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Abstract

A k-query Locally Decodable Code (LDC) encodes ann-bit messagex as anN -bit codewordC(x), such that
one can probabilistically recover any bitxi of the message by querying onlyk bits of the codewordC(x), even
after some constant fraction of codeword bits has been corrupted. The major goal of LDC related research is to
establish the optimal trade-off between length and query complexity of such codes.

Recently [34] introduced a novel technique for constructing locally decodable codes and vastly improved the
upper bounds for code length. The technique is based on Mersenne primes. In this paper we extend the work
of [34] and argue that further progress via these methods is tied to progress on an old number theory question
regarding the size of the largest prime factors of Mersenne numbers.

Specifically, we show that every Mersenne numberm = 2t − 1 that has a prime factorp > mγ yields a family
of k(γ)-query locally decodable codes of lengthexp

(

n1/t
)

. Conversely, if for some fixedk and all ε > 0 one can
use the technique of [34] to obtain a family ofk-query LDCs of lengthexp (nε) ; then infinitely many Mersenne
numbers have prime factors larger than known currently.

1 Introduction

Classical error-correcting codes allow one to encode ann-bit string x into in N -bit codewordC(x), in such
a way thatx can still be recovered even ifC(x) gets corrupted in a number of coordinates. It is well-known
that codewordsC(x) of lengthN = O(n) already suffice to correct errors in up toδN locations ofC(x) for
any constantδ < 1/4. The disadvantage of classical error-correction is that one needs to consider all or most
of the (corrupted) codeword to recover anything aboutx. Now suppose that one is only interested in recovering
one or a few bits ofx. In such case more efficient schemes are possible. Such schemes are known as locally
decodable codes (LDCs). Locally decodable codes allow reconstruction of an arbitrary bitxi, from looking only
atk randomly chosen coordinates ofC(x), wherek can be as small as2. Locally decodable codes have numerous
applications in complexity theory [15, 29], cryptography [6, 11] and the theory of fault tolerant computation [24].
Below is a slightly informal definition of LDCs:

A (k, δ, ε)-locally decodable code encodesn-bit strings toN -bit codewordsC(x), such that for everyi ∈ [n],
the bitxi can be recovered with probability1− ε, by a randomized decoding procedure that makes onlyk queries,
even if the codewordC(x) is corrupted in up toδN locations.

One should think ofδ > 0 andε < 1/2 as constants. The main parameters of interest in LDCs are the length
N and the query complexityk. Ideally we would like to have both of them as small as possible. The concept
of locally decodable codes was explicitly discussed in various papers in theearly 1990s [2, 28, 21]. Katz and
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Trevisan [15] were the first to provide a formal definition of LDCs. Further work on locally decodable codes
includes [3, 8, 20, 4, 16, 30, 34, 33, 14, 23].

Below is a brief summary of what was known regarding the length of LDCs prior to [34]. The length of optimal
2-query LDCs was settled by Kerenidis and de Wolf in [16] and isexp(n).1 The best upper bound for the length
of 3-query LDCs wasexp

(

n1/2
)

due to Beimel et al. [3], and the best lower bound isΩ̃(n2) [33]. For general
(constant)k the best upper bound wasexp

(

nO(log log k/(k log k))
)

due to Beimel et al. [4] and the best lower bound
is Ω̃

(

n1+1/(dk/2e−1)
)

[33].

The recent work [34] improved the upper bounds to the extent that it changed the common perception of what
may be achievable [12, 11]. [34] introduced a novel technique to construct codes from so-called nice subsets
of finite fields and showed that every Mersenne primep = 2t − 1 yields a family of3-query LDCs of length

exp
(

n1/t
)

. Based on the largest known Mersenne prime [9], this translates to a length of less thanexp
(

n10−7
)

.

Combined with the recursive construction from [4], this result yields vastimprovements for all values ofk > 2. It
has often been conjectured that the number of Mersenne primes is infinite. If indeed this conjecture holds, [34] gets

three query locally decodable codes of lengthN = exp

(

n
O

(

1
log log n

))

for infinitely manyn. Finally, assuming

that the conjecture of Lenstra, Pomerance and Wagstaff [31, 22, 32] regarding the density of Mersenne primes

holds, [34] gets three query locally decodable codes of lengthN = exp

(

n
O

(

1
log1−ε log n

))

for all n, for everyε >

0.

1.1 Our results

In this paper we address two natural questions left open by [34]:

1. Are Mersenne primes necessary for the constructions of [34]?

2. Has the technique of [34] been pushed to its limits, or one can construct better codes through a more clever
choice of nice subsets of finite fields?

We extend the work of [34] and answer both of the questions above. In what follows letP (m) denote the
largest prime factor ofm. We show that one does not necessarily need to use Mersenne primes. Itsuffices to have
Mersenne numbers with polynomially large prime factors. Specifically, everyMersenne numberm = 2t − 1 such
thatP (m) ≥ mγ yields a family ofk(γ)-query locally decodable codes of lengthexp

(

n1/t
)

. A partial converse
also holds. Namely, if for some fixedk ≥ 3 and allε > 0 one can use the technique of [34] to (unconditionally)
obtain a family ofk-query LDCs of lengthexp (nε) ; then for infinitely manyt we have

P (2t − 1) ≥ (t/2)1+1/(k−2). (1)

The bound (1) may seem quite weak in light of the widely accepted conjecturesaying that the number of
Mersenne primes is infinite. However (for anyk ≥ 3) this bound is substantially stronger than what is currently
known unconditionally. Lower bounds forP (2t − 1) have received a considerable amount of attention in the
number theory literature [25, 26, 10, 27, 19, 18]. The strongest result to date is due to Stewart [27]. It says that
for all integerst ignoring a set of asymptotic density zero, and for all functionsε(t) > 0 whereε(t) tends to zero
monotonically and arbitrarily slowly:

P (2t − 1) > ε(t)t (log t)2 / log log t. (2)

1Throughout the paper we use the standard notationexp(x)
def
= e

O(x)
.



There are no better bounds known to hold for infinitely many values oft, unless one is willing to accept some
number theoretic conjectures [19, 18]. We hope that our work will further stimulate the interest in proving lower
bounds forP (2t − 1) in the number theory community.

In summary, we show that one may be able to improve the unconditional bounds of [34] (say, by discovering a
new Mersenne number with a very large prime factor) using the same technique. However any attempts to reach
theexp (nε) length for some fixed query complexity and allε > 0 require either progress on an old number theory
problem or some radically new ideas.

In this paper we deal only with binary codes for the sake of clarity of presentation. We remark however that
our results as well as the results of [34] can be easily generalized to larger alphabets. Such generalization will be
discussed in detail in [35].

1.2 Outline

In section 3 we introduce the key concepts of [34], namely that of combinatorial and algebraic niceness of
subsets of finite fields. We also briefly review the construction of locally decodable codes from nice subsets. In
section 4 we show how Mersenne numbers with large prime factors yield nice subsets of prime fields. In section 5
we prove a partial converse. Namely, we show that every finite fieldFq containing a sufficiently nice subset, is an
extension of a prime fieldFp, wherep is a large prime factor of a large Mersenne number. Our main results are
summarized in sections 4.3 and 5.4.

2 Notation

We use the following standard mathematical notation:

• [s] = {1, . . . , s};

• Zn denotes integers modulon;

• Fq is a finite field ofq elements;

• dH(x, y) denotes the Hamming distance between binary vectorsx andy;

• (u, v) stands for the dot product of vectorsu andv;

• For a linear spaceL ⊆ F
m
2 , L⊥ denotes thedualspace. That is,L⊥ = {u ∈ F

m
2 | ∀v ∈ L, (u, v) = 0};

• For an odd primep, ord2(p) denotes the smallest integert such thatp | 2t − 1.

3 Nice subsets of finite fields and locally decodable codes

In this section we introduce the key technical concepts of [34], namely thatof combinatorial and algebraic
niceness of subsets of finite fields. We briefly review the construction of locally decodable codes from nice
subsets. Our review is concise although self-contained. We refer the reader interested in a more detailed and
intuitive treatment of the construction to the original paper [34]. We start byformally defining locally decodable
codes.

Definition 1 A binary codeC : {0, 1}n → {0, 1}N is said to be(k, δ, ε)-locally decodable if there exists a
randomized decoding algorithmA such that



1. For all x ∈ {0, 1}n, i ∈ [n] andy ∈ {0, 1}N such thatdH(C(x), y) ≤ δN : Pr[Ay(i) = xi] ≥ 1− ε, where
the probability is taken over the random coin tosses of the algorithmA.

2. A makes at mostk queries toy.

We now introduce the concepts of combinatorial and algebraic niceness ofsubsets of finite fields. Our defini-
tions are syntactically slightly different from the original definitions in [34].We prefer these formulations since
they are more appropriate for the purposes of the current paper. In what follows letF∗

q denote the multiplicative
group ofFq.

Definition 2 A setS ⊆ F
∗
q is calledt combinatorially nice if for some constantc > 0 and every positive integer

m there exist twon = bcmtc-sized collections of vectors{u1, . . . , un} and{v1, . . . , vn} in F
m
q , such that

• For all i ∈ [n], (ui, vi) = 0;

• For all i, j ∈ [n] such thati 6= j, (uj , vi) ∈ S.

Definition 3 A setS ⊆ F
∗
q is calledk algebraically nice ifk is odd and there exists an oddk′ ≤ k and two sets

S0, S1 ⊆ Fq such that

• S0 is not empty;

• |S1| = k′;

• For all α ∈ Fq andβ ∈ S : |S0 ∩ (α + βS1)| ≡ 0 mod (2).

The following lemma shows that for an algebraically nice setS, the setS0 can always be chosen to be large. It
is a straightforward generalization of [34, lemma 15].

Lemma 4 Let S ⊆ F
∗
q be ak algebraically nice set. LetS0, S1 ⊆ Fq be sets from the definition of algebraic

niceness ofS. One can always redefine the setS0 to satisfy|S0| ≥ dq/2e.

Proof: Let L be the linear subspace ofF
q
2 spanned by the incidence vectors of the setsα + βS1, for α ∈ Fq and

β ∈ S. Observe thatL is invariant under the actions of a1-transitive permutation group (permuting the coordinates
in accordance with addition inFq). This implies that the spaceL⊥ is also invariant under the actions of the same
group. Note thatL⊥ has positive dimension since it contains the incidence vector of the setS0. The last two
observations imply thatL⊥ hasfull support,i.e., for everyi ∈ [q] there exists a vectorv ∈ L⊥ such thatvi 6= 0. It
is easy to verify that any linear subspace ofF

q
2 that has full support contains a vector of Hamming weight at least

dq/2e. Let v ∈ L⊥ be such a vector. Redefining the setS0 to be the set of nonzero coordinates ofv we conclude
the proof.

We now proceed to the core proposition of [34] that shows how sets exhibiting both combinatorial and algebraic
niceness yield locally decodable codes.

Proposition 5 SupposeS ⊆ F
∗
q is t combinatorially nice andk algebraically nice; then for every positive integer

n there exists a code of lengthexp(n1/t) that is(k, δ, 2kδ) locally decodable for allδ > 0.

Proof: Our proof comes in three steps. We specify encoding and local decodingprocedures for our codes and
then argue the lower bound for the probability of correct decoding. We use the notation from definitions 2 and 3.

Encoding: We assume that our message has lengthn = bcmtc for some value ofm. (Otherwise we pad the
message with zeros. It is easy to see that such padding does not not affect the asymptotic length of the code.) Our



code will be linear. Therefore it suffices to specify the encoding of unitvectorse1, . . . , en, whereej has lengthn
and a unique non-zero coordinatej. We define the encoding ofej to be aqm long vector, whose coordinates are
labelled by elements ofFm

q . For allw ∈ F
m
q we set:

Enc(ej)w =

{

1, if (uj , w) ∈ S0;
0, otherwise.

(3)

It is straightforward to verify that we defined a code encodingn bits toexp(n1/t) bits.
Local decoding:Given a (possibly corrupted) codewordy and an indexi ∈ [n], the decoding algorithmA picks

w ∈ F
m
q , such that(ui, w) ∈ S0 uniformly at random, readsk′ ≤ k coordinates ofy, and outputs the sum:

∑

λ∈S1

yw+λvi . (4)

Probability of correct decoding:First we argue that decoding is always correct ifA picksw ∈ F
m
q such that

all bits of y in locations{w + λvi}λ∈S1 are not corrupted. We need to show that for alli ∈ [n], x ∈ {0, 1}n and
w ∈ F

m
q , such that(ui, w) ∈ S0:

∑

λ∈S1





n
∑

j=1

xj Enc(ej)





w+λvi

= xi. (5)

Note that

∑

λ∈S1





n
∑

j=1

xj Enc(ej)





w+λvi

=
n

∑

j=1

xj

∑

λ∈S1

Enc(ej)w+λvi =
n

∑

j=1

xj

∑

λ∈S1

I [(uj , w + λvi) ∈ S0] , (6)

whereI[γ ∈ S0] = 1 if γ ∈ S0 and zero otherwise. Now note that

∑

λ∈S1

I [(uj , w + λvi) ∈ S0] =
∑

λ∈S1

I [(uj , w) + λ(uj , vi) ∈ S0] =

{

1, if i = j,
0, otherwise.

(7)

The last identity in (7) fori = j follows from: (ui, vi) = 0, (ui, w) ∈ S0 andk′ = |S1| is odd. The last identity
for i 6= j follows from (uj , vi) ∈ S and the algebraic niceness ofS. Combining identities (6) and (7) we get (5).

Now assume that up toδ fraction of bits ofy are corrupted. LetTi denote the set of coordinates whose labels
belong to

{

w ∈ F
m
q | (ui, w) ∈ S0

}

. Recall that by lemma 4,|Ti| ≥ qm/2. Thus at most2δ fraction of coor-
dinates inTi contain corrupted bits. LetQi =

{

{w + λvi}λ∈S1
| w : (ui, w) ∈ S0

}

be the family ofk′-tuples
of coordinates that may be queried byA. (ui, vi) = 0 implies that elements ofQi uniformly cover the setTi.
Combining the last two observations we conclude that with probability at least1 − 2kδ A picks an uncorrupted
k′-tuple and outputs the correct value ofxi.

All locally decodable codes constructed in this paper are obtained by applying proposition 5 to certain nice
sets. Thus all our codes have the same dependence ofε (the probability of the decoding error) onδ (the fraction
of corrupted bits). In what follows we often ignore these parameters andconsider only the length and query
complexity of codes.



4 Mersenne numbers with large prime factors yield nice subsets of prime fields

In what follows let〈2〉 ⊆ F
∗
p denote the multiplicative subgroup ofF

∗
p generated by2. In [34] it is shown

that for every Mersenne primep = 2t − 1 the set〈2〉 ⊆ F
∗
p is simultaneously3 algebraically nice andord2(p)

combinatorially nice. In this section we prove the same conclusion for a substantially broader class of primes.

Lemma 6 Supposep is an odd prime; then〈2〉 ⊆ F
∗
p is ord2(p) combinatorially nice.

Proof: Let t = ord2(p). Clearly,t dividesp− 1. We need to specify a constantc > 0 such that for every positive
integerm there exist twon = bcmtc-sized collections ofm long vectors overFp satisfying:

• For all i ∈ [n], (ui, vi) = 0;

• For all i, j ∈ [n] such thati 6= j, (uj , vi) ∈ 〈2〉.

First assume thatm has the shapem =
(

m′−1+(p−1)/t
(p−1)/t

)

, for some integerm′ ≥ p − 1. In this case [34, lemma

13] gives us a collection ofn =
(

m′

p−1

)

vectors with the right properties. Observe thatn ≥ cmt for a constant

c that depends only onp andt. Now assumem does not have the right shape, and letm1 be the largest integer
smaller thanm that does have it. In order to get vectors of lengthm we use vectors of lengthm1 coming from [34,
lemma 13] padded with zeros. It is not hard to verify such a construction stillgives usn ≥ cmt large families of
vectors for a suitably chosen constantc.

We use the standard notationF to denote the algebraic closure of the fieldF. Also let Cp ⊆ F
∗
2 denote the

multiplicative subgroup ofp-th roots of unity inF2. The next lemma generalizes [34, lemma 14].

Lemma 7 Letp be a prime andk be odd. Suppose there existζ1, . . . , ζk ∈ Cp such that

ζ1 + . . . + ζk = 0; (8)

then〈2〉 ⊆ F
∗
p is k algebraically nice.

Proof: In what follows we define the setS1 ⊆ Fp and prove the existence of a setS0 such that that togetherS0

andS1 yield k algebraic niceness of〈2〉. Identity 8 implies that there exists an odd integerk′ ≤ k andk′ distinct
p-th roots of unityζ ′1, . . . , ζ

′
k ∈ Cp such that

ζ ′1 + . . . + ζ ′k′ = 0. (9)

Let t = ord2(p). Observe thatCp ⊆ F2t . Let g be a generator ofCp. Identity (9) yieldsgγ1 + . . . + gγk′ = 0, for
some distinct values of{γi}i∈[k′]. SetS1 = {γ1, . . . , γk′}.

Consider a natural one to one correspondence between subsetsS′ of Fp and polynomialsφS′(x) in the ring
F2[x]/(xp − 1) : φS′(x) =

∑

s∈S′

xs. It is easy to see that for all setsS′ ⊆ Fp and allα, β ∈ Fp, such thatβ 6= 0 :

φα+βS′(x) = xαφS′(xβ).

Let α be a variable ranging overFp andβ be a variable ranging over〈2〉. We are going to argue the existence of a
setS0 that has even intersections with all sets of the formα+βS1, by showing that all polynomialsφα+βS1 belong
to a certain linear spaceL ∈ F2[x]/(xp − 1) of dimension less thanp. In this case any nonempty setT ⊆ Fp such
thatφT ∈ L⊥ can be used as the setS0. Let τ(x) = gcd(xp −1, φS1(x)). Note thatτ(x) 6= 1 sinceg is a common
root ofxp−1 andφS1(x). Let L be the space of polynomials inF2[x]/(xp−1) that are multiples ofτ(x). Clearly,
dimL = p − deg τ. Fix someα ∈ Fp andβ ∈ 〈2〉. Let us prove thatφα+βS1(x) is in L :

φα+βS1(x) = xαφS1(x
β) = xα(φS1(x))β .

The last identity above follows from the fact that for anyf ∈ F2[x] and any integeri : f(x2i
) = (f(x))2

i
.



In what follows we present sufficient conditions for the existence ofk-tuples ofp-th roots of unity inF2 that
sum to zero. We treat thek = 3 case separately since in that case we can use a specialized argument to derive a
more explicit conclusion.

4.1 A sufficient condition for the existence of threep-th roots of unity summing to zero

Lemma 8 Letp be an odd prime. Supposeord2(p) < (4/3) log2 p; then there exist threep-th roots of unity inF2

that sum to zero.

Proof: We start with a brief review of some basic concepts of projective algebraicgeometry. LetF be a field, and
f ∈ F[x, y, z] be a homogeneous polynomial. A triple(x0, y0, z0) ∈ F

3 is called a zero off if f(x0, y0, z0) = 0.
A zero is called nontrivial if it is different from the origin. An equationf = 0 defines a projective plane curveχf .
Nontrivial zeros off considered up to multiplication by a scalars are calledF-rational points ofχf . If F is a finite
field it makes sense to talk about the number ofF-rational points on a curve.

Let t = ord2(p). Note thatCp ⊆ F2t . Consider a projective plane Fermat curveχ defined by

x(2t−1)/p + y(2t−1)/p + z(2t−1)/p = 0. (10)

Let us call a pointa on χ trivial if one of the coordinates ofa is zero. Cyclicity ofF∗
2t implies thatχ contains

exactly3(2t − 1)/p trivial F2t-rational points. Note that every nontrivial point ofχ yields a triple of elements of
Cp that sum to zero. The classical Weil bound [17, p. 330] provides an estimate

|Nq − (q + 1)| ≤ (d − 1)(d − 2)
√

q (11)

for the numberNq of Fq-rational points on an arbitrary smooth projective plane curve of degreed. (11) implies
that in case

2t + 1 >

(

2t − 1

p
− 1

)(

2t − 1

p
− 2

)

2t/2 + 3
2t − 1

p
(12)

there exists a nontrivial point on the curve (10). Note that (12) follows from

2t + 1 >

(

2t

p

)(

2t

p

)

2t/2 − 23t/2+1

p
+

3 ∗ 2t

p
, (13)

and (13) follows from
2t > 22t+t/2/p2 and 2t/2+1 > 3.

Now note that the first inequality above follows fromt < (4/3) log2 p and the second follows fromt > 1.

Note that the constant4/3 in lemma 8 cannot be improved to 2: there are no three elements ofC13264529 that
sum to zero, even thoughord2(13264529) = 47 < 2 ∗ log2 13264529 ≈ 47.3.

4.2 A sufficient condition for the existence ofk p-th roots of unity summing to zero

Our argument in this section comes in three steps. First we briefly review the notion of (additive) Fourier
coefficients of subsets ofF2t . Next, we invoke a folklore argument to show that subsets ofF2t with appropriately
small nontrivial Fourier coefficients containk-tuples of elements that sum to zero. Finally, we use a recent result of
Bourgain and Chang [5] (generalizing the classical estimate for Gauss sums) to argue that (under certain constraints
onp) all nontrivial Fourier coefficients ofCp are small.

For x ∈ F2t let Tr(x) = x + x2 + . . . + x2t−1
denote the trace ofx. It is not hard to verify that for allx,

Tr(x) ∈ F2. Characters ofF2t are homomorphisms from the additive group ofF2t into the multiplicative group



{±1}. There exist2t characters. We denote characters byχa, wherea ranges inF2t , and setχa(x) = (−1)Tr(ax).
Let C(x) denote the incidence function of a setC ⊆ F2t . For arbitrarya ∈ F

t
2 the Fourier coefficientχa(C) is

defined byχa(C) =
∑

χa(x)C(x), where the sum is over allx ∈ F2t . Fourier coefficientχ0(C) = |C| is called
trivial, and other Fourier coefficients are called nontrivial. In what follows

∑

χ stands for summation over all2t

characters ofF2t . We need the following two standard properties of characters and Fouriercoefficients.

∑

χ

χ(x) =

{

2t, if x = 0;
0, otherwise.

(14)

∑

χ

χ2(C) = 2t|C|. (15)

The following lemma is a folklore.

Lemma 9 LetC ⊆ F2t andk ≥ 3 be a positive integer. LetF be the largest absolute value of a nontrivial Fourier
coefficient ofC. Suppose

F

|C| <

( |C|
2t

)1/(k−2)

(16)

then there existk elements ofC that sum to zero.

Proof: Let M(C) = # {ζ1, . . . , ζk ∈ C | ζ1 + . . . + ζk = 0} . (14) yields

M(C) =
1

2t

∑

x1,...,xk∈F2t

C(x1) . . . C(xk)
∑

χ

χ(x1 + . . . + xk). (17)

Note thatχ(x1 + . . . + xk) = χ(x1) . . . χ(xk). Changing the order of summation in (17) we get

M(C) =
1

2t

∑

χ

∑

x1,...,xk∈F2t

C(x1) . . . C(xk)χ(x1) . . . χ(xk) =
1

2t

∑

χ

χk(C). (18)

Note that

1

2t

∑

χ

χk(C) =
|C|k
2t

+
1

2t

∑

χ6=χ0

χk(C) ≥ |C|k
2t

− F k−2 1

2t

∑

χ

χ2(C) =
|C|k
2t

− F k−2|C|, (19)

where the last identity follows from (15). Combining (18) and (19) we conclude that (16) impliesM(C) > 0.

The following lemma is a special case of [5, theorem 1].

Lemma 10 Assume thatn | 2t − 1 and satisfies the condition

gcd

(

n,
2t − 1

2t′ − 1

)

< 2t(1−ε)−t′ , for all 1 ≤ t′ < t, t′ | t,

whereε > 0 is arbitrary and fixed. Then for alla ∈ F
∗
2t

∣

∣

∣

∣

∣

∣

∑

x∈F2t

(−1)Tr(axn)

∣

∣

∣

∣

∣

∣

< c12
t(1−δ), (20)

whereδ = δ(ε) > 0 andc1 = c1(ε) are absolute constants.



Below is the main result of this section. Recall thatCp denotes the set ofp-th roots of unity inF2.

Lemma 11 For everyc > 0 there exists an odd integerk = k(c) such that the following implication holds. Ifp is
an odd prime andord2(p) < c log2 p then somek elements ofCp sum to zero.

Proof: Note that if there existk′ elements of a setC ⊆ F2 that sum to zero, wherek′ is odd; then there exist
k elements ofC that sum to zero for every oddk ≥ k′. Also note that the sum of allp-th roots of unity is
zero. Therefore givenc it suffices to prove the existence of an oddk = k(c) that works for allsufficiently large
p. Let t = ord2(p). Observe thatp > 2t/c. Assumep is sufficiently large so thatt > 2c. Next we show that
the precondition of lemma 10 holds forn = (2t − 1)/p and ε = 1/(2c). Let t′ | t and1 ≤ t′ < t. Clearly
gcd(2t′ − 1, p) = 1. Therefore

gcd

(

2t − 1

p
,

2t − 1

2t′ − 1

)

=
2t − 1

p(2t′ − 1)
<

2t(1−1/c)

2t′ − 1
, (21)

where the inequality follows fromp > 2t/c. Clearly,t > 2c yields2t/(2c)/2 > 1. Multiplying the right hand side
of (21) by2t/(2c)/2 and using2(2t′ − 1) > 2t′ we get

gcd

(

2t − 1

p
,

2t − 1

2t′ − 1

)

< 2t(1−1/(2c))−t′ . (22)

Combining (22) with lemma 10 we conclude that there existδ > 0 andc1 such that for alla ∈ F
∗
2t

∣

∣

∣

∣

∣

∣

∑

x∈F2t

(−1)
Tr

(

ax(2t
−1)/p

)

∣

∣

∣

∣

∣

∣

< c12
t(1−δ). (23)

Observe thatx(2t−1)/p takes every value inCp exactly(2t−1)/p times whenx ranges overF∗
2t . Thus (23) implies

(2t − 1)(F/p) < c12
t(1−δ), (24)

whereF denotes that largest nontrivial Fourier coefficient ofCp. (24) yieldsF/p < (2c1)2
−δt. Pick k ≥ 3 to be

the smallest odd integer such that(1 − 1/c)/(k − 2) < δ. We now have

F

p
< 2

−
(1−1/c)t
(k−2) (25)

for all sufficiently large values ofp. Combiningp > 2t/c with (25) we get

F

|Cp|
<

( |Cp|
2t

)1/(k−2)

,

and the application of lemma 9 concludes the proof.

4.3 Summary

In this section we summarize our positive results and show that one does notnecessarily need to use Mersenne
primes to construct locally decodable codes via the methods of [34]. It suffices to have Mersenne numbers with
polynomially large prime factors. Recall thatP (m) denotes the largest prime factor of an integerm. Our first
theorem gets3-query LDCs from Mersenne numbersm with prime factors larger thanm3/4.



Theorem 12 SupposeP (2t − 1) > 20.75t; then for every message lengthn there exists a three query locally
decodable code of lengthexp(n1/t).

Proof: Let P (2t − 1) = p. Observe thatp | 2t − 1 andp > 20.75t yield ord2(p) < (4/3) log2 p. Combining
lemmas 8,7 and 6 with proposition 5 we obtain the statement of the theorem.

As an example application of theorem 12 one can observe thatP (223−1) = 178481 > 2(3/4)∗23 ≈ 155872 yields
a family of three query locally decodable codes of lengthexp(n1/23). Theorem 12 immediately yields:

Theorem 13 Suppose for infinitely manyt we haveP (2t − 1) > 20.75t; then for everyε > 0 there exists a family
of three query locally decodable codes of lengthexp(nε).

The next theorem gets constant query LDCs from Mersenne numbersm with prime factors larger thanmγ for
every value ofγ.

Theorem 14 For everyγ > 0 there exists an odd integerk = k(γ) such that the following implication holds.
SupposeP (2t − 1) > 2γt; then for every message lengthn there exists ak query locally decodable code of length
exp(n1/t).

Proof: Let P (2t − 1) = p. Observe thatp | 2t − 1 andp > 2γt yield ord2(p) < (1/γ) log2 p. Combining
lemmas 22,7 and 6 with proposition 5 we obtain the statement of the theorem.

As an immediate corollary we get:

Theorem 15 Suppose for someγ > 0 and infinitely manyt we haveP (2t − 1) > 2γt; then there is a fixedk such
that for everyε > 0 there exists a family ofk query locally decodable codes of lengthexp(nε).

5 Nice subsets of finite fields yield Mersenne numbers with large prime factors

Definition 16 We say that a sequence
{

Si ⊆ F
∗
qi

}

i≥1
of subsets of finite fields isk-nice if everySi is k alge-

braically nice andt(i) combinatorially nice, for some integer valued monotonically increasing function t.

The core proposition 5 asserts that a subsetS ⊆ F
∗
q that isk algebraically nice andt combinatorially nice yields

a family ofk-query locally decodable codes of lengthexp(n1/t). Clearly, to getk-query LDCs of lengthexp(nε)
for some fixedk and everyε > 0 via this proposition, one needs to exhibit ak-nice sequence. In this section
we show how the existence of ak-nice sequence implies that infinitely many Mersenne numbers have large prime
factors. Our argument proceeds in two steps. First we show that ak-nice sequence yields an infinite sequence of
primes{pi}i≥1 , where everyCpi contains ak-tuple of elements summing to zero. Next we show thatCp contains
a short additive dependence only ifp is a large factor of a Mersenne number.

5.1 A nice sequence yields infinitely many primesp with short dependencies betweenp-th roots of unity

We start with some notation. Consider a a finite fieldFq = Fpl , wherep is prime. Fix a basise1, . . . , el of Fq

overFp. In what follows we often write(α1, . . . , αl) ∈ F
l
p to denoteα =

∑l
i=1 αiei ∈ Fq. Let R denote the ring

F2[x1, . . . , xl]/(xp
1 − 1, . . . , xp

l − 1). Consider a natural one to one correspondence between subsetsS1 of Fq and
polynomialsφS1(x1, . . . , xl) ∈ R.

φS1(x1, . . . , xl) =
∑

(α1,...,αl)∈S1

xα1
1 . . . xαl

l .



It is easy to see that for all setsS1 ⊆ Fq and allα, β ∈ Fq :

φ(α1,...,αl)+βS1
(x1, . . . , xl) = xα1

1 . . . xαl
l φβS1(x1, . . . , xl). (26)

Let Γ be a family of subsets ofFq. It is straightforward to verify that a setS0 ⊆ Fq has even intersections with
every element ofΓ if and only if φS0 belongs toL⊥, whereL is the linear subspace ofR spanned by{φS1}S1∈Γ .
Combining the last observation with formula (26) we conclude that a setS ⊆ F

∗
q is k algebraically nice if and

only if there exists a setS1 ⊆ Fq of odd sizek′ ≤ k such that the ideal generated by polynomials{φβS1}{β∈S}

is a proper ideal ofR. Note that polynomials{f1, . . . , fh} ∈ R generate a proper ideal if an only if polynomials
{f1, . . . , fh, xp

1 − 1, . . . , xp
l − 1} generate a proper ideal inF2[x1, . . . , xl]. Also note that a family of polynomials

generates a proper ideal inF2[x1, . . . , xl] if and only if it generates a proper ideal inF2[x1, . . . , xl]. Now an
application of Hilbert’s Nullstellensatz [7, p. 168] implies that a setS ⊆ F

∗
q is k algebraically nice if and only

if there is a setS1 ⊆ Fq of odd sizek′ ≤ k such that the polynomials{φβS1}{β∈S} and{xp
i − 1}1≤i≤l have a

common root inF2.

Lemma 17 Let Fq = Fpl , wherep is prime. SupposeFq contains a nonemptyk algebraically nice subset; then
there existζ1, . . . , ζk ∈ Cp such thatζ1 + . . . + ζk = 0.

Proof: AssumeS ⊆ F
∗
q is nonempty andk algebraically nice. The discussion above implies that there exists

S1 ⊆ Fq of odd sizek′ ≤ k such that all polynomials{φβS1}{β∈S} vanish at some(ζ1, . . . , ζl) ∈ C l
p. Fix an

arbitraryβ0 ∈ S, and note thatCp is closed under multiplication. Thus,

φβ0S1(ζ1, . . . , ζl) = 0 (27)

yieldsk′ p-th roots of unity that add up to zero. It is readily seen that one can extend(27) (by adding an appropriate
number of pairs of identical roots) to obtaink p-th roots of unity that add up to zero for any oddk ≥ k′.

Note that lemma 17 does not suffice to prove that ak-nice sequence
{

Si ⊆ F
∗
qi

}

i≥1
yields infinitely many primesp

with short (nontrivial) additive dependencies inCp. We need to argue that the set{charFqi}i≥1 can not be finite. To

proceed, we need some more notation. Recall thatq = pl andp is prime. Forx ∈ Fq let Tr(x) = x+. . .+xpl−1 ∈
Fp denote the (absolute) trace ofx. For γ ∈ Fq, c ∈ F

∗
p we call the setπγ,c = {x ∈ Fq | Tr(γx) = c} a proper

affine hyperplaneof Fq.

Lemma 18 Let Fq = Fpl , wherep is prime. SupposeS ⊆ F
∗
q is k algebraically nice; then there existh ≤ pk

proper affine hyperplanes{πγi,ci}1≤i≤h of Fq such thatS ⊆
h
⋃

i=1
πγi,ci .

Proof: Discussion preceding lemma 17 implies that there exists a setS1 = {σ1, . . . , σk′} ⊆ Fq of odd size
k′ ≤ k such that all polynomials{φβS1}{β∈S} vanish at some(ζ1, . . . , ζl) ∈ C l

p. Let ζ be a generator ofCp. For
every1 ≤ i ≤ l pick ωi ∈ Zp such thatζi = ζωi . For everyβ ∈ S, φβS1(ζ1, . . . , ζl) = 0 yields

∑

µ=(µ1,...,µl)∈βS1

ζ
∑l

i=1 µiωi = 0. (28)

Observe that for fixed values{ωi}1≤i≤l ∈ Zp the mapD(µ) =
∑l

i=1 µiωi is a linear map fromFq to Fp. It is
not hard to prove that every such map can be expressed asD(µ) = Tr(δµ) for an appropriate choice ofδ ∈ Fq.
Therefore we can rewrite (28) as

∑

µ∈βS1

ζTr(δµ) =
∑

σ∈S1

ζTr(δβσ) = 0. (29)



Let W =
{

(w1, . . . , wk′) ∈ Z
k′

p | ζw1 + . . . + ζwk′ = 0
}

denote the set of exponents ofk′-dependencies be-

tween powers ofζ. Clearly,|W | ≤ pk. Identity (29) implies that everyβ ∈ S satisfies










Tr((δσ1)β) = w1,
...
Tr((δσk′)β) = wk′ ;

(30)

for an appropriate choice of(w1, . . . , wk′) ∈ W. Note that the all-zeros vector does not lie inW sincek′ is odd.
Therefore at least one of the identities in (30) has a non-zero right-hand side, and defines a proper affine hyperplane
of Fq. Collecting one such hyperplane for every element ofW we get a family of|W | proper affine hyperplanes
containing every element ofS.

Lemma 18 gives us some insight into the structure of algebraically nice subsetsof Fq. Our next goal is to develop
an insight into the structure of combinatorially nice subsets. We start by reviewing some relations between tensor
and dot products of vectors. For vectorsu ∈ F

m
q andv ∈ F

n
q let u⊗v ∈ F

mn
q denote the tensor product ofu andv.

Coordinates ofu⊗ v are labelled by all possible elements of[m]× [n] and(u⊗ v)i,j = uivj . Also, letu⊗l denote
thel-the tensor power ofu andu ◦ v denote the concatenation ofu andv. The following identity is standard. For
anyu, x ∈ F

m
q andv, y ∈ F

n
q :

(u ⊗ v, x ⊗ y) =
∑

i∈[m],j∈[n]

uivjxiyj =





∑

i∈[m]

uixi









∑

j∈[n]

vjyj



 = (u, x)(v, y). (31)

In what follows we need a generalization of identity (31). Letf(x1, . . . , xh) =
∑

i cix
αi

1
1 . . . x

αi
h

h be a polynomial

in Fq[x1, . . . , xh]. Givenf we definef̄ ∈ Fq[x1, . . . , xh] by f̄ =
∑

i x
αi

1
1 . . . x

αi
h

h , i.e., we simply set all nonzero
coefficients off to 1. For vectorsu1, . . . , uh in F

m
q define

f(u1, . . . , uh) = ◦i ciu
⊗αi

1
1 ⊗ . . . ⊗ u

⊗αi
h

h . (32)

Note that to obtainf(u1, . . . , uh) we replaced products inf by tensor products and addition by concatenation.
Clearly,f(u1, . . . , uh) is a vector whose length may be larger thanm.

Claim 19 For everyf ∈ Fq[x1, . . . , xh] andu1, . . . , uh, v1, . . . , vh ∈ F
m
q :

(

f(u1, . . . , uh), f̄(v1, . . . , vh)
)

= f((u1, v1), . . . , (uh, vh)). (33)

Proof: Let u = (u1, . . . , uh) andv = (v1, . . . , vh). Observe that if (33) holds for polynomialsf1 andf2 defined
over disjoint sets of monomials then it also holds forf = f1 + f2 :

(

f(u), f̄(v)
)

=
(

(f1 + f2)(u), (f̄1 + f̄2)(v)
)

=
(

f1(u) ◦ f2(u), f̄1(v) ◦ f̄2(v)
)

=

f1 ((u1, v1), . . . , (uh, vh)) + f2 ((u1, v1), . . . , (uh, vh)) = f ((u1, v1), . . . , (uh, vh)) .

Therefore it suffices to prove (33) for monomialsf = cxα1
1 . . . xαh

h . It remains to notice identity (33) for monomi-
alsf = cxα1

1 . . . xαh
h follows immediately from formula (31) using induction on

∑h
i=1 αi.

The next lemma bounds combinatorial niceness of certain subsets ofF
∗
q .

Lemma 20 Let Fq = Fpl , wherep is prime. LetS ⊆ F
∗
q . Suppose there existh proper affine hyperplanes

{πγr,cr}1≤r≤h of Fq such thatS ⊆
h
⋃

r=1
πγr,cr ; thenS is at mosth(p − 1) combinatorially nice.



Proof: AssumeS is t combinatorially nice. This implies that for somec > 0 and everym there exist two
n = bcmtc-sized collections of vectors{ui}i∈[n] and{vi}i∈[n] in F

m
q , such that:

• For all i ∈ [n], (ui, vi) = 0;

• For all i, j ∈ [n] such thati 6= j, (uj , vi) ∈ S.

For a vectoru ∈ F
m
q and integere letue denote a vector resulting from raising every coordinate ofu to the powere.

For everyi ∈ [n] andr ∈ [h] define vectorsu(r)
i andv

(r)
i in F

ml
q by

u
(r)
i = (γrui) ◦ (γrui)

p ◦ . . . ◦ (γrui)
pl−1

and v
(r)
i = vi ◦ vp

i ◦ . . . ◦ vpl−1

i . (34)

Note that for everyr1, r2 ∈ [h], v
(r1)
i = v

(r2)
i . It is straightforward to verify that for everyi, j ∈ [n] andr ∈ [h] :
(

u
(r)
j , v

(r)
i

)

= Tr(γr(uj , vi)). (35)

Combining (35) with the fact thatS is covered by proper affine hyperplanesπγi,ci we conclude that

• For all i ∈ [n] andr ∈ [h],
(

u
(r)
i , v

(r)
i

)

= 0;

• For all i, j ∈ [n] such thati 6= j, there existsr ∈ [h] such that
(

u
(r)
j , v

(r)
i

)

∈ F
∗
p.

Pickg(x1, . . . , xh) ∈ Fp[x1, . . . , xh] to be a homogeneous degreeh polynomial such that fora = (a1, . . . , ah) ∈
F

h
p : g(a) = 0 if and only if a is the all-zeros vector. The existence of such a polynomialg follows from [17,

Example 6.7]. Setf = gp−1. Note that fora ∈ F
h
p : f(a) = 0 if a is the all-zeros vector, andf(a) = 1 otherwise.

For all i ∈ [n] define

u′
i = f

(

u
(1)
i , . . . , u

(h)
i

)

◦ (1) and v′i = f̄
(

v
(1)
i , . . . , v

(h)
i

)

◦ (−1). (36)

Note thatf and f̄ are homogeneous degree(p − 1)h polynomials inh variables. Therefore (32) implies that
for all i vectorsu′

i andv′i have lengthm′ ≤ h(p−1)h(ml)(p−1)h. Combining identities (36) and (33) and using the

properties of dot products between vectors
{

u
(r)
i

}

and
{

v
(r)
i

}

discussed above we conclude that for everym there

exist twon = bcmtc-sized collections of vectors{u′
i}i∈[n] and{v′i}i∈[n] in F

m′

q , such that:

• For all i ∈ [n], (u′
i, v

′
i) = −1;

• For all i, j ∈ [n] such thati 6= j, (uj , vi) = 0.

It remains to notice that a family of vectors with such properties exists only ifn ≤ m′, i.e.,bcmtc ≤ h(p−1)h(ml)(p−1)h.
Given that we can pickm to be arbitrarily large, this implies thatt ≤ (p − 1)h.

The next lemma presents the main result of this section.

Lemma 21 Let k be an odd integer. Suppose there exists ak-nice sequence; then for infinitely many primesp
somek of elements ofCp add up to zero.

Proof: Assume
{

Si ⊆ F
∗
qi

}

i≥1
is k-nice. Letp be a fixed prime. Combining lemmas 18 and 20 we conclude

that everyk algebraically nice subsetS ⊆ F
∗
pl is at most(p − 1)pk combinatorially nice. Note that our bound on

combinatorial niceness is independent ofl. Therefore there are only finitely many extensions of the fieldFp in the
sequence{Fqi}i≥1 , and the setP = {charFqi}i≥1 is infinite. It remains to notice that according to lemma 17 for
everyp ∈ P there existk elements ofCp that add up to zero.

In what follows we present necessary conditions for the existence ofk-tuples ofp-th roots of unity inF2 that
sum to zero. We treat thek = 3 case separately since in that case we can use a specialized argument to derive a
slightly stronger conclusion.



5.2 A necessary condition for the existence ofk p-th roots of unity summing to zero

Lemma 22 Letk ≥ 3 be odd andp be a prime. Suppose there existζ1, . . . , ζk ∈ Cp such that
∑k

i=1 ζi = 0; then

ord2(p) ≤ 2p1−1/(k−1). (37)

Proof: Let t = ord2(p). Note thatCp ⊆ F2t . Note also that all elements ofCp other than the multiplicative
identity are proper elements ofF2t . Therefore for everyζ ∈ Cp whereζ 6= 1 and everyf(x) ∈ F2[x] such that
deg f ≤ t − 1 we have:f(ζ) 6= 0.

By multiplying
∑k

i=1 ζi = 0 through byζ−1
k , we may reduce to the caseζk = 1. Let ζ be the generator ofCp.

For everyi ∈ [k − 1] pick wi ∈ Zp such thatζi = ζwi . We now have
∑k−1

i=1 ζwi + 1 = 0. Seth = b(t − 1)/2c.
Consider the(k − 1)-tuples:

(mw1 + i1, . . . , mwk−1 + ik−1) ∈ Z
k−1
p , for m ∈ Zp and i1, . . . , ik−1 ∈ [0, h]. (38)

Suppose two of these coincide, say

(mw1 + i1, . . . , mwk−1 + ik−1) = (m′w1 + i′1, . . . , m
′wk−1 + i′k−1),

with (m, i1, . . . , ik−1) 6= (m′, i′1, . . . , i
′
k−1). Setn = m − m′ andjl = i′l − il for l ∈ [k − 1]. We now have

(nw1, . . . , nwk−1) = (j1, . . . , jl)

with −h ≤ j1, . . . , jk−1 ≤ h. Observe thatn 6= 0, and thus it has a multiplicative inverseg ∈ Zp. Consider a
polynomial

P (z) = zj1+h + . . . + zjk−1+h + zh ∈ F2[z].

Note thatdeg P ≤ 2h ≤ t − 1. Note also thatP (1) = 1 andP (ζg) = 0. The latter identity contradicts the fact
thatζg is a proper element ofF2t . This contradiction implies that all(k−1)-tuples in (38) are distinct. This yields

pk−1 ≥ p

(

t

2

)k−1

,

which is equivalent to (37).

5.3 A necessary condition for the existence of threep-th roots of unity summing to zero

In this section we slightly strengthen lemma 22 in the special case whenk = 3. Our argument is loosely inspired
by the Agrawal-Kayal-Saxena deterministic primality test [1].

Lemma 23 Letp be a prime. Suppose there existζ1, ζ2, ζ3 ∈ Cp that sum up to zero; then

ord2(p) ≤ ((4/3)p)1/2 . (39)

Proof: Let t = ord2(p). Note thatCp ⊆ F2t . Note also that all elements ofCp other than the multiplicative
identity are proper elements ofF2t . Therefore for everyζ ∈ Cp whereζ 6= 1 and everyf(x) ∈ F2[x] such that
deg f ≤ t − 1 we have:f(ζ) 6= 0.

Observe thatζ1 + ζ2 + ζ3 = 0 implies ζ1ζ
−1
2 + 1 = ζ3ζ

−1
2 . This yields

(

ζ1ζ
−1
2 + 1

)p
= 1. Put ζ = ζ1ζ

−1
2 .

Note thatζ 6= 1 andζ, 1 + ζ ∈ Cp. Consider the productsπi,j = ζi(1 + ζ)j ∈ Cp for 0 ≤ i, j ≤ t − 1. Note that
πi,j , πk,l cannot be the same ifi ≥ k andl ≥ j, as then

ζi−k − (1 + ζ)l−j = 0,



but the left side has degree less thant. In other words, ifπi,j = πk,l and(i, j) 6= (k, l), then the pairs(i, j) and
(k, l) are comparable under termwise comparison. In particular, either(k, l) = (i+a, j+b) or (i, j) = (k+a, l+b)
for some pair(a, b) with πa,b = 1.

We next check that there cannot be two distinct nonzero pairs(a, b), (a′, b′) with πa,b = πa′,b′ = 1. As above,
these pairs must be comparable; we may assume without loss of generality thata ≤ a′, b ≤ b′. The equations
πa,b = 1 andπa′−a,b′−b = 1 forcea + b ≥ t and(a′ − a) + (b′ − b) ≥ t, soa′ + b′ ≥ 2t. But a′, b′ ≤ t − 1,
contradiction.

If there is no nonzero pair(a, b) with 0 ≤ a, b ≤ t − 1 andπa,b = 1, then allπi,j are distinct, sop ≥ t2.
Otherwise, as above, the pair(a, b) is unique, and the pairs(i, j) with 0 ≤ i, j ≤ t − 1 and(i, j) 6≥ (a, b) are
pairwise distinct. The number of pairs excluded by the condition(i, j) 6≥ (a, b) is (t − a)(t − b); sincea + b ≥ t,
(t − a)(t − b) ≤ t2/4. Hencep ≥ t2 − t2/4 = 3t2/4 as desired.

While the necessary condition given by lemma 23 is quite far away from the sufficient condition given by
lemma 8, it nonetheless suffices for checking that for most primesp, there do not exist threep-th roots of unity
summing to zero. For instance, among the 664578 odd primesp ≤ 108, all but 550 are ruled out by Lemma 23.
(There is an easy argument thatt must be odd ifp > 3; this cuts the list down to 273 primes.) Each remaining
p can be tested by computinggcd(xp + 1, (x + 1)p + 1); the only examples we found that did not satisfy the
condition of lemma 8 were(p, t) = (73, 9), (262657, 27), (599479, 33), (121369, 39).

5.4 Summary

In the beginning of this section 5 we argued that in order to use the method of [34], (i.e., proposition 5) to obtain
k-query locally decodable codes of lengthexp(nε) for some fixedk and allε > 0, one needs to exhibit ak-nice
sequence of subsets of finite fields. In what follows we use technical results of the previous subsections to show
that the existence of ak-nice sequence implies that infinitely many Mersenne numbers have large primefactors.

Theorem 24 Let k be odd. Suppose there exists ak-nice sequence of subsets of finite fields; then for infinitely
many values oft we have

P (2t − 1) ≥ (t/2)1+1/(k−2). (40)

Proof: Using lemmas 21 and 22 we conclude that ak-nice sequence yields infinitely many primesp such that
ord2(p) ≤ 2p1−1/(k−1). Let p be such a prime andt = ord2(p). ThenP (2t − 1) ≥ (t/2)1+1/(k−2).

A combination of lemmas 21 and 23 yields a slightly stronger bound for the special case of3-nice sequences.

Theorem 25 Suppose there exists a3-nice sequence of subsets; then for infinitely many values oft we have

P (2t − 1) ≥ (3/4)t2. (41)

We would like to remind the reader that although the lower bounds forP (2t − 1) given by (40) and (41) are
extremely weak light of the widely accepted conjecture saying that the numberof Mersenne primes is infinite,
they are substantially stronger than what is currently known unconditionally(2).

6 Conclusion

Recently [34] came up with a novel technique for constructing locally decodable codes and obtained vast im-
provements upon the earlier work. The construction proceeds in two steps. First [34] shows that if there exist
subsets of finite fields with certain ’nice’ properties then there exist good codes. Next [34] constructs nice subsets
of prime fieldsFp for Mersenne primesp.



In this paper we have undertaken an in-depth study of nice subsets of general finite fields. We have shown
that constructing nice subsets is closely related to proving lower bounds onthe size of largest prime factors of
Mersenne numbers. Specifically we extended the constructions of [34] toobtain nice subsets of prime fieldsFp

for primesp that are large factors of Mersenne numbers. This implies that strong lowerbounds for size of the
largest prime factors of Mersenne numbers yield better locally decodable codes. Conversely, we argued that if one
can obtain codes of subexponential length and constant query complexitythrough nice subsets of finite fields then
infinitely many Mersenne numbers have prime factors larger than known currently.
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