that works

with parameters (p1, q1, `1, c1, s1), such that p1 = poly(p), q1 = 1, `1 = poly(`), c1 = c, as required,
except that the one query made by V1 is to π1 and hence the query returns a field element in F,
rather than a single bit. (We can think of (P1, V1) as an interactive PCP with a larger answer
size). The soundness parameter s1 will be at most O(

√
s + ε). (This is better than required in the

statement of the theorem and is possible because π1 has answer size larger than 1).

Description of (P1, V1)

The main idea of the construction is that if the verifier needs to query q points in F
m, he takes a

4-dimensional manifold that contains all these points and a random 3-dimensional subspace, and
asks the prover to give the restriction of π1 to this manifold. The verifier checks the answer by
querying π1 in a single random point on the manifold. This tests both that π1 is close to a low
degree polynomial and that the answers given by the prover agree with this polynomial. Since the
manifold contains all the needed queries, the verifier can use the answers that were given by the
prover, rather than querying π1. To obtain small soundness, we will need to use the list-decoding
soundness property of a low error low degree test (see Lemma 3.2).

We will now describe the interactive PCP (P1, V1).

1. Generating the string: P1 generates the string of field elements π1 = LDEF,H,m(π′
0) :

F
m → F, as defined above.

2. Simulating the interaction: (P1, V1) simulate the interaction between P0 and V0. That is,
P1 acts the same as P0 and V1 the same as V0, until the interaction between P0 and V0 ends.
Note that by our assumption, V0 still doesn’t make any query to π0.

3. Generating the queries: After the interaction ends, V0 wants to query π0 in points
Q1, . . . , Qq ∈ [p]. Denote by x1 = E(Q1), . . . , xq = E(Qq) the corresponding points in F

m.
Recall that by the definition of π1, for every i ∈ [q], we have π1(xi) = π0(Qi).

4. A curve through the queries: V1 chooses at random an additional element xq+1 ∈R F
m.

Denote by γ : F → F
m a curve of degree at most q through x1, . . . , xq+1. Formally, we choose

q + 1 distinct elements t1, . . . , tq+1 ∈ F (where, it will be convenient to assume that t1, . . . , tq
are fixed and tq+1 is a random element in F\{t1, . . . , tq}) and then γ : F → F

m is a polynomial
of degree at most q (i.e., each of its coordinates is a polynomial of degree at most q from
F to F), such that, for every i ∈ [q + 1], we have γ(ti) = xi. It is well known that for any
t1, . . . , tq+1, x1, . . . , xq+1, these conditions determine γ uniquely and that γ can be computed
by polynomial interpolation. It is well known that for any fixed t1, . . . , tq+1, x1, . . . , xq, if
xq+1 ∈R F

m then for every t ∈ F \ {t1, . . . , tq}, the point γ(t) is a random variable uniformly
distributed in F

m.

5. A manifold through the curve: V1 chooses z2, z3 ∈R F
m. Denote by Γ : F

4 → F
m the 4

dimensional manifold defined by Γ(t, α1, α2, α3) = α1γ(t)+α2z2 +α3z3. We think of Γ as the
manifold spanned by both γ and the vector space spanned by z2, z3.

28

6. Getting the values on the manifold: V1 sends to P1 the set of all points in the image of
Γ (at most |F|4 = poly(h) points). P1 answers by values that are supposed to be the value
of π1 on all these points. Based on these values, V1 creates a function ρ : F

4 → F, supposed

to be the restriction of π1 to the image of Γ. Namely, ρ
def
= π1 ◦ Γ : F

4 → F. (We think of ρ
as the answers given by the prover, reorganized as a function from F

4 to F). V1 checks that
ρ : F

4 → F is a polynomial of total degree at most m ·h · (q +1). (Recall that the degree of π1

is at most m · h and the degree of γ is at most q, and hence the degree of Γ is at most q + 1
and the degree of π1 ◦ Γ is at most m · h · (q + 1)). If ρ is not a polynomial of total degree at
most m · h · (q + 1), it is clear that the prover is cheating and V1 rejects.

7. Low degree testing: V1 chooses a random t ∈R F \ {t1, . . . , tq} and computes z1 = γ(t). If
z1, z2, z3 are linearly dependant V1 accepts. Otherwise, define η : F

3 → F by η(α1, α2, α3) =
ρ(t, α1, α2, α3). The verifier checks that η is a polynomial of total degree at most m · h
(as it is supposed to be the restriction of π1 to a 3-dimensional subspace). If η is not a
polynomial of total degree at most m ·h, it is clear that the prover is cheating and V1 rejects.
Otherwise, V1 chooses random α1, α2, α3 ∈R F and computes z = α1z1 +α2z2 +α3z3. V1 then
queries π1 at the single point z and compares the result to the value given by the prover,
that is, to η(α1, α2, α3). If the answers are different it is clear that the prover is cheating
and V1 rejects. (Note that if the prover is not cheating then η(α1, α2, α3) = ρ(t, α1, α2, α3) =
π1(Γ(t, α1, α2, α3)) = π1(α1γ(t) + α2z2 + α3z3) = π1(α1z1 + α2z2 + α3z3) = π1(z)).

8. Simulating the verifier: Denote by a1, . . . , aq the answers that the prover gave on the
points x1, . . . , xq. That is, for i ∈ [q], denote ai = ρ(ti, 1, 0, 0). (Note that if the prover is
not cheating ai = ρ(ti, 1, 0, 0) = π1(Γ(ti, 1, 0, 0)) = π1(γ(ti)) = π1(xi)). If for some i, the
field element ai is not in {0, 1} then V1 rejects. Otherwise, V1 simulates V0 by giving V0 the
answers a1, . . . , aq for the queries Q1, . . . , Qq and accepts iff V0 accepts on these answers.

Analysis of (P1, V1)

By the description of the protocol (P1, V1) and the assumptions on the parameters, it is straightfor-
ward to verify that the size of the bit description of π1 is poly(p) and the communication complexity
between P1 and V1 is poly(`). V1 queries π1 in a single point (and gets a field element as an answer).
Also, it is straightforward to verify that if P1, V1 act according to the protocol, V1 always accepts
if the simulated verifier V0 accepts. Hence, the protocol has completeness ≥ c. We will now prove
the soundness property of the protocol.

Soundness of (P1, V1)

Assume that the instance x is not in L. Let P̃1 be any (cheating) prover and let π̃1, be any string.
We will bound the probability for acceptance,

Pr[(P̃1(x), V π̃1
1 (x)) = 1].

Let δ = max{√s, 1/h}, and let r = 2/δ = min{2h, 2/
√

s}. Let f1, . . . , fr : F
m → F be the r

polynomials of degree at most m · h guaranteed for the function π̃1 : F
m → F by the list-decoding

soundness condition of the low degree test (see Lemma 3.2), with degree m · h and parameter δ.
Hence, by the list-decoding soundness property of the low degree test, for any (cheating) interactive
Turing machine P̃LDT ,

Pr
[

[(P̃LDT (π̃1), V
π̃1
LDT) = 1] ∧ [π̃1(z) 6∈ {f1(z), . . . , fr(z)}]

]

≤ O(δ),

29

where z ∈ F
m is the random element chosen in Step 3 of the low degree test.

(Note that the size of the field F was chosen to be hc for a large enough c, and we can take c to
be a large enough constant so that δ is larger than the value of ε from Lemma 3.2).

Denote the following events:

1. Let E0 be the event that [(P̃1(x), V π̃1
1 (x)) = 1], i.e., the protocol accepts.

2. Let E1 be the event that ∀i ∈ [r] : (a1, . . . , aq) 6= (fi(x1), . . . , fi(xq)), where x1, . . . , xq are
defined in Step 3 of the protocol and a1, . . . , aq are the answers obtained in Step 8 of the
protocol.

3. Let E2 be the event that ∀i ∈ [r] : π̃1(z) 6= fi(z), where z is the point chosen in Step 7 of the
protocol.

Denote by ρ̃ : F
4 → F the (reorganized) answer of the (cheating) prover P̃1 in Step 6 of the

protocol. Assume w.l.o.g. that ρ̃ is always a polynomial of degree at most m ·h ·(q+1) (as otherwise
the verifier rejects). Denote by η̃ : F

3 → F the function η̃(α1, α2, α3) = ρ̃(t, α1, α2, α3), where t is the
element chosen in Step 7 of the protocol. Assume w.l.o.g. that η̃ is always a polynomial of degree
at most m · h (as otherwise the verifier rejects). Assume for simplicity that z1, z2, z3, generated in
Step 7 of the protocol are not linearly dependent, as this occurs with a negligible probability ≤ O(δ)
and hence doesn’t effect the correctness of the following three claims. Also, it will be convenient
to assume that if the protocol rejects in Step 7 it still continues to Step 8 (although the verifier
already rejected). This is convenient to assume because otherwise the variables defined in Step 8
are not always defined and hence the event E1 is not well defined.

The soundness property of (P1, V1) follows easily by the following three claims.

Claim 6.1.
Pr[E2 ∧ E0] ≤ O(δ).

Proof of Claim 6.1: The proof will follow from the above mentioned list-decoding soundness
property of the low degree test, described in Subsection 3.2 (see Lemma 3.2).

Note that the elements z1, z2, z3 ∈ F
m, chosen in Step 5 and Step 7 of the protocol, are inde-

pendent and uniformly distributed random variables as in the low degree test. We think of the
function η̃ : F

3 → F as an answer given by a (possibly cheating) prover in the low degree test.
In Step 7 of the protocol the verifier checks that η̃ is a low degree polynomial and checks that
η̃(α1, α2, α3) = π̃1(α1z1 + α2z2 + α3z3), where α1, α2, α3 are random elements in F

m. Note that
this is an exact implementation of the low degree test of Subsection 3.2.

Formally, given the verifier V1 and a prover P̃1, a prover P̃LDT for the low degree test can
simulate the interaction between V1 and P̃1 as follows: P̃LDT gets z1, z2, z3 from the verifier VLDT

of the low degree test. P̃LDT simulates Step 2 - Step 7 of the interaction between V1 and P̃1 using
z1 (that was given by VLDT) instead of xq+1 in Step 4 and using z1, z2, z3 that were given by VLDT

in Step 5 and Step 7, and using t = tq+1 in Step 7. P̃LDT gives the function η̃ as an answer to
VLDT . Note that if VLDT rejects, the protocol (P1, V1) rejects as well.

By the definition of the polynomials f1, . . . , fr, and by Lemma 3.2, we conclude that the prob-
ability that the verifier accepts and π̃1(z) 6∈ {f1(z), . . . , fr(z)} is ≤ O(δ).

(Note that the size of the field F was chosen to be hc for a large enough c, and we can take c to
be a large enough constant so that δ is larger than the value of ε from Lemma 3.2).

Claim 6.2.
Pr[¬E2 ∧ E1 ∧ E0] ≤ O(δ).

30

Proof of Claim 6.2: The proof will follow from the fact that two different low degree polynomials
disagree on a large fraction of their domain.

Assume that E0, E1 occur.
If for some j ∈ [r] we have ρ̃ = fj◦Γ, then for that j we have ai = ρ̃(ti, 1, 0, 0) = fj(Γ(ti, 1, 0, 0)) =

fj(γ(ti)) = fj(xi). Hence in this case E1 doesn’t occur. Hence, our assumption implies that
∀j ∈ [r] : ρ̃ 6= fj ◦ Γ.

Since ρ̃ and fj ◦Γ are both polynomials of degree at most m · h · (q + 1), we know that ρ̃ agrees
with each fj ◦Γ on a fraction of at most m ·h · (q +1)/|F| of the points. Hence, ρ̃ agrees with fj ◦Γ
for some j, on a fraction of at most m · h · (q + 1) · r/|F| ≤ O(δ) of the points. (Note that the size
of the field F was chosen to be hc for a large enough c, and we can take c to be large enough so
that the inequality holds). Call these points bad point.

Let t ∈R F\{t1, . . . , tq} and α1, α2, α3 ∈R F and let z = α1γ(t)+α2z2 +α3z3 as in Step 7 of the
protocol. Thus, π̃1(z) = π̃1(α1γ(t)+α2z2 +α3z3). If π̃1(z) is different than ρ̃(t, α1, α2, α3) then the
protocol rejects and E0 doesn’t occur. Hence, our assumption implies that π̃1(z) = ρ̃(t, α1, α2, α3)

Assume that E0, E1 occur and that (t, α1, α2, α3) is not a bad point. Then for every j, we have
π̃1(z) = ρ̃(t, α1, α2, α3) 6= fj ◦Γ(t, α1, α2, α3) = fj(z), so the event E2 occurs. Thus, if E0, E1 occur,
¬E2 can occur only if (t, α1, α2, α3) is a bad point, and recall that the fraction of bad points is at
most O(δ). Hence, ¬E2 ∧ E1 ∧ E0 occurs with probability of at most O(δ).

Claim 6.3.
Pr[¬E1 ∧ E0] ≤ O(δ).

Proof of Claim 6.3: The proof will follow by the soundness property of the interactive PCP
(P0, V0).

For every j ∈ [r], define σj : [p] → F by σj(Q) = fj(E(Q)). We can view the pair σj , P̃1

as a (cheating) prover P̃0,j for the interactive PCP (P0, V0) as follows. The prover P̃0,j generates
the string σj and interacts with the verifier V0 as P̃1 does in Step 2 of the protocol. After the
interaction, V0 queries the string σj at the points Q1, . . . , Qq. We assume that if one of these points
contains a value not in {0, 1} the verifier V0 rejects. Otherwise, V0 accepts or rejects according to
his protocol. By the soundness property of the interactive PCP (P0, V0), we know that none of
these protocols accepts with probability larger than s.

Assume that Pr[¬E1 ∧ E0] > α. Thus, with probability of at least α there exists j ∈ [r], such
that (a1, . . . , aq) = (fj(x1), . . . , fj(xq)) and the verifier V0 accepts on answers a1, . . . , aq given for
the queries Q1, . . . , Qq, (after interacting with P̃1). (Where x1, . . . , xq are defined in Step 3 of the
protocol and a1, . . . , aq are the answers obtained in Step 8 of the protocol).

Hence, there exists j0, such that with probability of at least α/r we have that (a1, . . . , aq) =
(fj0(x1), . . . , fj0(xq)) = (σj0(Q1), . . . , σj0(Qq)) and the verifier V0 accepts on answers a1, . . . , aq

given for the queries Q1, . . . , Qq, (after interacting with P̃1). Thus, the verifier V0 accepts with
probability at least α/r after interacting with P̃0,j0 . Hence, α/r ≤ s, or equivalently α ≤ rs ≤
2
√

s = O(δ).

We can now conclude that

Pr[E0] = Pr[E0 ∧ ¬E1] + Pr[E0 ∧ E1] =

Pr[E0 ∧ ¬E1] + Pr[E0 ∧ E1 ∧ ¬E2] + Pr[E0 ∧ E1 ∧ E2] ≤
Pr[E0 ∧ ¬E1] + Pr[E0 ∧ E1 ∧ ¬E2] + Pr[E0 ∧ E2] ≤ O(δ).

This proves the soundness property of the protocol (P1, V1).

31

The final protocol

The protocol (P1, V1) has the required properties, except that the one query made by V1 is to π1

and hence the query returns a field element in F, rather than a single bit. We will convert (P1, V1)
into the final protocol (P, V). For the final protocol, we will use the Hadamard error correcting
code Had : F → {0, 1}|F|. (We could use any other error correcting code with good list-decoding
properties).

Formally, given y, z ∈ F, we think of y, z as strings of length log |F| bits (e.g., by thinking of F

as a vector space over GF[2]). The function Had : F → {0, 1}|F| is defined by Had(y)z = (y, z),
where (y, z) denotes the scalar product of y and z over GF[2].

For every η ∈ {0, 1}|F| and every δ ≥ 0, denote by Nδ[η] ⊆ F, the set of all elements y ∈ F such
that Had(y) is 1/2 − δ close to η. That is,

Nδ[η] =

{

y ∈ F : Pr
z∈F

[Had(y)z = ηz] ≥ 1/2 + δ

}

.

It is well known, by Parseval equality, that for every η, δ,

|Nδ[η]| <
1

δ2
.

Let π be the concatenation of Had(y) for all the elements y in the truth table of π1. That is,

π = (Had(π1(1)), . . . , Had(π1(p1))) .

In the final protocol, the prover P generates π, rather than π1. The protocol (P, V) is then the
same as (P1, V1), except that the verifier V , rather than querying π1 at a point Q, asks the prover
P to send the value of π1(Q), and verifies the answer by reading a single random bit in Had(π1(Q))
(i.e., a single random bit of π(Q)). Formally, if P answers by y, the verifier V compares Had(y)z

with π(Q)z, for a random z ∈ F, and rejects if they are different. If they are the same, V continues
as V1, using y instead of π1(Q), and accepts iff V1 accepts.

Note that the size of π is at most the size of π1 times poly(h) ≤ poly(p). Note that the
prover only needs to communicate one additional field element (O(log h) bits). Note also that the
completeness of the algorithm remains the same. Thus, it remains to prove the soundness property
of the final protocol.

The soundness property of the final protocol will follow from the list decoding properties of
the Hadamard code, and from the soundness property of the protocol (P1, V1). Assume that the
instance x is not in L. Let P̃ be any (cheating) prover and let π̃ : [p1]× |F| → {0, 1} be any string.
We will use P̃ , π̃ to define a (cheating) prover P̃1, and a string π̃1 for the protocol (P1, V1).

Fix
δ = 3

√
s1

(where s1 is the soundness parameter of (P1, V1)). We define π̃1 to be a (probabilistic) string as
follows. For every Q ∈ [p1], define π̃(Q) ∈ {0, 1}|F| by π̃(Q)z = π̃(Q, z). Define π̃1(Q) to be
a random element of Nδ[π̃(Q)] if Nδ[π̃(Q)] is not empty, and an arbitrary value otherwise. The
prover P̃1 acts the same as P̃ , (except that P̃ is asked by V for the value of π1(Q), and P̃1 doesn’t
have to supply this answer because V1 queries π1 for this value directly).

Denote by A the event that (P̃ (x), V π̃(x)) accepts (or, for simplicity, V accepts), and denote

α = Pr[A] = Pr[(P̃ (x), V π̃(x)) = 1],

32

where the probability is over the coin tosses.
Denote by A1 the event that (P̃1(x), V π̃1

1 (x)) accepts (or, for simplicity, V1 accepts), and denote

α1 = Pr[A1] = Pr[(P̃1(x), V π̃1
1 (x)) = 1],

where the probability is over the coin tosses, and over the choice of the string π̃1 (recall that π̃1

was defined probabilistically). By the soundness property of the protocol (P1, V1), we know that

α1 ≤ s1.

We will bound α as a function of α1, δ. This is done as follows.
By the definition of (P, V), the verifier V asks the prover P̃ for the value of π1(Q) and then

verifies that the answer is consistent with π̃(Q)z, for a random z ∈ F. Denote by y the answer
given by P̃ (for the query Q). Denote the following events:

1. Event B: y 6∈ Nδ[π̃(Q)]

2. Event C: ¬B occurs (i.e., y ∈ Nδ[π̃(Q)]) and π̃1(Q) = y.

Note that:

1. Pr[A|B] ≤ 1/2 + δ
(If B occurs then Had(y) is not 1/2 − δ close to π̃(Q). Hence V accepts with probability of
at most 1/2 + δ, since he compares Had(y)z with π̃(Q)z for a random z).

2. Pr[C|¬B] > δ2

(If ¬B occurs then y ∈ Nδ[π̃(Q)]. Since π̃1(Q) is a random element of Nδ[π̃(Q)], with
probability of 1/|Nδ[π̃(Q)]| > δ2, we have π̃1(Q) = y).

3. Pr[A|C] ≤ Pr[A1|C]
(If C occurs then y ∈ Nδ[π̃(Q)] and π̃1(Q) = y. In this case by the definition of V , if V1

rejects on the oracle answer π̃1(Q) then V rejects on the prover answer y).

4. Pr[A|¬B] = Pr[A|C]
(If ¬B occurs then y ∈ Nδ[π̃(Q)]. The value of π̃1(Q) was chosen at random from Nδ[π̃(Q)],
independently of any other coin tosses. The event A doesn’t depend on the string π̃1 at all
(and hence not on the event π̃1(Q) = y)).

By the above, we can bound

α = Pr[A] ≤ Pr[A|B] + Pr[A|¬B] · Pr[¬B]

= Pr[A|B] + Pr[A|C] · Pr[¬B]

≤ Pr[A|B] + Pr[A1|C] · Pr[¬B]

Since C ⊆ ¬B, and by the above, we can also bound

α1 = Pr[A1] ≥ Pr[A1|C] · Pr[C]

= Pr[A1|C] · Pr[C|¬B] · Pr[¬B]

≥ Pr[A1|C] · δ2 · Pr[¬B]

33

Hence,
α ≤ Pr[A|B] + Pr[A1|C] · Pr[¬B]

≤ 1/2 + δ + α1/δ2 ≤ 1/2 + δ + s1/δ2.

Since δ = 3
√

s1, we get
α ≤ 1/2 + O(3

√
s1) = 1/2 + O(6

√
s) + O(3

√
ε).

This proves the soundness property of Theorem 4 because we could start from ε3 rather than ε,
without changing the guarantees in the statement of the theorem.

The moreover part

As for the moreover part of Theorem 4, the first one is immediate from the definitions of π0 and π.
For the second one, note that V can operate as follows. In the first phase, V runs the first phase
of the verifier V0 and generates the same string g that is generated by V0. In the second phase, V
operates according to the definitions of the protocols (P1, V1) and (P, V), and note that this can be
done in time poly(T2, |F|), as it only requires running the second phase of V0 and polynomial time
operations on objects of size poly(|F|).

Interactive PCP for Arithmetic Formulas

The following theorem, which is one of our main results, follows immediately by Theorem 2 and
Theorem 4.

Theorem 5. For any12 ε ≥ 1/n,

SATN,k,d ∈ IPCP(p, q, `, c, s),

with p = poly(k, d, 1/ε), q = 1, ` = poly(log k, d, log N, 1/ε), c = 1, and s = 1/2 + ε.
Moreover, the following two properties can be attained.

1. The string π (generated by the prover in the first round of the protocol) depends only on the
witness w = (w1, . . . , wk) and on the parameters d, ε, and not on the instance Ψ1, . . . ,ΨN .

2. The verifier can partition his work into two phases: In the first phase he runs in time ≤
poly(|Ψ1|+ . . .+ |ΨN |), and generates a string h of size ≤ poly(log N, log k, d, log(1/ε)). This
phase depends only on Ψ1, . . . ,ΨN and on the parameters (and on the randomness of the
verifier) and does not depend on the oracle π or on the interaction with the prover. In the
second phase, which is the interactive phase, the verifier uses only the string h generated in the
first phase (and not the instance Ψ1, . . . ,ΨN), and runs in time ≤ poly(log N, log k, d, 1/ε).
The messages that he sends in this phase, and the oracle queries, depend only on h and are
independent of the messages sent by the prover or the oracle answers.

We can now use Theorem 5 to farther improve Theorem 2.

12We require ε ≥ 1/n in order to ensure that the prover and verifier run in time polynomial in the size of the
instance. We could take 1/n > ε > 0 and then the running time is polynomial in 1/ε

34

Theorem 6. For any soundness parameter13 s ≥ 2−n,

SATN,k,d ∈ IPCP(p, q, `, c, s),

with p = poly(k, d), q = poly(log 1
s
), ` = poly(log k, d, log N, log 1

s
), and c = 1.

Moreover, the following two properties can be attained.14

1. The string π (generated by the prover in the first round of the protocol) depends only on the
witness w = (w1, . . . , wk) and on the parameter d, and not on the instance Ψ1, . . . ,ΨN .

2. The verifier can partition his work into two phases: In the first phase he runs in time ≤
poly(|Ψ1| + . . . + |ΨN |), and generates a string h of size ≤ poly(log N, log k, d, log 1

s
). This

phase depends only on Ψ1, . . . ,ΨN and on the parameters (and on the randomness of the
verifier) and does not depend on the oracle π or on the interaction with the prover. In the
second phase, which is the interactive phase, the verifier uses only the string h generated in the
first phase (and not the instance Ψ1, . . . ,ΨN), and runs in time ≤ poly(log N, log k, d, log 1

s
).

The messages that he sends in this phase, and the oracle queries, depend only on h and are
independent of the messages sent by the prover or the oracle answers.

Proof of Theorem 6: Theorem 6 follows as a corollary of Theorem 5 (with, say, ε = 1/4), by
repeating the protocol sequentially poly(log 1

s
) times.

7 Interactive PCP for Constant Depth Formulas

In this section we prove the following two theorems.

Theorem 7. Let L = {x : ∃w s.t. RL(x, w) = 1} be an NP language, such that RL is a polynomial
size constant depth Boolean formula, over the gates {¬,∨,∧,⊕}. Then, for any15 ε ≥ 1/n and any
δ ≥ 2−n,

L ∈ IPCP(p, q, `, c, s),

with p = poly(k, 1
ε
, log 1

δ
), q = 1, ` = poly(log n, 1

ε
, log 1

δ
), c ≥ 1 − δ, and s ≤ 1

2 + ε (where n is the
instance size and k is the witness size).

Moreover, the following two properties can be attained.

1. The string π (generated by the prover in the first round of the protocol) depends only on the
witness w = (w1, . . . , wk) and on the parameters n, ε, δ, and not on the instance x.

2. The verifier can partition his work into two phases: In the first phase he runs in time ≤
poly(n), and generates a string h of size ≤ poly(log n, log 1

ε
, log 1

δ
). This phase depends only

on x and on the parameters (and on the randomness of the verifier), and does not depend on

13We require s ≥ 2−n in order to ensure that the prover and verifier run in time polynomial in the size of the
instance. We could take 2−n > s > 0 and then the running time is polynomial in log 1

s
14The second property is not needed for the main result. It is an additional feature that may be important for

applications. We use it for the application of zero-knowledge.
15We require ε ≥ 1/n and δ ≥ 2−n in order to ensure that the prover and verifier run in time polynomial in the

size of the instance. We could take 1/n > ε > 0 and 2−n > δ > 0 and then the running time is polynomial in 1/ε and
log 1

δ

35

the oracle π or on the interaction with the prover. In the second phase, which is the interactive
phase, the verifier uses only the string h generated in the first phase (and not the instance x),
and runs in time ≤ poly(log n, 1

ε
, log 1

δ
). The messages that he sends in this phase, and the

oracle queries, depend only on h and are independent of the messages sent by the prover or
the oracle answers.

Theorem 8. Let L = {x : ∃w s.t. RL(x, w) = 1} be an NP language, such that RL is a polynomial
size constant depth Boolean formula, over the gates {¬,∨,∧,⊕}. Then, for any16 δ, ε ≥ 2−n,

L ∈ IPCP(p, q, `, c, s),

with p = poly(k, log 1
δ
), q = poly(log 1

ε
), ` = poly(log n, log 1

δ
, log 1

ε
), s ≤ ε+δ, and c ≥ 1−δ (where

n is the instance size and k is the witness size).
Moreover, the following two properties can be attained.

1. The string π (generated by the prover in the first round of the protocol) depends only on the
witness w = (w1, . . . , wk) and on the parameters n, δ, and not on the instance x.

2. The verifier can partition his work into two phases: In the first phase he runs in time ≤
poly(n), and generates a string h of size ≤ poly(log n, log 1

δ
, log 1

ε
). This phase depends only

on x and on the parameters (and on the randomness of the verifier), and does not depend on
the oracle π or on the interaction with the prover. In the second phase, which is the interactive
phase, the verifier uses only the string h generated in the first phase (and not the instance x),
and runs in time ≤ poly(log n, log 1

δ
, log 1

ε
). The messages that he sends in this phase, and

the oracle queries, depend only on h and are independent of the messages sent by the prover
or the oracle answers.

Remark: Note that Theorems 7 and 8 imply, in particular, that there exists an interactive PCP
for proving the satisfiability of a constant depth Boolean formula (over the gates {¬,∨,∧,⊕}), with
parameters (p, q, `, c, s), as stated in the above two theorems.

For the proof of Theorems 7 and 8, we will approximate a constant depth Boolean formula by
an arithmetic formula of low degree. This is a well known method in complexity theory, originated
by [R87, S87] (see [B93] for a survey). It is well known that a constant depth formula can be
approximated by a low degree polynomial, using a small number of random bits. Although this is
usually not mentioned explicitly, it is easy to check that the approximating low degree polynomial
can actually be computed by a polynomial size arithmetic formula.

Lemma 7.1. There exists a probabilistic Turing machine M, that takes as input a constant depth
Boolean formula C : {0, 1}k → {0, 1} of size m (over the gates ∨,∧,¬,⊕), and a parameter δ > 0.
It runs in time poly(m, log 1

δ
), and uses poly(log m, log 1

δ
) random bits. It outputs an arithmetic

formula of size17 poly(m, log 1
δ
) and of degree poly(log m, log 1

δ
), such that for every C, δ and every

x ∈ {0, 1}k,
Pr[M(C, δ)(x) = C(x)] ≥ 1 − δ.

16We require δ, ε ≥ 2−n in order to ensure that the prover and verifier run in time polynomial in the size of the
instance. We could take 2−n > δ, ε > 0 and then the running time is polynomial in log 1

δ
and log 1

ε
17The size and the degree of the arithmetic formula (and hence also the running time of M) depend exponentially

on the depth of C (which is assumed to be constant).

36

Proof of Lemma 7.1: Fix a constant depth Boolean formula C : {0, 1}k → {0, 1} of size m (over
the gates ∨,∧,¬,⊕), and fix a parameter δ > 0. The Turing machine M, on input (C, δ), operates
as follows:

1. Convert C into a Boolean formula C1 : {0, 1}k → {0, 1} over the gates ∨,¬,⊕, by using De
Morgan’s law. The resulting Boolean formula C1 is of constant depth, is of size O(m), and
computes exactly the same function as C.

2. Convert C1 into a Boolean formula C2 : {0, 1}k → {0, 1} such that the fan-in of each ∨ gate is
exactly m. This is done by adding at most poly(m) dummy gates that consist of the constant
0. The resulting Boolean formula C2 is of constant depth, is of size ≤ poly(m), and computes
exactly the same function as C1.

3. Approximate C2 by an arithmetic circuit Ψ : {0, 1}k → {0, 1} (over GF[2]), by replacing each
Boolean gate by an arithmetic gate, as follows:

(a) Replace each negation gate ¬x (where x is the input to the gate) by 1 − x. This does
not change the functionality of C2.

(b) Replace each XOR gate ⊕t
i=1xi (where x1, . . . , xt are the inputs to the gate) by

∑t
i=1 xi.

This does not change the functionality of C2 (since the sum is over GF[2]).

(c) Let ECC : {0, 1}m → {0, 1}100m be a linear error correcting code with relative distance
1/3. Note that the linearity of ECC implies that it can be computed by a constant
depth arithmetic circuit of degree 1 and size poly(m) (over GF[2]).

Denote by m′ the number of ∨ gates in C2. (Note that m′ ≤ m). Fix l = O(log m′+log 1
δ
)

such that
(

2

3

)l

≤ δ

m′
.

Choose independently at random i1, . . . , il ∈R [100m] (each ij corresponds to a random
coordinate of a codeword). Replace each

∨m
i=1 xi by

η(x1, . . . , xm)
def
= 1 −

l
∏

j=1

(

1 − ECC(x1, . . . , xm)ij

)

.

Notice that we approximate each ∨ gate using the same random bits. Also notice
that η can be computed by a constant depth arithmetic circuit of size poly(m, l) =
poly(m, log 1

δ
), and that for every x = (x1, . . . , xm) ∈ {0, 1}m,

Pr

[

η(x1, . . . , xm) 6=
m
∨

i=1

xi

]

≤
(

2

3

)l

(12)

(where the probability is over the random choices of i1, . . . , il ∈R [100m]).

This arithmetization procedure results with a constant depth arithmetic circuit Ψ : {0, 1}k → {0, 1}
of size poly(m, l) ≤ poly(m, log 1

δ
), and of degree ≤ lO(1) ≤ poly(log m, log 1

δ
). We stress that Ψ is

an arithmetic circuit (as opposed to a formula), since each ∨ gate was replaced by a constant depth
circuit. The fact that Ψ is of constant depth implies that it can be converted (in polynomial time)
into an arithmetic formula of the same degree, and with only a polynomial increase in its size.

37

We next prove that for every x = (x1, . . . , xk) ∈ {0, 1}k,

Pr[Ψ(x1, . . . , xk) = C(x1, . . . , xk)] ≥ 1 − δ

(where the probability is over the random choices of i1, . . . , il ∈R [100m]).
Fix any input x = (x1, . . . , xk) ∈ {0, 1}k. Let g1, . . . , gm′ be all the ∨ gates in C2 ordered so

that for every i, j ∈ [m′] if the gate gi is a descendant of gj then i < j. Let η1, . . . , ηm′ be their
corresponding approximations in Ψ. For i = 1, . . . , m′, let Ei denote the event that the output of
gi when evaluating C2 on input x is the same as the output of ηi when evaluating Ψ on input x.
Then,

Pr[Ψ(x1, . . . , xk) = C(x1, . . . , xk)] ≥
Pr[E1 ∧ E2 ∧ . . . ∧ Em′] =

Pr[E1] · Pr[E2|E1] · . . . · Pr[Em′ |E1 ∧ . . . ∧ Em′−1] ≥
m′
∏

i=1

(

1 −
(

2

3

)l
)

≥

m′
∏

i=1

(

1 − δ

m′

)

≥

1 − δ.

It remains to note that M runs in time ≤ poly(m, log 1
δ
), and uses ≤ poly(log m, log 1

δ
) random

bits.

We next use Lemma 7.1 to prove Theorem 7 and Theorem 8.

Proof of Theorem 7: Fix parameters ε ≥ 1/n and δ ≥ 2−n. Say the prover wishes to prove
that x ∈ L, for some string x ∈ {0, 1}n. Let k denote the size of the witness. Thus, RL(x, ·) is a
function

RL(x, ·) : {0, 1}k → {0, 1}.
Assume that k ≥ log n. This is without loss of generality since otherwise, determining whether
x ∈ L can be done in polynomial time. Theorem 7 follows from Theorem 5 and Lemma 7.1, as
follows.

Let δ′
def
= min

(

δ, ε
2

)

and let ε′
def
= ε

2 . Let d be the degree of the arithmetic formula obtained by
applying Lemma 7.1 with the Boolean formula RL(x, ·) and the parameter δ′. Note that

d = poly

(

log n, log
1

δ′

)

= poly

(

log n, log
1

δ
, log

1

ε

)

.

The prover generates π as in Theorem 5, with parameters k, d, ε′. Thus,

|π| ≤ poly

(

k,
1

ε
, log

1

δ

)

.

In the interactive phase, the verifier runs the (probabilistic) Turing machine M (from Lemma 7.1)
on input RL(x, ·) and δ′. Namely, the verifier uses poly(log n, log 1

δ′
) = poly(log n, log 1

δ
, log 1

ε
) ran-

dom bits and generates an arithmetic formula

Ψ : {0, 1}k → {0, 1}

38

of size poly(n, log 1
δ′

) = poly(n, log 1
δ
, log 1

ε
) and degree d. Recall that for any given input (and in

particular for the input encoded in π), Ψ and RL(x, ·) agree with probability at least 1 − δ′. The
verifier sends these random bits to the prover. The prover can use these random bits to compute
Ψ on his own. Next, the prover and verifier run the interactive protocol of Theorem 5 with respect
to Ψ and the parameter ε′ (and with N = 1).

The fact that this protocol guarantees the parameters (p, q, `, c, s), as stated in the theorem,
follows from Theorem 5 with the parameter ε′, and from Lemma 7.1 with the parameter δ′. In
particular, note that we get

c ≥ 1 − δ′ ≥ 1 − δ,

and

s ≤ 1

2
+ ε′ + δ′ ≤ 1

2
+ ε.

As for the moreover part of Theorem 7, the first one follows directly from Theorem 5. For the
second one, the verifier can operate as follows. In the first phase, he chooses the random bits used
to generate Ψ, and emulates the first phase verifier of Theorem 5 with respect to Ψ and ε′. The
string h consists of these random bits, together with the corresponding string generated in the first
phase of Theorem 5 (with respect to Ψ and ε′). In the second phase, the verifier sends to the
prover the random bits used to generate Ψ, and emulates the second phase verifier of Theorem 5
(with respect to Ψ and ε′). The parameters in the moreover part of Theorem 7 follow from the
parameters of Theorem 5, together with the fact that the number of random bits used to generate
Ψ is at most poly(log n, log 1

ε
, log 1

δ
).

We next prove Theorem 8. We note that the proof is very similar to the proof of Theorem 7.

Proof of Theorem 8: Fix parameters δ, ε ≥ 2−n. Say the prover wishes to prove that x ∈ L,
for some string x ∈ {0, 1}n. Let k denote the size of the witness. Thus, RL(x, ·) is a function

RL(x, ·) : {0, 1}k → {0, 1}.

Assume that k ≥ log n. This is without loss of generality since otherwise, determining whether
x ∈ L can be done in polynomial time. Theorem 8 follows from Theorem 6 and Lemma 7.1, as
follows.

Let d be the degree of the arithmetic formula obtained by applying Lemma 7.1 with the Boolean
formula RL(x, ·) and the parameter δ. Thus,

d = poly

(

log n, log
1

δ

)

.

The prover generates π as in Theorem 6, with parameters k, d. Thus,

|π| ≤ poly

(

k, log
1

δ

)

.

In the interactive phase, the verifier runs the (probabilistic) Turing machine M (from Lemma 7.1)
on input RL(x, ·) and δ. Namely, the verifier uses poly(log n, log 1

δ
) random bits and generates an

arithmetic formula
Ψ : {0, 1}k → {0, 1}

of size poly(n, log 1
δ
) and degree d. Recall that for any given input (and in particular for the input

encoded in π), Ψ and RL(x, ·) agree with probability at least 1−δ. The verifier sends these random

39

bits to the prover. The prover can use these random bits to compute Ψ on his own. Next, the
prover and verifier run the interactive protocol of Theorem 6 with respect to Ψ and the parameter
s = ε (and with N = 1).

The fact that this protocol guarantees the parameters (p, q, `, c, s), as stated in Theorem 8,
follows from Theorem 5 with the parameter s = ε, and from Lemma 7.1 with the parameter δ. In
particular, note that we get

c ≥ 1 − δ,

and
s ≤ ε + δ.

As for the moreover part of Theorem 8, the first one follows directly from Theorem 6. For the
second one, the verifier can operate as follows. In the first phase, he chooses the random bits used
to generate Ψ, and emulates the first phase verifier of Theorem 6 with respect to Ψ and s = ε. The
string h consists of these random bits, together with the corresponding string generated in the first
phase of Theorem 6 (with respect to Ψ and s = ε). In the second phase, the verifier sends to the
prover the random bits used to generate Ψ, and emulates the second phase verifier of Theorem 6
(with respect to Ψ and s = ε). The parameters in the moreover part of Theorem 8 follow from the
parameters of Theorem 6, together with the fact that the number of random bits used to generate
Ψ is at most poly(log n, log 1

δ
).

8 Succinct Zero-Knowledge Proofs

In this section, we give an application of our results. We show that for some NP languages, with
short witnesses, there exist succinct zero-knowledge proofs.

Theorem 9. Fix a parameter t = t(n) ≤ n, and assume the existence of a (one-way) function
f : {0, 1}t → {0, 1}t that can be computed in time poly(n) and cannot be inverted by poly(n)-
time adversaries (except with negl(n) probability). Let L = {x : ∃w s.t. RL(x, w) = 1} be an NP
language, such that RL is a constant depth Boolean formula (over the gates {¬,∨,∧,⊕}). Then, the
language L has an interactive zero-knowledge proof of size poly(t, k) (where k is the witness size),
with soundness s ≤ 2−t and completeness c ≥ 1 − 2−t. In addition, the prover runs in polynomial
time (assuming that he has a witness as an additional input).

Moreover, this zero-knowledge proof can be partitioned into two phases. The first phase is non-
interactive. In this phase the prover sends to the verifier a certain (non-interactive) commitment
to his witness at hand w. This message is of size poly(t, k) (where k = |w|), and depends only on
the witness w, and not on the instance x. The second phase is interactive. In this phase the prover
and verifier engage in a zero-knowledge proof that indeed the string committed to is a valid witness
for x (i.e., RL(x, w) = 1). This phase consists of poly(t, log n) bits of interaction.

Instead of proving Theorem 9 directly, we prove the following more general theorem.

Theorem 10. Fix a parameter t = t(n) ≤ n, and assume the existence of a (one-way) function
f : {0, 1}t → {0, 1}t that can be computed in time poly(n) and cannot be inverted by poly(n)-time
adversaries (except with negl(n) probability). Then, the language SATN,k,d (defined in Section 5)
has an interactive zero-knowledge proof of size poly(t, log N, k, d), with soundness s ≤ 2−t and
completeness c = 1. In addition, the prover runs in polynomial time (assuming that he has a
witness as an additional input).

40

Moreover, this zero-knowledge proof can be partitioned into two phases. The first phase is non-
interactive. In this phase the prover sends to the verifier a certain (non-interactive) commitment
to his witness at hand w. This message is of size poly(t, k, d) (where k = |w|), and depends only
on the witness w, and not on the instance Ψ1, . . . ,ΨN . The second phase is interactive. In this
phase the prover and verifier engage in a zero-knowledge proof that indeed the string committed
to zeros all the arithmetic formulas Ψ1, . . . ,ΨN (i.e.,

∧N
i=1[Ψi(w) = 0]). This phase consists of

poly(t, log N, log k, d) bits of interaction.

Remark: The moreover part of Theorem 9 and Theorem 10 implies that these NP languages have
zero-knowledge proofs that consist of two phases: The first phase is non-interactive, and depends
only on the witness w (and not on the instance x). In this phase the prover sends to the verifier a
certain (non-interactive) commitment to his witness at hand. The second phase is interactive and
is very short. In this phase the prover and verifier engage in a zero-knowledge proof that indeed
the string committed to in the first phase is a valid witness for x.

These types of succinct zero-knowledge proofs may have several applications. We refer the
reader to [KR06] for a list of some of these applications.

Deriving Theorem 9 from Theorem 10: Assume w.l.o.g. that k ≥ log n (otherwise, deter-
mining whether x ∈ L can be done in polynomial time). Fix a parameter t = t(n) ≤ n, and
assume the existence of a (one-way) function f : {0, 1}t → {0, 1}t that can be computed in time
poly(n) and cannot be inverted by poly(n)-time adversaries (except with negl(n) probability). Let
L = {x : ∃w s.t. RL(x, w) = 1} be an NP language, such that RL is a constant depth Boolean
formula (over the gates {¬,∨,∧,⊕}). Recall that for every x ∈ {0, 1}n, by applying Lemma 7.1
(in Section 7) with the Boolean formula RL(x, ·) : {0, 1}k → {0, 1} and with δ = 2−(t+1), one can
approximate RL(x, ·) (with error ≤ 2−(t+1)) by an arithmetic formula of size poly(n) and of degree
d ≤ poly(log n, t). Fix N = 1, k = |w|, and d as above. Fix any (x, w) such that RL(x, w) = 1. A
prover, who has w as an additional input, can prove that x ∈ L, by emulating the zero-knowledge
proof for SATN,k,d, given by Theorem 10, as follows. We use Theorem 10 with the assumption that
there exists a (one-way) function f : {0, 1}t+1 → {0, 1}t+1 that can be computed in time poly(n) and
cannot be inverted by poly(n)-time adversaries (except with negl(n) probability). This assumption
follows trivially from our assumption (on the existence of a (one-way) function f : {0, 1}t → {0, 1}t

with similar properties), and results with soundness parameter s ≤ 2−(t+1).

Phase 1. The prover runs the first phase of the zero-knowledge proof for SATN,k,d, given by
Theorem 10, with his witness at hand w. Namely, he commits to his witness w = (w1, . . . , wk),
as in the first phase of the zero-knowledge proof given by Theorem 10. We use here the fact
that this phase depends only on the witness w and not on the instance.

Phase 2. The prover and verifier approximate the Boolean formula RL(x, ·) : {0, 1}k → {0, 1}
by a low degree arithmetic formula Ψ, using Lemma 7.1 with δ = 2−(t+1). To this end, the
verifier chooses poly(log n, t) random bits, and sends these random bits to the prover. Then
the prover and verifier (separately) run in time poly(n), and compute an arithmetic formula
Ψ, of size poly(n) and of degree d ≤ poly(log n, t), such that

Pr[Ψ(w) 6= RL(x, w)] ≤ 2−(t+1).

Then, the prover and verifier run the second phase of the zero-knowledge proof for SATN,k,d,
given by Theorem 10 (with soundness parameter s = 2−(t+1)), for proving that the message

41

committed to in the first phase is a witness for 1 − Ψ ∈ SATN,k,d. Thus, the second phase
consists of poly(t, log n) bits of interaction.

Theorem 10, together with Lemma 7.1, implies that this protocol is zero-knowledge, with complete-
ness parameter c ≥ 1 − 2−t and soundness parameter s ≤ 2−(t+1) + 2−(t+1) = 2−t, as desired.

Proof of Theorem 10: Fix a parameter t = t(n) ≤ n, and assume the existence of a (one-way)
function f : {0, 1}t → {0, 1}t that can be computed in time poly(n) and cannot be inverted by
poly(n)-time adversaries (except with negl(n) probability). This implies that there exists a bit
commitment scheme

com : {0, 1} × {0, 1}t → {0, 1}poly(t)

that uses t bits of randomness, is perfectly binding, and is computationally hiding against poly(n)-
time adversaries. (See [G01] for the definition of a commitment scheme and for the proof method).

Theorem 6 implies that for every s ≥ 2−n, there exists an interactive PCP for the NP language
SATN,k,d with parameters (p, q, `, c, s), where p = poly(k, d), q = poly(log 1

s
), ` = poly(log N, log k, d, log 1

s
),

and c = 1. Fix s
def
= 2−t

2 ≥ 2−(n+1). We use the interactive PCP from Theorem 6, with soundness
parameter s,18 to construct a zero-knowledge proof (PZK, VZK) for SATN,k,d.

Input: Both the prover PZK and the verifier VZK take as input N arithmetic formulas Ψ1, . . . ,ΨN :
{0, 1}k → {0, 1} of syntactic degree ≤ d. The prover PZK takes an additional input w =
(w1, . . . , wk) ∈ {0, 1}k, such that

N
∧

i=1

[Ψi(w1, . . . , wk) = 0].

Phase 1. The prover PZK generates the string π of size p = poly(k, d), as in Theorem 6. Recall
that, according to Theorem 6, π depends only on w and on the parameter d, and not on the
instance Ψ1, . . . ,ΨN . He sends com(π1), . . . , com(πp) to the verifier VZK, where com is the
commitment scheme specified above. The message sent is of size poly(t, p) = poly(t, k, d).

Phase 2. According to Theorem 6, the interactive PCP verifier (given by Theorem 6) can partition
his work into two phases. In the first phase he runs in time ≤ poly(|Ψ1| + . . . + |ΨN |),
and generates a string h of size ≤ poly(log N, log k, d, log 1

s
). This phase depends only on

Ψ1, . . . ,ΨN and on the parameters (and on the randomness of the verifier) and does not
depend on the oracle π or on the interaction with the prover. In the second phase, which is
the interactive phase, the messages sent by the verifier, and the oracle queries, depend only on
h (and not on Ψ1, . . . ,ΨN), and are independent of the messages sent by the prover and the
oracle answers. Moreover, the verifier in this phase runs in time ≤ poly(log N, log k, d, log 1

s
).

1. The verifier VZK computes the string h, as in the first phase of the interactive PCP given
by Theorem 6.

2. The prover PZK and verifier VZK run the interactive protocol of the interactive PCP
given by Theorem 6, with the following difference: The prover PZK, rather than sending
his messages “in the clear,” will commit to all his messages. Namely, if the interactive
PCP protocol consists of a transcript of the form:

(r1, m1, r2, m2, . . . , rl, ml),

18By padding the instance, Theorem 6 also holds with s ≥ 2−(n+1), without changing any of the other parameters.

42

then in the (zero-knowledge) protocol, the transcript will be of the form:

(r1, com(m1), r2, com(m2), . . . , rl, com(ml)).

Since the verifier’s messages r1, . . . , rl are determined by h, and do not depend on the
interaction, VZK does not need to “know” the messages m1, . . . , ml (or the answers to
his oracle queries) in order to generate r1, . . . , rl.

3. The verifier VZK sends the string h to the prover. Note that the string h determines the
q oracle queries i1, . . . , iq ∈ [p] of the interactive PCP verifier.

4. Finally, the prover PZK gives the verifier a zero-knowledge proof that

(h, com(πi1), . . . , com(πiq), r1, com(m1), . . . , rl, com(ml))

corresponds to an accepting proof in the underlying interactive PCP. Namely, the prover
PZK gives the verifier VZK a zero-knowledge proof that the interactive PCP verifier, who
chose the string h, accepts the proof that consists of the transcript corresponding to

(r1, com(m1), . . . , rl, com(ml))

and the oracle answers corresponding to

(com(πi1), . . . , com(πiq)).

PZK uses a zero-knowledge proof that has the following properties: its soundness is s

(recall that s
def
= 2−t

2), its completeness is c = 1, it is zero-knowledge against poly(n)-time
adversaries, and its communication complexity is at most

poly (t, log N, log k, d) .

Such a proof exists since the statement that we wish to prove is in

NTIME (poly (t, log N, log k, d)) .

This follows from the fact that the instance

(h, com(πi1), . . . , com(πiq), r1, com(m1), . . . , rl, com(ml))

is of size ≤ poly(t, log N, log k, d), and the running time of the interactive PCP verifier in
the second phase is at most poly(t, log N, log k, d). Thus, using the commitment scheme
com as above, we can easily construct a proof that is zero-knowledge against poly(n)-time
adversaries, with communication complexity at most poly(t, log N, log k, d).

5. The verifier accepts if and only if he accepts this proof.

The fact that this protocol is zero-knowledge follows from the fact that the commitment scheme
com is computationally hiding against poly(n)-time adversaries, and from the fact that the protocol
in Step 4 is zero-knowledge against poly(n)-time adversaries. The perfect completeness of this
protocol follows from the perfect completeness of the zero-knowledge protocol in Step 4, and from
the perfect completeness of the underlying interactive PCP. The soundness parameter of this
protocol is 2s = 2−t. This follows from the soundness parameter s of the zero-knowledge protocol
in Step 4, and from the soundness parameter s of the underlying interactive PCP (and from the
fact that the commitment scheme com is perfectly binding). The fact that the prover is efficient
(assuming that he is given a witness) again follows from the fact that the prover in the interactive
PCP is efficient, and from the fact that the prover in the zero-knowledge proof in Step 4 is efficient.

43

References

[ALMSS92] S. Arora, C. Lund, R. Motwani, M, Sudan, and M. Szegedy. Proof Verification and
Hardness of Approximation Problems. In FOCS 1992: 14-23. Also in J. ACM 45(3): 501-555
(1998).

[AS92] S. Arora, S. Safra: Probabilistic Checking of Proofs: A New Characterization of NP. In
FOCS 1992: 2-13. Also in J. ACM 45(1): 70-122 (1998).

[AS97] S. Arora and M. Sudan. Improved Low-Degree Testing and its Applications. In STOC
1997: 485-495. Also in Combinatorica 23(3): 365-426 (2003).

[BFL90] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-Prover
Interactive Protocols. In FOCS 1990: 16-25. Also In Computational Complexity 1: 3-40 (1991).

[BGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, A. Wigderson. Multi-Prover Interactive Proofs:
How to Remove Intractability Assumptions In STOC 1988: 113-131.

[B93] R. Beigel. The Polynomial Method in Circuit Complexity. In Structure in Complexity Theory
Conference 1993: 82-95.

[DFKRS99] I. Dinur, E. Fischer, G. Kindler, R. Raz, and S. Safra. PCP Characterizations of NP:
Towards a Polynomially-Small Error-Probability. In STOC 1999: 29-40.

[FL92] U. Feige and L. Lovasz. Two-Prover One-Round Proof Systems: Their Power and Their
Problems (Extended Abstract) In STOC 1992: 733-744

[GMR85] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. In STOC 1985: 291-304. Also in SIAM Journal on Computing, 18(1):186-208, 1989.

[GMW86] O. Goldreich, S. Micali, and A. Wigderson. Proofs that Yield Nothing But Their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. In J. ACM 38(3):691-729 (1991).

[G01] O. Goldreich. Foundations of Cryptography: Volume 1 – Basic Tools. Cambridge University
Press, 2001.

[GH98] O. Goldreich and J. Hastad. On the Complexity of Interactive Proofs with Bounded
Communication. In Information Processing Letters 67(4): 205-214 (1998).

[GVW02] O. Goldreich, S. P. Vadhan, A. Wigderson. On interactive proofs with a laconic prover.
In Computational Complexity 11(1-2): 1-53 (2002).

[HN06] H. Harnik and M. Naor. On the Compressibility of NP instances and Cryptographic Ap-
plications. In FOCS 2006.

[IKOS] Y. Ishai, E. Kushilevitz, R. Ostrovsky, A. Sahai. Zero-Knowledge from Secure Muliparty
Computation. (Manuscript).

[KR06] Y. T. Kalai and R. Raz. Succinct Non-Interactive Zero-Knowledge Proofs with Preprocess-
ing for LOGSNP. In FOCS 2006.

[K92] J. Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC 1992, pages
723-732.

44

[LFKN90] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic Methods for Interactive
Proof Systems. In FOCS 1990: 2-10. Also in J. ACM 39(4): 859-868 (1992).

[MR05] D. Moshkovitz and R. Raz. Sub-Constant Error Low Degree Test of Almost Linear Size.
In STOC 2006: 21-30. Also appears on (ECCC)(086): (2005).

[MR06] D. Moshkovitz and R. Raz. Sub-Constant Error PCP of Almost Linear Size. (Manuscript
2006).

[M94] S. Micali. CS Proofs (Extended Abstracts). In FOCS 1994, pages 436-453.

[RS97] R. Raz and S. Safra. A Sub-Constant Error-Probability Low-Degree Test, and a Sub-
Constant Error-Probability PCP Characterization of NP. In STOC 1997: 475-484.

[R87] A. Razborov. Lower Bounds for the Size of Circuits of Bounded Depth with Basis {∧,⊕}.
In Math. Notes of the Academy of Science of the USSR: 41(4) : 333-338 (1987).

[R05] R. Raz. Quantum Information and the PCP Theorem. In FOCS 2005: 459-468.

[S92] A. Shamir. IP=PSPACE. In J. ACM 39(4): 869-877 (1992).

[S87] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Com-
plexity. In STOC 1987: 77-82.

45

Sum-Check Protocol for
∑

t1,...,tm∈H f(t1, . . . , tm) = 0

• In the first round, P computes the univariate polynomial g1 : F → F defined by

g1(x)
def
=

∑

t2,...,tm∈H

f(x, t2, . . . , tm),

and sends g1 to V . Then, V checks that g1 : F → F is a univariate polynomial of degree at
most d, and that

∑

x∈H

g1(x) = 0.

If not V rejects. Otherwise, V chooses a random element c1 ∈R F, and sends c1 to P .

• In the i’th round, P computes the univariate polynomial

gi(x)
def
=

∑

ti+1,...,tm∈H

f(c1, . . . , ci−1, x, ti+1, . . . , tm),

and sends gi to V . Then, V checks that gi is a univariate polynomial of degree at most d,
and that

∑

x∈H

gi(x) = gi−1(ci−1).

If not V rejects. Otherwise, V chooses a random element ci ∈R F, and sends ci to P .

• In the last round, P computes the univariate polynomial

gm(x)
def
= f(c1, . . . , cm−1, x),

and sends gm to V . Finally, V checks that gm is a univariate polynomial of degree at most
d, and that

∑

x∈H

gm(x) = gm−1(cm−1).

If not V rejects. Otherwise, V chooses a random element cm ∈R F and checks that

gm(cm) = f(c1, . . . , cm),

by querying the oracle at the point z = (c1, . . . , cm).

Figure 3: Sum-check protocol (PSC(f), V f
SC) [LFKN90, S92]

46

Interactive Proof for Ψ(w) = 0

Parameters: d, F,H,m (as described in the beginning of Section 4).

Common Input to P and V : arithmetic formula Ψ : F
k → F of syntactic degree ≤ d, where

k + 1 = |H|m.

Private Input to P : (w1, . . . , wk) ∈ F
k

Oracle to V : π
def
= LDEF,H,m(1, w1, . . . , wk)

P, V :

Compute
Φ : F

k+1 → F,

which is the homogeneous arithmetic formula corresponding to d and Ψ, as described in
Subsection 4.1.

P, V

Let fΦ,π : F
md → F, defined as follows: for every z1, . . . , zd ∈ F

m,

fΦ,π(z1, . . . , zd)
def
= π(z1) · . . . · π(zd) · Φ̂(z1, . . . , zd).

P À V :

Run the sum-check protocol (PSC(fΦ,π), V
(fΦ,π)
SC) described in Figure 3, for proving that

∑

t1,...,tmd∈H

fΦ,π(t1, . . . , tmd) = 0.

P uses the Turing machine from Lemma 4.5 to run this sum-check efficiently. V uses the
oracle π to simulate the oracle fΦ,π.

Figure 4: (P1(w, Ψ), V π
1 (Ψ))

47

SATN,k,d ∈ IPCP(p, q, `, c, s) with q ≤ poly(log log k, d)

Parameters: N, k, d, F,H,m (as described in Subsection 5.1).

Common Input to P and V : Ψ1, . . . ,ΨN : {0, 1}k → {0, 1} arithmetic formulas of syntactic
degree ≤ d.

Private Input to P : (w1, . . . , wk) ∈ {0, 1}k

P :

Compute π = LDEF,H,m(1, w1, . . . , wk). Give V oracle access to π.

P ¿ V :

Run the low degree test (PLDT(π), V π
LDT), described in Figure 1, with respect to degree

m · (|H| − 1). If the test fails then V rejects.

V :

Run the point test V π
PT described in Figure 2. If the test fails then reject.

V → P :

Choose a random coordinate j ∈ [M], and send it to P .

V, P :

Let
ΨN+1, . . . ,ΨN+k : F

k → F

be k arithmetic formulas defined by

ΨN+i(x1, . . . , xk)
def
= x2

i − xi.

Let
Ψ(x)

def
= ECC(Ψ1(x), . . . ,ΨN+k(x))j .

P À V :

Run protocol (P1(w,Ψ), V π
1 (Ψ)). Accept if and only if (P1(w,Ψ), V π

1 (Ψ)) = 1.

Figure 5: (P2(w, Ψ1, . . . ,ΨN), V2(Ψ1, . . . ,ΨN))

48

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

