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Abstract
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1 Introduction

The min-entropy of a distribution is k if

max
x∈Supp(X)

Pr[X = x] = 2−k

We say that a function Ext : {0, 1}n × {0, 1}n → {0, 1}m is a 2-source extractor for entropy k if
given any 2 independent distributions (a.k.a. sources) (X,Y ) with min-entropy k, Ext(X,Y ) is close
to being uniformly random. We say that the extractor is strong if it satisfies the properties:

Pr
y←RY

[|Ext(X, y) − Um| > ε] < ε

Pr
x←RX

[|Ext(x, Y ) − Um| > ε] < ε

with low ε for arbitrary independent min-entropy k distributions X,Y .
Another way to view 2-source extractors is as boolean matrices (obtained in the natural way from

the truth table of the extractor) which look random in a strong sense: Every 2-source extractor for
entropy k gives an N ×N boolean matrix in which every K ×K minor has roughly the same number
of 1’s and 0’s, with N = 2n,K = 2k.

The probabilistic method shows that most functions are 2-source extractors requiring entropy that
is just logarithmic in the total length of each of the sources, though explicit constructions of such
functions are far from achieving this bound.

The question of finding explicit deterministic polynomial time computable functions that match
the random construction is the subject of this note. This question was first considered by [CG88, SV86,
Vaz85]. The classical Lindsey Lemma gives a 2-source extractor for sources on n bits with entropy
slightly greater than n/2. No significant progress was made in improving the entropy requirements
over this, until recently. In the last few years, sparked by new results in arithmetic combinatorics
[BKT04], there were several results [BIW04, BKS+05, Raz05, Bou05, Rao06, BRSW06] on constructing
extractors for a few independent sources.

Today, the 2 source extractor that requires the lowest amount of entropy in every source is due to
Bourgain [Bou05], who showed how to get an extractor for 2 sources, when the sum of the min-entropies
of both sources is large than 2n(1/2−α) for some universal constant α1. Bourgain’s construction relies
on bounds coming from arithmetic combinatorics. While Bourgain’s bound may not seem like a big
improvement over the earlier result, it turns out to be crucial to the Ramsey graph construction of
[BRSW06].

The rest of this note is structured as follows: first we describe Bourgain’s argument. Then we give
a proof of a generalization of Vazirani’s XOR lemma (which appears to be folklore), that can be used
to improve the output length of Bourgain’s extractor. At the end we include a simple argument due
to Boaz Barak that shows that any two source extractor with small enough error must be strong.

2 Preliminaries

2.1 Notation

We will reserve the variable p to denote primes.

1A result of Raz [Raz05] gives an incomparable extractor for two sources when one source has min-entropy greater
than 0.51n and the other has entropy polylog(n).
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Fp will denote the field of size p.
C will denote the complex numbers.
Um will denote the uniform distribution on m bits.
G will denote a finite abelian group.
We use the convention that N = 2n,M = 2m.
For two elements of a vector space x, y, we will use x · y to denote the dot product

∑

i xiyi.
For a complex number x, we will use x to represent its complex conjugate.

2.2 Basic Facts

In this section we set up some basic background. We state several facts without proof though all of
them can be worked out easily.

2.2.1 Inner product and Norms

Let f : G→ C and g : G→ C be two functions from a finite abelian group G to the complex numbers.
We define the inner product 〈f, g〉 = (1/|G|)∑x∈G f(x)g(x).

The `p norm of f is defined to be ‖f‖`p = (
∑

x∈G |f(x)|p)1/p.
The Lp norm of f is defined to be ‖f‖Lp = (

P

x∈G |f(x)|p

|G| )1/p = |G|−1/p‖f‖`p .
The `∞ norm is defined to be ‖f‖`∞ = maxx |f(x)|.
We have the following basic relations between the norms:

Fact 2.1. ‖f‖`∞ ≥ (1/
√

|G|)‖f‖`2 .

Fact 2.2. ‖f‖`2 ≥ (1/
√

|G|)‖f‖`1 .

Fact 2.3 (Triangle Inequality). |〈f, g〉| ≤ ‖f‖L1‖g‖`∞ .

2.2.2 The Cauchy Schwartz Inequality

The Cauchy Schwartz inequality will play a central role in the proof.

Proposition 2.4 (Cauchy Schwartz). For any two functions f, g as above, |〈f, g〉| ≤ ‖f‖L2‖g‖L2 .

2.2.3 Characters and Discrete Fourier Basis

Let F be any field. Let ψ : G → F∗ be a group homomorphism. Then we call ψ a character. We call
ψ non-trivial if ψ 6= 1. Unless we explicitly state otherwise, in this paper all characters will map into
the multiplicative group of C.

Definition 2.5 (Bilinear maps). We say a map e : G×G→ C is bilinear if it is a homomorphism in
each variable (for every ξ, both e(·, ξ) and e(ξ, ·) are homomorphisms). We say that it is non-degenerate
if for every ξ, e(ξ, ·) and e(·, ξ) are both non-trivial. We say that it is symmetric if e(x, y) = e(y, x)
for every x, y ∈ G.

Let Zr denote the ring Z/(r). It is easy to check that if we let e be the map that maps (x, y) 7→
exp(2πxyı/r), then e is a symmetric non-degenerate bilinear map. Let G = H1 ⊕ H2 be the direct
sum of two finite abelian groups. Let e1 : H1 × H1 → C and ε2 : H2 × H2 → C be symmetric non-
degenerate bilinear maps. Then it is easy to see that the map (x1 ⊕ y1, x2 ⊕ y2) 7→ e1(x1, x2)e2(y1, y2)
is a symmetric non-degenerate bilinear map.
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By the fundamental theorem of finitely generated abelian groups, every finitely generated abelian
group is isomorphic to a direct sum of cyclic groups. Thus the previous discussion gives that:

Fact 2.6. For every abelian group G, there exists a symmetric non-degenerate bilinear e : G×G→ C.

It can be shown that the characters of a finite abelian group G themselves form a finite abelian
group G∧ (called the dual group of G), where the group operation is pointwise multiplication. Now fix
any symmetric, non-degenerate, bilinear map e. For every x ∈ G, let ex denote the character e(x, ·).
The map x 7→ ex can then be shown to be an isomorphism from G to G∧.

Fact 2.7 (Orthogonality). For any two characters ex, ey, we have that 〈ex, ey〉 =

{

1 x = y

0 x 6= y
.

We define the fourier transform of f (with respect to the above e) to be the function f̂ : G → C

to be: f̂(ξ) = 〈f, eξ〉. Then it is easy to check that this is a linear, invertible operation on the space
of all such functions. We get that:

Fact 2.8 (Parseval). ‖f‖L2 = ‖f̂‖`2 .

Proposition 2.9. ‖f‖`1 ≤ |G|3/2‖f̂‖`∞ .

Proof.

‖f‖`1
≤
√

|G|‖f‖`2
= |G|‖f‖L2

= |G|‖f̂‖`2 by Parseval(Fact 2.8)

≤ |G|3/2‖f̂‖`∞

Fact 2.10 (Fourier Inversion). f(x) = |G| ˆ̂f(−x) =
∑

ξ∈G f̂(ξ)eξ(x).

Fact 2.11 (Preservation of Inner Product). 〈f, g〉 = |G|〈f̂ , ĝ〉.

By the additive characters of a vector space over a finite field, we mean the characters of the
additive group of the vector space. In our applications for 2-source extractors, the characters will
always be additive characters of some such vector space. The following proposition is easy to check:

Proposition 2.12. Let Fl be a vector space over a finite field F. Let ψ be any non-trivial additive
character of F. Then the map e(x, y) = ψ(x · y) = ψ(

∑

i xiyi) is symmetric, non-degenerate and
bilinear.

2.2.4 Distributions as Functions

Note that we can view every distribution on the group G as a function that maps every group element
to the probability that the element shows up. Thus we will often view distributions as real valued
functions in the natural way: X(x) = Pr[X = x].

Fact 2.13. Let X be any random variable over G. Then H∞(X) ≥ k simply means that ‖X‖`∞ ≤ 2−k

and implies that ‖X‖`2 ≤ 2−k/2.
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Fact 2.14. Let X be any random variable over G, then EX(f(X)) = |G|〈f,X〉.

Fact 2.15. If X is a distribution, X̂(0) = 1/|G|.

Let U denote the uniform distribution. Then note that |G|U is simply the trivial character e0.
Thus:

Fact 2.16. Û(ξ) =

{

1/|G| ξ = 0

0 ξ 6= 0
.

2.2.5 Line Point Incidences

Let F be a finite field.
We will call a subset ` ⊂ F × F a line if there exist two elements a, b ∈ F s.t. the elements of ` are

exactly the elements of the form (x, ax+ b) for all x ∈ F.
Let P ⊆ F×F be a set of points and L be a set of lines. We say that a point (x, y) has an incidence

with a line ` if (x, y) ∈ `. A natural question to ask is how many incidences can we generate with just
K lines and K points. Bourgain, Katz and Tao [BKT04] proved a bound on the number of incidences
for special fields when the number of lines and points is high enough. Konyagin [Kon03] improved the
bound to eliminate the need for K to be large.

Theorem 2.17 (Line Point Incidences). [BKT04, Kon03] There exists universal constants β, α > 0
such that for any prime field Fp, if L,P are sets of K lines and K points respectively, with K ≤ p2−β0,
the number of incidences I(L,P ) is at most O(K3/2−α).

An interesting thing to note is that the theorem above does not hold for pseudolines (sets with
small pairwise intersections) over finite fields, though a similar theorem does hold over the reals.

When the field is of size 2p for a prime p a weaker version of the line point incidences theorem
holds.

Theorem 2.18 (Line Point Incidences). [BKT04, Kon03] There exists a universal constant β > 0
such that for any field F2p of size 2p for prime p, if L,P are sets of K lines and K points respectively
with 2(1−β)p ≤ K ≤ 2(1−β)p, the number of incidences I(L,P ) is at most O(K3/2−α).

3 Bourgain’s Extractor

In this section we describe Bourgain’s construction. We start by revisiting the argument for why the
hadamard matrix gives a good 2 source extractor for higher min-entropy.

3.1 Review: The Hadamard Extractor

First let us recall how to extract from two sources when the min-entropy is high. For a finite field F,
let Had : Fl × Fl → F be the dot product function, Had(x, y) = x · y.

Let us review the following theorem.

Theorem 3.1. [CG88, Vaz85] For every constant δ > 0, there exists a polynomial time algorithm Had :
({0, 1}n)2 → {0, 1}m s.t. if X,Y are independent (n, (1/2+δ)n) sources, EY [‖Had(X,Y ) − Um‖`1 |] < ε
with m = Ω(n) and ε = 2−Ω(n).
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Proof. For a convenient l, we treat both inputs as elements of Fl (so |F|l = N) and then use the dot
product function as described above.

We can view the random variable X as a function X : Fl → [0, 1], which for each element of
Fl assigns the probability of taking on that element. We will prove the theorem by using the XOR
lemma (Section 4). To use the lemma, we need to bound biasψ(X,Y ) = |E[ψ(Had(X,Y ))]| for every
non-trivial character ψ.

Fix such a character ψ and let e(x, y) be the symmetric non-degenerate bilinear map e(x, y) =
ψ(x · y) (Proposition 2.12). Recall that ex denotes the character e(x, ·). Below we will use Fourier
analysis according to e.

Note that

biasψ(X,Y ) =

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

(1)

Now observe that
∑

x∈Fl X(x)ψ(x · y) = |F|l〈ey,X〉 = |F|lX̂(y). Thus we get that

biasψ(X,Y ) = |F|l
∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)X̂(y)

∣

∣

∣

∣

∣

= |F|2l|〈Y, X̂〉|

Using the Cauchy Schwartz inequality and the fact that ‖f‖2
`2 = |F|l‖f‖2

L2 for every f : Fl → C,
we obtain the bound:

biasψ(X,Y )2 ≤ |F|4l‖Y ‖2
L2‖X̂‖2

L2

= |F|2l‖Y ‖2
`2‖X̂‖2

`2

= |F|2l‖Y ‖2
`2‖X‖2

L2 by Parseval(Fact 2.8)

= |F|l‖Y ‖2
`2‖X‖2

`2

≤ 2n2−k12−k2

Where the last inequality is obtained by Fact 2.13, assuming X,Y have min-entropy k1, k2. Thus,
as long as k1 + k2 > n, the bias is less than 1.

Set l so that N1/l = M = |F|. By the XOR lemma Lemma 4.2 we get m bits which are
2(n−k1−k2+m)/2 close to uniform. The fact that the extractor is strong follows from Theorem 5.1.

Remark 3.2. If we use the more general XOR lemma Lemma 4.1, we can even afford to have l = 1.
The final extractor function would then be σ(Had(X,Y )).

One question we might ask is: is this error bound just an artifact of the proof? Does the Hadamard
extractor actually perform better than this bound suggests? If l = 1, the answer is clearly no, since
the output must have at least n bits of entropy to generate a uniformly random point of F. If l is large
the answer is still no; there exist sources X,Y with entropy exactly n/2 for which the above extractor
does badly. For example let X be the source which picks the first half of its field elements randomly
and sets the rest to 0. Let Y be the source that picks the second half of its field elements randomly
and sets the rest to 0. Then each source has entropy rate exactly 1/2, but the dot product function
always outputs 0.

5



3.2 Bourgain’s Extractor

A key observation of Bourgain’s is that the counterexample that we exhibited for the Hadamard
extractor is just a pathalogical case. He shows that although the Hadamard function doesn’t extract
from any sources with lower entropy, there are essentially very few counterexamples for which it
fails. He then demonstrates how to encode any general source in a way that ensures that it is not
a counterexample for the Hadamard function. Thus his extractor is obtained by first encoding each
source in some way and then applying the Hadamard function.

For instance, consider our counterexamples from the last subsection. The counterexamples were
essentially subspaces of the original space. In particular, each source was closed under addition, i.e.
the entropy of the source X+X obtained by taking two independent samples of X and summing them
is exactly the same as the entropy of X. We will argue that when the source grows with addition (we
will define exactly what we mean by this), the Hadamard extractor does not fail.

Our proof of Bourgain’s theorem will be obtained in the following steps:

• First we will argue that for sources which grow with addition, the Hadamard extractor succeeds.

• Then we will show how to encode any source with sufficiently high entropy in a way that makes
it grow with addition.

3.2.1 Hadamard succeeds when the sources grow with addition

To show that the Hadamard extractor succeeds, we were trying to bound the bias of the output
distribution of the extractor biasψ(X,Y ) Equation 1:

biasψ(X,Y ) =

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

(2)

Now for any source X, let X − X be the source that samples a point by sampling two points
independently according to X and subtracting them.

Lemma 3.3. biasψ(X,Y )2 ≤ biasψ(X −X,Y )

Proof.

biasψ(X,Y ) =

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

≤
∑

y∈Fl

Y (y)

∣

∣

∣

∣

∣

∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

Then by convexity,
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biasψ(X,Y )2 ≤
∑

y∈Fl

Y (y)

∣

∣

∣

∣

∣

∑

x∈Fl

X(x)ψ(x · y)
∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x1,x2∈Fl

X(x1)X(x2)ψ(x1 · y)ψ(−x2 · y)
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x1,x2∈Fl

X(x1)X(x2)ψ((x1 − x2) · y)
∣

∣

∣

∣

∣

Now let X ′ denote the source X −X. Then by grouping terms, we see that the last expression is
simply:

biasψ(X,Y )2 ≤
∣

∣

∣

∣

∣

∑

y∈Fl

Y (y)
∑

x∈Fl

X ′(x)ψ(x · y)
∣

∣

∣

∣

∣

= bias(X −X,Y )

Notice the magic of this “squaring the sum” trick. By squaring the sum for the expectation via
Cauchy Schwartz, starting with our original bound for the error of the extractor, we obtained a bound
that behaves as if our original source was X ′ = X −X instead of X! If X ′ has much higher entropy
than X, we have made progress; we can follow the rest of the proof of Theorem 3.1 in the same way
and obtain an error bound that is a bit worse (because we had to square the bias), but now assuming
that our input source was X ′ instead of X.

Let us explore how else we might use this trick. For one thing, we see that we can easily compose
this trick with itself. Applying the lemma again we obtain biasψ(X,Y )4 ≤ biasψ(X − X,Y )2 ≤
biasψ(X −X −X +X,Y ) = biasψ(2X − 2X,Y ).

Applying the lemma with respect to Y (by symmetry), we obtain biasψ(X,Y )8 ≤ biasψ(2X −
2X,Y − Y ).

In general, we obtain the following lemma:

Lemma 3.4. There exists a polynomial time computable function Had : Fl × Fl → {0, 1}m s.t. given
two independent sources X,Y taking values in Fl and constants c1, c2 with the property that the sources
2c1X−2c1X and 2c2Y−2c2Y have min-entropy k1, k2, then |E[ψ(Had(X,Y ))]| ≤ (|Fl|2−(k1+k2))1/2

c1+c2+2

for every non-trivial character ψ.

Note that X−X has at least as high min-entropy asX, thus if it is convenient we may simply ignore
the subtraction part of the hypothesis; it is sufficient to have that 2c1X, 2c2Y have high min-entropy
to apply the above lemma.

3.2.2 Encoding sources to give sources that grow with addition

Given Lemma 3.4 our goal will be to find a way to encode X,Y in such a way that the resulting sources
grow with addition. Then we can apply the dot product function and use the lemma to prove that our
extractor works. How can we encode a source in a way that guarantees that it grows with addition?
Our main weapon to do this will be bounds on the number of line point incidences (Theorem 2.17 or

7



Theorem 2.18). We will force the adversary to pick a distribution on lines and a distribution on points
with high entropy. Then we will argue that if our encoding produces a source which does not grow
with addition, the adversary must have picked a set of points and a set of lines that violates the line
point incidences theorem.

We will use the following corollary of Theorem 2.17, which is slightly stronger than a theorem due
to Zuckerman [Zuc06]. We will follow his proof closely.

Corollary 3.5. Let F and K = 2(2+α)k be such that a line point incidences theorem holds for F,K, with
α the constant from Theorem 2.17. Suppose L,X are two independent sources, with min-entropy 2k, k
with L picking an element of F2 and X picking an element of F independently. Then the distribution
(X,L(X)) where L(X) represents the evaluation of the L’th line at X is 2−Ω(k)-close to a source with
min-entropy (1 + α/2)2k.

Proof. Every source with min-entropy k is a convex combination of sources with min-entropy k and
support of size exactly 2k. So without loss of generality we assume that supp(L) is of size 22k and that
supp(X) has size 2k.

Suppose (X,L(X)) is ε-far from any source with min-entropy (1 + α/2)2k in terms of statistical
distance. Then there must exist some set H of size at most 2(1+α/2)2k s.t. Pr[(X,L(X)) ∈ H] ≥ ε.

Then we have

• A set of points H : 22k+kα points

• A set of lines supp(L): 22k lines.

Now we get an incidence whenever (X,L(X)) ∈ H. Thus the number of incidences is at least

Pr[(X,L(X)) ∈ H]|supp(L)||supp(X)| ≥ ε23k

However, by the line point incidences theorem (Theorem 2.17), the number of incidences is at most
2(3/2−α)(2k+kα) = 23k+3kα/2−2kα−kα2

< 23k(1−α/2) = 2−(3kα/2)23k.
These two inequalities imply that ε < 2−(3kα/2).

Remark 3.6. The above proof would work even if L,X is a blockwise source with the appropriate
min-entropy.

Given this corollary, we now describe several ways to encode a source so that it grows with addition.
It suffices to understand any one of these encodings to complete the proof for the extractor.

Encoding 1: x 7→ (x, gx) We treat the input x from the source as an element of F∗ for a field in
which a version of the line point incidences theorem holds. Then we encode it into an element of F2 as
(x, gx) where g is a generator of the multiplicative group F∗. Now fix an adversarially chosen source
X. Consider the source X obtained by performing the above encoding.

X is a distribution on points of the form (x, gx) where x 6= 0. By doing a change of variables, we
think of every such point as (logg x, x).

First consider the distribution of 2X . An element of supp(2X) is of the form (logg(x1x2), x1 + x2)

for some x1, x2 in the support of X . Notice that for each a, b with a = x1x2 and b = x1 + x2, there
are at most two possible values for (x1, x2), since for the solutions for x1 must satisfy some quadratic
equation in a, b. This means that the min-entropy of 2X is at least 2k − 1 since the probability of

8



getting a particular (a, b) is at most twice the probability of getting a single pair from X,X. By
changing k, in the rest of this discussion we assume that the min-entropy of 2X is 2k.

Now for each a, b ∈ F with a, b 6= 0 define the line

`a,b = {(ax, b + x) ∈ F2|x ∈ F}
= {(x, x/a + b) ∈ F2|x ∈ F}

Every (a, b) in our encoding then determines the line `a,b. Let L = 2X be a random variable that
picks a line according to 2X .

Every element of supp(3X) is of the form (logg(x1x2x3), x1 + x2 + x3) and determines the point
(x1x2x3, x1 + x2 + x3) ∈ F2.

Now think of the distribution of 3X as obtained by first sampling a line according to 2X and then
evaluating that line at an independent sample from X and outputting the resulting point. Then we
see that we are in a position to apply Corollary 3.5 to get that the encoding does grow with addition.

Encoding 2: x 7→ (x, x2) Again we treat x as an element of the multiplicative group of a field F∗

with charactersitic not equal to 2 in which a version of the line point incidences theorem holds. Now
fix an adversarially chosen source X. Let X denote the source obtained by encoding X in the above
way.

First consider the distribution of 2X . An element of supp(2X) is of the form (x1 + x2, x
2
1 + x2

2) for
some x1, x2 in the support of X. Notice that for each a, b with a = x1 + x2 and b = x2

1 + x2
2, there

are at most two possible values for (x1, x2). This means that the min-entropy of 2X is at least 2k− 1
since the probability of getting a particular (a, b) is at most twice the probability of getting a single
pair from X,X . By changing k, in the rest of this discussion we assume that the min-entropy of 2X
is 2k.

Now for each a, b ∈ F with a, b 6= 0 define the line

`a,b = {(2ax+ a2 − b, a+ x) ∈ F2|x ∈ F}
= {(x, x/(2a) + (a2 + b)/(2a)) ∈ F2|x ∈ F}

Every (a, b) in our encoding then determines a unique line `a,b. Let L = 2X be a random variable
that picks a line according to 2X .

Every element of supp(3X) is then of the form (x1 + x2 + x3, x
2
1 + x2

2 + x2
3) and determines the

point

((x1 + x2 + x3)
2 − (x2

1 + x2
2 + x2

3), x1 + x2 + x3)

= (2(x1 + x2)x3 + (x1 + x2)
2 − (x2

1 + x2
2), (x1 + x2) + x3)

= (2ax3 + a2 − b, a+ x3)

Now think of the distribution of 3X as obtained by first sampling a line according to 2X and then
evaluating that line at an independent sample from X and outputting the resulting point. Then we
see that we can apply Corollary 3.5 to get that the encoding does grow with addition.

Conclusion By picking an appropriate constant γ, we obtain the following lemma:

Lemma 3.7. There is a universal constant γ s.t. if X is any source that picks an element of F with
min-entropy (1/2 − γ) log |F|, 3X is |F|−Ω(1)-close to a source with min-entropy (1/2 + γ) log |F2|.

9



3.2.3 Putting things together

Putting together the results from the two previous sections and applying Lemma 4.1, we obtain the
theorem for Bourgain’s extractor.

Theorem 3.8. [Bou05] There exists a univeral constant γ > 0 and a polynomial time computable func-
tion Bou : ({0, 1}n)2 → {0, 1}m s.t. if X,Y are two independent (n, (1/2−γ)n) sources, EY [‖Bou(X,Y ) − Um‖`1 ] <
ε, with ε = 2−Ω(n),m = Ω(n).

4 XOR lemma for abelian groups

In this subsection we will prove a generalization of Vazirani’s XOR lemma. This lemma appears to be
folklore, but we were unable to find a proof written down anywhere.

Throughout this section we reserve G for a finite abelian group.
The lemma we will prove is the following:

Lemma 4.1 (XOR lemma for cyclic groups). For every cyclic group G = ZN and every integer
M ≤ N , there is an efficiently comptable function σ : ZN → ZM = H with the following property: Let
X be any random variable taking values in ZN s.t. for every non-trivial character ψ : ZN → C∗, we
have |E[ψ(X)]| < ε, then σ(X) is O(ε logN

√
M) +O(M/N) close to the uniform distribution.

It turns out that it is easy to extend this result to work for any abelian group G, though it’s hard
to state the result for general abelian groups in a clean way. In this section we will discuss the proof
of the above lemma and just make a few remarks about how to extend it to general abelian groups.

Before we move on to prove Lemma 4.1, let us first prove a special case of this lemma which is a
generalization of Vazirani’s XOR lemma. For the proof of this case below, we essentially follow the
proof as in Goldreich’s survey [Gol95].

Lemma 4.2. X be a distribution on a finite abelian group G s.t. |E[ψ(X)]| ≤ ε for every non-trivial
character ψ. Then X is ε

√

|G| close to the uniform distribution: ‖X − U‖`1 ≤ ε
√

|G|.

Proof. By the hypothesis, for every non-trivial character ψ ofG, |〈ψ,X〉| = (1/|G|)|EX [ψ(X)]| ≤ ε/|G|.
Then note that if ψ 6= 1, |〈ψ,X −U〉| = |〈ψ,X〉 − 〈ψ,U〉| = |〈ψ,X〉| ≤ ε/|G|. Also, since X,U are

distributions, 〈1,X − U〉 = 〈1,X〉 − 〈1, U〉 = 0.

Thus we have shown that ‖X̂ − U‖`∞ ≤ ε/|G|. Proposition 2.9 then implies that ‖X − U‖`1 ≤
ε
√

|G|.

In Lemma 4.2, given a bound of ε on the biases, the statistical distance blows up by a factor of
√

|G|. This is too much if ε is not small enough. Lemma 4.1 gives us the flexibility to tradeoff this
blowup factor with the number of bits that we can claim are statistically close to uniform. As M is
made smaller, the blowup factor is reduced, but we get “less” randomness. Our proof for the general
case will work (more or less) by reducing to the case of Lemma 4.2.

Note that if σ is an onto homomorphism, for every non-trivial character φ of H, φ◦σ is a non-trivial
character of G. Thus the bounds on the biases of X give bounds on the biases of σ(X) and we can
reduce to the case of Lemma 4.2. The problem is that we cannot hope to find such a homomorphism
σ for every M . For instance, if G = Zp for p a large prime, G contains no non-trivial subgroup and
so σ cannot be a homomorphism for M = dp/2e. Instead, we will show that we can find a σ which
approximates a homomorphism in the sense:
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• For every non-trivial character φ of H, φ◦σ is approximated by a few characters of G. Formally,

this is captured by bounding ‖φ̂ ◦ σ‖L1 (observe that if σ is a homomorphism, this quantity is
1/|G|).

• We’ll ensure that σ(U) is the close to the uniform distribution on H.

Then we will be able to use the bounds on the biases of X to give bounds on the biases of
σ(X) − σ(U), where U is the uniform distribution. This will allow us to apply Proposition 2.9 to
conclude that X is a pseudorandom generator for σ, i.e. ‖σ(X) − σ(U)‖`1 is small, which implies that
σ(X) is close to uniform, since σ(U) is close to uniform.

The following lemma asserts that every ε-biased distribution is pseudorandom for any function σ
that satisfies the first condition above.

Lemma 4.3. Let G,H be finite abelian groups. Let X be a distribution on G with |EX [ψ(X)]| ≤ ε for
every non-trivial character ψ of G and let U be the uniform distribution on G. Let σ : G → H be a
function such that for every character φ of H, we have that

‖φ̂ ◦ σ‖L1 ≤ τ/|G|

Then ‖σ(X) − σ(U)‖`1 < τε
√

|H|.

Proof. First note that the assumption on X is equivalent to ‖X̂ − U‖`∞ ≤ ε/|G|. Let φ be any
non-trivial character of H. Then

|〈φ, σ(X) − σ(U)〉| = |〈φ, σ(X)〉 − 〈φ, σ(U)〉|

=
|Eσ(X)[φ(σ(X))] − Eσ(U)[φ(σ(U))]|

|H| by Fact 2.14 applied to σ(X) and σ(U)

=
|EX [φ(σ(X))] − EU [φ(σ(U))]|

|H|

=
|G|
|H| |〈φ ◦ σ,X〉 − 〈φ ◦ σ,U〉| by Fact 2.14 applied to X and U

=
|G|
|H| |〈φ ◦ σ,X − U〉|

=
|G|2
|H| |〈φ̂ ◦ σ, X̂ − U〉| by preservation of inner product (Fact 2.11)

≤ |G|2
|H| ‖φ̂ ◦ σ‖L1‖X̂ − U‖`∞ by the triangle inequality (Fact 2.3)

≤ τε/|H| since ‖φ̂ ◦ σ‖L1 ≤ τ/|G| and ‖X̂ − U‖`∞ ≤ ε/|G|

On the other hand, 〈1, σ(X) − σ(U)〉 = 0, since σ(X) and σ(U) are distributions. Thus, we have

shown that ‖ ̂σ(X) − σ(U)‖`∞ ≤ τε/|H|, which by Proposition 2.9 implies that ‖σ(X) − σ(U)‖`1 ≤
τε
√

|H|.

Note that when σ is the identity function (or any surjective homomorphism onto a group H),
τ = 1. Thus Vazirani’s XOR lemma corresponds exactly to the case of σ being the identity function.

Next we show that in the special when G is a cyclic group, we can find a σ which satisfies the
hypothesis of Lemma 4.3 with small τ .
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Lemma 4.4. Let M,N be integers satisfying N > M . Let σ : ZN → ZM be the function σ(x) =

x mod M . Then for every character φ of ZM , ‖φ̂ ◦ σ‖L1 ≤ O(logN)/N

Proof. Note that if M divides N , the statement is trivial, since σ is a homomorphism. Below we show
that even in the general case, this expectation is small. Define the function ρ(x) = exp(2πıx). Then
note that ρ(a+ b) = ρ(a)ρ(b).

First let φ be any character of ZM . Then φ(y) = ρ(wy/M) for some w ∈ ZM . Clearly, φ(σ(x)) =
ρ(wx/M).

‖φ̂ ◦ σ‖L1

= (1/N2)
∑

t∈ZN

∣

∣

∣

∣

∣

∑

x∈ZN

ρ(tx/N)ρ(−wx/M)

∣

∣

∣

∣

∣

= (1/N2)
∑

t∈ZN

∣

∣

∣

∣

∣

∑

x∈ZN

ρ

(

x(tM − wN)

NM

)
∣

∣

∣

∣

∣

Recall that for any geometric sum
∑N

i=0 br
i = brN−b

r−1 , as long as r 6= 1. The inner sum in this
expression is exactly such a geometric sum. Thus we get:

‖φ̂ ◦ σ‖L1

≤ (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

∑

x∈ZN

ρ

(

x(tM −wN)

NM

)
∣

∣

∣

∣

∣

+ 1/N

= (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

ρ(N(tM−wN)
NM ) − 1

ρ( tM−wNNM ) − 1

∣

∣

∣

∣

∣

+ 1/N by simplifying the geometric sum

≤ (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

2

ρ( tM−wNNM ) − 1

∣

∣

∣

∣

∣

+ 1/N since

∣

∣

∣

∣

∣

ρ

(

N(tM − wN)

NM

)

− 1

∣

∣

∣

∣

∣

≤ 2

≤ (1/N2)
∑

t∈ZN ,t6=wN/M

∣

∣

∣

∣

∣

2

ρ( t−(wN/M)
N ) − 1

∣

∣

∣

∣

∣

+ 1/N

Now write wN/M = c+d, where c is an integer, and d ∈ [0, 1]. Then, by doing a change of variable
from t to t− c, we get that the above sum is

(1/N2)
∑

t∈ZN ,t6=d

∣

∣

∣

∣

∣

2

ρ( t−dN ) − 1

∣

∣

∣

∣

∣

+ 1/N

We will bound two parts of this sum separately. Let r be a constant with 0 < r < 1/4. Now note
that |ρ( t−dN ) − 1| ≥ Ω(1) when rN < t < (1 − r)N , since in this situation the quantity is the distance
between two points on the unit circle which have an angle of at least 2πr between them.

When t is not in this region, |ρ( t−dN ) − 1| ≥ | sin(2π(t − d)/N)|, since the sin function gives the
vertical distance between the two points. This is at least (t − d)/100N for r small enough, since we
have that | sinx| > |x| for −π/2 < x < π/2. Thus, choosing r appropriately, we can bound the sum:
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(1/N2)
∑

t∈ZN ,t6=d

∣

∣

∣

∣

∣

2

ρ( t−dN ) − 1

∣

∣

∣

∣

∣

+ 1/N

= (1/N2)

(

∑

t6=d,t∈[rN,(1−r)N ]

∣

∣

∣

∣

∣

2

ρ( t−dN ) − 1

∣

∣

∣

∣

∣

+
∑

t6=d,t/∈[rN,(1−r)N ]

∣

∣

∣

∣

∣

2

ρ( t−dN ) − 1

∣

∣

∣

∣

∣

)

+ 1/N

≤ (1/N2)

(

∑

t6=d,t∈[0,rN ]

800N

t− d
+

∑

t6=d,t/∈[rN,(1−r)N ]

O(1)

)

+ 1/N

≤ (1/N2)(O(N logN) +O(N)) + 1/N

Here the last inequality used the fact that
∑n

i=1 1/i = O(log n). Overall this gives us a bound of
τ ≤ O(logN/N).

On uniform input the distribution σ(U) is quite close to uniform. Specifically, if N = qM+r, with
q, r the quotient and remainder of N on dividing by N , we have that σ(U) is 2r((q + 1)/N − 1/M) =
(2r/M)(M(q + 1)/N − 1) = (2r/M)(M − r)/N = 2M/N close to the uniform distribution. Thus,
overall we get that this σ turns any distribution which fools characters with bias at most ε into one
that is ε logN

√
M +O(M/N) close to uniform.

Now we discuss the situation for general abelian groups. The basic observation is that approximate
homomorphisms can be combined to give a new approximate homomorphism:

Lemma 4.5. Let G = G1 ⊕ G2 and H = H1 ⊕ H2 be finite abelian groups. Let σ1 : G1 → H1 and
σ2 : G2 → H2 be two functions that satisfy the hypotheses of Lemma 4.3 with constants τ1 and τ2
respectively. Then the function σ : G→ H defined as σ(x⊕ y) = σ1(x)⊕σ2(y) satisfies the hypotheses
of the lemma with parameters τ1τ2.

Given this lemma, it is clear how to get an xor lemma for every abelian group. Simply write the
abelian group as a direct sum of cyclic groups. Then depending on how much randomness is needeed,
we can compose several homomorphisms with approximate homorphisms to get a function σ that does
the job.

5 Strong 2 source extractors vs low error 2 source extractors

In this subsection we give an argument due to Boaz Barak showing that every 2 source extractor which
has sufficiently small error is in fact strong.

Theorem 5.1. Let IExt : ({0, 1}n)2 → {0, 1}m be any two source extractor for min-entropy k with
error ε. Then IExt is a strong two source extractor for min-entropy k′(strong with respect to both
sources) with error 2m(ε+ 2k−k

′

).

Proof. Without loss of generality, we assume that X,Y have supports of size k′. Then we need to
bound:

∑

y∈supp(Y )

2−k
′‖IExt(X, y) − Um‖`1
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For any z ∈ {0, 1}m, define the set of bad y’s for z

Bz = {y : |Pr[IExt(X, y) = z] − 2−m| ≥ ε}
Claim 5.2. For every z, |Bz| < 2k

Suppose not, then the flat distributions on Bz,X are two independent sources for which the
extractor IExt fails. Now let B = ∪zBz. We see that |B| < 2k2m. Thus,

∑

y∈supp(Y )

2−k
′‖IExt(X, y) − Um‖`1

=
∑

y∈supp(Y )∩B

2−k
′‖IExt(X, y)q − Um‖`1 +

∑

y∈supp(Y )\B

2−k
′‖IExt(X, y) − Um‖`1

≤ 2−k
′

2k+m + ε2m

= 2m(2k−k
′

+ ε)
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