
Time-Space Tradeoffs for Counting NP Solutions Modulo Integers

Ryan Williams∗

Carnegie Mellon University

Abstract

We prove the first time-space tradeoffs for counting the number of solutions to an NP problem
modulo small integers, and also improve upon the known time-space tradeoffs for Sat. Let m be
a positive integer, and define MODm-Sat to be the problem of determining if a given Boolean
formula has exactly km satisfying assignments, for some integer k. We prove that for all primes
p, except for possibly one of them, MODp-Sat is not solvable in nc time and no(1) space on
RAMs, for c ≥ 1 satisfying c3− c2−2c+1 < 0 (c < 1.801 suffices). That is, there is at most one
prime p that does not satisfy the lower bound. Note that such a lower bound does not follow
from the Sat time-space tradeoffs, as we do not know of an efficient deterministic reduction
from Sat to MODp-Sat.

The result is non-constructive, in that it does not provide an explicit prime for which the
lower bound holds. However, we can prove that the same limitation holds for Sat and MOD6-
Sat, as well as MODm-Sat for any composite m that is not a prime power. Our main tool is a
general method for rapidly simulating deterministic RAM computations with restricted space,
by counting the number of solutions to NP predicates modulo primes. The simulation converts
an ordinary RAM into a “canonical one” that runs in roughly the same amount of time and
space, yet its configuration sequences have nice properties suitable for counting.

1 Introduction

The class MODkP is the collection of languages L for which there is a nondeterministic polytime

algorithm that, on input x, has (0 mod k) accepting paths if and only if x ∈ L. The MOD classes

naturally formalize the complexity of counting solutions to problems, modulo small integers. Recent

work by Valiant and others [Val04, Val06, CC06, CP07] has brought the problems of counting

solutions modulo primes (which we call “MODp problems”) back to the forefront of current research.

Surprising algorithms and completeness results have been found for particular interesting MODp

problems.

In this work we consider the diametric problem of proving concrete limitations on how efficiently

that MODp problems can be solved. Substantial strides have been recently made in establish-

ing deterministic time-space tradeoff lower bounds for nondeterministic time and the polynomial

hierarchy– our goal here is to develop methods for extending these arguments to MODp problems,

∗Supported in part by the NSF ALADDIN Center under grant CCR-0122581, and a grant from Google, Inc.

Email: ryanw@cs.cmu.edu.

1

Electronic Colloquium on Computational Complexity, Report No. 36 (2007)

ISSN 1433-8092

in a general way that should also be useful for proving time-space lower bounds on other types of

problems in the future.

At first, it appears that such results might follow without much trouble, given that NP can

be reduced to MODpP (for all primes p) by randomized reductions, via the well-known Valiant-

Vazirani lemma [VV86]. A quasilinear time version of Valiant and Vazirani’s reduction has been

found by Naik, Regan, and Sivakumar [NRS95]. Moreover, Toda and Ogihara [TO92] showed that

the entire polynomial hierarchy reduces to MODpP using two-sided randomized reductions (but for

ΣkP where k ≥ 2, the best reduction we know of from ΣkP to MODpP takes Θ(nk+1) time, cf.

Gupta [Gup98]).

However, despite their time-efficiency, the inherent randomness of these reductions is a major

difficulty in applying them to obtain time-space lower bounds, since we do not know how to remove

the use of randomness even if we assume that MODkP problems have efficient algorithms. (We

note in passing that, assuming certain unproven circuit lower bounds, deterministic versions of

Valiant-Vazirani do exist, cf. [KvM02].)

1.1 Our Results

We show how to extend the techniques for proving superlinear time-space tradeoffs for Sat to

MODp-Sat, for almost all primes p. In particular, for all distinct primes p and q, we prove that

at least one of MODp-Sat and MODq-Sat exhibits a time-space tradeoff lower bound, identical to

the best known for Sat. Our primary technical contribution is a simulation of time T and space S

machines that runs in (TS)1/2+ε time for all ε > 0, by counting modulo two distinct primes.

Definition 1.1 Let p and q be integers greater than 1. A MODp machine is a nondeterministic

machine with a modified acceptance condition: it accepts iff the number of its accepting computation

paths is divisible by p. A MODqMODp machine is a MODq machine equipped with an oracle to

some linear time MODp machine. We define MODqMODpTIME[t(n)] to be the class of sets accepted

by MODqMODp machines in t(n) time.

Theorem 1.1 (Speedup by Modular Counting) Let M be a deterministic machine running

in time T and space S, let B(n) ≤ T (n), let ε > 0 be sufficiently small, and let p and q be

distinct primes. Then there is a MODqMODp machine N such that L(M) = L(N), whereby N

runs for O(B(n)S(n) log T (n)) time in its MODq mode, runs for O(log(B(n)S(n) log T (n))) time

in its MODp mode, then runs in deterministic O(T 1+ε(n)/B(n)) time and O(S(n) log T (n)) space.

Moreover, the input to the final deterministic part of the computation has only O(n+S(n) log T (n))

length.

In our class notation (cf. Section 2.2), we write the above as:

DTISP[T (n), S(n)] ⊆ (MODq B(n)S(n) log T (n))

(MODp log(B(n)S(n) log T (n)))DTISP[T 1+ε(n)/B(n), S(n) log T (n)].

By choosing B such that BS log T = T 1+ε/B, it follows that DTISP[T (n), S(n)] is contained in

MODqMODpTIME[(T (n)S(n))1/2+ε], for all ε > 0.

2

Using Theorem 1.1 and some elementary number theory, much of the research on time-space

tradeoff lower bounds for Sat on RAMs [FLvMV05] can be directly transferred over to MODp-Sat.

Independently of the MODp-Sat transfer arguments, we also add a new argument to this line of

work, culminating in a new collection of time-space lower bounds.

Theorem 1.2 The following problems require Ω(nc) time on random-access machines using no(1)

space, for all c ∈ (1, 2) such that c3 − c2 − 2c + 1 < 0:

• Sat, the satisfiability problem for Boolean CNF formulas.

• MODp-Sat, the problem of counting the number of satisfying assignments to a Boolean for-

mula modulo p, for all primes p except for possibly one of them,

• MODm-Sat, for all integers m that are not prime powers.

The time lower bound implied by Theorem 1.2 is Ω(n1.8019...), which is the largest known to

date, even for satisfiability. Our lower bounds hold for any NP problem with sufficiently efficient

parsimonious reductions from Sat. More details on this point are provided in the preliminaries.

Unfortunately, Theorem 1.2 does not tell us which one of the primes might be the exception

in the MODp-Sat lower bound. In order for our argument to become constructive, it seems that

we would need to prove a hypothesized time hierarchy theorem. Define MODkTIME[t(n)] to be the

class of languages accepted by a MODk machine in t(n) time.

Hypothesis 1 For all primes p, there exists a prime q 6= p and time constructible t(n) > n such

that MODpTIME[t] * MODqTIME[o(t)].

The hypothesis looks very reasonable in light of current knowledge, such as the circuit lower

bounds for computing MODp with OR, AND, NOT, and MODq gates [Smo87]. It seems extremely

counterintuitive that counting solutions modulo one prime would somehow always be faster, if

one could count modulo a different prime. If the hypothesis is true, then indeed it follows that

MODp-SAT requires n1.8 time and no(1) space on deterministic RAMs, for all primes p.

2 Preliminaries

We assume familiarity with the usual complexity theoretic notions of time, space, and alternation.

All functions used to bound runtime are assumed time constructible, and functions used to bound

space usage are space constructible. Define DTISP[t(n), s(n)] to be the class of sets accepted by a

RAM that runs in t(n) time and s(n) space, simultaneously. We shall extensively study the DTISP

class in the subpolynomial space (s(n) = no(1)) setting. For convenience, we use the notation

DTS[t(n)] := DTISP[t(n), no(1)].

Our work relies on a careful analysis of configuration graphs of machines. For completeness, we

give a definition. Let M be a deterministic machine running in time T (n) and space S(n) ≥ log n,

and let x be an input string.

3

Definition 2.1 The configuration graph GM,x of M(x) has 2cS(n) nodes for a sufficiently large

integer c > 1, where every node of the graph is uniquely labeled by a cS(n)-bit string. There is an

arc from the node labeled v to the node labeled w if and only if, when v and w are construed as

configurations of M , the configuration w is obtained by executing M on x in configuration v for

one step.

Since M is deterministic, observe that the outdegree of any node in GM,x is at most one. Notice

that our definition of configuration graph includes all possible strings of length cS(n) as nodes, so

many of the nodes do not correspond to legitimate machine configurations. Those nodes will have

indegree and outdegree zero.

2.1 Modular Counting Machines

We use an extension of alternating machines introduced by Allender and Gore [AG94], which has

not only existential and universal modes but also “MODm modes” for various moduli m. A state

in “MODm mode” acts as one expects it would, in the following sense. Let us assume that the

configuration graph for a given alternating machine is a tree. Let σ be a configuration in “MODm

mode” where the previous configuration was in a different type of mode (so, an alternation has just

occurred). Let T be the maximal subtree of configurations, rooted at σ, where no alternation takes

place. Then σ is accepting iff the number of leaves of T that are accepting is divisible by m.

Let us suppose that an alternating machine alternates to specific modes only at specific timesteps,

irrespective of the input or current configuration. We say that the signature of such a machine is

a chronological description of the modes taken during any path of the computation. Typically, the

pseudocode for an alternating machine contains commands of the form “Existentially guess x of

length b” and “Universally guess x of length b”, where x is some string and b is a positive integer.

(These commands mean that the machine is switched to that particular mode and x is chosen over

all possible strings of length b.) In a similar manner, our pseudocode for a machine with MODk in

its signature uses the command “Modulo k guess x of length b” analogously.

2.2 Class notation

We also use an unorthodox but natural notation for alternating classes that we have found con-

venient for our arguments. Define (∃ f(n))C to be the class of languages recognized by some

nondeterministic machine N that, on input x, writes a O(f(n)) bit string y nondeterministically,

then feeds the input 〈x, y〉 to a machine from class C. The classes (∀ f(n))C and (MODm f(n))C are

defined similarly (with co-nondeterministic machines and MODm machines, respectively). When a

machine recognizing a language in class (∃ f(n))C is guessing the O(f(n)) bits, we say that it is in

an existential quantifier. Similarly, we define being in a universal quantifier for (∀ f(n))C.

4

2.3 The power of MODp-Sat

Our lower bound for MODp-Sat follows the strategy of proving that MODpTIME[n] * DTS[nc] for

a constant c > 1, arguing that this implies MODp-Sat is not in DTS[nc−o(1)]. This kind of strategy

(exploiting the completeness of a problem) has been invoked in other lower bound arguments as

well [FLvMV05, AKRRV01].

Theorem 2.1 Let k ≥ 2 be an integer. If MODk-Sat ∈ DTS[nc], then MODkTIME[n] ⊆ DTS[nc+o(1)].

Proof. (Sketch) [FLvMV05, Tou01] give a reduction from an arbitrary L ∈ NTIME[n] to Sat that

takes a string x and converts it to an equivalent formula that is of length at most |x|poly(log |x|),

where each bit of the formula can be computed individually in |x|o(1) time. From this, the implica-

tion

Sat is in nc time and no(1) space =⇒ NTIME[n] ⊆ DTS[nc+o(1)]

follows by performing the appropriate reduction and executing the presumed Sat algorithm. We

point out that the reduction above is actually parsimonious.

From a deterministic linear time predicate M and input x, the reduction creates a formula

φM,x(y, z), whereby there is a y of length c|x| such that M(x, y) accepts if and only if the same y

(construed as a variable assignment) along with some z of length c|x|poly(log |x|) satisfies φM,x(y, z).

Each such valid z is essentially an encoding of the computation history of the deterministic algorithm

M running on (x, y), and is unique with respect to a given (x, y) pair. Thus, there is a 1-1

correspondence between y’s such that M(x, y) accepts, and (y, z) pairs such that φM,x(y, z) is

satisfied. Hence the number of valid y such that M(x, y) accepts is divisible by k iff the number

of (y, z) satisfying φM,x is divisible by k, so the above reduction also serves as a reduction from an

arbitrary Lk ∈ MODkTIME[n] to MODk-Sat. 2

3 Related Work

Modulo Counting Classes. The class MODkP was introduced by Cai and Hemachandra [CH89].

Beigel and Gill [BG92] showed several closure properties hold for these classes– for example, for all

primes p, the class MODpP is closed under union, intersection, and complement. Thus it is strongly

believed that MODpP 6= NP for all primes p.

In contrast to the Valiant-Vazirani lemma and Toda’s theorem, which show the power of

MODkP, Beigel, Buhrman, and Fortnow [BBF98] demonstrated a very interesting oracle col-

lapse/separation for MOD classes. A consequence of their oracle construction is that for all distinct

primes p and q, there is an oracle A such that PA = MODpP
A, yet MODqP

A = NP
A = EXP

A. That

is, there are relativized worlds where for any primes p and q, counting NP solutions modulo p is

easy, yet counting NP solutions modulo q is as hard as exponential time.

Circuit Lower Bounds with Composite Gates. There has been substantial work on trying

to prove lower bounds for circuits with MOD6 gates, and in general, circuits with MODpq gates

where p and q are distinct primes [BST90, Gro01, CGPT06]. Circuits with such gates appear to be

5

possibly far more powerful than circuits with merely AND, OR, NOT, and MODp gates (for some

fixed prime p). Our work shows the power of MODpq-Sat, as the known proofs of lower bounds for

Sat can be extended to it.

Time-Space Tradeoffs for Nondeterminism. Using a variant on Nepomnjascii’s theorem [Nep70],

Kannan [Kan84] showed that there is a k ≥ 1 such that for all j 6= k, NTIME[nj] * DTISP[nj, o(nj/k)],

thus establishing a time-space tradeoff for nondeterminism. This line of study was revived in the

late 90’s by Fortnow [For97], who proved that Sat /∈ DTIME[n1+o(1)]∩NL. Fortnow-Lipton-Viglas-

Van Melkebeek [FLvMV05] sharpened the tools and arguments, showing that Sat is not in nφ−ε

time and no(1) space for all ε > 0, where φ is the golden ratio. Earlier work of ours [Wil05]

improved the time lower bound to greater than n
√

3. Building on our argument, Diehl and Van

Melkebeek [DvM06] gained a slight improvement to n1.759.

Lower Bounds for the Counting Hierarchy. Several interesting lower bounds on counting

problems have been discovered in the past. Allender and Gore [AG94] proved that uniform ACC
0

is properly contained in PP. Caussinus et al. [CMTV98] showed that uniform ACC
0 is properly

contained in MODPH (a counting version of the polynomial hierarchy). Allender [All98] showed

that the Permanent is not in TC
0, thus TC

0 6= PP. Allender et al. [AKRRV01] proved time-space

tradeoffs for MAJ-MAJ-SAT (MAJ-MAJ-SAT is a complete problem in the second level of the

counting hierarchy, a generalization of MAJ-SAT), showing that it is not contained in unbounded

probabilistic time n1+o(1) and nδ space for all δ < 1.

4 Intuition Behind This Work

The manner in which our results are proved is perhaps more interesting than the results themselves.

At the heart of our work is the Speedup By Modular Counting Theorem (Theorem 1.1), which

gives a new method for simulating deterministic computations with restricted time and space, via

counting. We first show that every machine M has an equivalent “canonical” version M̂ . The

canonical version uses roughly the same time and space as M ; however, the task of counting

particular properties of M̂ ’s configurations is much easier. The canonical machine follows from

an efficient reversible simulation of irreversible computation, first given by Bennett [Ben89]. The

simulation of M̂ on an input x counts the number of certain objects (which we call “complete

configuration sequences with a number of mistakes divisible by p” for a prime p) efficiently with

a MODpTIME[n] oracle, such that the difference in the number of such objects counted in the

accepting and rejecting cases is congruent to 1 modulo q, for prime q 6= p. Thus in principle, one

can tell the difference between the accepting and rejecting cases by counting modulo q. Finally, we

show that one can determine very efficiently (prior to simulation) which modulus it should “expect”

in the accepting case versus the rejecting case, and therefore discern between the two cases.

Theorem 1.1 (and extensions of it) allows us to transfer arguments establishing time-space

tradeoffs for nondeterminism directly to counting solutions modulo primes, by substituting nonde-

terminism with “counting mod p”, and conondeterminism with “counting mod q”. For example,

6

Lipton and Viglas [LV99] proved an Ω(n
√

2−ε) time lower bound for solving Sat on no(1)-space

RAMs. One way to phrase their argument uses the fact that DTISP[t, s] ⊆ Σ2TIME[(ts)1/2] in the

following way: assuming NTIME[n] ⊆ DTS[nc], one can prove

Σ2TIME[t] ⊆ NTIME[tc] ⊆ DTS[tc
2

] ⊆ Σ2TIME[tc
2/2+o(1)]

for a given time bound t. The first two inclusions follow by assumption, and the last inclusion

follows from the fact. For c2 < 2, the above inclusion is a contradiction. An analogous lower

bound for MOD6TIME[n] can be obtained by assuming MOD6TIME[n] ⊆ DTS[nc], and proving for

all ε > 0 that

(MOD3 t)(MOD2 t)DTS[t] ⊆ (MOD3 t)DTS[tc]

⊆ DTS[tc
2

]

⊆ (MOD3 tc
2/2+ε)(MOD2 tc

2/2+ε)DTS[tc
2/2+ε].

The first inclusion follows from the fact that MOD2TIME[n] ⊆ MOD6TIME[n] ⊆ DTS[nc], the

second from MOD3TIME[n] ⊆ MOD6TIME[n] ⊆ DTS[nc], and the third from the Speedup by

Modular Counting Theorem (Theorem 1.1). Again, for c2 < 2(1− ε), we have a contradiction. The

above kind of transfer can be carried out on other time-space tradeoff arguments similarly.

5 Canonical Machines

We begin by discussing the notion of a canonical machine. For our simulations of DTS, we require

the machine being simulated to have a configuration graph of a very regular type, which we call

canonical. It turns out that a deterministic small-space machine can be converted into a canonical

one, without a significant increase in time and space usage.

Definition 5.1 A machine M is canonical iff for all inputs x, every node in the configuration

graph GM,x has outdegree and indegree exactly one. That is, the graph is a union of disjoint cycles

along with isolated nodes having self-loops.

By definition, a canonical machine does not halt, since no configuration has outdegree zero.

Thus we need to modify the acceptance condition for a canonical machine.

Definition 5.2 Let M be canonical. M accepts input x if and only if M(x) (started in its initial

configuration) reaches a configuration with an “accept” state before it reaches its initial configuration

again.

A canonical machine is obviously deterministic, but it also enjoys the following useful property.

Proposition 1 Let M be canonical, let c be a node of GM,x, and let t be a non-negative integer.

Then there are unique configurations c′t and c′′t such that, when M(x) is executed from c′t for t

steps, M(x) ends in configuration c, and when M(x) is executed from c for t steps, M(x) ends in

configuration c′′t .

7

Proposition 1 does not hold for deterministic machines in general, as there can be numerous con-

figurations that lead to a common configuration by executing each one for t steps, and the number

of such configurations can, in principle, depend upon the given input. The “unique predecessor”

and “unique successor” properties of canonical machines shall prove to be indispensable in our later

simulations of space-bounded computation.

5.1 Making machines canonical

In order to show that every deterministic machine can be turned into an equivalent canonical one,

we apply a theorem of Bennett that shows how to convert any deterministic machine into one

that is reversible, with negligible penalty to its time and space complexity. Recall the definition of

reversible machine: a deterministic machine is reversible if and only if its configuration graph on

all inputs is such that all nodes have indegree at most one and outdegree at most one.

Theorem 5.1 (Bennett [Ben89]) For every deterministic machine M running in time T (n) and

space S(n), and every integer k ≥ 1, there is a reversible machine M ′ that runs in T 1+1/k(n) time

and 2kS(n) log2 T (n) space, such that L(M) = L(M ′).

Along with Bennett [Ben89], see also Buhrman, Tromp, and Vitanyi [BTV01] for an exposition

of the proof. We require two specific properties of the reversible M ′ obtained in Theorem 5.1.

Remark 1 The reversible M ′ of Theorem 5.1 has the following additional properties:

1. For all positive integers n, there is a unique configuration An that can be computed in O(S(n))

time such that, on all x of length n, M ′(x) accepts ⇐⇒ M ′(x) is in configuration An in

precisely T (n) steps from its initial configuration.

2. There is a machine M ′
R such that on all x, GM ′

R
,x is equivalent to GM ′,x except that all arcs

point in the opposite directions. That is, M ′ on x goes from configuration C to C ′ in one step

if and only if M ′
R on x goes from configuration C ′ to C in one step.

Applying the above two remarks, it is not difficult to construct an equivalent canonical machine

for any deterministic machine that has the same asymptotic time and space complexity as the

reversible simulation of Theorem 5.1.

Theorem 5.2 Let M be a deterministic machine running in time T (n) and space S(n). For all

ε > 0, there exists a canonical machine M̂ that runs in T 1+ε(n) time and 2O(1/ε)S(n) log2 T (n)

space, and L(M) = L(M̂).

Proof. The first step is to apply Theorem 5.1 with k > 1/ε, turning M into an equivalent

reversible machine M ′. Let M ′
R be the machine guaranteed by Remark 1. Since M ′ is reversible,

M ′
R is reversible as well. Thus the graphs GM ′,x and GM ′

R
,x are already such that the indegrees

and outdegrees are at most one. To obtain an equivalent M̂ so that every node of some GM̂,x has

indegree and outdegree exactly one, we make the following change.

M̂ has two modes: forward and backward. M̂ starts in forward mode from the initial configuration

of M ′, and simulates M ′ normally. Two rules are applied:

8

• If M̂ is in forward mode and reaches a configuration where no transition applies, it switches

to backward and starts executing M ′
R.

• If M̂ is in backward mode and reaches a configuration where no transition applies, it switches

to forward and starts executing M ′.

We claim that M̂ is canonical. It suffices for us to prove that every node in a configuration

graph GM̂,x has indegree and outdegree exactly one. Notice that GM̂,x has precisely double the

nodes of GM ′,x, one for each of the two modes of M̂ . Thus we can label each node of GM̂ ,x as a

pair 〈C,m〉, where C is a configuration of GM ′,x and m is a mode. Therefore M̂(x) has precisely

twice the number of configurations as M ′(x).

Let 〈C,m〉 be a configuration of GM̂ ,x. There are four possible cases.

1. C has outdegree 0 and indegree 0. (That is, C is not a legal machine configuration.) Then

the edges adjacent to 〈C, forward〉 and 〈C, backward〉 in GM̂,x are (〈C, forward〉, 〈C, backward〉)

and (〈C, backward〉, 〈C, forward〉).

2. C has outdegree 1 and indegree 1 in GM ′,x. Let (C,C ′) and (C ′′, C) be the respective

edges. Then (〈C, forward〉, 〈C ′, forward〉) and (〈C ′′, forward〉, 〈C, forward〉) are the edges adja-

cent to 〈C, forward〉 in GM̂,x. Similarly, 〈C, backward〉 has edges (〈C, backward〉, 〈C ′, backward〉),

and (〈C ′′, backward〉, 〈C, backward〉).

3. C has outdegree 0 and indegree 1. Let (C,C ′) be the respective edge. Then the edges ad-

jacent to 〈C, forward〉 in GM̂,x are (〈C, forward〉, 〈C ′, forward〉) and (〈C, backward〉, 〈C, forward〉).

Similarly, (〈C, backward〉, 〈C, forward〉) and (〈C ′, backward〉, 〈C, backward〉) are the edges adja-

cent to 〈C, backward〉 in GM̂,x.

4. C has outdegree 1 and indegree 0. Analogous to the previous case.

Finally, it is easy to see that M(x) accepts in T (|x|) time if and only if M̂(x) accepts in T (|x|)

time. 2

6 Simulating Space-Bounded Machines By Counting

In this section, we establish Theorem 1.1, which shows that any language in DTISP[T (n), S(n)] can

be simulated extremely efficiently by a machine of signature MODpMODq, for any distinct primes

p and q. To do this, we first review a method for simulating any time T (n), space S(n) machine

by a Σ2 machine that runs in (T (n) · S(n))1/2 time [Nep70, Kan84]. That is, one can “speed up”

a deterministic machine by introducing two alternations in the computation, when the machine’s

time-space product is small. We sketch the construction here for completeness.

Theorem 6.1 (Follows from Nepomnjascii [Nep70], Kannan [Kan84])

DTISP[T (n), S(n)] ⊆ Σ2TIME[(T (n)S(n))1/2].

9

In particular, for every constructible B(n),

DTISP[T (n), S(n)] ⊆ (∃ B(n)S(n))(∀ log(B(n)S(n)))DTISP[T (n)/B(n), S(n)].

Proof. (Sketch) Let M be a random access machine running in T (n) time and S(n) space. Its

simulation N(x) begins by existentially guessing a sequence of B(|x|) configurations of M(x). It

then appends the initial configuration to the beginning of the sequence and the accepting configu-

ration to the end of the sequence. Finally, N(x) universally guesses an integer i ∈ {0, . . . , B(|x|)}

and simulates M(x) starting from the ith configuration in the sequence, accepting if and only if the

(i + 1)th configuration in the sequence is reached in T (|x|)/B(|x|) steps. It is easy to see that for

all x, M(x) accepts if and only if N(x) accepts. Observe that for B(n) =
√

T (n)/S(n), we have

DTISP[T (n), S(n)] ⊆ Σ2TIME[(T (n)S(n))1/2]. 2

We shall prove that, with some modifications, a simulation akin to the above can successfully

simulate canonical machines when the existential modes of N are replaced by MODp modes, and

the universal modes are replaced by MODq modes, where p and q are distinct primes. Theorem 1.1

follows from such a simulation. We begin with some definitions. Let machine M run in time T (n)

in the following.

Definition 6.1 A B-configuration sequence for M on x is a tuple 〈C0, C1, . . . , CB , CB+1〉,

where Ci are configurations of M on x.

Such a sequence is called complete if C0 is the unique initial configuration of M and CB+1 is

the unique accepting configuration.

Such a sequence is correct if for all i = 0, . . . , B−1, when M(x) is run for exactly bT (|x|)/(B+

1)c + 1 steps from Ci, the resulting configuration is Ci+1, and when M(x) is run for T (|x|) − B ·

(bT (|x|)/(B + 1)c + 1) steps from CB, the resulting configuration is CB+1.

If a B-configuration sequence is not correct then it is said to have a mistake at the pair

(Ci, Ci+1) when Ci does not result in Ci+1 in the proper number of steps.

Note that

T (|x|)−(bT (|x|)/(B + 1)c + 1) ≤ T (|x|)−B ·T (|x|)/(B+1) = T (|x|)/(B+1) ≤ bT (|x|)/(B+1)c+1,

so the last pair (CB , CB+1) requires no more steps than the other pairs. Also, observe the number

of B-configuration sequences depends solely on the space complexity of the machine.

Claim 1 Let n and B be positive integers, and let M be a machine running in space S(n). There

is a number N(n) such that for all x satisfying |x| = n, the number of B-configuration sequences

for M(x) is precisely N(n).

Proof. Without loss of generality, the number of configurations for M on inputs of length n is

2cS(n)+d for some integers c > 1 and d > 1 that are independent of n. Thus the total number of

B-configuration sequences is N(n) = 2B(cS(n)+d). 2

10

Clearly, for any input x, the number of B-configuration sequences that are correct and complete

is either zero (M(x) rejects) or one (M(x) accepts). The next lemma shows that, for canonical ma-

chines, the number of configuration sequences that are merely correct (but not necessarily complete)

depends solely on the input length:

Lemma 6.1 Let M̂ be canonical and let C(n) be the number of configurations of M̂ on inputs

of length n. Let x be an input and n = |x|. Then for every integer B, the number of correct

B-configuration sequences for M̂(x) is exactly C(n). In fact, a correct B-configuration sequence is

completely determined by specifying an integer i ∈ {0, 1, . . . , B + 1} and a configuration c.

Proof. For each configuration, there is exactly one correct B-configuration sequence that starts

with that configuration, by Proposition 1. Moreover, Proposition 1 implies that, by specifying

even a single configuration c and its position in a correct B-configuration sequence, the rest of the

correct B-configuration sequence is completely determined, as all configurations prior to c and all

configurations after c are unique. 2

We now give a way to differentiate between the accepting and rejecting cases for a canonical

machine, by counting the mistakes in configuration sequences. The Counting Lemma proves that

on any input x, the number of complete B-configuration sequences with k mistakes at adjacent

pairs is independent of the given input: that is, the number of such sequences depends only on the

size of the input n, the number of configurations B in the sequence, and whether or not the input

leads to acceptance.

Lemma 6.2 (Counting Lemma) Let n and B ≥ 1 be positive integers, let k = 0, 1, . . . , B + 1,

and let M̂ be canonical. Then there are positive integers NA(n, k,B) and NR(n, k,B) such that,

for all inputs x of length n:

1. If M̂(x) accepts, then the number of complete B-configuration sequences for M̂(x) with exactly

k mistakes (at adjacent pairs) is NA(n, k,B), and

2. If M̂ (x) rejects, then the number of complete B-configuration sequences for M̂(x) with exactly

k mistakes (at adjacent pairs) is NR(n, k,B).

3. NA(n, k,B) − NR(n, k,B) = (−1)k
(B+1

k

)

.

Proof. Fix a canonical M̂ and input x of length n. We count the number of ways that one can

choose a complete B-configuration sequence with precisely k mistakes at adjacent pairs.

We begin with the case k = 0. Independently of B, NA(n, 0, B) = 1 and NR(n, 0, B) = 0, since

for any B there is exactly one correct and complete B-configuration sequence on an accepted input,

and there is no such sequence on a rejected input.

For the remainder of the proof, we assume k ≥ 1. First, before choosing the configurations

themselves, we choose the points for which the k mistakes occur. As there are B + 1 possible pairs

for which a mistake can occur, the number of possible choices is
(B+1

k

)

.

Suppose the indices i1, . . . , ik ∈ {0, . . . , B} are chosen, with i1 < i2 < · · · < ik. Next, we

need to count the number of complete B-configuration sequences with mistakes precisely at the

11

adjacent pairs (Cij , Cij+1), for j = 1, . . . , k. By definition, from configuration C0 to Ci1 , there is no

mistake in the configuration sequence; similarly there is no mistake from Ci1+1 to Ci2 , from Ci2+1

to Ci3, . . ., from Cik−1+1 to Cik , and from Cik+1 to CB+1. That is, the configuration sequences from

C0 to Ci1 , Cij+1 to Cij+1
, and Cik+1 to CB+1, are all subsequences of a correct B-configuration

sequence, for j = 1, . . . , k − 1. By Lemma 1, if we specify one configuration at a certain position

in a correct configuration sequence, then the entire sequence is determined. Hence we only need to

specify the configurations Cij for j = 2, . . . , k, in order to uniquely specify a complete configuration

sequence with k mistakes at exactly the (Cij , Cij+1) pairs (note Ci1 and Cik+1 are already uniquely

determined by the initial configuration C0 and accepting configuration CB+1, respectively).

The counting problem has now boiled down to the question: fixing the indices (i1, . . . , ik),

how many (k − 1)-tuples of configurations (Ci2 , Ci3 , . . . , Cik) are there, such that the complete B-

configuration sequence with k mistakes uniquely determined by this tuple has a mistake at exactly

the pairs (Cij , Cij+1)?

As might be expected, the answer depends on whether or not M̂(x) accepts or rejects. Let

NA(n, k) be the number of above tuples for M̂ (x), on the condition that M̂(x) accepts. Define

NR(n, k) similarly, on the condition that M̂(x) rejects. Recalling that there are
(

B+1
k

)

ways to pick

the indices for the mistakes,

NA(n, k,B) =
(B+1

k

)

NA(n, k)

NR(n, k,B) =
(

B+1
k

)

NR(n, k),
(∗)

provided that NR(n, k) and NA(n, k) actually exist (i.e. that these numbers are indeed dependent

only on n and k).

The existence of NA(n, k) and NR(n, k) is proved by induction on k. Since we assume k ≥ 1,

the base case is k = 1:

• NA(n, 1) = 0. That is, for fixed i1, the number of complete B-configuration sequences with

only one mistake is zero, if M̂ (x) accepts. This is because if M̂(x) accepts, and there is no

mistake from the initial configuration C0 to Ci1 , then there is no mistake from Ci1 to the accept

configuration CB+1; moreover, if the initial configuration does not lead to a configuration Ci1

without a mistake, then Ci1 does not lead to the accept configuration without a mistake.

(Thus the number of mistakes there can be is either zero, or greater than one.)

• NR(n, 1) = 1. This is because if M̂(x) rejects, and the initial configuration leads to a Ci1

(uniquely determined by i1) without a mistake, then the accept configuration must lead back

to some Ci1+1 such that there is a mistake at (Ci1 , Ci1+1). The point at which this mistake

happens is determined by i1.

Let C(n) be the number of configurations of M̂ on inputs of length n. To complete the charac-

terization of NA(n, k) and NR(n, k), we prove for all k ≥ 2 that

NA(n, k) = (C(n) − 1)k−1 − NA(n, k − 1) (∗∗)

NR(n, k) = (C(n) − 1)k−1 − NR(n, k − 1).

12

The proof of (∗∗) is as follows. There are C(n)k−1 possible (k − 1)-tuples of configurations. Out

of these, there are precisely (C(n)− 1)k−1 different (k − 1)-tuples with the property that its corre-

sponding B-configuration sequence has a mistake at the pairs (Cij , Cij+1), for all i = 1, . . . , k − 1.

That is, (C(n) − 1)k−1 of the possible complete B-configuration sequences have a mistake at the

first k − 1 pairs of indices. (This is due to Proposition 1: for every configuration Cij , there are

C(n) − 1 configurations that it does not lead to, for any prescribed number of steps.) However,

this quantity is overcounting– we need to subtract those tuples that lead to configuration sequences

with a mistake at the first k − 1 pairs, but no mistake at the pair (Cik , Cik+1).

If the pair (Cik−1
, Cik) does not have a mistake, then Cik is uniquely determined by Cik−1

, by

Proposition 1. Therefore, the number of (k − 1)-tuples corresponding to complete B-configuration

sequences with mistakes at (Cij , Cij+1) for all j = 1, . . . , k − 1, but no mistake at (Cik , Cik+1), is

equal to the number of (k − 2)-tuples (Ci2 , . . . , Cik−1
) corresponding to complete B-configuration

sequences with mistakes at the indices (i1, . . . , ik−1). This number is NA(n, k − 1) in the accepting

case and NR(n, k − 1) in the rejecting case, by induction.

Finally, we conclude from (∗) and (∗∗) that when k ≥ 2 we have

NA(n, k,B) − NR(n, k,B) =

(

B + 1

k

)

(NA(n, k) − NR(n, k)) by (∗)

=

(

B + 1

k

)

(−1)(NA(n, k − 1) − NR(n, k − 1)) by (∗∗)

=

(

B + 1

k

)

(−1)2(NA(n, k − 2) − NR(n, k − 2)) by (∗∗)

=

(

B + 1

k

)

(−1)k−1(NA(n, 1) − NR(n, 1)) by (∗∗)

=

(

B + 1

k

)

(−1)k−1(−1) =

(

B + 1

k

)

(−1)k.

2

The Counting Lemma gives exact values for the number of mistakes in configuration sequences,

and a clean characterization of how these numbers differ in the accepting and rejecting cases.

One might ask if we can simulate a canonical machine by simply counting, over all complete B-

configuration sequences, all the mistakes made by adjacent pairs. By choosing B = (T (n)/S(n))1/2,

such a simulation could be implemented in roughly (T (n)S(n))1/2 time as a #P function using an

argument like that of Theorem 6.1, yielding a quadratic speedup of a time T (n), space S(n) machine

by a #P function. However, one can prove that the Counting Lemma implies

B+1
∑

i=0

i · NA(n, i,B) =

B+1
∑

i=0

i · NR(n, i,B).

That is, the total number of mistakes committed by all adjacent pairs over all complete B-

configuration sequences is the same in the accepting and rejecting cases, so the above proposal does

not work. Instead, we count the number of complete B-configuration sequences whose number of

mistakes is divisible by a prime p, and compute this number of sequences modulo another prime q.

13

The next lemma shows that, in order to distinguish between the accepting and rejecting case,

it is enough to perform these counts of sequences and their mistakes modulo two distinct primes.

Lemma 6.3 Fix a canonical machine M̂ . Let p and q be distinct primes, and let B = q` − 1 for

some integer ` > 0. Then the number (modulo q) of complete B-configuration sequences whose

number of mistakes is divisible by p, is different in the accepting and rejecting cases. In particular,

b(B+1)/pc
∑

k=0

(NA(n, kp,B) − NR(n, kp,B)) ≡ 1 mod q.

Proof. Let B = q` − 1 for some ` > 0. By the Counting Lemma, the difference in the number of

complete B-configuration sequences with a number of mistakes congruent to 0 mod p is

b(B+1)/pc
∑

k=0

(NA(n, kp,B) − NR(n, kp,B)) =

b(B+1)/pc
∑

k=0

(−1)kp

(

B + 1

kp

)

=

bq`/pc
∑

k=0

(−1)kp

(

q`

kp

)

.

Now we analyze the terms of the form
(

q`

kp

)

. When k = 0, then of course (−1)kp
(

q`

kp

)

=

(−1)0
(

q`

0

)

= 1. We claim that for all integers k satisfying 0 < k ≤ bq`/pc we have
(

q`

kp

)

≡ 0

mod q. The lemma follows immediately, as the claim implies

b(B+1)/pc
∑

k=0

(NA(n, kp,B) − NR(n, kp,B)) ≡

bq`/pc
∑

k=0

(−1)kp

(

q`

kp

)

mod q

≡ 1 mod q.

We now prove the claim. By elementary combinatorics,

kp ·

(

q`

kp

)

= q` ·

(

q` − 1

kp − 1

)

.

(Both sides count the number of ways that one can choose kp elements from a collection of q`,

and place a mark on one of the kp elements.) Consider the term q` on the right-hand side. Since

0 < k ≤ bq`/pc, we know 0 < kp ≤ bq`/pcp < q`, since p 6= q are primes. Therefore, the two terms

on the left-hand side and the two terms on the right-hand side are all positive integers, and the

equality exhibits two factorizations of the same positive integer. Since kp < q`, there is a non-trivial

factor of q` that divides
(q`

kp

)

, by unique factorization. This proves the claim. 2

Lemma 6.3 and the Counting Lemma allow for the possibility for us to use any distinct primes

p and q to perform a fast simulation of DTISP[T (n), S(n)] using MODp and MODq modes. Still, in

order to simulate correctly, we need to efficiently compute a modulus that we “expect” to see in

the accepting case. The next lemma accomplishes this.

14

Lemma 6.4 Fix a canonical machine M̂ that uses S(n) space. Let S(n) be constructible in O(S(n))

space and T ′(n) time. For any positive integers B, p, and q, the quantity

MISTAKESA(n,B, p, q) :=

b(B+1)/pc
∑

k=0

NA(n, kp,B)

 mod q

can be computed in O(B + T ′(n)) time and O(B) space. That is, we can compute what the number

(modulo q) of complete B-configuration sequences whose number of mistakes is divisible by p would

be on an n-bit input, if M̂(x) accepted.

Proof. (Sketch) First, compute the total number of possible configurations C(n) mod q. As

C(n) = 2cS(n) for some constant c > 1, this can be computed directly from the quantity cS(n).

Assuming S(n) is constructible in T ′(n) time, C(n) mod q can be computed in O(T ′(n)) time.

By following the proof of the Counting Lemma, given (C(n) mod q) one can easily construct

each (NA(n, kp,B) mod q) inductively, in O(B) time and space. For example, in order to compute

E(k) =

(

B + 1

k

)

mod q =
(B + 1) · B · · · (B + 1 − (k + 1))

k · (k − 1) · · · 2
mod q,

we first compute E(1) in O(1) time, and each E(i) can be computed from E(i − 1) in O(1) time.

Given the values for (NA(n, kp,B) mod q), MISTAKESA(n,B, p, q) is easily constructed in O(B)

time. 2

We finally arrive at the proof of Theorem 1.1.

Proof of Theorem 1.1. Given M that runs in time T (n) and space S(n), let M̂ be the efficient

canonical version of M guaranteed by Theorem 5.2 that runs in time T ′(n) = T 1+ε(n) and space

S′(n) = S(n) log T (n). Let In be the unique initial configuration for M̂ on inputs of length n.

We may also assume that M̂ has a unique accepting configuration: by Remark 1, the reversible

version M ′ of M has a unique accepting configuration An on inputs of length n. Then define

Ân = 〈An, forward〉 to be the unique accepting configuration for M̂ .

Informally, the idea is to run the Σ2 simulation of M̂ from Theorem 6.1, but we replace the

existential mode with a “MODq mode” and the universal mode with a “MODp mode”. We invoke

the Counting Lemma to prove correctness.

Fix an input x and canonical M̂ that runs in T ′(|x|) time on x. Let ` be the smallest integer

such that B(|x|) ≤ q`.

We now describe the simulation of M̂ by a MODqMODp machine:

(0) Set B′ = q` − 1. Compute K = MISTAKESA(n,B′, p, q). (Note K ∈ {0, . . . , q − 1}.)

(1) Modulo q guess either one of q − K dummy accepting paths, or a list of B′ configurations

C1, . . . , CB′ of M̂(x).

Let C0 = In and CB′+1 = Ân.

15

(2) Modulo p guess i = 0, . . . , B′.

If i < B′ then s := bT ′(|x|)/(B′ + 1)c + 1, else s := T ′(|x|) − B · (bT ′(|x|)/(B′ + 1)c + 1).

Accept iff M̂(x) run from configuration Ci for s steps does not result in Ci+1.

First, note that B′ = Θ(B(n)). The runtime of Step (0) is negligible, by Lemma 6.4. We

claim that Steps (1) and (2), taken as a computation with signature MODqMODp, accepts iff M̂(x)

accepts. Step (2) accepts if and only if the number of mistakes in the given sequence C0, . . . , CB′+1

is divisible by p. Let t be the total number of complete B′-configuration sequences for M̂(x) with

a number of mistakes divisible by p. Then Steps (1) and (2) accept if and only if

q − K + t ≡ 0 mod q,

which is equivalent to t ≡ K mod q, i.e. t ≡ MISTAKESA(n,B, p, q) mod q, which is true if and

only if M̂(x) accepts, by Lemma 6.3.

Finally, observe that the deterministic part of the above computation (which simulates M̂(x)

from one configuration to the next) requires only O(T ′(n)/(B′ + 1)) ≤ O(T ′(n)/B(n)) time and

O(S′(n)) space. The deterministic part only takes x and two configurations as input, so its input

has length O(n + S′(n)). 2

7 Lower Bound for Counting Solutions Modulo Small Integers

We now prove that there is at most one prime p for which MODpTIME[n] ⊆ DTISP[nc, no(1)] can

hold, when c < 1.801. In fact, something stronger can be shown: we shall demonstrate a “transfer

principle” that says one can translate certain time-space lower bound arguments for NTIME[n], to

analogous arguments for MODpTIME[n]. We then prove the lower bound for NTIME[n]. Intuitively,

the statement of the transfer principle says that if efficient Sat algorithms imply a contradic-

tion with the Σ2 time hierarchy, then efficient MODp-Sat and MODq-Sat algorithms lead to an

analogous relation for MODpMODq time.

Transfer Principle for Time-Space Lower Bounds on MOD p: Suppose there is a proof of

NTIME[n] ⊆ DTS[nc] =⇒ Σ2TIME[r(n)] ⊆ Σ2TIME[s(n)]

for some constant c, and polynomials r, s, where the proof uses only the following properties of

nondeterminism and conondeterminism:

1. (Quantifier Speedup) For all B ≥ 1,

DTS[T] ⊆ (∃ B · no(1))(∀ log T)DTS[T/B]

DTS[T] ⊆ (∀ B · no(1))(∃ log T)DTS[T/B],
(Theorem 6.1)

where the inner DTS predicate of the alternating simulation reads only no(1) bits of the first

quantifier.

16

2. (Quantifier Removal) For all b ≥ a ≥ 1,

NTIME[n] ⊆ DTS[nc] =⇒
(∃na)(∀nb)DTS[nb] ⊆ (∃na)DTS[nbc]

(∀na)(∃nb)DTS[nb] ⊆ (∀na)DTS[nbc]
.

3. (Quantifier Combination) For all a, b ≥ 0 and d ≥ 1,

(∃ na)(∃ nb)DTS[nd] ⊆ (∃ na + nb)DTS[nd]

(∀ na)(∀ nb)DTS[nd] ⊆ (∀ na + nb)DTS[nd].

Then for all primes p, q with p 6= q and for all ε > 0, MODpTIME[n] ⊆ DTS[nc−ε] and

MODqTIME[n] ⊆ DTS[nc−ε] implies that there is a polynomial s′ε such that limε→0 s′ε(x) = s(x)

and

MODpMODqTIME[r(n)] ⊆ MODpMODqTIME[s′ε(n)].

Proof Sketch of Transfer Principle. First, observe we have analogues to all the three properties

of nondeterminism:

1. (MOD Speedup) Theorem 1.1 says that

DTS[T] ⊆ (MODp B · no(1))(MODq log T)DTS[T 1+ε/B]

DTS[T] ⊆ (MODq B · no(1))(MODp log T)DTS[T 1+ε/B].

Moreover, the modular counting algorithm that simulates DTS reads only no(1) bits guessed

in the first MOD mode of the algorithm.

2. (MOD Removal) If MODpTIME[n] ⊆ DTS[nc] and MODqTIME[n] ⊆ DTS[nc], then for b ≥

a ≥ 1,
(MODp na)(MODq nb)DTS[nb] ⊆ (MODp na)DTS[nac]

(MODq na)(MODp nb)DTS[nb] ⊆ (MODq na)DTS[nbc],

by padding.

3. (MOD Combination) For all primes p, (MODp na)(MODp nb)DTS[nd] ⊆ (MODp na+nb)DTS[nd].

(This was shown by Beigel and Gill [BG92]– the proof uses Fermat’s Little Theorem that

ap−1 ≡ 1 mod p.)

Let ε > 0. By assumption, a proof that NTIME[n] ⊆ DTS[nc] implies Σ2TIME[r(n)] ⊆

Σ2TIME[s(n)] starts with the class Σ2TIME[r(n)] and uses the three properties in various ways to

derive new containments, until the class Σ2TIME[s(n)] is reached. To prove that MODpTIME[n] ⊆

DTS[nc−ε] and MODqTIME[n] ⊆ DTS[nc−ε] imply MODpMODqTIME[r(n)] ⊆ MODpMODqTIME[s′ε(n)],

we start with the class MODpMODqTIME[r(n)] and use the MOD analogues of the three proper-

ties to derive similar containments. In particular, every ∃ quantifier (∀ quantifier) in the original

proof is systematically replaced with a MODp mode (respectively, MODq mode) in the proof of

MODpMODqTIME[r(n)] ⊆ MODpMODqTIME[s′ε(n)].

The Quantifier Removal and Quantifier Combination properties have exactly the same parame-

ters as the MOD Removal and MOD Combination properties, but each invocation of MOD Speedup

17

(instead of Quantifier Speedup) in the new proof results in an extra ε factor in the exponent. How-

ever, the resulting polynomial runtime s′ε(n) of the final MODpMODq class still has the property

that if ε = 0, then the derived polynomial is exactly s(n). So limε→0 s′ε(n) = s(n). 2

The transfer principle implies two significant corollaries. Both of them say that certain proofs-

by-contradiction that NTIME[n] * DTS[nc] can be mapped over to proofs that MODkTIME[n] *
DTS[nc−ε], for various integers k.

Corollary 7.1 Suppose there is a proof of NTIME[n] ⊆ DTS[nc] =⇒ Σ2TIME[nk] ⊆ Σ2TIME[nk−δ]

(for some k > 1 and δ > 0) that follows the three conditions of the transfer principle. Then for

every m > 1 that is not a prime power, MODmTIME[n] * DTS[nc−ε] for all ε > 0.

If NTIME[n] ⊆ DTS[nc] =⇒ Σ2TIME[nk] ⊆ Σ2TIME[nk−δ], then NTIME[n] * DTS[nc], by the

following simple separation.

Theorem 7.1 (Folklore) Σ2TIME[t(n)] * Σ2TIME[t(n)1−ε] for all time constructible t(n) and

ε > 0.

There is a modular analogue of this separation as well, which is straightforward.

Theorem 7.2 MODpMODqTIME[t(n)] * MODpMODqTIME[t(n)1−ε] for all time constructible t(n)

and ε > 0.

Proof of Corollary 7.1. If m is not a prime power, then it has two distinct primes p and q

as factors. Therefore, MODpTIME[t] ⊆ MODmTIME[t] and MODqTIME[t] ⊆ MODmTIME[t] for all

time bounds t (cf. [BG92] for a proof). Thus MODmTIME[n] ⊆ DTS[nc−ε] implies

MODpTIME[n] ⊆ DTS[nc−ε] and

MODqTIME[n] ⊆ DTS[nc−ε].

Therefore, one can use the same proof used by the transfer principle to obtain the inclusion

MODpMODqTIME[nk] ⊆ MODpMODqTIME[s′ε(n)], where s′ε(n) is a polynomial that converges to

nk−δ for ε → 0, contradicting Theorem 7.2. 2

Corollary 7.2 Suppose there is a proof of NTIME[n] ⊆ DTS[nc] =⇒ Σ2TIME[nk] ⊆ Σ2TIME[nk−δ]

(for some k > 1 and δ > 0) that follows the three conditions of the transfer principle. Then, for

every prime p except for possibly one of them, MODpTIME[n] * DTS[nc−ε] for all ε > 0. That is,

there is at most one prime p for which MODpTIME[n] is in nc−ε time and no(1) space.

Proof. If there are two primes p and q such that MODpTIME[n] ⊆ DTS[nc−ε] and MODqTIME[n] ⊆

DTS[nc−ε], then the transfer principle applies as in the previous corollary, and we can establish a

contradiction. So at most one prime p can satisfy MODpTIME[n] ⊆ DTS[nc−ε]. 2

We now proceed with a new time-space lower bound for NTIME[n]. Theorem 1.2 follows imme-

diately from it, coupled with the above two results.

18

Theorem 7.3 For all c ≥ 1 such that c3 − c2 − 2c + 1 < 0,

NTIME[n] * DTS[nc].

The proof proceeds by showing NTIME[n] ⊆ DTS[nc] implies Σ2TIME[nk] ⊆ Σ2TIME[nk−δ] for some

k ≥ 1 and δ > 0. Furthermore, the proof uses only the three properties of nondeterminism required

in the transfer principle.

Proof. See Appendix. 2

8 Deterministic Small Space Versus Modular Counting

Using the Speedup By Modular Counting Theorem, one can prove modular-counting analogues

of known results about the power of alternating computation. For example, if MOD6TIME[nk]

is efficiently closed under Turing reductions for any k, then a major separation result would be

obtained. Recall that SC := DTISP[nO(1), (log n)O(1)].

Theorem 8.1 If there is some k ≥ 1 such that (MOD6MOD6)TIME[nk] ⊆ MOD6TIME[nk+o(1)],

then SC 6= MOD6P.

That is, if a MOD6 machine that makes oracle calls to another MOD6 machine can be efficiently

simulated by a single MOD6 machine, then it follows that logspace is different from MOD6P. This

theorem is an analogue of the following result for nondeterminism which follows from the work of

Fortnow [For97].

Theorem 8.2 If NTIME[nk] ⊆ coNTIME[nk+o(1)] then L 6= NP.

Proof of Theorem 8.1. It follows from the Speedup by Modular Counting Theorem that for

any integer ` ≥ 1 and real k ≥ 1, DTISP[n`+k, (log n)`+k] can be simulated by a random access

machine of type (MOD6)
` (i.e. k separate MOD6 modes) that guesses O(n) bits in each mode, and

the last deterministic part runs in nk+ε time, for any ε > 0. By the assumption, the first ` − 1

MOD6 modes of this machine can be “removed”, while only increasing the runtime by a o(1) factor

in the exponent. Therefore

DTISP[nk+`, (log n)2k] ⊆ MOD6TIME[nk+o(1)] (∗)

for any ` ≥ 1. But then if MOD6TIME[n] ⊆ DTISP[nj , (log n)j] for some j,

MOD6TIME[n1+k] ⊆ DTISP[nj(1+k), (log n)j(1+k)] ⊆ MOD6TIME[nk+o(1)],

by setting ` = (j(1+ k)− k) and applying (∗). This is a contradiction to the MOD6 time hierarchy.

Therefore SC 6= MOD6P. 2

Similarly, the following can be proved.

Theorem 8.3 If there exist primes p and q and k ≥ 1 such that MODpTIME[nk] ⊆ MODqTIME[nk+o(1)]

and MODqTIME[nk] ⊆ MODpTIME[nk+o(1)], then SC 6= MODpP and SC 6= MODqP.

19

Finally, we give an unconditional separation. Fortnow [For97] showed that NL is not equal to

any non-constant level of the polynomial time hierarchy. We can give an analogous separation

result for the class SC. For an integer m, define a polynomial time MODm-hierarchy by

(MODm)0P := P

(MODm)kP := (MODm)[(MODm)k−1P].

Theorem 8.4 Let s(n) be any monotone increasing unbounded function. Then SC 6= (MODm)s(n)P,

for any composite m that is not a prime power.

9 Conclusion

We have proven the first superlinear time lower bounds for counting NP solutions modulo small

integers, on random access machines that use subpolynomial space. For example, the best known

time-space lower bound for MOD6-Sat is the same as that for Sat. To arrive at our results, we

discovered a way to transfer lower bound proofs for nondeterminism to the setting of modular

counting, using a lemma that shows the number of configuration sequences of a canonical machine

with a prescribed number of mistakes on a given input depends solely upon the space usage of

the machine and the acceptance/rejection condition of that input. Such a tool may prove to be

useful in other time-space lower bound arguments as well. For example, one may be able to prove

strong time-space lower bounds for the Majority Sat problem using the Counting Lemma, but

we have not yet found a way to do this. Currently the best time-space lower bound we know for

Majority-Sat is the same as the one known for Sat.

A time-space lower bound for MODp-Sat for a particular prime p follows from the following

conjectured time hierarchy, which we consider to be an interesting open problem.

Conjecture: There are primes q 6= p, and some t(n) > n, such that MODpTIME[t] *
MODqTIME[o(t)].

We also gave a new argument that improves the time lower bound for Sat on subpolynomial

space RAMs, to Ω(n1.801). We remain confident that a proof of a quadratic (or larger) lower bound

should be possible, by extending our techniques.

10 Acknowledgements

I am grateful to Virginia Vassilevska, Dieter van Melkebeek, and the anonymous referees for their

helpful comments.

References

[AG94] E. Allender and V. Gore. A uniform circuit lower bound for the permanent. SIAM J.

Comput. 23:1026–1049, 1994.

20

[All98] E. Allender. The Permanent Requires Large Uniform Threshold Circuits. Chicago Journal

of Theoretical Computer Science, article 7, 1999.

[AKRRV01] E. Allender, M. Kouck, D. Ronneburger, S. Roy, and V. Vinay. Time-Space Tradeoffs

in the Counting Hierarchy. In IEEE Conference on Computational Complexity, 295–302,

2001.

[BST90] D. Barrington, H. Straubing, and D. Therien. Non-uniform automata over groups. Infor-

mation and Computation 89(2):109–132, 1990.

[BBF98] R. Beigel, H. Buhrman, and L. Fortnow. NP might not be as easy as detecting unique

solutions. In Proc. ACM STOC, 203–208, 1998.

[BG92] R. Beigel and J. Gill. Counting classes: thresholds, parity, mods, and fewness. Theoretical

Computer Science 103(1):3–23, 1992.

[Ben89] C. H. Bennett. Time-space tradeoffs for reversible computation. SIAM J. Comput. 18:766–

776, 1989.

[BTV01] H. Buhrman, J. Tromp, and P. Vitanyi. Time and Space Bounds for Reversible Simulation.

J. Phys. A: Math. Gen. 34:6821–6830, 2001.

[CH89] J.-Y. Cai and L. A. Hemachandra. On the power of parity polynomial time. In Proc.

Symposium on Theoretical Aspects of Computer Science (STACS), Springer LNCS 349,

229–240, 1989.

[CC06] J.-Y. Cai and V. Choudhary. Some Results on Matchgates and Holographic Algorithms.

In Proc. of ICALP Vol. 1, Springer-Verlag LNCS, 703–714, 2006.

[CP07] J.-Y. Cai and P. Lu. Bases Collapse in Holographic Algorithms. To appear in Proc. IEEE

Conference on Computational Complexity, 2007.

[CMTV98] H. Caussinus, P. McKenzie, D. Therien and H. Vollmer. Nondeterministic NC1 Com-

putation. J. Comput. Syst. Sci. 57(2):200–212, 1998.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. JACM 28(1):114–133, 1981.

[CGPT06] A. Chattopadhyay, N. Goyal, P. Pudlak, D. Therien. Lower bounds for circuits with

MODm gates. In Proc. IEEE FOCS, 2006.

[DvM06] S. Diehl and D. van Melkebeek. Time-Space Lower Bounds for the Polynomial-Time

Hierarchy on Randomized Machines. SIAM J. Comput. 36: 563-594, 2006.

[For97] L. Fortnow. Nondeterministic Polynomial Time Versus Nondeterministic Logarithmic

Space: Time-Space Tradeoffs for Satisfiability. In Proc. IEEE Conference on Computa-

tional Complexity, 52–60, 1997.

[FLvMV05] L. Fortnow, R. Lipton, D. Van Melkebeek, and A. Viglas. Time-Space Lower Bounds

for Satisfiability. JACM 52(6):835–865, 2005.

21

[FvM00] L. Fortnow and D. van Melkebeek. Time-Space Tradeoffs for Nondeterministic Computa-

tion. In Proc. IEEE Conference on Computational Complexity, 2–13, 2000.

[Gro01] V. Grolmusz. A Degree-Decreasing Lemma for (MOD-q - MOD-p) Circuits. Disc. Math.

and Theor. Comp. Sci. 4(2):247–254, 2001.

[Gup98] S. Gupta. Isolating an Odd Number of Elements and Applications in Complexity Theory.

Theory of Computing Systems 31:27–40, 1998.

[Kan83] R. Kannan. Alternation and the power of nondeterminism. In Proceedings of ACM STOC,

344–346, 1983.

[Kan84] R. Kannan. Towards Separating Nondeterminism from Determinism. Mathematical Sys-

tems Theory 17(1):29–45, 1984.

[KvM02] A. Klivans and D. Van Melkebeek. Graph Nonisomorphism Has Subexponential Size

Proofs Unless the Polynomial-Time Hierarchy Collapses. SIAM J. Comput. 31:1501–1526,

2002.

[LV99] R. J. Lipton and A. Viglas. On the Complexity of SAT. In Proceedings of IEEE FOCS,

459-464, 1999.

[MS87] W. Maass and A. Schorr. Speed-Up of Turing Machines with One Work Tape and a Two-

Way Input Tape. SIAM J. Comput. 16(1):195–202, 1987.

[NRS95] A. V. Naik, K. W. Regan, D. Sivakumar. On quasilinear-time complexity theory. Theo-

retical Computer Science 148:325–349, 1995.

[Nep70] V. Nepomnjascii. Rudimentary predicates and Turing calculations. Soviet Math. Doklady

11:1462–1465, 1970.

[TO92] S. Toda and M. Ogiwara. Counting Classes are at Least as Hard as the Polynomial-Time

Hierarchy. SIAM J. Comput. 21(2):316–328, 1992.

[PPST83] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus nonde-

terminism and related problems. In Proc. IEEE FOCS, 429–438, 1983.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit com-

plexity. In Proc. ACM STOC, 77–82, 1987.

[Tou01] I. Tourlakis. Time-Space Tradeoffs for SAT on Nonuniform Machines. J. Computer and

System Sciences 63(2): 268–287, 2001.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. TCS 47(1):85–93,

1986.

[Val04] L. Valiant. Holographic algorithms. In Proc. IEEE FOCS, 306–315, 2004.

[Val06] L. Valiant. Accidental algorithms. In Proc. IEEE FOCS, 509–517, 2006.

[Wil05] R. Williams. Better Time-Space Lower Bounds for SAT and Related Problems. In Proc.

IEEE Conference on Computational Complexity, 40–49, 2005.

22

11 Appendix

Recall the statement we wish to prove:

Theorem 7.3: For all c ≥ 1 such that c3 − c2 − 2c + 1 < 0,

NTIME[n] * DTS[nc].

Furthermore, the proof uses only the three properties of nondeterminism required in the transfer

principle.

We first need a speedup simulation from our previous work [Wil05]. Effectively, this simulation

says that if we assume that nondeterministic linear time can be simulated in nc time and no(1)

space, that assumption can be applied to improve the special case of Nepomnjascii’s theorem,

proven earlier in Theorem 6.1.

Theorem 11.1 (Conditional Speedup [Wil05]) Suppose there is a c < 2 satisfying NTIME[n] ⊆

DTS[nc]. Then for all d < c/(c − 1),

DTS[nd] ⊆ (∃ n1+o(1))(∀ log n)DTS[n1+o(1)] ∩ (∀ n1+o(1))(∃ log n)DTS[n1+o(1)].

Moreover, the proof applies only the three properties required by the transfer principle.

Notice that when c < 2, we have that c/(c − 1) > 2. Therefore, the alternating speedup of nd

time and no(1) obtained is better than the square root gotten from Theorem 6.1.

Proof. Define the sequence d0 := 2, dk := 1 +
dk−1

c . We prove by induction that for all k ≥ 0,

DTS[ndk] ⊆ (∃ n1+o(1))(∀ log n)DTS[n1+o(1)] ∩ (∀ n1+o(1))(∃ log n)DTS[n1+o(1)].

As the sequence {dk} is monotone increasing and converges to c/(c− 1) (when c < 2), the theorem

follows.

The case k = 0 follows from Theorem 6.1, as it says DTS[n2] ⊆ Σ2TIME[n1+o(1)]∩Π2TIME[n1+o(1)],

using property 1 (Quantifier Speedup) of the transfer principle.

For the inductive step, consider the class DTS[ndk+1] = DTS[n1+dk/c]. By property 1 (Quantifier

Speedup), DTS[n1+dk/c] is contained in

(∃n)(∀ log n)DTS[ndk/c+o(1)].

Note that dk/c ≥ 1. The conondeterministic part of the Σ2 class above always has input of length

O(n). Therefore by property 2 (Quantifier Removal) of the transfer principle, we can apply the

assumption NTIME[n] ⊆ DTS[nc] to the (∀ log n)DTS[ndk/c+o(1)] part, obtaining the class

(∃n)DTS[ndk+o(1)].

Finally, by induction hypothesis, DTS[ndk+o(1)] is contained in Σ2TIME[n1+o(1)], so the above class

is contained in

(∃n)(∃n1+o(1))(∀ log n)DTS[n1+o(1)] ⊆ (∃n1+o(1))(∀ log n)DTS[n1+o(1)],

23

by property 3 (Quantifier Combination) of the transfer principle.

An similar argument shows that DTS[ndk+1] ⊆ (∀ n1+o(1))(∃ log n)DTS[n1+o(1)] as well. 2

The bulk of the proof is in the following result, which is a subtle combination of the proof

strategy of Fortnow and Van Melkebeek and the Conditional Speedup Theorem 11.1.

Theorem 11.2 Suppose there is c < 2 such that NTIME[n] ⊆ DTS[nc]. Then for all integers k ≥ 1,

and d < c/(c − 1),

DTS[nd+
∑k

i=1
(c2/d)i

] ⊆ Σ2TIME[n(c2/d)k+o(1)] ∩ Π2TIME[n(c2/d)k+o(1)].

The proof applies only the three properties required by the transfer principle.

We first show how Theorem 11.2 implies Theorem 7.3, the n1.8 lower bound.

Proof of Theorem 7.3. Assuming NTIME[n] ⊆ DTS[nc] and Theorem 11.2,

Σ2TIME[nd+
∑k

i=1
(c2/d)i

] ⊆ NTIME[nc(d+
∑k

i=1
(c2/d)i)] ⊆ DTS[nc2(d+

∑k
i=1

(c2/d)i)] ⊆ Σ2TIME[nc2(c2/d)k+o(1)].

A contradiction with the Σ2 time hierarchy (Theorem 7.1) is reached (and therefore NTIME[n] *
DTS[nc]) precisely when

d +

k
∑

i=1

(c2/d)i > c2 · (c2/d)k,

that is, when

c2 <
k

∑

i=1

(

c2

d

)i−k

+ d ·
dk

c2k
⇐⇒ c2 <

k−1
∑

j=0

(

d

c2

)j

+ d ·

(

d

c2

)k

⇐⇒ c2 <
1 −

(

d
c2

)k

1 −
(

d
c2

) + d ·

(

d

c2

)k

(∗)

Note that c2 ≥ d, since Fortnow et al. [FLvMV05] proved that c must be at least the golden

ratio, therefore c(c − 1) ≥ 1, i.e. c2 ≥ c/(c − 1) > d. Therefore 1 > (d/c2)k for all k ≥ 1, and

lim
k→∞

(d/c2)k = 0.

Hence for any ε > 0, we can set d = c/(c − 1) − ε and find a k such that ((c/(c − 1) − ε)/c2)k ≤ ε,

whereby the inequality (∗) turns into

c2 <
1 − ε

1 − c/(c−1)−ε
c2

+ (c/(c − 1) − ε) · ε.

Simple algebraic manipulation yields the equivalent condition:

c2 − (c/(c − 1) − ε) < (1 − ε) + (c/(c − 1) − ε) · ε ·

(

1 −
c/(c − 1) − ε

c2

)

24

Multiplying through by (c − 1), the condition becomes

c2(c − 1) − (c − ε(c − 1)) < ((c − 1) − ε(c − 1)) + (c − ε(c − 1)) · ε ·

(

1 −
c/(c − 1) − ε

c2

)

⇐⇒ c3 − c2 − 2c + 1 < (c − ε(c − 1)) · ε ·

(

1 −
c/(c − 1) − ε

c2

)

− 2ε(c − 1) (∗∗)

Now, as ε approaches 0, the RHS approaches 0. We arrive at the following condition implying a

contradiction:

c3 − c2 − 2c + 1 < 0,

which is what we wanted to prove. That is, for any c satisfying c3 − c2 − 2c + 1 < 0, we can choose

an ε > 0 such that c and ε satisfy (∗∗). 2

Proof of Theorem 11.2. Suppose c < 2 is such that NTIME[n] ⊆ DTS[nc]. Pick d such that

c ≤ d < c/(c − 1). The proof is by induction on k.

For k = 0, the task is just to show DTS[nd] ⊆ Σ2TIME[n1+o(1)], which is precisely Theorem 11.1.

For the inductive step, consider the class DTS[nd+
∑i

i=1(c
2/d)k

]. By Theorem 6.1,

DTS[nd+
∑i

i=1(c2/d)k

] ⊆ (∃ n(c2/d)k

)(∀ log n)DTS[nd+
∑i

i=1(c2/d)k−1

],

where the DTS[· · ·] part of the Σ2 computation has input of length n + no(1) (the original input x,

and two configurations). This step uses property 1 (Quantifier Speedup) of the transfer principle.

By the induction hypothesis,

(∃ n(c2/d)k

)(∀ log n)DTS[nd+
∑i

i=1
(c2/d)k−1

] ⊆ (∃ n(c2/d)k

)(∀ log n)Π2TIME[n(c2/d)k−1+o(1)].

Applying the assumption that NTIME[n] ⊆ DTS[nc] via property 2 (Quantifier Removal) to the Π2

part (which takes input of length n + no(1)),

(∃ n(c2/d)k

)(∀ log n)Π2TIME[n(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)(∀ log n)coNTIME[nc·(c2/d)k−1+o(1)].

By property 3 (Quantifier Combination),

(∃ n(c2/d)k

)(∀ log n)coNTIME[nc·(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)coNTIME[nc·(c2/d)k−1+o(1)].

Now the input to the coNTIME part is O(n(c2/d)k
) ≤ O(nc·(c2/d)k−1

), since d ≥ c. Therefore we can

use Quantifier Removal again to obtain

(∃ n(c2/d)k

)coNTIME[nc·(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)DTS[nc2·(c2/d)k−1+o(1)].

But by Theorem 11.1, the DTS part of the above can be replaced with a Σ2 computation, in

particular

(∃ n(c2/d)k

)DTS[nc2·(c2/d)k−1+o(1)] ⊆ (∃ n(c2/d)k

)(∃ n(c2/d)k+o(1))(∀ log n)DTS[n(c2/d)k+o(1)].

Finally,

(∃ n(c2/d)k

)(∃ n(c2/d)k+o(1))(∀ log n)DTS[n(c2/d)k+o(1)] ⊆ (∃ n(c2/d)k+o(1))(∀ log n)DTS[n(c2/d)k+o(1)]

by Quantifier Combination. This completes the proof. 2

25

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

