
Smoothed Analysis of Binary Search Trees and Quicksort

Under Additive Noise

Bodo Manthey∗

Yale University
Department of Computer Science

P. O. Box 208 285
New Haven, CT 06520-8285

manthey@cs.yale.edu

Till Tantau

Universität zu Lübeck
Institut für Theoretische Informatik

Ratzeburger Allee 160
23538 Lübeck, Germany

tantau@tcs.uni-luebeck.de

March 27, 2007

Abstract

Binary search trees are a fundamental data structure and their height plays a key role in the
analysis of divide-and-conquer algorithms like quicksort. Their worst-case height is linear; their
average height, whose exact value is one of the best-studied problems in average-case complexity,
is logarithmic. We analyze their smoothed height under additive noise: An adversary chooses a
sequence of n real numbers in the range [0, 1]; each number is individually perturbed by adding
a random value from an interval of size d; and the resulting numbers are inserted into a search
tree. The expected height of this tree is called smoothed tree height. If d is very small, namely
for d ≤ 1/n, the smoothed tree height is the same as the worst-case height; if d is very large,
the smoothed tree height approaches the logarithmic average-case height. An analysis of what
happens between these extremes lies at the heart of our paper: We prove that the smoothed
height of binary search trees is Θ(

√

n/d + log n), where d ≥ 1/n may depend on n. This

implies that the logarithmic average-case height becomes manifest only for d ∈ Ω(n/ log2 n).
For the analysis, we first prove that the smoothed number of left-to-right maxima in a sequence
is also Θ(

√

n/d+log n). We apply these findings to the performance of the quicksort algorithm,
which needs Θ(n2) comparisons in the worst case and Θ(n logn) on average, and prove that the
smoothed number of comparisons made by quicksort is Θ

(

n

d+1

√

n/d + n logn
)

. This implies

that the average-case becomes manifest already for d ∈ Ω
(

3

√

n/ log2 n
)

.

Keywords: Smoothed analysis, binary search trees, quicksort.

1 Introduction

To explain the discrepancy between average-case and worst-case behavior of the simplex algorithm,
Spielman and Teng introduced the notion of smoothed analysis [11]. Smoothed analysis interpo-
lates between average-case and worst-case analysis: Instead of taking a worst-case instance or, as
in average-case analysis, choosing an instance completely at random, we analyze the complexity of

∗Supported by the Postdoc-Program of the German Academic Exchange Service (DAAD). On leave from Saarland
University, Department of Computer Science, Postfach 151150, 66041 Saarbrücken, Germany.

1

Electronic Colloquium on Computational Complexity, Report No. 39 (2007)

ISSN 1433-8092

(possibly worst-case) objects subject to slight random perturbations. On the one hand, perturba-
tions model that nature is not (or not always) adversarial. On the other hand, perturbations reflect
the fact that data is often subject to measurement or rounding errors; even if the instance at hand
was initially a worst-case instance, due to measurement and rounding errors we would probably get
a less difficult instance in practice. Spielman and Teng [12] give a comprehensive survey on results
and open problems in smoothed analysis.

Binary search trees are one of the most fundamental data structures in computer science and
they are the building blocks for a large variety of data structures. The most important parameter
of binary search trees is their height since this parameter heavily influences the performance of
algorithms that use binary search trees. The worst-case height of a binary tree for n numbers is n.
The average-case behavior has been the subject of a considerable amount of research, culminating
in the result that the average-case height is α ln n + β ln ln n + O(1), where α ≈ 4.311 is the larger
root of α ln(2e/α) = 1 and β = 3/(2 ln(α/2)) ≈ 1.953 [8]. Furthermore, the variance of the height
is constant, as was proved independently by Drmota [2] and Reed [8], and it is conjectured that all
moments are bounded by constants as well [9]. Drmota [3] gives a recent survey.

Beyond being an important data structure, binary search trees play a central role in the analysis
of divide-and-conquer algorithms like quicksort [5, Section 5.2.2]. While quicksort needs Θ(n2)
comparisons in the worst case, the average number of comparisons is 2n log n−Θ(n) with a variance
of (7− 2

3π2)·n2−2n log n+O(n) as mentioned by Fill and Janson [4]. The relationship of quicksort to
binary search tree height is the following: The height of the tree T (σ) obtained from a sequence σ
is equal to the number of levels of recursion required by quicksort to sort σ. The number of
comparisons, which corresponds to the total path length of T (σ), is at most n times the height
of T (σ).

Binary search trees are also related to the number of left-to-right maxima of a sequence, which
is the number of new maxima seen while scanning a sequence from left to right. The number
of left-to-right maxima of σ is equal to the length of the rightmost path of the tree T (σ), which
means that left-to-right maxima provide an easy-to-analyze lower bound for the the height of binary
search trees. Furthermore, left-to-right maxima play a role in the analysis of quicksort [10]. In the
worst-case, the number of left-to-right maxima is n, while it is

∑n
i=1 1/i ∈ Θ(log n) on average.

Given the discrepancies between average-case and worst-case behavior of binary search trees,
quicksort, and the number of left-to-right maxima, the question arises of what happens in between
when the randomness is limited.

Previously Studied Perturbation Models. The perturbation model introduced by Spielman
and Teng for the smoothed analysis of continuous problems like linear programming is appropriate
for algorithms that process real numbers. In their model, each of the real numbers in the adversarial
input is perturbed by adding a small Gaussian noise. This model of perturbation favors instances in
the neighborhood of the adversarial input for a fairly natural and realistic notion of “neighborhood.”

The first smoothed analysis of quicksort, due to Banderier, Beier, and Mehlhorn [1], uses a
different perturbation model, namely a discrete perturbation model. Such models take discrete
objects like permutations as input and again yield discrete objects like another permutation. Ban-
derier, Beier, and Mehlhorn used p-partial permutations, which work as follows: An adversary
chooses a permutation of the numbers {1, . . . , n} as sequence, every element of the sequence is
marked independently with a probability of p, and then the marked elements are randomly per-
muted. Banderier et al. showed that the number of comparisons subject to p-partial permutations

2

is O
(

n
p · log n). Furthermore, they proved bounds on the smoothed number of left-to-right maxima

subject to this model.
Manthey and Reischuk [6] analyzed the height of binary search trees under p-partial permuta-

tions. They proved a lower bound of 0.8 · (1 − p) ·
√

n/p and an asymptotically matching upper
bound of 6.7 · (1− p) ·

√

n/p for smoothed tree height. For the number of left-to-right maxima they
showed that it lies between 0.6 · (1 − p) ·

√

n/p and 3.6 · (1 − p) ·
√

n/p.
Special care must be taken when defining perturbation models for discrete inputs: The per-

turbation should favor instances in the neighborhood of the adversarial instance, which requires a
suitable definition of neighborhood in the first place, and the perturbation should preserve the global
structure of the adversarial instance. Partial permutations have the first feature [6, Lemma 3.2],
but destroy much of the global order of the adversarial sequence.

Our Perturbation Model and Our Results. In the present paper we continue the smoothed
analysis of binary search trees and quicksort begun by Banderier et al. [1] and Manthey and
Reischuk [6]. However, we return to the original idea of smoothed analysis, namely that input
numbers are perturbed by measurement errors. In our model the adversarial input sequence consists
of n real numbers in the interval [0, 1], rather than a permutation of the numbers {1, . . . , n}. Then,
each of the real numbers is individually perturbed by adding a random number drawn uniformly
from an interval of size d. If we perturb sequences by a d less than 1/n, then the sorted sequence
(1/n, 2/n, 3/n, . . . , n/n) stays a sorted sequence. This means that for d < 1/n the smoothed height
of binary search trees (as well as the performance of quicksort and the number of left-to-right
maxima) is the same as in the worst-case. For this reason, we always assume d ≥ 1/n in the
following.

For the additive noise model, we study the smoothed height of binary search trees, the smoothed
number of comparisons made by quicksort, and the smoothed number of left-to-right maxima. In
each case we prove tight upper and lower bounds:

1. The smoothed number of left-to-right maxima is Θ(
√

n/d+log n) as shown in Section 3. This
result will be exploited in the subsequent sections.

2. The smoothed height of binary search trees is Θ(
√

n/d + log n) as shown in Section 4.

3. The smoothed number of comparisons made by quicksort is Θ
(

n
d+1

√

n/d + n log n
)

as shown
in Section 5. Thus, the perturbation effect of non-constant d is stronger than for constant d.

We believe that the additive noise model is more realistic than the previously studied p-partial per-
mutations. For instance, when we need to sort data obtained from, say, temperature measurements
or from stock prices, the input will not be distributed according to a discrete model like p-partial
permutations.

2 Preliminaries

Intervals of the real axis are denoted by [a, b] = {x ∈ R | a ≤ x ≤ b}. To denote an interval that
does not include an endpoint, we replace the square bracket next to the endpoint by a parenthesis.
We call σ = (σ1, . . . , σn) with σi ∈ R a sequence. For U = {i1, . . . , i`} ⊆ {1, . . . , n} with i1 < i2 <
· · · < i` let σU = (σi1 , σi2 , . . . , σi`) denote the subsequence of σ of the elements at positions in U .

3

We denote probabilities by P and expected values by E. To bound large deviations from the
expected value, we will use the Chernoff bound [7, Sect. 4.1] a couple of times: Let X1, . . . , Xn be
random variables with P(Xi = 1) = p = 1 − P(Xi = 0). Let X =

∑n
i=1 Xi. Then E(X) = pn and,

for every δ > 0, we have

P
(

X > (1 + δ) · pn
)

<

(

exp(δ)

(1 + δ)1+δ

)pn

.

Throughout the paper, we will assume for the sake of clarity that numbers like
√

d are integral
and we do not write down the tedious floor and ceiling functions that are actually necessary. Since
we are interested in asymptotic bounds, this does not affect the validity of the proofs.

2.1 Binary Search Trees, Left-To-Right Maxima, and Quicksort

Let σ be a sequence of length n consisting of pairwise distinct elements. For the following definitions,
let G = {i ∈ {1, . . . , n} | σi > σ1} be the set of positions of elements greater than σ1, and let
S = {i ∈ {1, . . . , n} | σi < σ1} be the set of positions of elements smaller than σ1.

From σ, we obtain a binary search tree T (σ) by iteratively inserting the elements σ1, σ2, . . . , σn

into the initially empty tree as follows: The root of T (σ) is σ1. The left subtree of the root σ1

is T (σS), and the right subtree of σ1 is T (σG). The height of T (σ) is the maximum number of
nodes on any root-to-leaf path of T (σ): Let height(σ) = 1 + max{height(σS) + height(σG)}, and
let height(σ) = 0 when σ is the empty sequence.

The number of left-to-right maxima of σ is the number of maxima seen when scanning σ from
left to right: let ltrm(σ) = 1 + ltrm(σG), and let ltrm(σ) = 0 when σ is the empty sequence. The
number of left-to-right maxima of σ is equal to the length of the rightmost path of T (σ). Thus,
ltrm(σ) ≤ height(σ), which follows also immediately from the definition.

Quicksort is the following sorting algorithm: Given σ, we construct σS and σG. To do this, all
elements of (σ2, . . . , σn) have to be compared to σ1, which is called the pivot element. Then we
sort σS and σG recursively to obtain τS and τG, respectively. Finally, we output τ = (τS , σ1, τG).
The number of comparisons qs(σ) needed to sort σ is thus qs(σ) = (n − 1) + qs(σS) + qs(σG) if σ
has a length of n ≥ 1, and qs(σ) = 0 when σ is the empty sequence.

2.2 Perturbation Model

The perturbation model of additive noise is defined as follows: Let d = d(n) ≥ 0 be the perturbation
parameter (d may depend on n). Given a sequence σ of n numbers chosen by an adversary from the
interval [0, 1], we draw a noise νi for each i ∈ {1, . . . , n} uniformly at random from the interval [0, d].
Then we obtain the perturbed sequence σ = (σ1, . . . , σi) by adding νi to σi, that is, σi = σi + νi.
Note that σi need no longer be an element of [0, 1], but σi ∈ [0, d + 1]. For d > 0 all elements of σ
are distinct with a probability of one. The choice of the interval sizes is arbitrary since the model
is invariant under scaling if we scale the perturbation parameter accordingly: If the adversary may
draw n numbers from the interval [a, b] and the noise is uniformly distributed in the interval [c, d],
we get exactly the same results when the adversary must choose the numbers from the interval
[0, 1] and the noise is from the interval [0, (d − c)/(b − a)].

For this model, we define the functions heightd(σ), qsd(σ), and ltrmd(σ), which denote the
smoothed search tree height, smoothed number of quicksort comparisons, and smoothed num-
ber of left-to-right maxima, respectively, when σ is perturbed by d-noise. Since the adversary

4

chooses σ, our goal are bounds for maxσ∈[0,1]n E
(

heightd(σ)
)

, maxσ∈[0,1]n E
(

qsd(σ)
)

, as well as
maxσ∈[0,1]n E

(

ltrmd(σ)
)

.
As argued earlier, if d < 1/n, the adversary can specify σ = (1/n, 2/n, 3/n, . . . , n/n) and adding

the noise terms does not affect the order of the elements. This means that we get the worst-case
height, number of comparisons, and number of left-to-right maxima. Because of this observation
we will restrict our attention to d ≥ 1/n.

If d is large, the noise will swamp out the original instance, and the order of the elements of σ
will depend only on the noise rather than the original instance. For intermediate d, additive noise
interpolates between average and worst case.

3 Smoothed Number of Left-To-Right Maxima

We start our analyses with the smoothed number of left-to-right maxima, which provides us with
a lower bound on the height of binary search trees as well. Our aim for the present section is to
prove the following theorem.

Theorem 3.1. For d ≥ 1/n, we have

max
σ∈[0,1]n

E
(

ltrmd(σ)
)

∈ Θ
(
√

n/d + log n
)

.

The theorem is proved in the rest of this section by first proving an upper bound of O
(
√

n/d+

log n
)

and then proving a lower bound of Ω
(
√

n/d+log n
)

. In the proofs, the following notations will
be helpful: For j ≤ 0, let σj = νj = 0. This allows us to define δi = σi−σi−

√
nd for all i ∈ {1, . . . , n}.

We define Ii = {j ∈ {1, . . . , n} | i −
√

nd ≤ j < i} to be the set of the |Ii| = min{i − 1,
√

nd}
positions that precede i.

3.1 Upper Bound on the Smoothed Number of Left-To-Right Maxima

To prove the upper bound for the smoothed number of left-to-right maxima, we proceed in two
steps: First, we show that the adversary should choose a sorted sequence. Second, we prove that
the expected number of left-to-right maxima of sorted sequences is O

(
√

n/d + log n
)

.

Lemma 3.2. For every sequence σ and its sorted version τ , we have

E
(

ltrmd(σ)
)

≤ E
(

ltrmd(τ)
)

.

Proof. We prove the lemma by “bubble-sorting” σ. If σ is already sorted, then there is nothing
to show. Otherwise, there exist adjacent σi and σi+1 with σi > σi+1. Our aim is to show that
E
(

ltrmd(σ)
)

≤ E
(

ltrmd(τ)
)

, where τ is obtained from σ by swapping σi and σi+1. Then the claim
follows by iteratively applying this argument.

After perturbation with ν, we obtain σ and τ , where τ i = τi + νi+1 = σi+1 + νi+1 and τ i+1 =
τi+1 + νi = σi + νi. Now we analyze the number of left-to-right maxima of σ and τ . To do this, let
δ = σi − σi+1 > 0. We distinguish two cases. First, we condition on νi ∈ [0, d− δ] and νi+1 ∈ [δ, d].
In this case, both (σi, σi+1) and (τ i, τ i+1) are pairs of random numbers, all of which lie uniformly
in the interval [σi, σi+1 + d]. Then the expected numbers of left-to-right maxima of σ and τ are
equal. Second, we condition on the event that νi ∈ (d − δ, d] or νi+1 ∈ [0, δ). In either case, both

5

σi > σi+1 and τ i < τ i+1 hold. Then σi+1 cannot be a left-to-right maximum in σ, and if σi is a
left-to-right maximum in σ, then so is τ i+1 in τ .

Since the case distinction is exhaustive, the lemma is proved.

Lemma 3.3. For every sequence σ of length n and all d ≥ 1/n, we have

E
(

ltrmd(σ)
)

∈ O
(
√

n/d + log n
)

.

Proof. By Lemma 3.2 we can restrict ourselves to proving the lemma for sorted sequences σ. We
estimate the probability that a given σi for i ∈ {1, . . . , n} is a left-to-right maximum. Then the
bound follows by the linearity of expectation. To bound the probability that σi is a left-to-right
maximum (ltrm), consider the following computation:

P
(

σi is an ltrm
)

≤ P
(

∀j ∈ Ii : νj < σi − σi−
√

nd

)

(1)

≤ P(d < σi − σi−
√

nd) +

∫ d−δi

0
P
(

∀j ∈ Ii : νj < σi + x − σi−
√

nd

)

dx (2)

≤ δi

d
+

∫ d

0
P
(

∀j ∈ Ii : νj < x
)

dx (3)

≤ δi

d
+ P

(

∀j ∈ Ii : νj < νi

)

=
δi

d
+

1

|Ii| + 1
. (4)

To see that (1) holds, assume that σi is a left-to-right maximum. Then σi −σi−
√

nd must be larger
than the noises of all the elements in the index range Ii, for if the noise νj of some element σj

were larger than σi − σi−
√

nd, then σj = σj + νj would be larger than σj + σi − σi−
√

nd. Since the
sequence is sorted, σj + σi − σi−

√
nd ≥ σi and σi would not be a left-to-right maximum.

For (2), first observe that νj < σi − σi−
√

nd is surely the case for all j ∈ Ii if d < σi − σi−
√

nd.
So, consider the case d ≥ σi − σi−

√
nd = δi + νi. Then νi ∈ [0, d − δi] and we can rewrite

P(∀j ∈ Ii : νj < δi + νi) as
∫ d−δi

0 P(∀j ∈ Ii : νj < δi + x) dx. For (3) observe that d < σi − σi−
√

nd is
equivalent to d − δi < νi and the probability of this is δi/d. Furthermore, we performed an index
shift in the integral. In (4), we replaced the integral by a probability once more and get the final
result.

Let us bound
∑n

i=1 δi. We have
∑n

i=1 δi =
∑n

i=1(σi − σi−
√

nd) =
∑n

i=n−
√

nd+1
σi ≤

√
nd. The

second equality holds since most σi cancel themselves out and σi = 0 for i ≤ 0. The inequality holds
since there are

√
nd summands. We complete the proof by bounding 1/(|Ii|+ 1) = 1/min{i,

√
nd}

by 1/i + 1/
√

nd and summing over all i:

E
(

ltrmd(σ)
)

≤
n
∑

i=1

δi

d
+

n
∑

i=1

1

|Ii|
≤

√
nd

d
+

n
∑

i=1

1

i
+ n

1√
nd

∈ O
(

√

n/d + log n
)

.

3.2 Lower Bound on the Smoothed Number of Left-To-Right Maxima

Let us now show a lower bound that matches the upper bound proved in the previous section.
Although the sequences may consist of n arbitrary numbers from the interval [0, 1], it suffices to
consider sorted sequences (1/n, 2/n, . . . , n/n).

Lemma 3.4. For the sequence σ = (1/n, 2/n, . . . , n/n) and all d ≥ 1/n, we have

E
(

ltrmd(σ)
)

∈ Ω
(
√

n/d + log n
)

.

6

Proof. We assume that d ≥ 4/n. This is no restriction since for d < 4/n, we immediately get a
lower bound of n/4 ∈ Ω(n) in compliance with the theorem.

We give two estimates for the probability that a given σi is a left-to-right maximum; only this
time, we need to bound this probability from below. The first estimate is simple:

P
(

σi is an ltrm
)

= P
(

∀j < i : νj + j/n < νi + i/n
)

≥ P
(

∀j < i : νj < νi

)

= 1/i.

For the second estimate, assume νi > d −
√

d/n for a given i ∈ {1, . . . , n}. Then σj < σi for all
j ∈ {1, . . . , i −

√
nd − 1} since the noise of σi is so large that σj before σi−

√
nd can never reach

σi even when a noise of d is added. This shows that σi is a left-to-right maximum if (a) we have
νi > d −

√

d/n and (b) we have νj < d−
√

d/n for all j ∈ Ii. The probability of (a) is 1/
√

nd and

of (b) is (1 − 1/
√

nd)|Ii| ≥ (1 − 1/
√

nd)
√

nd. Since d ≥ 4/n, this yields

P
(

σi is an ltrm
)

≥ 1√
nd

(

1 − 1√
nd

)

√
nd

≥ 1

4 ·
√

nd
.

The two estimates together yield P
(

σi is an ltrm
)

≥ max{1/i, 1/(4
√

nd)} ≥ 1
2

(

1/i+1/(4
√

nd)
)

.
By the linearity of expectation we get

E
(

ltrmd(σ)
)

≥ 1

2

n
∑

i=1

1

i
+

1

2

n
∑

i=1

1

4
√

nd
∈ Θ(log n +

√

n/d).

4 Smoothed Height of Binary Search Trees

In this section we prove our first main result, an exact bound on the smoothed height of binary
search trees under additive noise. The bound is the same as for left-to-right maxima, as stated in
the following theorem.

Theorem 4.1. For d ≥ 1/n, we have

max
σ∈[0,1]n

E
(

heightd(σ)
)

∈ Θ
(
√

n/d + log n
)

.

In the rest of this section, we prove this theorem. We have to prove an upper and a lower bound,
but the lower bound follows directly from the lower bound of Ω

(
√

n/d + log n
)

for the smoothed
number of left-to-right maxima (recall that the number of left-to-right maxima in a sequence is the
length of the rightmost path of the sequence’s search tree). Thus, we only need to focus on the
upper bound.

To prove the upper bound of O
(
√

n/d + log n
)

on the smoothed height of binary search trees,
we need some preparations. In the next subsection we introduce the concept of increasing and
decreasing runs and show how they are related to binary search tree height. As we will see,
bounding the length of these runs implicitly bounds the height of binary search trees. This allows
us to prove the upper bound on the smoothed height of binary search trees in the main part of this
section.

7

2 6

7

8

13

14

12

11

9

10

5

4

3

1

Figure 1: The tree T (σ) obtained from the sequence σ = (7, 8, 13, 3, 2, 10, 9, 6, 4, 12, 14, 1, 5, 11). We
have height(σ) = 6. The root-to-leaf path ending at 11 can be divided into the increasing run
α = (7, 8, 10, 11) and the decreasing run β = (13, 12, 11).

4.1 Increasing and Decreasing Runs

In order to analyze the smoothed height of binary search trees, we introduce a related measure
for which an upper bound is easier to obtain. Given a sequence σ, consider a root-to-leaf path
of the tree T (σ). We extract two subsequences α = (α1, . . . , αk) and β = (β1, . . . , β`) from this
path according to the following algorithm: We start at the root. If we are at an element σi of
the path, we look at the direction in which the path continues from σi. If it continues with the
right child of σi, we append σi to α; if it continues with the left child, we append σi to β; and
if σi is a leaf (has no children), then we append σi to both α and β. This construction ensures
α1 < · · · < αk = β` < · · · < β1 and the length of σ is k + ` − 1. Figure 1 shows an example of how
α and β are constructed.

A crucial property of the sequence α is the following: Let αi = σji for i ∈ {1, . . . , k} with
j1 < j2 < · · · < jk. Then none of σ1, . . . , σji−1 lies in the interval (αi, αi+1), for otherwise αi and
αi+1 cannot be on the same root-to-leaf path. A similar property holds for the sequence β: No
element of σ prior to βi lies in the interval (βi+1, βi). We introduce a special name for sequences
with this property.

Definition 4.2. Let σ be a sequence. An increasing run of σ is a subsequence (σi1 , σi2 , . . . , σik) of
σ with σi1 < · · · < σik with the following property: No element of σ prior to σik lies in the interval
(σik , σik+1

). Analogously, a decreasing run of σ is a subsequence (σi1 , . . . , σi`) with σi1 > · · · > σi`

such no element prior to σik lies in the interval (σik+1
, σik).

Let inc(σ) and dec(σ) denote the length of the longest increasing and decreasing run of σ,
respectively. Furthermore, let decd(σ) and incd(σ) denote the length of the longest runs under
d-noise. In Figure 1, we have inc(σ) = 4 because of (7, 8, 10, 12) or (7, 8, 13, 14) and dec(σ) = 4
because of (7, 3, 2, 1).

Since every root-to-leaf path can be divided into an increasing and a decreasing run, we imme-
diately obtain the following lemma.

Lemma 4.3. For every sequence σ and all d we have

height(σ) ≤ dec(σ) + inc(σ),

E
(

heightd(σ)
)

≤ E
(

decd(σ) + incd(σ)
)

.

8

In terms of upper bounds, dec(σ) and inc(σ) as well as decd(σ) and incd(σ) behave equally. The
reason is that given a sequence σ, the sequence τ with τi = 1−σi has the properties dec(σ) = inc(τ)
and E

(

decd(σ)
)

= E
(

incd(τ)
)

. This observation together with Lemma 4.3 proves the next lemma.

Lemma 4.4. For all d, we have

max
σ∈[0,1]n

E
(

heightd(σ)
)

≤ 2 · max
σ∈[0,1]n

E
(

incd(σ)
)

.

The lemma states that in order to bound the smoothed height of search trees from above we
can instead bound the smoothed length of increasing or decreasing runs. To simplify the analysis
even further, we show that we can once more restrict our attention to sorted sequences.

Lemma 4.5. For every sequence σ and its sorted version τ , we have

E
(

incd(σ)
)

≤ E
(

incd(τ)
)

.

Proof. We sort σ successively as we already did for Lemma 3.2. Assume that σi > σi+1 for some i
and let δ = σi−σi+1 > 0. We show E(incd(σ)) ≤ E(incd(τ)), where τ is obtained from σ by swapping
σi and σi+1. Let ν denote the noise vector added to σ and τ . Then τ i = τi + νi+1 = σi+1 + νi+1

and τ i+1 = τi+1 + νi = σi + νi.
We distinguish two cases. First, we condition on νi ∈ [0, d − δ] and νi+1 ∈ [δ, d]. Similar to the

argument in Lemma 3.2, both (σi, σi+1) and (τ i, τ i+1) are pairs of random numbers, all of which
lie uniformly in the interval [σi, σi+1 + d], and the expected values of incd(σ) and incd(τ) are equal.

Second, we condition on the events that νi ∈ (d− δ, d] or νi+1 ∈ [0, δ). In either case, σi > σi+1

and τ i < τ i+1. Thus, every increasing run of σ corresponds to an increasing run of τ : If the run
of σ uses neither σi nor σi+1, this is obvious. If the run of σ uses σi, then we get the same run of
τ , where now τ i+1 is used. The run cannot be interrupted by τ i because τ i < τ i+1. If the run of
σ uses σi+1, then we obtain a run of the same length using τ i. This run is also an increasing run
since the only difference of σ and τ is that now the larger element τ i+1 appears after τ i. Finally,
the run of σ cannot use both σi and σi+1 because of σi+1 < σi. Thus, we have inc(σ) ≤ inc(τ),
which proves the lemma.

4.2 Upper Bound on the Smoothed Height of Binary Search Trees

We are now ready to prove the upper bound for binary search trees by proving an upper bound on
the smoothed length of increasing runs of sorted sequences. For this, we prove four lemmas, the
last of which claims exactly the desired upper bound.

Lemma 4.6 deals with d = 1 and states that E
(

height1(σ)
)

∈ O(
√

n) for every sequence σ.
Lemma 4.7 states that in order to bound tree heights, we can divide sequences into (possibly

overlapping) parts and consider the height of the trees induced by the subsequences individually. A
less general form of the lemma has already been shown by Manthey and Reischuk [6, Lemma 4.1].

Lemma 4.8 establishes that if d = n/ log2 n, a perturbed sequence behaves the same way as a
completely random sequence with respect to the smoothed length of its longest increasing run. The
core idea is to partition the sequence into a set of “completely random” elements, which behave
as expected, and two sets of more bothersome elements lying in a small range. As we will see, the
number of bothersome elements is roughly log2 n and since the range of values of these elements is
small, we can use the result E

(

height1(σ)
)

∈ O(
√

n) to show that their contribution to the length
on an increasing run is just O(log n).

9

Finally, in Lemma 4.9 we allow general d ≥ 1/n. This case turns out to be reducible to the case
d = n/ log2 n by a scaling argument.

For the proofs of the lemmas, two technical terms will be helpful: For a given real interval
I = [a, b], we say that a position i of σ is eligible for I if σi can assume any value in I. In other
words, i is eligible for [a, b] if σi ≤ a and σi + d ≥ b. Furthermore, we say furthermore that i is
regular if σi actually lies inside I.

Lemma 4.6. For every sequence σ, we have

E
(

inc1(σ)
)

∈ O(
√

n).

Proof. Let us take a closer look at increasing runs. Every increasing run of a sequence σ starts
with a number of left-to-right maxima. However, after the first element that is not a left-to-right
maximum, the run does not contain any more left-to-right maxima. More formally: If α1, . . . , α`

is an increasing run of σ, then there exists a k ∈ {0, 1, . . . , `} such that all elements α1, . . . , αk are
left-to-right maxima of σ while αk+1 is not (or k = `). Furthermore, if σi is the first left-to-right
maximum after αk, then the remaining elements αk+1, . . . , α` all lie in the interval [αk, σi].

Due to this property, it suffices to a) bound E
(

ltrm1(σ)
)

and b) bound the maximum length
of an increasing run such that the values of the elements of the run lie between the values of two
consecutive left-to-right maxima. By Lemma 3.3, we have E

(

ltrm1(σ)
)

∈ O(
√

n), so let us focus
on b). For the bound we prove two claims and for the formulation of these claims the following
definition is helpful: We say that a set of numbers xi is ε-dense for an interval I if every interval
J ⊆ I of length ε contains at least one xi.

Claim 1. Let a ≤ s < b, let y1, . . . , y√n ∈ [a, s], and let x1, . . . , x√
n be random variables where

xi is uniformly distributed in the interval [yi, b]. Then the xi are
(

(b − a)n−1/4
)

-dense for the

interval [s, b] with a probability of at least 1 − exp
(

−Θ(n1/4)
)

.

Proof. By a scaling argument, it suffices to consider the case a = 0, b = 1, and s ∈ [0, 1]. We divide
the interval [s, 1] into subintervals I1, I2, . . . , Ik, where

Ij =
[

s + (j − 1) · n−1/4/2, s + j · n−1/4/2
]

and k = b(1−s) ·2n1/4c. Every interval J of length n1/4, which is twice the length of an Ij , contains
at least one Ij as a subinterval. Thus, if every Ij contains at least one xi, no interval of length
n1/4 is empty. The probability that any fixed element xi does not assume a value in Ij is at most
1 − n−1/4/2. Thus, the probability that Ij does not contain any xi is at most

(

1 − n−1/4

2

)

√
n

=

(

(

1 − 1

2n1/4

)2n1/4
)n1/4/2

≤ exp
(

−n1/4/2
)

.

Using the union bound, we obtain that the probability that there exists an empty Ij is at most
k · exp

(

−n1/4/2
)

∈ exp
(

−Θ(n1/4)
)

.

Claim 2. Let τ = (τ1, . . . , τk) be the sequence obtained by sorting (σ1, . . . , σk), and let τ0 = 0. Let
j ∈ {1, . . . , k}, and let I = [τj−1, τj]. Let σ`1 , . . . , σ`√n

be the first
√

n elements of σ that fall

into I. Let s = max{τj−1, σ`√n
}. Then the set {σ`1, . . . , σ`√n

} is
(

(τj − τj−1)n
−1/4

)

-dense for the

interval [s, τj] with a probability of at least 1 − exp
(

−Θ(n1/4)
)

.

10

Proof. This follows from the first claim by setting a = τj−1, b = τj, and yi = max{a, σ`i
} for all

i ∈ {1, . . . ,√n}. To see this, first note that we added the element τ0 = 0 so that the interval [0, τ1]
does not require special attention. Second, note that, indeed, each σ`i

is uniformly distributed in
[yi, b] =

[

max{a, σ`i
}, τj]. Finally, note that yi = max{a, σ`i

} ∈ [a, s] = [τj−1,max{τj−1, σ`√n
}]

holds since σ is a sorted sequence.

Let us return to our original aim: We wish to bound the length of an increasing run for which
the values of the run all lie between the values of two consecutive left-to-right maxima. The idea
is to apply Claim 2 twice. Each time, with high probability, if we consider additional

√
n elements

of the run, their values must be dense for a smaller and smaller interval. After having applied the
claim twice, the interval is so small that, again with high probability, the interval can only contain
a small number of elements – which proves that the total number of elements in the run cannot be
large. In the following, we detail this argument.

Let a = σi be a left-to-right maximum of σ, and let b = σk > a be the next left-to-right
maximum after a, that is, k > i is chosen minimally such that σk > a. If less than

√
n elements

assume a value in [a, b], then these elements contribute at most
√

n to the length of an increasing
run (recall that all elements of an increasing run must lie inside the interval [a, b] if a and b are
consecutive left-to-right maxima). Otherwise, we apply Claim 2 for j = k: The first

√
n elements

of σ that are inserted into [a, b] lie
(

(b − a)n−1/4
)

-densely in [s, b] with a probability of at least

1−exp
(

−Θ(n1/4)
)

. If this not the case (despite the high probability), we call the situation a failure,
which will be dealt with later.

Among the first
√

n elements in [a, b], let c1 < . . . < cm be the elements in [s, b] in increasing
order. Let c0 = s and cm+1 = b. Then, after inserting these m elements into [s, b], any increasing
run whose elements assume values in [s, b] can only be continued with elements of a subinterval
J = [ci−1, ci]. The length ci − ci−1 of J is at most (b−a)n−1/4 ≤ 2n−1/4 since the first

√
n elements

are
(

(b−a)n−1/4
)

-dense in [s, b]. We apply the same argument once more: If less than
√

n elements
fall into J , then they contribute at most

√
n to the length of an increasing run. Otherwise, we can

apply Claim 2 again: The probability that after inserting
√

n elements into J , there is a subinterval
of J of length at least (ci − ci−1)n

−1/4 that does not contain an element is at most exp
(

−Θ
(

n1/4
))

.
If this nevertheless happens, we again call this a failure and deal with it later on.

We can now conclude that the values of all elements of an increasing run that we have not yet
dealt with must lie in an interval of size at most (ci − ci−1)n

−1/4 ≤ 2n−1/2. The expected number
of elements that fall into such an interval is at most 2

√
n. By the Chernoff bound, the probability

that such an interval contains more than 4
√

n elements is at most exp
(

−Ω
(√

n
))

. Again, we call
it a failure if this nevertheless happens.

To finish the proof, we first estimate the length of the longest increasing run given that we have
no failures. Second, we show that failures happen only with a negligible probability, thus contribute
not too much to the expected value of inc(σ).

If we have no failure, then the expected length of any increasing run is at most E
(

ltrm(σ)
)

plus√
n for the first

√
n elements that fall between two consecutive left-to-right maxima plus

√
n for

the first
√

n elements that fall into one interval of length at most 2n−1/4 plus 4 · √n, which is the
maximum number of elements in an interval of length 2/

√
n. Altogether, we have inc(σ) ∈ O(

√
n)

in this case.
Failure can happen due to the following three events: First, there is an interval of length at

most 2n−1/4 between two left-to-right maxima that does not contain one of the first
√

n elements
that fall between these left-to-right maxima. Second, there is an interval of length at most 2/

√
n

11

without any of the first
√

n elements after the second phase. Third, any interval of length 2/
√

n
contains more than 4

√
n elements.

Overall, there are at most O(n) pairs of consecutive left-to-right maxima between which a failure
can happen. Furthermore, there are at most O(n) pairs of consecutive elements a and b between
failure can happen. Finally, there are at most O(n) intervals of length at most 2/

√
n where failure

can happen. (These are very rough estimates.) By taking a union bound, the overall probability
of failure is thus at most O(n · exp

(

−Ω
(

n1/4
))

). If we have failure, then we bound inc(σ) by the

trivial upper bound of n. This contributes only O(n2 · exp
(

−Ω
(

n1/4
))

) ⊆ o(1) to the expected
value, which completes the proof.

Lemma 4.7. For every sequence σ, all d, and every covering U1, . . . , Uk of {1, . . . , n} (which
means

⋃k
i=1 Ui = {1, . . . , n}), we have

height(σ) ≤
∑k

i=1 height(σUi),

E
(

heightd(σ)
)

≤∑k
i=1 E

(

heightd(σUi)
)

.

Proof. Let U1, . . . , Uk cover {1, . . . , n}. For a fixed i, let a and b with a < b be two elements of σUi

that do not lie on the same root-to-leaf path in T (σUi). Then there exists a c prior to a and b in
σU1

with a < c < b, which implies that a and b do no lie on the same root-to-leaf path in the tree
T (σ) either. Now consider a root-to-leaf path p of T (σ) that has a length of height(σ). Let pUi be p
restricted to elements of σU1

and let `Ui its length. Then
∑k

i=1 height(σU1
) ≥

∑k
i=1 `Ui ≥ height(σ),

because the Ui cover {1, . . . , n}.
The second inequality follows directly from the first since both taking expectation and smoothing

are monotone operations.

Lemma 4.8. For every sequence σ ∈ [0, 1]n and for d = n/(log n)2, we have

E
(

heightd(σ)
)

∈ O(log n).

Proof. Recall that a position i is called eligible for an interval if σi could be any value in the interval,
and it is called regular if it actually lies in the interval. All positions are eligible for [1, d].

Let σ be a perturbed sequence and let R be the set of regular positions. A sufficient condition
for i being regular is νi ∈ [1, d − 1]. Let F = {i ∈ {1, . . . , n} | νi ≤ 1} and B = {i ∈ {1, . . . , n} |
νi ≥ d−1} denote the sets of positions i that are possibly not regular because νi is either too small
or too large.

The three sets R, F , and B are usually not disjoint, but they cover {1, . . . , n}, which allows us
to apply Lemma 4.7: If we can individually bound the expected values of heightd(σR), heightd(σF)
and heightd(σB) by O(log n), we are done.

Let us start with E
(

height(σR)
)

. Given that a position i is regular, the element σi is uniformly
distributed in [1, d] and, thus, the order of the elements of σR is random with all permutations
being equally likely. This implies that E

(

height(σR)
)

∈ O(log |R|) ⊆ O(log n).
It remains to deal with σF and σB . The distributions of height(σF) and height(σB) are clearly

identical, so it suffices to analyze height(σF). For this, take a different look at how σF is generated:
We can think of this as first flipping a coin for every i ∈ {1, . . . , n} to determine i ∈ F (with the
coin being extremely biased so that P(i ∈ F) = 1/d = (log2 n)/n holds). After we have chosen F ,
we draw νi for each i ∈ F uniformly at random from the interval [0, 1].

12

By the Chernoff bound, the probability that σF contains more than 2(log n)2 elements is less
than n−(log n)/3. If σF indeed contains more elements, we bound height(σF) by n. This contributes
only n−(log n)/3 · n ∈ o(1) to the expected value of height(σF).

We can now apply Lemma 4.6 to σF , where n′ ≤ 2(log n)2 and d′ = 1, and get E
(

height1(τ)
)

∈
O(

√
n′) ⊆ O(log n).

Lemma 4.9. For every sequence σ and all d ≥ 1/n we have

E
(

heightd(σ)
)

∈ O
(
√

n/d + log n
)

.

Proof. If d ∈ Ω
(

n/(log n)2
)

, then E
(

heightd(σ)
)

∈ O(log n) by Lemma 4.8.
To prove the theorem for smaller values of d, we divide the sequence into subsequences. Let

N solve the equation N2/ log2 N = nd. Then log N ∈ Θ(log(nd)), and thus N = c ·
√

nd · log(nd)
for some c ∈ Θ(1). Let nj be the number of elements of σ with σi ∈ [(j − 1) · N/n, j · N/n].
Choose kj ∈ N such that (kj − 1) · N < nj ≤ kjN . We divide the nj elements of the interval
[(j − 1) · N/n, j · N/n] into kj subsequences σj,1, . . . , σj,kj such that no subsequence contains more
than N elements. Since

n/N
∑

j=1

kj ≤
n/N
∑

j=1

nj + N

N
≤ 2n/N,

we obtain at most 2n/N such subsequences. Each subsequence spans at most an interval of length
N/n and contains at most N elements. Thus, by Lemma 4.8, we have heightd(σ

j,`) ∈ O(log(N)).
Finally, Lemma 4.7 yields

E
(

heightd(σ)
)

≤
n/N
∑

j=1

kj
∑

`=1

E
(

heightd(σ
j,`)
)

∈ O

(

n · log N

N

)

= O
(

√

n/d
)

.

5 Smoothed Number of Quicksort Comparisons

In this section, we apply our results about binary search trees and left-to-right maxima to analyze
the performance of the quicksort algorithm. The following theorem summarizes the findings.

Theorem 5.1. For d ≥ 1/n we have

max
σ∈[0,1]n

E
(

qsd(σ)
)

∈ Θ
(

n
d+1

√

n/d + n · log n
)

.

In other words, for d ∈ O(1), the number of comparisons is at most O(n
√

n/d), while for
d ∈ Ω(1), it is at most O(n

d

√

n/d). This means that d has a stronger influence for d ∈ Ω(1).

5.1 Upper Bound on the Smoothed Number of Quicksort Comparisons

To prove the upper bound, we first need a lemma similar to Lemma 4.7 that allows us to estimate
the number of comparisons of subsequences.

13

Lemma 5.2. For every sequence σ, all d, and every covering U1, . . . , Uk of {1, . . . , n}, we have

qs(σ) ≤∑k
i=1 qs(σUi) + Q,

qsd(σ) ≤∑k
i=1 qsd(σUi) + Q,

where Q is the number of comparisons of elements of σUi with elements of σ{1,...,n}\Ui
for any i and

the random variable Q is defined analogously for σ.

The proof goes along the same lines as the proof of Lemma 4.7 and is omitted.

Lemma 5.3. For every sequence σ and all d ≥ 1/n, we have

E
(

qsd(σ)
)

∈ O
(

n
d+1

√

n/d + n log n
)

.

Proof. Given a sequence σ, first observe the quicksort will make at most O(n
√

n/d + n log n)
comparisons, which follows directly from Lemma 4.9 and the observation that qs(σ) ≤ n ·height(σ)
for every sequence σ: Every level of recursion of quicksort contributes at most n − 1 comparisons,
and we have height(σ) levels of recursion. Thus, the claim of the theorem is correct for d ∈ O(1).

Let us now consider the case d ∈ ω(1). Furthermore, we assume that d ∈ O
(

3
√

n/ log2 n
)

. This is

no restriction since we obtain the average-case bound of O(n log n) already for d ∈ Θ
(

3
√

n/ log2 n
)

,
thus also for larger d.

Similar to the proof of Lemma 4.9, we divide the sequence σ into three parts. The set R = {i ∈
{1, . . . , n} | σi ∈ [1, d]} of regular elements for the interval [1, d] is defined as before. The set F is
defined slightly differently, namely as F = {i ∈ {1, . . . , n} | νi ≤ 3}. This means that F contains all
i for which νi is too small, plus some extra elements. Similarly B = {i ∈ {1, . . . , n} | νi ≥ d − 3}.

As in Lemma 4.9, the regular elements are easy to handle since they are uniformly distributed
in [1, d] and, thus, E

(

qsd(σR)
)

∈ O(n log n).

We have E
(

heightd(σF)
)

= E
(

heightd(σB)
)

∈ O(
√

n/d), which follows from the same argument
as the one used in Lemma 4.9: The probability that σF contains more than 6n/d elements is at
most (e/4)3n/d ∈ O

(

(e/4)
√

n
)

due to the Chernoff bound and d ∈ O
(

3
√

n/ log2 n
)

. The same holds
for σB. If either contains more element, we bound the height by n, which contributes at most o(1)
to the expectation. Otherwise, we have sequences with O(n/d) elements that are perturbed with a
perturbation parameter of 3. We obtain

E
(

qs(σF)
)

= E
(

qs(σB)
)

∈ O
(

E
(

height3(σF)
)

· n/d
)

⊆ O
(

n
d

√

n/d
)

.

By Lemma 5.2, what remains to be estimated is the number of comparisons of elements σi and
σj where i and j are in two different sets of R, F , and B.

Due to the symmetry between σF and σB, it suffices to restrict ourselves to estimating the
number of comparisons of elements in σF with elements in σR and σB . This boils down to count
the number of comparisons of elements σi with νi ≤ 3 to elements σj with σj ≥ 1.

The number of comparisons between elements σi and σj with i ∈ F and j ∈ F ∩ R can be
bounded by the total number of comparisons between elements in F , but this number is E

(

qs(σF)
)

∈
O
(

n
d

√

n/d
)

. Similarly, since E
(

qs(σR)
)

∈ O(n log n), the expected number of comparisons between
positions i ∈ F ∩ R and j ∈ R is at most O(n log n).

Thus, we can concentrate on i ∈ F with νi ≤ 1 and j ∈ R with σi ≥ 3, which includes all
i ∈ F \ R and j ∈ R \ F .

14

We distinguish two cases: First, we estimate the expected number of such comparisons with σi

being the pivot element. Second, we consider the case that σj is the pivot element.
The two elements σi ≤ σi + 1 ≤ 2 and σj ≥ 3 will be compared with σi being the pivot only

if i < j and σ contains no element σk ∈ [σi, σj] for k < i. In particular, σ must not contain an
element σk ∈ [2, 3] with k < i.

Since d ∈ ω(1), every element is eligible for the interval [2, 3]. Furthermore, for every i ∈
{1, . . . , n}, we have P(νi ≤ 1) = P(σk ∈ [2, 3]) = 1/d and these two events are disjoint. (If σi = 1,
then this is not true since it might be νi = 1. However, the probability of this is 0.) Thus, the
probability that σ contains more than O(log n) elements with νi ≤ 1 prior to the first element
σk ∈ [2, 3] is O(1/n). If this happens nevertheless, we bound the number of comparisons by the
trivial upper bound of n2, which contributes only O(n2 · 1/n) = O(n) to the expected value.

Otherwise, at most O(log n) elements σi with νi ≤ 1 are compared to elements σj with σj ≥ 3
with σi being the pivot, which contributes O(n log n) comparisons.

Now we consider the second case: How many comparisons of elements σj ≥ 3 with elements
σi ≤ σi + 1 with σj being the pivot element do we have to expect? The element σj is compared to
σi only if j < i and there is no k < j with σk ∈ [σi, σj]. Thus, it is necessary that σj is the minimal
among all elements σk ≥ 3 with k ≤ j.

If we restrict ourselves to σk ∈ [3, d], then this corresponds just to the average number of
left-to-right minima, which is O(log n). (The average number of left-to-right minima is equal to
the average number of left-to-right maxima.) Thus, the expected number of elements σj ∈ [3, d]
that, when being the pivot element, are compared to any element σi ≤ σi + 1, is O(log n). This
contributes at most O(n · log n) to the expected number of comparisons.

Elements σk ≥ d remain to be considered. Since d ∈ ω(1), there are at most O(log n) such
elements prior to the first element of the interval [3, d] with high probability. Furthermore, there
are at most O(log n) elements of σF prior to the first element of [1, d] with high probability. Thus,
the contribution to the number of comparisons is only O(log2 n).

5.2 Lower Bound on the Smoothed Number of Quicksort Comparisons

Now we show that the upper bound proved in the previous section is tight. The standard sorted
sequence provides a worst case, but in the following lemma we use a sequence that is slightly easier
to handle technically.

Lemma 5.4. For the sequence σ = (1/n, 2/n, 3/n, . . . , n
2 /n, 1, 1, . . . , 1) and all d ≥ 1/n, we have

E
(

qsd(σ)
)

∈ Ω
(

n
d+1

√

n/d + n log n
)

.

Proof. In the perturbed sequence σ the first n/2 elements contain an expected number of Ω
(
√

n/d
)

left-to-right maxima according to Lemma 3.4. Every left-to-right maximum σi of σ has to be
compared to all the elements that come later and are greater than σi.

If d ∈ o(1), all n/2 elements of the second half of σ are greater than any left-to-right maximum of
the first half of σ. Thus, the expected number of comparisons is at least Ω

(

n
√

n/d
)

= Ω
(

n
d+1

√

n/d+

n log n
)

.
If d ∈ Ω(1), then the probability that an element σi of the second half of σ is greater than all

left-to-right maxima of the first half of σ is

P
(

∀j ≤ n/2: 1 + νi ≥ σj

)

≥ P
(

1 + νi ≥ 1/2 + d
)

=
1

2d
.

15

Thus, the expected number of elements that are greater than all left-to-right maxima of the first
half is Ω

(

n/d
)

. Multiplying this with the expected number of left-to-right maxima of the first half

yields that at least an expected number of Ω
(

n
d

√

n/d
)

⊆ Ω
(

n
d+1

√

n/d
)

comparisons are needed.
Since quicksort always needs at least Ω(n log n) comparisons, we get the claim.

6 Conclusion

We have analyzed the smoothed height of binary search trees and the smoothed number of compar-
isons made by the quicksort algorithm under additive noise. The smoothed height of binary search
trees and also the smoothed number of left-to-right maxima are Θ(

√

n/d + log n); the smoothed
number of quicksort comparisons is Θ(n

d+1

√

n/d + n log n).
While we obtain the average-case height of Θ(log n) for binary search trees only for d ∈

Ω(n/ log2 n) – which is large compared to the interval size [0, 1] from which the numbers are
drawn –, for the quicksort algorithm already d ∈ Ω

(

3
√

n/ log2 n
)

suffices so that the expected num-
ber of comparisons equals the average-case number of Θ(n · log n). On the other hand, the recursion
depth of quicksort, which is equal to the tree height, can be as large as Ω

(
√

n/d
)

. Thus, although

the average number of comparisons is already obtained for d ∈ Ω
(

3
√

n/ log2 n
)

, the recursion depth
remains asymptotically larger than its average value for d ∈ o

(

n/(log n)2
)

.
A natural question arising from our results is, what happens when the noise is drawn according

to distributions other than the uniform distribution? In a more general additive noise model, the
adversary can not only specify the sequence σ, but also a density function f according to which
the noise is drawn. We conjecture that if maxx∈R f(x) = φ, then the expected tree height and
the expected number of left-to-right maxima are Θ(

√
nφ + log n) while the expected number of

quicksort comparisons is Θ
(φn

φ+1

√
nφ + n log n

)

. These bounds would be in compliance with our
bounds for uniformly distributed noise, where φ = 1/d.

References

[1] Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three combinatorial
problems. In Branislav Rovan and Peter Vojtás, editors, Proc. of the 28th Int. Symp. on
Mathematical Foundations of Computer Science (MFCS), volume 2747 of Lecture Notes in
Computer Science, pages 198–207. Springer, 2003.

[2] Michael Drmota. An analytic approach to the height of binary search trees II. Journal of the
ACM, 50(3):333–374, 2003.

[3] Michael Drmota. Profile and height of random binary search trees. Journal of the Iranian
Statistical Society, 3(2):117–138, 2004.

[4] James Allen Fill and Svante Janson. Quicksort asymptotics. Journal of Algorithms, 44(1):4–28,
2002.

[5] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming.
Addison-Wesley, 2nd edition, 1998.

[6] Bodo Manthey and Rüdiger Reischuk. Smoothed analysis of binary search trees. Theoretical
Computer Science, to appear. A preliminary version appeared in Proc. of the 16th Int. Symp.

16

on Algorithms and Computation (ISAAC), vol. 3827 of Lecture Notes in Computer Science,
pp. 483–492, Springer, 2005.

[7] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, 1995.

[8] Bruce Reed. The height of a random binary search tree. Journal of the ACM, 50(3):306–332,
2003.

[9] John Michael Robson. Constant bounds on the moments of the height of binary search trees.
Theoretical Computer Science, 276(1–2):435–444, 2002.

[10] Robert Sedgewick. The analysis of quicksort programs. Acta Informatica, 7(4):327–355, 1977.

[11] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

[12] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms and heuristics:
Progress and open questions. In Luis M. Pardo, Allan Pinkus, Endre Süli, and Michael J.
Todd, editors, Foundations of Computational Mathematics, Santander 2005, pages 274–342.
Cambridge University Press, 2006.

17

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

