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Abstract

A k-query Locally Decodable Code (LDC) encodesahit message: as anN-bit codewordC'(x), such that
one can probabilistically recover any bit; of the message by querying orlybits of the codeword’(x), even
after some constant fraction of codeword bits has been corrupted. ajur goal of LDC related research is to
establish the optimal trade-off between length and query complexity loicaales.

Recently [34] introduced a novel technique for constructing locally dabtelcodes and vastly improved the
upper bounds for code length. The technique is based on Mersennesprimthis paper we extend the work
of [34] and argue that further progress via these methods is tied to pgxyon an old number theory question
regarding the size of the largest prime factors of Mersenne numbers.

Specifically, we show that every Mersenne numhbet 2! — 1 that has a prime factop > m? yields a family
of k(-y)-query locally decodable codes of lengttp (nl/t) . Conversely, if for some fixédand alle > 0 one can
use the technique of [34] to obtain a family fquery LDCs of lengtlexp (n°) ; then infinitely many Mersenne
numbers have prime factors larger than known currently.

1 Introduction

Classical error-correcting codes allow one to encode-#it string x into in N-bit codewordC(z), in such
a way thatz can still be recovered even @ (z) gets corrupted in a number of coordinates. It is well-known
that codeword<” (x) of length N = O(n) already suffice to correct errors in up & locations ofC'(x) for
any constant < 1/4. The disadvantage of classical error-correction is that one needsisideo all or most
of the (corrupted) codeword to recover anything abaulow suppose that one is only interested in recovering
one or a few bits ofr. In such case more efficient schemes are possible. Such scheme®are dsilocally
decodable codes (LDCs). Locally decodable codes allow reconsmaftian arbitrary bitz;, from looking only
atk randomly chosen coordinates@f ), wherek can be as small & Locally decodable codes have numerous
applications in complexity theory [15, 29], cryptography [6, 11] and tleeth of fault tolerant computation [24].
Below is a slightly informal definition of LDCs:

A (k, 9, ¢)-locally decodable code encodesit strings to/N-bit codewords” (), such that for every € [n],
the bitz; can be recovered with probability— ¢, by a randomized decoding procedure that makes bujyeries,
even if the codeword’(x) is corrupted in up t@ NV locations.

One should think 06 > 0 ande < 1/2 as constants. The main parameters of interest in LDCs are the length
N and the query complexity. Ideally we would like to have both of them as small as possible. The concept
of locally decodable codes was explicitly discussed in various papers igaitye 1990s [2, 28, 21]. Katz and
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Trevisan [15] were the first to provide a formal definition of LDCs. Fartivork on locally decodable codes
includes [3, 8, 20, 4, 16, 30, 34, 33, 14, 23].

Below is a brief summary of what was known regarding the length of LD@s fwr [34]. The length of optimal
2-query LDCs was settled by Kerenidis and de Wolf in [16] anekis(n).* The best upper bound for the length
of 3-query LDCs was:xp (n!/2) due to Beimel et al. [3], and the best lower bound2is:?) [33]. For general
(constant); the best upper bound wasp (n©(lcelosk/(klogk))) due to Beimel et al. [4] and the best lower bound
is Q (n1*1/(F/21-1)) [33].

The recent work [34] improved the upper bounds to the extent that itggththe common perception of what
may be achievable [12, 11]. [34] introduced a novel technique to aaristodes from so-called nice subsets
of finite fields and showed that every Mersenne prigme: 2 — 1 yields a family of3-query LDCs of length
exp (nl/t) . Based on the largest known Mersenne prime [9], this translates to a leigds eharexp <n10_7
Combined with the recursive construction from [4], this result yields wagtovements for all values &f > 2. It
has often been conjectured that the number of Mersenne primes is infiftiigedd this conjecture holds, [34] gets

1
three query locally decodable codes of length= exp no(loglog") for infinitely manyn. Finally, assuming
that the conjecture of Lenstra, Pomerance and Wagstaff [31, 22e8atding the density of Mersenne primes
N
holds, [34] gets three query locally decodable codes of length exp <no logl—¢ logn>> for all n, for everye >
0.

1.1 Our results

In this paper we address two natural questions left open by [34]:
1. Are Mersenne primes necessary for the constructions of [34]?

2. Has the technique of [34] been pushed to its limits, or one can consétiet bodes through a more clever
choice of nice subsets of finite fields?

We extend the work of [34] and answer both of the questions above.hat fellows let P(m) denote the
largest prime factor of.. We show that one does not necessarily need to use Mersenne prisgficés to have
Mersenne numbers with polynomially large prime factors. Specifically, eMengenne numbern = 2¢ — 1 such
that P(m) > m? yields a family ofk(~)-query locally decodable codes of lengttp (nl/t) . A partial converse
also holds. Namely, if for some fixgd > 3 and alle > 0 one can use the technique of [34] to (unconditionally)
obtain a family ofk-query LDCs of lengtlexp () ; then for infinitely manyt we have

P2 — 1) > (t/2)'+1/(k=2), 1)

The bound (1) may seem quite weak in light of the widely accepted conjesaytiag that the number of
Mersenne primes is infinite. However (for ahy> 3) this bound is substantially stronger than what is currently
known unconditionally. Lower bounds fdP(2! — 1) have received a considerable amount of attention in the
number theory literature [25, 26, 10, 27, 19, 18]. The strongesttriesdate is due to Stewart [27]. It says that
for all integerst ignoring a set of asymptotic density zero, and for all functief$ > 0 wheree(t) tends to zero
monotonically and arbitrarily slowly:

P2t —1) > e(t)t (logt)? / loglogt. (2

Throughout the paper we use the standard notatigiiz) <= ¢© ).



There are no better bounds known to hold for infinitely many values ohless one is willing to accept some
number theoretic conjectures [19, 18]. We hope that our work will furskienulate the interest in proving lower
bounds forP (2! — 1) in the number theory community.

In summary, we show that one may be able to improve the unconditional bofif8# ¢say, by discovering a
new Mersenne number with a very large prime factor) using the same teehrtiguwever any attempts to reach
theexp (n) length for some fixed query complexity and all- 0 require either progress on an old number theory
problem or some radically new ideas.

In this paper we deal only with binary codes for the sake of clarity ofgregion. We remark however that
our results as well as the results of [34] can be easily generalized to Hpmbets. Such generalization will be
discussed in detail in [35].

1.2 Outline

In section 3 we introduce the key concepts of [34], namely that of comlrsinhtnd algebraic niceness of
subsets of finite fields. We also briefly review the construction of locallpdable codes from nice subsets. In
section 4 we show how Mersenne numbers with large prime factors yieldutisets of prime fields. In section 5
we prove a partial converse. Namely, we show that every finite figkcbntaining a sufficiently nice subset, is an
extension of a prime field,,, wherep is a large prime factor of a large Mersenne number. Our main results are
summarized in sections 4.3 and 5.4.

2 Notation

We use the following standard mathematical notation:

o [s]={1,...,s};

Z,, denotes integers moduig

IF, is a finite field ofg elements;

dp(z,y) denotes the Hamming distance between binary veatarsdy;

(u,v) stands for the dot product of vectarsandv;

For a linear spacé C FJ*, L denotes thelualspace. Thatis[* = {u € FJ' | Vv € L, (u,v) = 0};

For an odd prime, ords(p) denotes the smallest integesuch thap | 2¢ — 1.
3 Nice subsets of finite fields and locally decodable codes

In this section we introduce the key technical concepts of [34], namelyothedmbinatorial and algebraic
niceness of subsets of finite fields. We briefly review the constructionaafiljodecodable codes from nice
subsets. Our review is concise although self-contained. We refer @lder@nterested in a more detailed and
intuitive treatment of the construction to the original paper [34]. We stafolmally defining locally decodable
codes.

Definition 1 A binary codeC : {0,1}* — {0,1}" is said to be(k, d, ¢)-locally decodable if there exists a
randomized decoding algorithm such that



1. Forallz € {0,1}",i € [n] andy € {0, 1}" such thatdy (C(x),y) < N : PrlAY(i) = x;] > 1 —¢, where
the probability is taken over the random coin tosses of the algorithm

2. A makes at most queries toy.

We now introduce the concepts of combinatorial and algebraic nicenasbséts of finite fields. Our defini-
tions are syntactically slightly different from the original definitions in [3¥e prefer these formulations since
they are more appropriate for the purposes of the current papehdnfallows letlF; denote the multiplicative
group of[F,,.

Definition 2 A setS C [F} is calledt combinatorially nice if for some constant> 0 and every positive integer

m there exist two, = | em’|-sized collections of vectofsuy, . .., u,} and{vy, ..., v, } in F}?, such that

e Foralli € [n], (u;,v;) = 0;
e Forall i,j € [n] such that # j, (uj,v;) € S.

Definition 3 A setS C F; is calledk algebraically nice ifk is odd and there exists an odd < k and two sets
So,S1 € Fg4 such that

e Sy is not empty;
o [Si|=FK;
e Foralla € FyandB € S:[So N (a+ B8S1)| =0 mod (2).

The following lemma shows that for an algebraically niceSdhe setS, can always be chosen to be large. It
is a straightforward generalization of [34, lemma 15].

Lemma4 LetS C F; be ak algebraically nice set. Lety, S1 C F, be sets from the definition of algebraic
niceness ob. One can always redefine the sgtto satisfy|Sy| > [¢/2].

Proof: Let L be the linear subspace Bf spanned by the incidence vectors of the sets 55, for a € F, and

£ € S. Observe thaL is invariant under the actions oflatransitive permutation group (permuting the coordinates
in accordance with addition ii,). This implies that the spack" is also invariant under the actions of the same
group. Note thatL has positive dimension since it contains the incidence vector of thé,sdthe last two
observations imply that hasfull support,i.e., for everyi € [¢] there exists a vectar € L+ such that; # 0. It

is easy to verify that any linear subspaceféfthat has full support contains a vector of Hamming weight at least
[q/2]. Letv € L* be such a vector. Redefining the $gtto be the set of nonzero coordinatesvofe conclude

the proof. |

We now proceed to the core proposition of [34] that shows how setsigrlgiboth combinatorial and algebraic
niceness yield locally decodable codes.

Proposition 5 Supposes' C Iy is t combinatorially nice and: algebraically nice; then for every positive integer
n there exists a code of lengtlp(n'/?) that is (k, §, 2k6) locally decodable for alf > 0.

Proof: Our proof comes in three steps. We specify encoding and local decprbhoegdures for our codes and

then argue the lower bound for the probability of correct decoding. $ehe notation from definitions 2 and 3.
Encoding: We assume that our message has lemgth |cm!| for some value ofn. (Otherwise we pad the

message with zeros. It is easy to see that such padding does noteabtladf asymptotic length of the code.) Our



code will be linear. Therefore it suffices to specify the encoding ofwattorsey, . .., e,, wheree; has lengtm
and a unique non-zero coordingteéWWe define the encoding ef; to be ag™ long vector, whose coordinates are
labelled by elements df;". For allw € F* we set:

1, if (uj,w) € Sp;
0, otherwise.

Ende;)w = { 3)
It is straightforward to verify that we defined a code encodirgts t0exp(n1/ t) bits.

Local decodingGiven a (possibly corrupted) codewayénd an index € [n], the decoding algorithmal picks
w € Ty, such tha(u;, w) € Sp uniformly at random, reads’ < k coordinates ofj, and outputs the sum:

Z yw—&—)\vi . (4)
AES,

Probability of correct decodingFirst we argue that decoding is always correctlipicksw € ;" such that
all bits of y in locations{w + Av; } xcs, are not corrupted. We need to show that foriadl [n], z € {0,1}" and
w € F*, such thatu;, w) € So:

Z (Z T En(:(ej)> = x;. (5)
wW—HAv;

AesS; \j=1
Note that
Z ij Ende;) = xj Z Ende;)wtrn; = ij Z I'[(uj,w+ Av;) € Spl, (6)
AeS1 \J=1 WD j=1 XS j=1  \eSy
wherel[y € Sy] = 1if v € Sy and zero otherwise. Now note that
S I {(ujyw+ Avg) € So) = 37 1 [(u,w) + Aug,v) € S =4 b Ti=0 ™
77 ! 7 T 0, otherwise.

AEST AES]

The last identity in (7) for = j follows from: (u;,v;) = 0, (u;, w) € Sp andk’ = |S1| is odd. The last identity
for i # j follows from (u;, v;) € S and the algebraic niceness&fCombining identities (6) and (7) we get (5).
Now assume that up tdfraction of bits ofy are corrupted. LeT; denote the set of coordinates whose labels
belong to{w ey | (uj,w) € So} . Recall that by lemma 4T;| > ¢"™/2. Thus at mosgJ fraction of coor-
dinates inT; contain corrupted bits. LeD; = {{w + Avi}ycg, |w: (us, w) € So} be the family ofk’-tuples
of coordinates that may be queried By (u;,v;) = 0 implies that elements af; uniformly cover the sef;.
Combining the last two observations we conclude that with probability at leaskké A picks an uncorrupted
k’-tuple and outputs the correct valueagf |

All locally decodable codes constructed in this paper are obtained byiaggyoposition 5 to certain nice
sets. Thus all our codes have the same dependencg@had probability of the decoding error) @n(the fraction
of corrupted bits). In what follows we often ignore these parameterscandider only the length and query
complexity of codes.



4 Mersenne numbers with large prime factors yield nice subsstof prime fields

In what follows let(2) C [FF; denote the multiplicative subgroup &f; generated by. In [34] it is shown
that for every Mersenne prime = 2¢ — 1 the set(2) C [} is simultaneously algebraically nice andrds(p)
combinatorially nice. In this section we prove the same conclusion for a suiladiiabroader class of primes.

Lemma 6 Suppose is an odd prime; ther2) C I}, is ordz(p) combinatorially nice.

Proof: Lett = ords(p). Clearly,t dividesp — 1. We need to specify a constant- 0 such that for every positive
integerm there exist twow = |cm! |-sized collections ofn long vectors oveF, satisfying:

e Foralli € [n], (uj,v;) = 0;

e Foralli,j € [n] such that # j, (u;,v;) € (2).
m/—1+(p—1)/t
(p—1)/t
13] gives us a collection of = (pﬁ) vectors with the right properties. Observe that cm! for a constant
c that depends only op andt. Now assumen does not have the right shape, andiiet be the largest integer
smaller thann that does have it. In order to get vectors of lengtlve use vectors of lengtty; coming from [34,
lemma 13] padded with zeros. It is not hard to verify such a constructiomsds usn > cm! large families of

vectors for a suitably chosen constant |

First assume that has the shape: = ( ) , for some integern’ > p — 1. In this case [34, lemma

We use the standard notatiéhto denote the algebraic closure of the fi@ldAlso let Cp C F; denote the
multiplicative subgroup of-th roots of unity inF». The next lemma generalizes [34, lemma 14].

Lemma 7 Letp be a prime and: be odd. Suppose there exist. . . , ;. € C, such that
G+...+ ¢ =0; (8)
then(2) C [} is k algebraically nice.

Proof: In what follows we define the s C I, and prove the existence of a sgtsuch that that togethe
andS; yield k algebraic niceness @®). Identity 8 implies that there exists an odd integer k andk’ distinct
p-th roots of unity(y, . .., ¢, € C, such that

(4. .+ ¢ =0. (9)

Lett = orda(p). Observe tha€, C Fy:. Let g be a generator af),. Identity (9) yieldsg” + ... 4 ¢g"» =0, for
some distinct values dfy; }ici- S€tSt = {1, ..., W}
Consider a natural one to one correspondence between shsst&, and polynomialspg () in the ring

Folz]/(2P — 1) : s (x) = D «®. Itis easy to see that for all set§ C [F,, and alle, 8 € IF,,, such thats # 0 :
ses’

batps (T) = 2%Pg(27).

Let o be a variable ranging ovéh, andg be a variable ranging ovéR). We are going to argue the existence of a
setSy that has even intersections with all sets of the farm3.51, by showing that all polynomials, . 35, belong

to a certain linear spade € F»[z]|/(2P — 1) of dimension less thap In this case any nonempty SEtC F,, such
thatgr € L+ can be used as the s&t. Let 7(x) = ged(zP — 1, ¢5, ()). Note thatr () # 1 sinceg is a common
root of z? — 1 and¢g, (z). Let L be the space of polynomials Ky [z] /(2P — 1) that are multiples of (). Clearly,
dim L = p — deg 7. Fix somea € [, and3 € (2). Let us prove thab, gs, () isin L :

Sarps (2) = %03, (27) = 2%(¢s, (2))°.

The last identity above follows from the fact that for afy F,[z] and any integei : f(z2') = (f(z))?". |



In what follows we present sufficient conditions for the existencé-tfples ofp-th roots of unity inF, that
sum to zero. We treat the = 3 case separately since in that case we can use a specialized argumeiveta de
more explicit conclusion.

4.1 A sufficient condition for the existence of three-th roots of unity summing to zero

Lemma 8 Letp be an odd prime. Supposeds(p) < (4/3) log, p; then there exist threg-th roots of unity inF,
that sum to zero.

Proof: We start with a brief review of some basic concepts of projective algepeaimetry. Lef be a field, and
f € F[z,y, z] be a homogeneous polynomial. A tridley, vo, z0) € F? is called a zero of if f(zo,yo, 20) = 0.
A zero is called nontrivial if it is different from the origin. An equatign= 0 defines a projective plane curyg.
Nontrivial zeros off considered up to multiplication by a scalars are caliedtional points ofy ;. If I is a finite
field it makes sense to talk about the numbeF@htional points on a curve.

Lett = orda(p). Note thatC), C F,:. Consider a projective plane Fermat cusveefined by

2@/ @/ | @D/ ) (10)

Let us call a point on x trivial if one of the coordinates af is zero. Cyclicity of;, implies thaty contains
exactly3(2¢ — 1) /p trivial Fy:-rational points. Note that every nontrivial point gfyields a triple of elements of
C, that sum to zero. The classical Weil bound [17, p. 330] provides m&®

INg—(g+1)| < (d—-1)(d-2)\/q (11)
for the numberV, of F,-rational points on an arbitrary smooth projective plane curve of degrékl) implies
that in case . . .

2t+1>(2_1—1>(2_1—2)2t/2+3u (12)
p p p
there exists a nontrivial point on the curve (10). Note that (12) folloasnf
t t 3t/2+1 t
2t+1><2—> (2—>2t/2—2 AL (13)
p p p p

and (13) follows from
2t > 22t+t/2/p2 and 2t/2+1 > 3.

Now note that the first inequality above follows framc (4/3) log, p and the second follows from> 1. |

Note that the constart/3 in lemma 8 cannot be improved to 2: there are no three elemeidis;afi529 that
sum to zero, even thougirds(13264529) = 47 < 2 x log, 13264529 ~ 47.3.

4.2 A sufficient condition for the existence ok p-th roots of unity summing to zero

Our argument in this section comes in three steps. First we briefly reviewotienrof (additive) Fourier
coefficients of subsets @f,:. Next, we invoke a folklore argument to show that subsef8,ofwith appropriately
small nontrivial Fourier coefficients contalntuples of elements that sum to zero. Finally, we use a recent result of
Bourgain and Chang [5] (generalizing the classical estimate for Gamsg smargue that (under certain constraints
onp) all nontrivial Fourier coefficients of’, are small.

Forz € Foe letTr(z) = o + a2 + ... + 22 denote the trace of. It is not hard to verify that for alk,
Tr(z) € Fy. Characters oF,: are homomorphisms from the additive grougfef into the multiplicative group



{+£1}. There exis®’ characters. We denote charactersdgywherea ranges irfy:, and sety, (z) = (—1)77(e),
Let C(x) denote the incidence function of a €&tC F,:. For arbitrarya € F the Fourier coefficienk,(C) is
defined byx,(C) = > xa(z)C(x), where the sum is over all € Fy:. Fourier coefficientyo(C) = |C| is called
trivial, and other Fourier coefficients are called nontrivial. In what feid |, stands for summation over al
characters of'y:. We need the following two standard properties of characters and Foogaéicients.

2L, if z = 0;
Z Xl { 0, otherwise. (14)
> (€)= 2C). (15)
X

The following lemma is a folklore.
Lemma 9 LetC C FF,: andk > 3 be a positive integer. L&t be the largest absolute value of a nontrivial Fourier

coefficient olC. Suppose
|C‘ 1/(k-2)
= (%) 4o

then there exist elements of” that sum to zero.

Proof: LetM(C)=#{(,...,€C |G+ ...+ =0}.(14) yields

ot

xl,...7xk€F2t

M(C’):l Z C(ZL‘l)...C(ZL‘k)ZX(.’L‘l—I—...—l-:L‘k). a7)

Note thaty(z1 + ... + xx) = x(x1) . .. x(xx). Changing the order of summation in (17) we get

= %Z Z C(x1)...C(zk)x(z1) ... x(xk) =5 ZX (18)

X :vl,...,:rkE]FQt

Note that

clk o1 C c
5 SAC )= L5 ey = 18 -P N

where the last identity follows from (15). Combining (18) and (19) we tahethat (16) implies\/ (C) > 0. R

The following lemma is a special case of [5, theorem 1].

Lemma 10 Assume that | 2! — 1 and satisfies the condition

2t — 1 /
ng (n, 21&,1) < 2t(1—€)—t s fOI’ all 1 S t/ < t, t/ | t,

wheree > 0 is arbitrary and fixed. Then for alt € I3,

< ¢ 2t179), (20)

Z (_1)Tr(ax”)

x€F¢

whered = d(e) > 0 andc; = c1(€) are absolute constants.



Below is the main result of this section. Recall tiigtdenotes the set @fth roots of unity inF,.

Lemma 11 For everyc > 0 there exists an odd integér= k(c) such that the following implication holds. jfis
an odd prime an@rds(p) < clog, p then somé: elements of’,, sum to zero.

Proof: Note that if there exist’ elements of a sef’ C F, that sum to zero, wher¥ is odd; then there exist
k elements ofC that sum to zero for every odd > k’. Also note that the sum of aji-th roots of unity is
zero. Therefore given it suffices to prove the existence of an okld= k(c) that works for allsufficiently large
p. Lett = ordy(p). Observe thap > 2!/¢. Assumep is sufficiently large so that > 2¢. Next we show that
the precondition of lemma 10 holds far = (2! — 1)/p ande = 1/(2¢). Lett' | t and1 < ' < t. Clearly
ged(2¥ —1,p) = 1. Therefore

NI AN 2t(1=1/c) 21)
gc p ) 2t/ o 1 - p(2tl - 1) 2tl o 1 )

where the inequality follows from > 2¢/¢. Clearly,t > 2c yields2t/(29) /2 > 1. Multiplying the right hand side
of (21) by2t/(29) /2 and usin@2(2"" — 1) > 2! we get

t t
ged <% %) ~ ot(=1/(20)~t" 22)

Combining (22) with lemma 10 we conclude that there eXist0 andc; such that for alk € F7,

Z (_1)Tr<a;,;(2t71)/p> < C12t(1_6)- (23)

z€F ¢
Observe that?'~1)/7 takes every value i, exactly(2! — 1) /p times when ranges oveF,. Thus (23) implies
(2 = 1)(F/p) < 277, (24)

where [ denotes that largest nontrivial Fourier coefficientf (24) yieldsF/p < (2¢1)27°%. Pickk > 3 to be
the smallest odd integer such thjat— 1/c)/(k — 2) < 6. We now have

(1-1/c)t
F <9 G (25)
P

for all sufficiently large values gf. Combiningp > 2/¢ with (25) we get

Fo_(1GI)
|Cpl 2! ’
and the application of lemma 9 concludes the proof. |

4.3 Summary

In this section we summarize our positive results and show that one doesaestsarily need to use Mersenne
primes to construct locally decodable codes via the methods of [34].fitesito have Mersenne numbers with
polynomially large prime factors. Recall th&(m) denotes the largest prime factor of an integerOur first
theorem gets-query LDCs from Mersenne numberswith prime factors larger tham?3/4.



Theorem 12 SupposeP (2! — 1) > 2075 then for every message lengththere exists a three query locally
decodable code of lengtixp(n'/t).

Proof: Let P(2' — 1) = p. Observe thap | 2! — 1 andp > 207 yield ordz(p) < (4/3)log, p. Combining
lemmas 8,7 and 6 with proposition 5 we obtain the statement of the theorem. |

As an example application of theorem 12 one can observePat — 1) = 178481 > 2(3/9%23 ~ 155872 yields
a family of three query locally decodable codes of length(n'/2%). Theorem 12 immediately yields:

Theorem 13 Suppose for infinitely marywe haveP (2! — 1) > 2075 then for every > 0 there exists a family
of three query locally decodable codes of length(n°).

The next theorem gets constant query LDCs from Mersenne numbevigh prime factors larger tham” for
every value ofy.

Theorem 14 For everyy > 0 there exists an odd integér = k(+) such that the following implication holds.
Suppose’(2t — 1) > 27 then for every message lengtlhere exists & query locally decodable code of length
exp(n'/?).

Proof: Let P(2! — 1) = p. Observe thap | 2! — 1 andp > 27 yield ords(p) < (1/7)logy p. Combining
lemmas 22,7 and 6 with proposition 5 we obtain the statement of the theorem. |

As an immediate corollary we get:

Theorem 15 Suppose for some > 0 and infinitely many we haveP (2! — 1) > 27¢; then there is a fixed such
that for everye > 0 there exists a family d¢ query locally decodable codes of lengttp(n©).

5 Nice subsets of finite fields yield Mersenne numbers with laggprime factors

Definition 16 We say that a sequenc{c:SZ- C F;}Dl of subsets of finite fields fs-nice if everysS; is k alge-
braically nice andt(i) combinatorially nice, for some integer valued monotonically increasing fumetio

The core proposition 5 asserts that a sulsset I, that isk algebraically nice and combinatorially nice yields

a family of k-query locally decodable codes of lengttp(n'/?). Clearly, to getk-query LDCs of lengthexp(n<)

for some fixedk and everye > 0 via this proposition, one needs to exhibikanice sequence. In this section

we show how the existence oftanice sequence implies that infinitely many Mersenne numbers have large prime
factors. Our argument proceeds in two steps. First we show thatiee sequence yields an infinite sequence of
primes{p; },~, , where everyC,, contains &-tuple of elements summing to zero. Next we show thatontains

a short additive dependence onlyifs a large factor of a Mersenne number.

5.1 A nice sequence yields infinitely many primeg with short dependencies betweep-th roots of unity

We start with some notation. Consider a a finite fi€ld= FF,., wherep is prime. Fix a basisy, ..., ¢ of F,

overF,. In what follows we often writ€a, ..., «;) € Fé to denotenr = 22:1 ae; € Fy. Let R denote the ring
Folz1,...,2)/(2] —1,..., 27 —1). Consider a natural one to one correspondence between sgbs#t8, and
polynomialspg, (x1, ..., ;) € R.

b5, (X1, ... 1) = Z gt

(au1,..,00)EST



Itis easy to see that for all set§ C IF, and alla, 5 € Fy; :

Do) 485, (1, - x) = 2T x dgsy (21, 10). (26)

LetI" be a family of subsets df,. It is straightforward to verify that a s&fy C F, has even intersections with
every element of if and only if ¢, belongs toL*, whereL is the linear subspace & spanned b){(bsl}sler .
Combining the last observation with formula (26) we conclude that #'setF; is k algebraically nice if and
only if there exists a sef; C [, of odd sizek’ < k such that the ideal generated by polynomimgsl}{ﬁes}

is a proper ideal oR. Note that polynomialg f1, ..., fn} € R generate a proper ideal if an only if polynomials
{fi,..., fn. 2l —1,..., 2} — 1} generate a proper ideal ify[z1, . . ., 2;]. Also note that a family of polynomials
generates a proper ideal By[x1,...,2;] if and only if it generates a proper ideal ¥y[z1, ..., x;]. Now an
application of Hilbert's Nullstellensatz [7, p. 168] implies that a SeC Iy is k algebraically nice if and only
if there is a setS; C F, of odd sizek’ < k such that the polynomia@ﬁgl}{ﬁes} and{z — 1}, have a

common root inF,.

Lemma 17 LetF, = F,;, wherep is prime. Supposg, contains a nonempty algebraically nice subset; then
there exist(y,...,(; € Cp suchthat(; + ... + ¢, = 0.

Proof: AssumeS C F; is nonempty and: algebraically nice. The discussion above implies that there exists
S1 C F, of odd sizek’ < k such that all polynomial$¢>551}{ﬁes vanish at somé(i,...,(;) € C]l,. Fix an
arbitrary 3y € S, and note tha€, is closed under multiplication. Thus,

Dposi (Gt G) =0 (27)
yieldsk’ p-th roots of unity that add up to zero. Itis readily seen that one can e@@h¢y adding an appropriate
number of pairs of identical roots) to obtdinp-th roots of unity that add up to zero for any oklg> &’. |

Note that lemma 17 does not suffice to prove thiatrice sequencgs; C I }._ | yields infinitely many primeg
with short (nontrivial) additive dependenciesi. We need to argue that the s_{ehaﬁﬁ‘qi}pl can not be finite. To
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proceed, we need some more notation. Recallthaip' andp is prime. Forr € FqletTr(z) =z+...+aP €
[, denote the (absolute) trace of Fory € Fy, c € I, we call the setr, . = {x € F, | T'r(yz) = c} aproper
affine hyperplanef F,.

Lemma 18 LetF, = F,, wherep is prime. Suppos® C F; is k algebraically nice; then there exigt < p*

h
proper affine hyperplanegr,, , }, ., of F, such thatS C |J 7, ¢,
<i< =

1=

Proof:  Discussion preceding lemma 17 implies that there exists &iset {o1,...,0,} C F, of odd size
k' < k such that all polynomial$¢@51}{ﬁes} vanish at somé(y, ..., () € Czl). Let ¢ be a generator of’,. For

everyl < < pickw; € Z, such that; = (“. For everys € S, ¢gs, (C1,...,¢) = 0yields
> e (28)
p=(p1,..-, 1) EBSI

Observe that for fixed valuegv; },;; € Z, the mapD(u) = 22:1 wiw; is a linear map fron¥, to F,. Itis
not hard to prove that every such map can be expresséu@s= 7 (ou) for an appropriate choice of € F,.

Therefore we can rewrite (28) as
Z CTT((SM) _ Z CTT((SBJ) —0. (29)
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LetW = {(wl, ce W) € Z’;' | (" 4. W = 0} denote the set of exponents kfdependencies be-
tween powers of. Clearly, || < p*. Identity (29) implies that everg c S satisfies

TT((50’1)B) = wi,
: (30)
Tr((bow)B) = wp;

for an appropriate choice @fv1, ..., w; ) € W. Note that the all-zeros vector does not lielin sincek’ is odd.
Therefore at least one of the identities in (30) has a non-zero riglt4ida, and defines a proper affine hyperplane
of F,. Collecting one such hyperplane for every elemeniiofve get a family off /| proper affine hyperplanes
containing every element of. |

Lemma 18 gives us some insight into the structure of algebraically nice saibggtsOur next goal is to develop
an insight into the structure of combinatorially nice subsets. We start bywiengjesome relations between tensor
and dot products of vectors. For vectars F;* andv € Fy letu®v € F;'" denote the tensor productefandv.
Coordinates of: ® v are labelled by all possible elementsjof] x [n] and(u ® v); ; = u;v;. Also, letu® denote
thel-the tensor power of andu o v denote the concatenation @fandwv. The following identity is standard. For
anyu,z € Fy* andv,y € Fy :

woveey) = Y womy=| > wr| [ > vy | = (w)(,y) (31)
i€[m],j€[n)] i€[m] JEn]
In what follows we need a generalization of identity (31). [fety,...,z5) = >, cl-x?li e xzz be a polynomial
inFylz1,...,2p). Given f we definef € Fy[z1,...,zp) by f =Y, as?i . .xzz, i.e., we simply set all nonzero
coefficients off to 1. For vectorsuy, . .., u, in " define
fug,...,up) =o; ciu?ai®...®u§%. (32)
Note that to obtainf(ui,...,u,) we replaced products ifi by tensor products and addition by concatenation.
Clearly, f(u1, ..., up) is a vector whose length may be larger than
Claim 19 Foreveryf € Fy[z1,...,zp] andus, ..., up,v1,...,vp € F'
(f(ula s >uh)a f(vla s ’Uh)) = f((ulyvl)a SR (uha Uh))‘ (33)

Proof: Letu = (ui,...,uy) andv = (vy,...,v,). Observe that if (33) holds for polynomiafs and f defined
over disjoint sets of monomials then it also holds foe f1 + f5 :

(f(w), f(v)) = ((fr + f) (), (fi + f2)(v)) = (fi(u) o f2(u), fr(v) © fa(v)) =
fi ((ui,v1)y ooy (up,op)) + fo (w1, v1), -y (up,on)) = f ((wg,v1), .00, (up, vp)) -

Therefore it suffices to prove (33) for monomigls= cz{" ... z;". It remains to notice identity (33) for monomi-
als f = cx{"* ... x;" follows immediately from formula (31) using induction @?:1 Q. |

The next lemma bounds combinatorial niceness of certain subsgfs of
Lemma 20 LetF, = F,, wherep is prime. LetS C F;. Suppose there exigt proper affine hyperplanes

h
{W%CT}ISTSh of F, such thatS C U1 To,.cr; thenS is at mosth(p — 1) combinatorially nice.

r=



Proof: AssumeS is ¢t combinatorially nice. This implies that for sonee> 0 and everym there exist two
n = | em']-sized collections of vectorgu; };c(,) and{v; };cp,) in FY', such that:

e Foralli € [n], (u;,v;) =0;

e Foralli,j € [n] such that # j, (u;,v;) € S.
For avecton € Fy* and integee letu® denote a vector resulting from raising every coordinate tofthe powek.
For everyi € [n] andr € [h] define vectormg’”) andvz.(’") in F"! by

O (rug) o (ypui)Po. ..o (%ui)pFl and o) = viovto...0 vfl_l. (34)
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Note that for every-,ry € [h], vl(”) = vl(”). It is straightforward to verify that for every j € [n] andr € [h] :

(uy),vi(r)) = Tr(vr(uj,v;)). (35)
Combining (35) with the fact thaf is covered by proper affine hyperplanes ., we conclude that
e Foralli € [n] andr € [h], (ug’”%v@) =0;

e Foralli,j € [n] such that # j, there exists' € [h] such tha ug.r),vi(r)> € Fs.
Pickg(z1,...,zn) € Fplz1,...,zs] to be a homogeneous degrieeolynomial such that foa = (ay,...,an) €
IF’; : g(a) = 0if and only if a is the all-zeros vector. The existence of such a polynomifallows from [17,
Example 6.7]. Sef = gP~!. Note that fora € ]F’; : f(a) = 0if ais the all-zeros vector, anf{a) = 1 otherwise.

For alli € [n] define
o= f (u§1>,...,u§h)) o(1) and o = f(v§1>,...,v§h>) o(~1). (36)

Note thatf and f are homogeneous degrée — 1)k polynomials inh variables. Therefore (32) implies that
for all i vectorsu/ andv) have lengthn’ < h(P=1"(m])(P~Dh Combining identities (36) and (33) and using the

properties of dot products between vectéré’")} and{vzg’")} discussed above we conclude that for everthere

exist twon = |cm'|-sized collections of vectoru; }ic(,) and{v;};c(,) in IF;"’, such that:

e Foralli € [n], (u},v]) = —1;
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e Foralli,j € [n] such that # j, (u;,v;) = 0.

It remains to notice that a family of vectors with such properties exists onlydifm’, i.e., [ em!| < hP=Dh(mi)P—1h,
Given that we can pick: to be arbitrarily large, this implies that< (p — 1)h. |

The next lemma presents the main result of this section.

Lemma 21 Let k be an odd integer. Suppose there exists@ce sequence; then for infinitely many primes
somek of elements of’, add up to zero.

Proof: Assume{Si - in}pl is k-nice. Letp be a fixed prime. Combining lemmas 18 and 20 we conclude

that everyk algebraically nice subsé&t C ¥, is at most(p — 1)p* combinatorially nice. Note that our bound on
combinatorial niceness is independent.o‘lpherefore there are only finitely many extensions of the figléh the
sequencgF,, }.., , and the seP = {chaif,, } ., is infinite. It remains to notice that according to lemma 17 for
everyp € PP there exist elements of”), that add up to zero. |

In what follows we present necessary conditions for the existengetales ofp-th roots of unity inF, that
sum to zero. We treat thle = 3 case separately since in that case we can use a specialized argumeiveta de
slightly stronger conclusion.



5.2 A necessary condition for the existence df p-th roots of unity summing to zero

Lemma 22 Letk > 3 be odd ang be a prime. Suppose there exjst. . ., (;, € C, such thath:1 ¢; = 0; then
orda(p) < 2p1_1/(k_1). (37)

Proof: Lett = orda(p). Note thatC,, C F,:. Note also that all elements @, other than the multiplicative
identity are proper elements Bf:. Therefore for every € C, where¢ # 1 and everyf(z) € Fy[x] such that
deg f <t —1we have:f(¢) # 0.

By multiplying Zle ¢; = 0 through by(,;l, we may reduce to the cagg = 1. Let ¢ be the generator af’,.
For everyi € [k — 1] pick w; € Z, such that}; = ¢". We now haveZi.‘;1 ¢“"+1=0.Seth=[(t—1)/2].
Consider thék — 1)-tuples:

(maws +i1,...,mwe_1 +ix—1) € Zy ', for m € Z, and iy, ... ix_1 € [0,A]. (38)

Suppose two of these coincide, say

(mwy +i1,...,mMwWg—1 +ik—1) = (m/wl + ill, . ,m/wk_1 + i;c—l)v
with (m, i1, ..., i5—1) # (M, 1},...,i_,). Setn = m — m’ andj; = ¢} — i, for [ € [k — 1]. We now have
(nwi,...,nwg_1) = (J1,---,71)

with —h < j1,...,jk—1 < h. Observe that # 0, and thus it has a multiplicative invergec Z,. Consider a
polynomial 4 '
P(z) = 200 4 ik th g e Ty 2.

Note thatdeg P < 2h < t — 1. Note also thatP(1) = 1 andP(¢?) = 0. The latter identity contradicts the fact
that(¥ is a proper element d,:. This contradiction implies that alk — 1)-tuples in (38) are distinct. This yields

A
N
p ZPp <2> )
which is equivalent to (37). |

5.3 A necessary condition for the existence of threg-th roots of unity summing to zero

In this section we slightly strengthen lemma 22 in the special case ivkeB. Our argument is loosely inspired
by the Agrawal-Kayal-Saxena deterministic primality test [1].

Lemma 23 Letp be a prime. Suppose there exjst (2, (3 € C, that sum up to zero; then

orda(p) < ((4/3)p)"/? . (39)

Proof: Lett = ordaz(p). Note thatC,, C F,:. Note also that all elements @, other than the multiplicative
identity are proper elements Bf,.. Therefore for every € C, where¢ # 1 and everyf(z) € Fy[x] such that
deg f <t —1we have:f(¢) # 0.

Observe that; + ¢ + (3 = 0 impliesi Gt + 1 = ¢3¢ " This yields(¢1¢, ! + 1) = 1. Put¢ = ¢1¢ L
Note that¢ # 1 and(, 1+ ¢ € C,. Consider the products; ; = ¢*(1+ ¢)7 € C,, for 0 < i,j <t — 1. Note that
i j» Tk, Cannot be the sameif> £ andl > j, as then

¢ (149" =0,



but the left side has degree less ttatn other words, ifr; ; = 7, and (4, j) # (k,1), then the pairgi, j) and
(k,1) are comparable under termwise comparison. In particular, €khér= (i+a, j+b) or (i, j) = (k+a,l+b)
for some pair(a, b) with 7, = 1.

We next check that there cannot be two distinct nonzero paits, (a’, V') with 7, , = 7,y = 1. As above,
these pairs must be comparable; we may assume without loss of generalitythat, b < . The equations
Tap = landmy_qp—p = 1forcea+b > tand(a’ —a) + (V' —b) > t,sod’ +V > 2t. Buta/,b' <t —1,
contradiction.

If there is no nonzero paifa, b) with 0 < a,b < t — 1 andw,;, = 1, then allr; ; are distinct, s > 2.
Otherwise, as above, the pait, b) is unique, and the pair@, j) with 0 < i,5 < t — 1 and(i,5) # (a,b) are
pairwise distinct. The number of pairs excluded by the conditiofn) # (a,b) is (t — a)(t — b); sincea + b > t,
(t —a)(t — b) < t?/4. Hencep > t2 — t2/4 = 3t? /4 as desired. |

While the necessary condition given by lemma 23 is quite far away from thieienf condition given by
lemma 8, it nonetheless suffices for checking that for most prignésere do not exist thregth roots of unity
summing to zero. For instance, among the 664578 odd primesi0®, all but 550 are ruled out by Lemma 23.
(There is an easy argument thanhust be odd ifp > 3; this cuts the list down to 273 primes.) Each remaining
p can be tested by computingd(z? + 1, (z + 1)? + 1); the only examples we found that did not satisfy the
condition of lemma 8 werép, t) = (73,9), (262657, 27), (599479, 33), (121369, 39).

5.4 Summary

In the beginning of this section 5 we argued that in order to use the methad]pfi[e., proposition 5) to obtain
k-query locally decodable codes of lengttp(n©) for some fixedk and alle > 0, one needs to exhibit &nice
sequence of subsets of finite fields. In what follows we use technisaltseof the previous subsections to show
that the existence of nice sequence implies that infinitely many Mersenne numbers have largefpatoes.

Theorem 24 Let k£ be odd. Suppose there exist&-aice sequence of subsets of finite fields; then for infinitely
many values of we have
P2 — 1) > (t/2)'+1/(k=2), (40)

Proof: Using lemmas 21 and 22 we conclude that-nice sequence yields infinitely many primesuch that
orda(p) < 2p*~ V=1 Let p be such a prime antd= ords(p). ThenP(2! — 1) > (t/2)1+1/(+=2), |

A combination of lemmas 21 and 23 yields a slightly stronger bound for the $pasiaof3-nice sequences.
Theorem 25 Suppose there exist3anice sequence of subsets; then for infinitely many valuesvefhave
P(2' — 1) > (3/4)t%. (41)

We would like to remind the reader that although the lower bound#>faf — 1) given by (40) and (41) are
extremely weak light of the widely accepted conjecture saying that the nunfiddersenne primes is infinite,
they are substantially stronger than what is currently known unconditiof2lly

6 Conclusion

Recently [34] came up with a novel technique for constructing locally dauledcodes and obtained vast im-
provements upon the earlier work. The construction proceeds in two. skéss [34] shows that if there exist
subsets of finite fields with certain 'nice’ properties then there exist goddsx Next [34] constructs nice subsets
of prime fieldskF,, for Mersenne primes.



In this paper we have undertaken an in-depth study of nice subsetshefagdinite fields. We have shown
that constructing nice subsets is closely related to proving lower bounttseasize of largest prime factors of
Mersenne numbers. Specifically we extended the constructions of [&ftéam nice subsets of prime fieldy
for primesp that are large factors of Mersenne numbers. This implies that strong lmuerds for size of the
largest prime factors of Mersenne numbers yield better locally decodadds cConversely, we argued that if one
can obtain codes of subexponential length and constant query complewitgh nice subsets of finite fields then
infinitely many Mersenne numbers have prime factors larger than knowentiy:
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