
Quantum deduction rules

(preliminary version)

Pavel Pudlák ∗

March 27, 2007

Abstract

We define propositional quantum Frege proof systems and compare it with classical Frege proof

systems.

1 Introduction

In this paper we shall address the question whether quantum circuits could help us prove theorems faster
than conventional devices. For some computational problems, quantum circuits have been designed that
are much smaller than all known classical circuits. In particular, polynomial size quantum circuits were
found for the problem of factoring integers and researchers believe that there are no polynomial size classical
circuits for this problem. Therefore our aim in this paper is to initiate the study of quantum concepts in
proof complexity. We should stress that we shall only study the proof complexity of classical logic, we shall
not consider quantum logic or any other nonclassical logic.

In proof complexity one studies the complexity of proofs of mathematical theorems and the strength of
the axioms they need. Many concepts in proof complexity are naturally related to concepts in computational
complexity. For instance, the concept of a proof system for propositional logic corresponds to the concept
of a complexity class. One of the fundamental concepts in proof theory and proof complexity is the concept
of a Frege system [5]. Frege systems are proof systems for propositional logic based on axiom schemas and
deduction rules. The main question that we study in this paper is how to define a quantum counterpart of
Frege systems.

The key step in defining such a concept is to define a quantum deduction rule. Roughly speaking, a
quantum deduction rule is a unitary operation that acts on strings of a fixed length in such a way that it
preserves truth. Given a finite set of quantum deduction rules, a quantum Frege proof is a sequence of proof
lines, the first line being empty and each next line is obtained from the previous one by applying one of the
quantum deduction rules. Thus each proof line is a quantum superposition of strings of formulas. We say
that the proof proves a given proposition φ if φ occurs in the last proof line with amplitude α, |α|2 ≥ 1/2 (ie.,
if we measure the last state we shall see a string of propositions which includes φ with probability ≥ 1/2).

We shall show that given such a quantum proof one can extract from it a classical proof of the same
proposition that has essentially the same size. Thus quantum Frege proofs do not allow us to present proofs
in a more compact way than classical ones. Yet it could happen that one can prove more using quantum
proofs. The reason is that given a quantum proof there does not seem to be an efficient algorithm to extract
a classical proof from it. We shall show, that it is impossible to extract classical proofs from quantum Frege
proofs in polynomial time using classical Turing machines if factoring integers is hard.

We shall only consider the propositional calculus. (Thus we shall omit the adjective propositional when
talking about proof systems etc.) However, we believe that similar results can be proven for predicate logic,

∗Supported by the research project MSM 0021620838 of the Ministry of Education of the Czech Republic.

1

Electronic Colloquium on Computational Complexity, Report No. 32 (2007)

ISSN 1433-8092

because the essential combinatorial concepts, namely, rewriting and substitution, are present already in the
propositional calculus.

In computational complexity the concept of a quantum proof has a much more general meaning. It is
a quantum state that witnesses the presence of a string in a set. It is a means to define sets, which is
an extension of nondeterminism and randomness to the quantum setting. The most important complexity
class considered is QMA (quantum Merlin-Arthur) an extension of the classical MA (Merlin-Arthur). In a
relativized world QMA is strictly larger than MA. Our results are related to this area of research, but do
not imply anything new about these classes.

2 Basic definitions and notation

In this section we shall introduce notation and recall some basic concepts from proof complexity and quantum
computation. However, we do suppose that reader is familiar with basics of these fields (as presented eg. in
[8, 6]).

Let a complete basis of connectives be fixed. TAUT will denote the set of all propositional tautologies.
We shall use a slightly modified definition of a propositional proof system.

Definition 1 A proof system is a set A ⊆ Σ∗ and a mapping Π : A→ TAUT such that

1. A is decidable in polynomial time, ie., A ∈ P;

2. Π is computable in polynomial time;

3. Π(A) = TAUT .

For a ∈ A, we say that a is a proof of Π(a), or a proves Π(a).
Proof systems are compared using the following quasiordering relation: (Π, A) polynomially simulates

(Σ, B) if there exists a polynomial time computable function f : B → A such that for every b ∈ B,
Σ(b) = Π(f(b)). I.e. f transforms proofs in (Σ, B) into proofs in (Π, A) of the same tautologies.

To formalize quantum computations we shall use the standard notation. We shall consider a finitely
dimensional complex space CN . States will be unit vectors, and they will be denoted by

|description or label〉

The scalar product of two vectors |a〉 and |b〉 is denoted by 〈a|b〉. The symbol 〈u|V |w〉 denotes the product
of a row vector 〈u|, linear operator or a matrix U and a column vector |w〉.

Transformations of the states are determined by unitary operators. If U is unitary, we write

|a〉 7→ U |a〉.

In order to represent a state or a transformation we fix an orthonormal basis of the space. Given a basis B,
a state |a〉 is represented by the vector

{〈b|a〉}b∈B ,

and a unitary operator U is represented by its matrix

{〈b|U |c〉}b,c∈B .

We shall say that 〈b|a〉 is the amplitude of b in state |a〉 and 〈b|U |c〉 is the amplitude of the transition from
b to a.

When computing we assume that the states of the basis are labeled by strings of 0’s and 1’s. So the basis
is:

{|a〉 ; a ∈ {0, 1}m},

2

where we assume that the dimension of the space of states is 2m. The elements of the space are called m
quantum bits.

A quantum gate is a unitary transformation g : C2k → C2k

, where k = 1, 2. Such a transformation can
be extended to the unitary transformation Ug : C2m → C2m

by defining

Ug = Im1
⊗ Ug ⊗ Im2

where Ij denotes the identity transformation on C2j

, m1 + k +m2 = m and ⊗ denotes the tensor product.
More generally, we allow the quantum gate to act on an arbitrary pair of bits, not necessarily on a pair of
consecutive bits. (This would be harder to express using a formula.)

A quantum circuit is C = (Ug1
, . . . , Ugt

), where g1, . . . , gt are quantum gates. This circuit computes the
unitary transformation

UC = Ug1
◦ . . . ◦ Ugt

In most computations we need auxiliary qubits for computations. Thus for some n, l such that n + l = m,
the computation starts with a boolean input vector a of length n and the rest, ie. l bits, are fixed to 0s. The
result of the computation U |a0̄〉 is in general a linear superposition of basis states

UC |a0̄〉 =
∑

b∈{0,1}n

βb|b〉

(where
∑

b |β|2 = 1). Again, we consider the output to be a specified subset of n′ ≤ m bits and we ignore the
rest. If measurements give always the same n′ output bits (ie., if for all βb 6= 0 the first n′ of b are the same)
for a fixed input, we say that it is an exact computation. The circuit then computes a boolean function. In
bounded error computation of a function f , we only require that, given an argument a ∈ {0, 1}n, the output
value f(a) occurs with large probability, where “large” means > 1/2. (The 1/2 is not essential, we can
stipulate any positive constant.) One can compute factoring of integers with bounded error in polynomial
time [14]. Discrete logarithm can be computed exactly in polynomial time if one is allowed to choose an
appropriate gate for the given finite field. For these functions no classical randomized polynomial time
algorithms are known.

It should be stressed that when we compose quantum computations, we cannot ignore the remaining
m − n′ bits of the output. In many cases we must eliminate the “junk qubits”, ie., we need to have those
bits to be equal to 0. This makes a huge difference: the function must be one-to-one, and it must be
reversible—we can compute the inverse by turning the circuit upside-down.

Circuits are best suited for defining nonuniform complexity classes. If we want to define uniform complex-
ity classes we either have to use Turing machines or uniform families of circuits. One can define Quantum
Turing Machines, but it is more convenient to work with uniform families of quantum circuits. We shall only
need P-uniformity which is defined as follows. A family of quantum circuits {Cn} is P-uniform, if there
exists a classical Turing machine which, given a string of n zeros, constructs Cn in polynomial time (notice
that in particular the size of Cn is polynomial in n). Here we denote by n the number of input bits of Cn.

The most important quantum complexity class is BQP; it is defined as the class of languages L for which
there exist a P-uniform family of quantum circuits {Cn} such that for every n, Cn accepts a ∈ {0, 1}n

1. with probability ≥ 2/3, if a ∈ L,

2. with probability ≤ 2/3, if a 6∈ L.

We say that Cn accepts a, if the measurement of the state Cn(a) produces a string starting with 1.

Quantum proof systems

There are several ways in which one can generalize the concept of a proof system using quantum computa-
tions. We are not going to study generic quantum proof systems, we shall rather focus on one and compare
it with the corresponding classical one. Nevertheless, it is worthwhile to list the main properties that the

3

system possesses. Since think that these properties are natural, we propose to define in this way quantum
proof systems.

In order to obtain a concept more general than classical proof systems we have to relax at least one of
the conditions of Definition 1. We shall replace condition 2 by a weaker condition that only requires the
tautologies proved by the proof to be computable by P-uniform quantum circuits. Furthermore, we shall
allow one proof to prove more than one tautology. This would make essentially no difference for the original
concept, but in case of quantum proof systems it seems too restrictive to require each proof to prove only
one tautology.

Definition 2 A quantum proof system is a set A ⊆ Σ∗ and a family of circuits {Cn}n∈N such that

1. A is decidable in polynomial time, ie., A ∈ P;

2. {Cn} is P-uniform;

3. given P ∈ A and n = |P |, Cn produces a superposition Cn(P) of strings of tautologies;

4. for every tautology φ, there exists P such that φ occurs in the superposition Cn(P).

Let us explain the last two conditions in detail. Let Cn(P) be a superposition of strings
∑

i∈I

αi|Si〉,

where all αi 6= 0 and Si 6= Sj for i 6= j. Then Condition 3 says that a distinguished part of each Si is a
string of tautologies. Condition 4 says that for every tautology φ, there exists a proof P ∈ A such that in
the superposition of strings Cn(P) a string containing φ occurs with a nonzero amplitude.

In the sequel we shall always use the words “occurs in the superposition” with this meaning. Namely, a
basis state |a〉 occurs in B =

∑

b αb|b〉 iff αa 6= 0 iff the measurement of B gives the string a with nonzero
probability. Here the sum is over basis states, which always will be all strings of zeros and ones of some fixed
length.

For a given proof P ∈ A and a tautology φ, we shall say that P weakly proves φ, if φ occurs in Cn(P).
If P weakly proves φ, the probability that we obtain φ by measuring Cn(P) is nonzero, but it can be very
small. This is a rather theoretical concept, since in practice it would not be possible to test this relation.
Therefore we reserve the words P proves φ to the case when the probability that we obtain φ from Cn(P) is
is at least 1/2. (The constant 1/2 is not essential, as the usual amplification methods apply to this concept.)
Furthermore, we define that P strongly proves φ if the probability that we obtain φ is 1.

Remarks. 1. In this definition we adhere to the original meaning of the word proof by ensuring absolute
certainty that a proposition φ is a tautology once we establish that P is a quantum proof of it. Also having
a string of bits representing a proof enables us to copy the proof and use it repeatedly, which would not be
possible if proofs were general quantum states. In other words, the experiment demonstrating that φ is a
tautology is not a one time experiment, it can be repeated. What may seem counterintuitive is that φ is
not a part of P . But notice that being a part of P means that one can easily compute φ from P (namely,
to compute in polynomial time). If we had both A ∈ P and the function P 7→ φ computable in polynomial
time, then we would just obtain the definition of classical proof systems. We have to relax at least one of
the two conditions in order to obtain a more general concept.

2. Our definition of quantum Frege proof systems will satisfy a condition slightly stronger than 2. of
Definition 2. Namely, in quantum Frege systems every string S occurring in Cn(P) will consist only of
several tautologies and the rest filled by the default value 0. So there will be no “junk bits”.

We shall extend the concept of simulation to quantum proof systems. We say that a classical (quantum)
proof system (A,Π) (resp. (A, {Cn})) polynomially simulates a classical (quantum) proof system (B,Σ)
(resp. (B, {Dn})), if there exists a function f

f : B × TAUT → A

4

which is computable in polynomial time and such that for every P ∈ B and φ ∈ TAUT , if P proves φ in
(B,Σ) (resp. (B, {Dn})), then f(P, φ) proves φ in (A,Π) (resp. (A, {Cn})).

We shall also need the following concept.

Definition 3 Let B be an orthonormal basis of a finitely dimensional Hilbert space H. Let K = (U1, . . . , Ut)
be a string of unitary operators.

1. For a0, a1, . . . , at ∈ B, we shall say that (a0, a1, . . . , at) is a history of K, if for all i = 1, . . . , t,
〈ai|Ui|ai−1〉 6= 0.

2. The amplitude of a history h = (a0, a1, . . . , at) is the complex number

αh = 〈at|Ut|at−1〉〈at−1|Ut−1|at−2〉 . . . 〈a1|U1|a0〉.

Lemma 2.1 Let U = Ut . . . U1 be the product of a string of unitary transformations K = (U1, . . . , Ut) and
a, b ∈ B such that 〈b|U |a〉 6= 0. Then

〈b|U |a〉 =
∑

h

αh,

where the sum is over all histories h of the form

(a = a0, a1, . . . , at = b).

In particular, there exists at least one history of this form.

Proof. Easy—from the definition of the multiplication of matrices.

We shall use this concept for the Hilbert space H of n qubits and for Ui the unitary transformation
defined on H by the gates of a quantum circuit. More generally, we may consider any stratification of the
circuit and define fibers with respect to this stratification. Clearly, histories in a coarser stratification are
subsequences of histories of a finer stratification.

Given a quantum circuit C we can easily construct a circuit that produces the superposition of histories
with the assigned amplitudes. However, in general, this does not help us to obtain a history starting
and ending in particular states. Even if 〈b|U |a〉 = 1, the sum

∑

h |αh|2 over all histories of the form
(a = a0, a1, . . . , at = b) may be exponentially small.

Example. Let H be a unitary matrix on an N -dimensional space whose matrix in a basis B is a
normalized Hadamard matrix. (For instance, let N = 2n and H be the tensor product of n 2-by-2 normalized
Hadamard matrices.) Let t = 2, U1 = U2 = H and let a ∈ B be a fixed element. Then 〈a|U2U1|a〉 = 1, since
U2U1 is the identity. For every b, c ∈ B, we have

|〈c|U2|b〉〈b|U1|a〉| =
1√
N

1√
N

=
1

N
.

Hence
∑

b

|α(a,b,a)|2 =
1

N
.

3 Frege proof systems

A Frege system, [5], is determined by a finite set of (usual) axiom schemas and rules. Recall that an axiom
schema can be viewed as a rule with no premises. We assume that the system is sound and complete—it
proves exactly all tautologies in TAUT .

5

A Frege proof is a finite sequence of propositions such that each proposition is either an instance of an
axiom schema or follows from previous propositions by an application of a rule. A proof proves a proposition
φ, if φ is the last proposition in it.

Example. [Hilbert and Ackermann]
Connectives: ¬,∨.
Axiom schemas:

1. ¬(A ∨A) ∨A

2. ¬A ∨ (A ∨B)

3. ¬(A ∨B) ∨ (B ∨A)

4. ¬(¬A ∨B) ∨ (¬(C ∨A) ∨ (C ∨B))

Rule:
5. From A and ¬A ∨B derive B.

It is important to realize that in Frege systems we do not use the general substitution rule, we only
use substitution instances of axioms and rules. Therefore we shall use different variables in rules and in
propositions that we are proving:

• A,B,C, . . . will be variables in the rules, ie., for which we can substitute propositions;

• u, v, w, . . . will be variables in propositions in proofs, ie., they represent the truth values true and false.

We shall call A,B, . . . metavariables and u, v, . . . variables. We shall denote by PROP propositions that
contain only variables. We have been assuming that a complete basis of connectives is fixed and we are
considering only propositions in this basis.

4 Quantum deduction rules

Our aim is to generalize the concept of a Frege system using quantum computations. The crucial step is to
define quantum deduction rules. We shall start with a general definition and show that every such a rule
must have a special form.

Let S be a finite set of finite strings of propositions. Let H be the Hilbert space with an orthonormal
basis {|S〉; S ∈ S}.

Definition 4 A quantum deduction rule defined on S is a unitary transformation D : H → H such that

1. If

D :
∑

i

αi|Si〉 7→
∑

j

βj |Tj〉

where all αi, βj 6= 0, then every proposition φ in every Tj is a logical consequence of the set of propo-
sitions

⋃

i Si. Formally,
⋃

i

Si `
⋃

j

Tj.

2. For every S, T ∈ S, if S 6= T , then no string of propositions is a substitution instance of both S and T .

6

The second condition concerns only the set of strings on which D is defined. It is needed to ensure that
applications of quantum rules are unitary. (An example of an ambiguous pair of strings is the following:
(A ∧B,C) and (A,B ∨C) have a common substitution instance (u ∧ v, u ∨ v).)

Classical deduction rules can have several assumptions but they always have one conclusion. In order
to be able to compare them with quantum deduction rules, we shall assume that also classical rules can
have multiple conclusions (each proposition being a logical consequence of the assumptions). The following
proposition is a trivial consequence of the definition. It shows that in a sense a quantum deduction rule is a
combination of classical rules.

Proposition 4.1 The first condition of the definition of a quantum deduction rule is equivalent to:

〈T |D|S〉 6= 0 ⇒ S ` T. (1)

Proof. Suppose 〈T |D|S〉 6= 0. Then T occurs in D|S〉, hence the propositions in T logically follow from
propositions in S.

For the converse observe
D

∑

i

αi|Si〉 =
∑

i

αi

∑

T

〈T |D|Si〉|T 〉.

Hence T can occur in the superposition only if 〈T |D|Si〉 6= 0 for some i.

Proposition 4.2 Every quantum deduction rule D is reversible, ie., D−1 is also a quantum deduction rule.
Thus

〈T |D|S〉 6= 0 ⇒
∧

S ≡
∧

T.

For example, the following rule cannot be extended to a quantum rule:

D : A ∧B 7→ A ∨B .

Proof. The essence of this proposition is the following simple fact. Let A be a doubly stochastic matrix and

let

(

B C
E F

)

be its block decomposition where B is a square submatrix. Then C = 0 iff E = 0.

Let D be a quantum deduction rule with a set of strings of propositions S. Let G be the directed graph
with the set of vertices S and S → T an arrow iff 〈T |D|S〉 6= 0. Since D−1 is the conjugate transposed of
D, it suffices to prove that if S → T , then T ` S. To this end it suffices to show that if S → T in G, then
there exists a directed path from T to S in G.

Suppose, by contradiction, that S → T , but there is no directed path from T to S. Let T ⊆ S be all
vertices of G reachable from T by directed paths. Let A be the doubly stochastic matrix whose entries are
the squares of the absolute values of the entries of D. Let B be the square submatrix of A determined by
T and C,E, F matrices of the decomposition of A determined by B. Then C 6= 0 whereas E = 0, which is
impossible.

We shall say that a quantum deduction rule is simple if S ≡ T for every S, T ∈ S. The previous
proposition implies:

Corollary 4.3 Every quantum deduction rule is a direct sum of simple rules.

We shall call a quantum deduction rule proper, if the set of metavariables occurring in strings S is the
same for all S ∈ S.

7

Examples. 1. The following is a simple proper quantum deduction rule.

A,B A ∧B A,B,A ∨B
A,B 0 1√

2
1√
2

A ∧B 1√
2

1
2 − 1

2

A,B,A ∨B − 1√
2

1
2 − 1

2

Notice that we may derive A∨B from A∧B, but we must keep A and B in order to have a string of formulas
of the same logical strength.

It is convenient to assume the same number of propositions in every string. Therefore, we shall use the
constant true for the missing propositions.

A, B, > A ∧B, >, > A, B, A ∨B
A, B, > 0 1√

2
1√
2

A ∧B, >, > 1√
2

1
2 − 1

2

A, B, A ∨B − 1√
2

1
2 − 1

2

If the number of formulas in the strings is k, we shall say that it is a k-ary rule. So the above rule is ternary.
2. A classical axiom schema Φ(A,B, . . .) can be presented as a quantum rule as follows:

> Φ(A,B, . . .)

> 0 1
Φ(A,B, . . .) 1 0

This rule is not proper.
3. In the same manner one can transform every classical deduction rule into a quantum deduction rule,

we only have to keep some premises in case the conclusion is weaker than the conjunction of premises. Thus
the version of modus ponens used in the proof system of Hilbert and Ackermann can be presented as follows.

A,B A,¬A ∨B
A,B 0 1

A,¬A ∨B 1 0

Since quantum concepts are usually more delicate than classical ones, we have to define precisely how
quantum rules are applied. This concerns details that are usually ignored when defining applications of
classical rules. When defining applications of quantum rules, we need to prove that they are unitary trans-
formations, and then these things become important.

Let D be a k-ary quantum deduction rule on the set of strings of propositions S. Let Γ ⊆ PROP k be a
finite set of strings of length k of propositions. Let Σ be a set of substitutions. Then we can use D to define
a unitary transformation ∆ on Γ as follows.

1. Assume that the same metavariables A1, . . . , An occur in every S ∈ S. We need to define amplitudes
for transitions s→ t for every s, t ∈ Γ.

(i) If there is no S ∈ S such that s is a substitution instance of S where we only consider substitutions
from Σ, then we put 〈t|∆|s〉 = 1 if s = t, otherwise we put it equal to 0.

(ii) If there exist S ∈ S and σ ∈ Σ such that s = σ(S), then S and σ are determined uniquely, according
to condition 2. of Definition 4. Let t ∈ Γ be such that t = σ(T) for some T ∈ S. Then we put

〈t|∆|s〉 = 〈T |D|S〉.
For all other t ∈ Γ we put 〈t|∆|s〉 = 0.

To ensure that the resulting transformation ∆ is unitary we need to assume the following condition.

if σ(S) ∈ Γ for some S ∈ S and some substitution σ ∈ Σ, then for all T ∈ S, σ(T) ∈ Γ. (2)

8

Lemma 4.4 If condition (2) is satisfied, then ∆ is unitary.

Proof. Let σ be a substitution such that σ(S) ∈ Γ for some S ∈ S. Let Sσ = {σ(T);T ∈ S}. If σ′ is another
such a substitution, then Sσ ∩ Sσ′ = ∅. That is because of condition 2. Definition 4 and because σ 6= σ′

implies σ(T) 6= σ′(T) (we are tacitly assuming that substitutions are defined only on A1, . . . , An). Thus Γ
can be partitioned into blocs Sσ and a block of strings that do not belong to any Sσ. Therefore the matrix
of ∆ is a direct sum of copies of the matrix of D and an identity matrix. This proves that ∆ is unitary.

2. Now assume that D is a general quantum rule. Then it can happen that some variable A occurs T
but not in S. If σ is a substitution such that σ(S) = s for some s ∈ Γ, then σ is uniquely determined only
for variables occurring in S. Thus the pair S, s does not uniquely determine what we should substitute for
A. Therefore we have to fix the values of substitutions on A independently on Γ.

In more detail, we shall do it as follows. Let A1, . . . , An be the variables that occur in all S ∈ S; we shall
call them proper metavariables. Let B1, . . . , Bm be the variables that occur in some elements of S, but not
in all; we shall call them improper. Let φ1, . . . , φm ∈ PROP be some fixed propositions. We shall consider
substitutions σ defined on variables A1, . . . , An, B1, . . . , Bm which are defined arbitrarily on proper variables
and such that σ(Bi) = φi is fixed for i = 1, . . . ,m. Then we proceed as in 1; in particular, in condition
(2) the substitutions have the form just described. The same argument as in 1. shows that the resulting
transformation ∆ is unitary also in general.

The fact that an application of a quantum deduction rule defines a unitary transformation justifies its
name, but we need more, because we want to be able to compute quantum proofs using quantum computers.
We need to show that quantum circuits computing these transformations can be constructed in polynomial
time. We shall assume that Γ is the set of all strings of k propositions where each proposition is coded by
n2 bits. Thus the input size is n = kn2. Σ will be the maximal set of substitutions satisfying condition (2).

Proposition 4.5 It is possible to construct in polynomial time a quantum circuit that computes the unitary
transformation defined by D on {0, 1}n.

Proof. Instead of a circuit, we shall describe a quantum algorithm which can be transformed into circuits
using standard methods.

Let s ∈ {0, 1}n be given as input. Deciding whether s is a string of propositions and whether there
exists a string S ∈ S and a substitution σ ∈ Σ such that σ(S) = s and if so computing the string and the
substitution the string can be done in polynomial time. We shall keep s during the computation, hence we
can use a reversible computation (which is a quantum computation).

1. If there is no such pair S, σ, this is the end of the computation.
2. Otherwise the pair is uniquely determined. Now we can erase s since it is determined by σ and S.

Then we apply the unitary transformation D to S. In general we obtain a superposition of elements of S, but
we only need to describe what we shall do with a specific single element T ∈ S: we apply the substitution σ
to T ; let t = σ(T). Now we have t, σ, T . Since the pair σ, T is uniquely determined by t, we can erase it.

Here is a diagram of the computation:

s
s σ S

σ S
σ T

t σ T
t

9

5 Quantum Frege proofs

In classical computations we can keep all data that we produce during the computation, but in quantum
computations it is often very important to dispose of some data that are not needed in the rest of the
computation. We shall see the same relation between classical and quantum proofs. Classical proofs are
defined as sequences of all formulas produced during the deduction process. However, when showing a proof
on a blackboard, we erase (due to the space limitations) propositions that we do not need anymore. Our
definition of quantum Frege proofs will be more like the proofs on blackboards—we shall add and erase
propositions during the proof. Furthermore, at each step we shall not have just a set of propositions, but
rather a quantum superposition of sets of propositions. Since superpositions may consists of exponentially
many observable states, we cannot represent them explicitly. Therefore, a quantum proof will be a sort of a
quantum program to produce such superpositions.

Definition 5 A quantum Frege proof is a sequence (n1, n2, J1, . . . , Jm,), where n1 is the number of propo-
sitions in proof lines, n2 is the maximal size of propositions, and J1, . . . , Jm are instructions specifying
applications of quantum rules.

An instruction is a string (D, i1, . . . , ik, ψ1, . . . , ψl), where D is a k-ary quantum deduction rule i1, . . . , ik
are indices of formulas to which the rule should be applied and ψ1, . . . , ψl are propositions that should be
substituted for improper metavariables.

Such a proof is associated with a computation that produces a sequence of m+1 proof-lines. A proof line
is a quantum superposition of strings of n1 propositions, each proposition of size at most n2. The 0-th proof
line is always the string of n1 formulas >. For i = 1, . . . ,m, the i-th proof-line is obtained by applying the
quantum rule Di according to the i-th instruction.

We say that (n1, n2, J1, . . . , Jm) proves (resp. weakly proves, resp. strongly proves) φ, if the following
holds true. If we measure the last proof line, then φ occurs in the string of the propositions obtained from
from the measurement with probability ≥ 1/2 (resp. > 0, resp. = 1).

Definition 6 A quantum Frege system is determined by a finite set of quantum deduction rules such that
all tautologies are provable using only these deduction rules.

By Proposition 4.5, we can construct in polynomial time a quantum circuit that computes the proof
lines of a given quantum Frege proof. Thus the concept of proving (resp. weakly/strongly proving) is well
defined. To show that the definition of quantum Frege systems satisfies our general definition of quantum
proof systems (Definition 2), we only need to show that all propositions that appear in some proof-lines are
tautologies. This follows from Proposition 5.1 below.

Since every classical Frege proof system can be turned into a quantum Frege system, the class of quantum
Frege systems is nonempty. A classical result [5] states that Frege systems polynomially simulate each other.
We shall show that the corresponding statement for quantum Frege proof systems is unlikely, since classical
Frege systems probably do not polynomially simulate some quantum Frege systems. However, we conjecture
that there exist “universal” quantum Frege systems in the following sense.

Conjecture 1 There exists a quantum Frege system that polynomially simulates all other quantum Frege
systems.

The conjecture is supported by the fact there are finite sets of quantum gates that are universal for
quantum circuits. In particular, it has been shown that it suffices to take two gates, the Toffoli gate and the
Hadamard gate, [12, 2].

We can view the sequence of proof-lines of a quantum proof as a linear superposition of classical proofs,
hence a classical Frege proof is always contained in a quantum Frege proof.

Proposition 5.1 For every quantum Frege proof system there exists a classical Frege proof system such that
if (n1, n2, J1, . . . , Jm) is a quantum proof which weakly proves φ, then there exists a classical proof of φ whose
size is at most n1n2.

Thus, in particular, we cannot use quantum Frege proofs to construct shorter proofs.

10

Proof. Decompose the quantum deduction rules into classical ones. Consider a history the computation of
proof-lines that leads to a proof-line containing φ. The history consists of m+ 1 strings si of propositions.
According to Proposition 4.1, for i = 1, . . . ,m, every proposition of si follows from some propositions of si−1

by an application of a classical rule.

We shall need to simulate quantum proofs. To this end it is useful to simplify the form of instructions of
quantum proofs.

First we observe that it suffices to use propositional variables as formulas substituted for improper
metavariables. This is a well-known fact in sequent calculi and we shall use the same idea. Suppose we need
to substitute a proposition ψ for an improper variable B. Then we first construct a tautology containing ψ,
for example, we can take ψ ∨ ¬ψ. We shall start with the axiom schema that introduces such a tautology
and apply it to all variables of ψ. These will be the only applications of an improper rule. Then we use
proper rules to combine ψ1 ∨¬ψ1 and ψ2 ∨¬ψ2 into (ψ1 ∧ψ2)∨¬(ψ1 ∧ψ2), and so on for other connectives.
Once we have such a proposition we may use B ∨¬B as a “side formula” of the rule, and thus B becomes a
proper variable.

Secondly, we observe that the information about positions of formulas to which a rule should be applied
can be coded in the index of the proof line. The same can be done with the specification of variables to
which improper rules should be applied. In more detail, if we use at most k-ary deduction rules with at most
l improper variables, we shall pick an enumeration of all k-element subsets of n1 and l-element multisets of
n2 by numbers 1, . . . , p; note that p is bounded by a polynomial in n1 and n2. Then we can require that at
the i-th proof line we apply the rule to the subset of formulas and the string of variables specified by the
number q ≡ i mod p. To simulate an application of a rule D, we shall apply the identity rule everywhere
except at the required position, where we apply D.

We shall call such proofs oblivious. An oblivious proof is simply a string of quantum deduction rules
(D1, . . . , Dm) (and the pair of numbers (n1, n2) which we shall omit in the sequel). Thus we have shown the
following:

Proposition 5.2 For every quantum Frege system P there exists another quantum Frege system Q which is
oblivious and which polynomially simulates P .

6 Error propagation in quantum proofs

We have shown that using sound quantum deduction rules we can only derive tautologies from tautologies.
The proof was based on the fact that for every string of propositions that occur (with nonzero amplitude)
in the last state, there exists a history in the computation that can be interpreted as a classical Frege proof.
The proof used the distinction between zero and non-zero amplitudes in an essential way. Such a proof is not
sufficient if one wants to argue that quantum Frege proofs could be realized, if we had a quantum computer.
In practice we can never construct an instrument with absolute precision, hence it is unrealistic to assume
that non-tautologies always have amplitudes zero. The argument used in that proof does not exclude that
once a non-tautology occurs in the computation, just with a tiny nonzero amplitude, it could spread so that
non-tautologies occurring later would have large amplitudes. However, it is not difficult to see that this
cannot happen.

Consider the space H spanned by strings S consisting n1 propositions of length at most n2. Let D be a
quantum deduction rule and U the unitary transformation that it induces on H. Consider a state

|a〉 + |b〉,

where |a〉 is a superposition of strings S in which every proposition is a tautology and |b〉 is a superposition
of strings S such that in each S at least one proposition is not a tautology. Since quantum deduction rules
preserve truth and are invertible, in

U(|a〉 + |b〉) = U |a〉 + U |b〉

11

U |a〉 is the superposition of strings in which every proposition is a tautology and U |b〉 is the superposition of
strings such that in each string at least one proposition is not a tautology. The lengths of the vectors U |b〉
and |b〉 are the same, which shows that a small error remains small throughout the computation.

This shows that we can ignore errors whose probabilities are very small. We do not know exactly what
kind of errors will occur in quantum computers, as it will surely depend on the particular construction,
but it seems reasonable to assume that only errors that change a small number of bits will have significant
probabilities. Those errors can be eliminated using quantum error correcting codes.

7 How difficult is to extract a classical proof?

Although quantum proofs are not shorter than classical ones, they still may be useful. It can happen that
we find a short quantum proof without being able to find the short classical proof that is hidden in it.
Assuming that factoring integers is hard, we shall prove even more: in general, it is not possible to extract a
any classical proof from a quantum Frege proof in polynomial deterministic time. We shall state it formally
as a theorem about polynomial simulations.

Theorem 7.1 Assuming that it is not possible to factor integers in probabilistic polynomial time, there exists
a quantum Frege system that cannot be polynomially simulated by any classical Frege system.

In more detail, there exists a quantum Frege system Q, and a set of propositions γa,0, γa,1, a ∈ A such
that

1. exactly one of γa,0 and γa,1 is a tautology for every a ∈ A;

2. given an a ∈ A, it is possible to construct in polynomial time propositions γa,0 and γa,1 and a quantum
proof Pa in Q which proves one of them;

3. there exists no classical proof system (B,Γ) and a polynomial time computable function f , such that,
for every a ∈ A, f(a) is a proof in (B,Γ) of either γa,0, or γa,1.

We shall show that 3. implies that no classical proof system can simulate the quantum proof system Q.
Suppose, by contradiction, that (B,Γ) is a classical proof system and g is a polynomial simulation of Q by
(B,Γ). In order to compute f(a) we first compute L0 = g(Pa, γa,0) and L1 = g(Pa, γa,1) and check for which
i = 0, 1, Γ(Li) = γa,i. Then we put f(a) = Li for this i. This produces a function f that violates 3.

Notice that we do not claim that A is computable in polynomial time. We must also say that 3. is a
consequence of the the stronger statement that 1. is not decidable in polynomial time assuming factoring
is hard. Indeed, suppose 3. were false, ie., we had such a proof system (B,Γ) and a function f . Then we
could decide which of the two γa,0 and γa,1 is a tautology by computing Γ(f(a)).

The basic idea of the proof is to encode quantum computations as quantum Frege proofs. To encode a
quantum circuit by a quantum Frege proof is very easy. Represent bits 0 and 1 by two tautologies τ0 and
τ1, say τ0 ↔ u ∨ ¬u and τ1 ↔ ¬u ∨ u. Thus a string of bits (a1, . . . , an) ∈ {0, 1}n will be coded by the
string of propositions (τa1

, . . . , τan
). Then quantum gates will be represented by quantum deduction rules in

a natural way. For example, the NOT gate will correspond to the rule that interchanges u∨¬u with ¬u∨u.
However, it should be stressed that the simulation of quantum circuits alone does not suffice. If a quantum

proof proves only simple tautologies (such as u ∨ ¬u), then it is trivial to simulate it by a classical Frege
proof. What we need are tautologies that are difficult to recognize without a quantum computer. To this
end we shall use some concepts and results from cryptography and proof complexity.

A weak one-way function is a sequence of functions {Fn} such that

1. Fn : {0, 1}n → {0, 1}n;

2. x 7→ Fn(x) is computable in polynomial time;

12

3. the inverse function is not computable in polynomial time (ie., there exists no polynomial time com-
putable function f such that Fn(f(Fn(x))) = Fn(x) for all x ∈ {0, 1}n and all n).

Remark. In cryptography the inverse of a one-wayfunction is required not to be computable with non-
negligible probability for a random input using a randomized algorithm and polynomial time. Therefore we
call our concept “weak”. The same concerns the next concept that we are going to use.

A weak hard-core predicate for a weak one-way function {Fn} is a sequence of functions {hn} such that
for all n

1. hn : {0, 1}n → {0, 1} and satisfies

∀x, y ∈ {0, 1}n (Fn(x) = Fn(y) → hn(x) = hn(y)); (3)

2. x 7→ hn(x) is computable in polynomial time;

3. y 7→ hn(F−1
n (y)), for y ∈ Rng(Fn), is not computable in polynomial time.

Lemma 7.2 ([3, 14, 7, 13, 10]) Assuming factoring is hard, there exist a weak one-way function {Fn}
and its weak hard-core predicate {hn} such that

1. Fn and hn can be defined in the propositional calculus so that the formalizations of the sentences (3)
above have Frege proofs constructible in polynomial time;

2. hn(F−1
n (y)), for y ∈ Rng(Fn), can be computed by a P-uniform family of quantum circuits with bounded

error.

This lemma follows from results of the papers [3, 14, 7, 13, 10]. We shall briefly comment on how these
results are applied.

The idea of the proof of 1. goes back to the paper [9], where this lemma is implicitly shown for a
stronger proof system, Extended Frege, using the cryptosystem RSA. Constructing Frege proofs is much
more involved, therefore we shall use the result of [3] where the formalization has been done in detail. Their
approach is based on the Diffie-Hellman system; the corresponding one way function is defined by

F (N, g, a, b) = (N, g, ga modN, gb modN),

and the hard-core predicate they used is

h(N, g, a, b) = (gab modN) mod 2,

where N, g, a, b are positive integers, g, a, b < N , gcd(g,N) = 1. Notice that we do not require g to be a
generator of the multiplicative group Z∗

N .
In [13] it was proven that if h can be computed in polynomial time, then one can factor integers in

randomized polynomial time.
In [3] Bonet, Pitassi and Raz constructed Frege proofs of formalizations of

∀N, g, a, b, c, d (ga ≡ gc ∧ gb ≡ gd → gab ≡ gcd),

where ≡ is the congruence modN , from which a Frege proof of (3) can easily be constructed. They formalize
the following argument. Assuming ga ≡ gc and gb ≡ gd, we have:

gab ≡ (ga)b ≡ (gc)b ≡ gcb ≡ gbc ≡ (gb)c ≡ (gd)c ≡ gdc ≡ gcd.

2. A polynomial time bounded-error quantum algorithm for the discrete logarithm modulo a prime was
found in the seminal paper of P. Shor [14]. This was generalized to the discrete logarithm in any finite group

13

in [7], which includes the case of the discrete logarithm modulo a composite number. Using this algorithm
we can compute a, b from from N, g, ga, gb, hence also (gab modN) mod 2.

Remark. Recently, Mosca and Zalka a showed that the discrete Fourier transform can be computed
exactly in quantum polynomial time, which implies that also the discrete logarithm can be computed in this
way [10]. Nevertheless, they assume that a suitable unary quantum gate is constructed for each particular
N . In our definition of a quantum Frege system we require the set of rules to be finite. So we cannot use
their result to strengthen our Theorem 7.1 by saying that the quantum Frege system strongly proves γa,0,
or γa,1. To do that we would have to relax the condition of the finite basis of rules in a similar fashion.

Proof of Theorem 7.1. Assume that factoring is hard and let Fn be the function from Lemma 7.2 and hn

its weak hard-core predicate. Define Gn : {0, 1}n → {0, 1}n+1 by

Gn(x) =df (Fn(x), hn(x)).

For b ∈ {0, 1}n+1, let propositions γb be formalizations of the following sentences:

∀x Gn(x) 6= b.

Thus γb is a tautology iff b 6∈ Rng(Gn). Furthermore, for b′ ∈ Rng(Fn), exactly one of the b′0 and b′1 is
in Rng(Gn), hence exactly one of γb′0 and γb′1 is a tautology. So our set of tautologies will be γb′0 and
γb′1 for b′ ∈ Rng(Fn). (As noted above, which of the two is a tautology cannot be decided in deterministic
polynomial time, but it can be decided in polynomial time by a quantum machine.)

Lemma 7.3 Let a such that Fn(a) = b′ and i ∈ {0, 1} such that b = (b′i) 6∈ Rng(Gn) be given. Then one
can construct in polynomial time a Frege proof of γb.

Proof. We shall use Lemma 7.2 part 1. to formalize the following argument:

Suppose that γb is false, ie., Gn(x) = b = (b′i). Then Fn(x) = b′. Since Fn(a) = b′, we get
hn(x) = hn(a) from (3). Whence Gn(x) = Gn(a) 6= b. Contradiction.

The formalization of this proof presents no problem. The only thing that we should comment on is the
application of (3). As we do not have the substitution rule in Frege systems, we cannot obtain

Fn(x) = Fn(a) → hn(x) = hn(a)

by substituting a in the formula (3). Instead we must substitute the bits of a (more precisely, the truth
constants representing these bits) for the propositional variables representing y in the entire proof of (3).

Lemma 7.4 Given b′ ∈ Rng(Fn), it is possible to construct in polynomial time a quantum Frege proof P
which proves either γb′0 or γb′1.

Proof. The first part P1 of the quantum proof P will encode a quantum computation of a from b′ such
that Fn(a) = b′, which is possible because the discrete logarithm can be computed in polynomial time
using quantum circuits. Then it will simulate the computation of an encoding of the proof constructed in
Lemma 7.3. This proof is a classical Frege proof, but we shall represent it as an oblivious quantum proof
(D1, . . . , Dm). It will be encoded, as all other bits of the computation, by a string of tautologies τ0 and τ1.

The second part P2 of P will be a sequence of instructions that will actually produce the proposition that
we need, γb′0 or γb′1, from the string of tautologies τ0 and τ1 that encode (D1, . . . , Dm). We shall assume
that each rule Dj is represented in P1 by a string of length d of tautologies τ0 and τ1. The instructions in
P2 will use one “universal” rule U controlled by these strings of τ0 and τ1. Suppose w.l.o.g. that all Dj are

14

k-ary rules. Then U is the (k + d)-ary rule defined as follows. If τi1 , . . . , τid
is the string coding a rule D,

and D transforms a string of formulas s to a string of formulas t, then U transforms

τi1 , . . . , τid
, s → τi1 , . . . , τid

, t.

(We simulate a classical proof, so the transitions will be with amplitudes 0 or 1.)
The registers in which we keep formulas will also be divided into two blocks. In the first block we shall

do the simulation of the quantum computation and then keep the the formulas that code (D1, . . . , Dm). In
the second part we shall simulate the Frege proof using m applications of the rule U . As we do not have to
construct an oblivious quantum proof, we can use the rich format of instructions. Hence the j-th instruction
of P2 will specify that U is applied to the string of d formulas in the first block that codes the rule Dj and
to a string of k formulas in the second block; since (D1, . . . , Dm) is oblivious, the positions of the k formulas
are determined by the index j.

Thus the first part of the circuit defined by the quantum proof P produces a linear superposition of
strings of formulas in which an encoding of the classical proof of γb′0 or γb′1 occurs with an amplitude α,
|α|2 ≥ 1/2. The second part of the circuit is a deterministic reversible circuit, hence γb′0 or γb′1 will occur
in the last proof line also with the amplitude α.

We note that the number of quantum deduction rules that we need is a fixed constant. This constant is
determined only by the number of gates of quantum circuits that we simulate in the first part. Apart from
those, we need the rule U and a few rules to make the system complete. Hence the constructed quantum
proofs are proofs in some fixed quantum proof system.

Now we can finish the proof of Theorem 7.1. By Lemma 7.4, given b′ ∈ Rng(Fn), we can construct
a quantum Frege proof of γb′0 or γb′1 in polynomial time from b′. The propositions γb′0, γb′1 are also
constructible in polynomial time from b′. By Lemma 7.2, hn is a hard-core predicate, hence it is not possible
to decide in polynomial time which of the two propositions γb′0, γb′1 is a tautology. As noted earlier, this
implies that we cannot polynomially simulate the quantum proofs using a classical proof system.

A better example?

The theorem above is not quite satisfactory, since it is based on the hardness of the decision problem whether
a quantum Frege proof proves one proposition or the other. We feel that extracting classical proofs from
quantum Frege proofs is hard for some deeper reasons. Therefore we would like to show that even if we have
a set of quantum Frege proofs and a set of tautologies for which it is decidable in polynomial time which
proof proves which tautology, we still may not be able to extract classical proofs from the quantum proofs.
This can be formalized as follows.

Problem 1 Let C be a set of pairs (P, φ), with P a quantum Frege proof and φ a tautology such that P
proves φ. Suppose C is decidable in deterministic polynomial time (ie., C ∈ P). Is it possible to polynomially
simulate C by classical Frege proofs? Ie., does there exist a polynomial time computable function f such that
for all (P, φ) ∈ C, f(P, φ) is a Frege proof of φ ?

Let us remark that now it is essential that we only ask about polynomial simulations by classical Frege
proof systems. There are surely classical proof systems that polynomially simulate C (it suffices to take any
proof system and extend it by proclaiming every (P, φ) ∈ C to be a proof of φ).

We conjecture that the answer to the problem above is negative. However, it seems impossible to prove it
using only assumptions such as that factoring integers is hard, because the problem is much more connected
with Frege proofs. Below we shall describe a specific candidate for a set C.

Let πn(x, y, z) be a proposition formalizing the statement “n is a prime number”. A natural formalization
of this sentence is obtained as follows. Take a boolean circuit c(x, y) for multiplication of numbers presented
in binary. Then introduce variables z for the values of gates in order to transform c(x, y) = n into a formula.
Finally add formulas expressing that x > 1 and y > 1.

15

If n is prime, then πn(x, y, z) is a tautology. We do not know how to construct a polynomial size Frege
proofs of these tautologies, so they cannot be used for our purpose. Instead we shall use propositions νn,m

that formalize the following statements for n composite:

u is not a Frege proof of πn

where u represents a string of length m. More formally, let Prfφ,m(u) be a natural formalization of the
predicate that u is a Frege proof of φ (we have been assuming that one classical Frege proof system has been
fixed). Then

νn,m(u) =df ¬Prfπn,m(u)

The set of these tautologies is clearly in P.

Lemma 7.5 Having a factorization of n one can construct a Frege proof of νn,m in polynomial time.

Proof-sketch. Recall that it is possible to construct sentences expressing the reflection principle for a Frege
system and their Frege proofs in polynomial time. This was essentially shown in [4]. In that paper Buss
only considered the consistency of Frege systems, but he was aware of the fact that proofs of the tautologies
expressing the reflection principle can easily be obtained using his results.

The reflection principle says that if we are given a proof of a proposition, then it is a tautology; formally

Prfφ,m(u) → φ.

Hence the contrapositive sentence says: if we are given a falsifying assignment to φ, the string u that should
represent a proof is not an actual proof. Taking πn for φ we have

¬πn(x, y, z) → ¬Prfφn,m(u).

A falsifying assignment for πn(x, y, z) are factors of n, ie., a, b such that ab = n and the bits of the computation
the product ab. Thus we can obtain a proof of νn,m by substituting the bits of the factors and the bits of
the computation of the product in the proof of the reflection principle.

Corollary 7.6 Quantum Frege proofs of νn,m, for n composite, can be constructed in polynomial time.

Proof-sketch. Proceed as in the proof of Theorem 7.1. Namely, the first part of the quantum proof will be an
encoding of the circuit computing a factorization. In the second part use the Frege proofs from Lemma 7.5.

We conjecture that classical Frege proofs of νn,m, for n composite, cannot be constructed in polynomial
time. The intuition is that in Frege system we have limited means and thus the only way to prove that there
are no proofs of the primality of n is to provide a witness in the form of a factor of n.

Extracting classical proofs using quantum algorithms

Problem 2 Given a quantum Frege proof P of φ, can one construct a Frege proof of φ in polynomial time
using quantum circuits?

For the quantum proofs of Theorem 7.1 and Corollary 7.6 it was possible. In order to construct these
quantum proofs we actually used the fact that such classical proofs can be computed in polynomial time by
quantum machines. Thus to answer the problem negatively, one would need to use a different approach.

This problem is a very intriguing question, since if the solution were negative, then it would open the
possibility of having theorems proven by quantum devices, but for which we would not be able to construct
classical proofs.

How likely is this possibility? Extracting a classical Frege proof from a quantum Frege proof is closely
related to the problem of constructing a history from a given quantum for given starting and ending states.

16

No polynomial time bounded error quantum algorithm is known for the latter problem. One can easily see
that the problem of finding a history is QP-hard, but we do not know much more than that. Aaronson [1]
studied related problems in some hidden-parameter theories. He showed that an oracle producing samples
of histories in these theories gives more power to quantum computations. This supports our feeling that the
problem of extracting a classical proofs from quantum Frege proofs is hard for quantum circuits, but we do
not see how to apply Aaronson’s results to this problem.

8 Conclusions and open problems

In this paper we have proposed a quantum version of the concept of a Frege propositional proof system. It
is based on generalizing the concept of a logical rule to a unitary transformation that can combine several
classical rules. This concept needs further investigations. We do not know how robust this concept is—one
should check whether there are modifications that may change the power of the system. We do not know if
a universal quantum Frege proof system (in the sense of Conjecture 1) exists. Constructing such a system
would clarify what is essential in the definition of quantum Frege proof systems.

We know that quantum Frege proofs are not shorter than classical Frege proofs, but, unless factoring
integers is easy, we cannot produce a classical Frege proof from a quantum Frege proof in polynomial
time. The problem of extracting a classical proof from a quantum proof also needs more investigation.
The most interesting question is whether it is possible to efficiently extract classical proofs from quantum
ones using quantum circuits (Problem 2). Solving this problem (at least conditionally, using a plausible
complexity-theoretical assumption) requires better understanding of the relation of quantum proofs and
quantum computations.

Acknowledgment

I would like to thank to Scott Aaronson, Sam Buss and Jan Kraj́ıček for useful remarks about this paper.

References

[1] S. Aaronson, Quantum Computing and Hidden Variables. Physical Review A 71:032325, March 2005.

[2] D. Aharonov, A simple proof that Toffoli and Hadamard are quantum universal. arXiv.org/quant-
ph/0301040.

[3] M.L. Bonet, T. Pitassi, R. Raz, On Interpolation and Automatization for Frege Systems. SIAM Journal
of Computing 29(6) (2000), 1939-1967.

[4] S.R. Buss, Propositional consistency proofs. Annals of Pure and Applied Logic 52 (1991) 3-29.

[5] S.A. Cook and A.R. Reckhow, The relative efficiency of propositional proof systems. J. of Symbolic
Logic 44(1), 36-50.

[6] I. L. Chung and M. A. Nielsen, Quantum Computing and Quantum Information. Cambridge University
Press, Cambridge, UK, 2000.

[7] D. Boneh, and R. Lipton, Quantum cryptanalysis of hidden linear forms. In Proc. Crypto ’95, Lecture
Notes in Computer Science, Vol. 963, Springer-Verlag, 1995, 424-437.

[8] J. Kraj́ıček, Bounded Arithmetic, Propositional Logic, and Complexity Theory. Cambridge, UK, 1995.

[9] J. Kraj́ıček and P. Pudlák, Some consequences of cryptographical conjectures for S1
2 and EF . Information

and Computation 142, (1998), 82-94

17

[10] M. Mosca, Ch. Zalka, Exact quantum Fourier transforms and discrete logarithm algorithms. quant-
ph/0301093, 2003.

[11] R.Raz, A.Shpilka, On the power of Quantum Proofs. In Proc. Computational Complexity, 2004, 260-274.

[12] Y. Shi, Both Toffoli and controlled-Not need little help to do universal quantum computation.
arXiv.org/quant-ph/0205115.

[13] Z. Shmuley, Composite Diffie-Hellman public-key generating systems are hard to break. Technical Report
No. 356, Computer Science Department, Technion, Israel, 1985.

[14] P. Shor, Polynomial time algorithms for prime factorization and discrete logarithms. SIAM J. Comput.,
26(5), 1997, 1484-1509.

18

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

