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Abstract

We introduce an algebraic proof system Pcrk, which combines together Polynomial
Calculus (Pc) and k-DNF Resolution (Resk). This is a natural generalization to Resk of
the well-known Polynomial Calculus with Resolution (Pcr) system which combines together
Pc and Resolution.

We study the complexity of proofs in such a system extending to Pcrk the results
known for Resk. We prove that random 3-CNF formulas with a linear number of clauses
are hard to prove in Pcrk (over a field with characteristic different from 2) as long as k is in
o(

√

log n/ log log n). This is the strongest system where 3-CNF formulas are hard to prove.
Moreover we prove a strict hierarchy result showing that Pcrk+1 is exponentially stronger

than Pcrk. This result is the consequence of proving a Ω(n) degree lower bound for Pcr
refutations of a Graph Ordering Principle. This is the first example of a family of contra-
dictions having Pcr short refutations but requiring high degree, and thus also proving the
optimality of the size-degree tradeoff for Pcr.

1 Introduction

Algebraic proof systems were studied for the first time in the context of Proof Complexity by
Beame et al. in [7], where they introduce a refutational system based on the Hilbert Null-
stellensatz. Later, Clegg et al. in [15] defined a more natural algebraic proof system, called
Polynomial Calculus (Pc) and based on deriving elements of the ideal generated from a set of
given polynomials.

These systems have great importance for two reasons. First they generalize the well-studied,
used and known boolean system of Resolution. Second because of the applications in the field of
automatic generation of proofs that well-known algorithms, like the Gröbner Basis Algorithm,
can have. One of the main problem arising in proof complexity is that of proving degree lower
bounds for these systems. The work of Razborov [20] proving linear degree lower bounds for
the Pigeon Hole principle in Pc was followed by several other important results [9, 12, 5, 19]
proving degree lower bounds also for random formulas, which is one of the prominent class of
formulas proved to be hard in many systems.

The Pc system was extended in [2, 3] to a system combining together the strength of
Resolution and Pc called Polynomial Calculus with Resolution, Pcr. Since in this system
clauses can be translated directly to monomials, then the width of a clause (i.e. the number of
literals) in Resolution has its counterpart in the degree in Pcr. This system has been also well
studied. Several degree lower bounds have been proved for random formulas and for a more
general class of contradictions arising from pseudorandom generators [3, 19]. It is important to
notice that the well known tradeoff between number of clauses and width found for Resolution
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by Ben-Sasson and Wigderson in [10] has its counterpart in the tradeoff between number of
monomials and degree in Pcr [3].

The Resolution system was extended by Krajicek in [18] to a system, called k-DNF Resolu-
tion (Resk), where instead of clauses we have the power of deriving k-DNFs, i.e. disjunctions
of k-conjunctions. instead of simply literals. Although a subsystem of bounded depth Frege,
where we already know lower bounds for the Pigeon Hole principle [8], Resk has a lot of impor-
tance. It is a natural extension of resolution and moreover is a powerful system to experiment
new techniques to prove lower bounds for random formulas, whose complexity in bounded depth
Frege is still unknown. In fact lower bounds for random 3-CNF formulas had been firstly proved
for Res2 in [6]. Then a lower bound for random O(k2) − CNF in Resk was proved in [22].
Finally a random 3-CNF lower bound in Resk was proved for k = o(

√

log n/ log log n) in [1].
Moreover Segerlind et al. in [22] proved a strict hierarchy result, finding family of contradictions
requiring exponential size in Resk but provable in polynomial size in Resk+1.

In this paper we generalize the Pcr system, defining the system Pcrk which combines the
strength of Pc and that of Resk. Exactly as in Pcr monomials succinctly represent clauses,
in Pcrk we generalize monomials to k-monomials in such a way of being able to succinctly
represent k-DNFs. Then we define k-polynomials as linear combinations of k-monomials. As
the role of the degree is the same for Pc and Pcr refutations, we have that in Pcrk the degree
of a refutation is the essentially the same as in Pc or Pcr. In this paper we investigate if
k-monomials allow to refute more efficiently than Pc and Pcr.

First we prove that Pcrk is a natural generalization of Resk showing that any Resk refuta-
tion can be simulated efficiently in number of k-monomials in Pcrk. To study the complexity
of proofs in Pcrk we follow the approach used by Segerlind et al. in [22] to prove Resk lower
bounds. Using their Switching Lemma to transform k-DNFs into low height decision trees, we
prove an analogous Switching lemma to transform k-monomials into multilinear polynomials
of low degree. So exactly as Segerlind et al. in [22] can reduce lower bounds for Resk to
width lower bounds in Resolution, we reduce lower bounds on the number of k-monomials in
Pcrk to degree lower bounds in Pc or Pcr. Using this machinery we are then able to apply
the ideas from the paper of Alekhnovich [1] to Pcrk. Using a degree lower bound for certain
encodings of systems of linear equations developed in [3], we get that with high probability (as
long as k = o(

√

log n/ log log n)), any Pcrk (over a field with characteristic different from 2)
refutation of random 3-CNF over a linear number of clauses requires an exponential number of
k-monomials.

In analogy with Resk, we then approach the question of proving a strict hierarchy result for
Pcrk too. After the switching lemma, the main part of the Resk separation in [22] was proving
that a family of contradictions arising from a graph ordering principle is refutable in polynomial
size in Resolution but always demands high width. This example is a generalization of the GT
contradiction of [11] proving that the size width tradeoff for Resolution is optimal. While for
Resolution this optimality is known, that was not the case for the analogous tradeoff between
degree and size in Pcr [3]. To eventually prove the exponential separation between Pcrk and
Pcrk+1 we first study the question of finding a family of formulae having Pcr refutation with a
polynomial number of monomials, but requiring high degree. We express another graph ordering
principle and we get the expected result when the graph used are good vertex expanders. In
proving this result we follow the method invented by Razborov in [20] and refined in [5], of
finding a linear operator which sets to true all the consequence of a given set of polynomials
derivable in low degree. With this result in hand we then can use our switching lemma and
follow the same approach of Segerlind et al. [22] to prove the desired exponential separation.

The paper is organized as follows. In Section2 we give the preliminary definitions and define
all the known proof system we cite and use in the paper. In section 3 we introduce the Pcrk
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proof system, we show its relation with other systems and we prove the switching lemma we
use in the paper. In Section 4 we prove the lower bounds for random 3-CNFs. In Section 5
we introduce our graph ordering principle and prove a degree lower bounds in Pc. Finally in
Section 6 we prove the exponential separation between Pcrk and Pcrk+1.

2 Preliminaries

Let V be a set of boolean variables. A literal l is either a variable x or is negation x̄. A k-clause
is a disjunction of at most k literals; a k-term is a conjunction of at most k-literals. A boolean
formula F is a k-CNF if it is a conjunction of k-clauses; it is a k-DNF if it is the disjunction
of k-terms. If we omit k we have no bounds on the number of literals in clauses or terms. The
width of a clause is the number of literals in the clause. V ars(F ) denotes the set of variables
occurring in F . An assignment to a formula F is a mapping ρ : V ars(F ) → {0, 1}. A partial
assignment to F is a mapping ρ : V ars(F )→ {0, 1, ∗}; we let Dom(ρ) to be ρ−1({0, 1}). Given a
restriction ρ for F by F �ρ we denote the formula obtained from F after setting all the variables
in Dom(ρ) according to ρ, simplifying F in the standard way and leaving all the other variables
unassigned.

Given a field F, we consider polynomials over F[x1, . . . , xn]. Given a set E = {f1, . . . , fn} of
polynomials, by Span(E) we denote the ideal generated by E, that is the set {

∑

i(fi · hi) | hi ∈
F[x1, . . . , xn]}. Polynomials will be always evaluated on {0, 1} assignments. We extend the
notions of assignment, restriction and domain from boolean formulas to polynomials. We say
that a set of polynomials f1, . . . , fn semantically implies a polynomial g if any {0, 1} assignment
that satisfies fi = 0 for all i ∈ [n], also satisfies g = 0. We write f1, . . . , fn |= g. Notice that if
g ∈ Span(E ∪ {x2

i − xi}i∈[n]), then E |= g.

2.1 Proof systems

The Polynomial Calculus (Pc) is a refutational system, defined in [15], and based on the ring
F[x1, . . . , xn] of polynomials. We always assume equations of the form p = 0 so we refers only to
p. To restrict the polynomials to be evaluated only on {0, 1}, the system contains the following
axioms:

x2
i − xi, i ∈ [n]

Moreover it has two rules. For any α, β ∈ F, p, q polynomials and variable x:

p q

αp + βq
Scalar Addition

p

xp
Multiplication

A Pc proof of a polynomial g from a set of initial polynomials f1, . . . , fm (denoted by
f1, . . . , fm ` g) is a sequence of polynomials where each one is either an initial one, or a
an axiom, or is obtained applying one of the rules to previously derived polynomials. A Pc
refutation is a proof of the polynomial 1.

Observe that a polynomial g has a Pc proof from a set E of polynomials iff g ∈ Span(E ∪
{x2

i − xi}i∈[n]). Moreover E has no common {0, 1} solutions (we call E contradictory) iff
1 ∈ Span(E ∪ {x2

i − xi}i∈[n]) and in particular if E |= g, then E ` g (see Theorem 5.2 in [13]).
Given a Pc proof Π, the degree of Π, deg(Π), is the maximal degree of a polynomial in the

proof; the size of Π, S(Π), is the number of monomials in the proof, the length of Π, |Π|, is the
number of lines in the proof.

Polynomial Calculus with Resolution (Pcr) [3] is a refutational system which extends Pc
to polynomials in the ring F[x1, . . . , xn, x̄1, . . . , x̄n], where x̄1, . . . , x̄n are new formal variables.
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Pcr includes the axioms and rules of Pc plus a new set of axioms defined by

1− xi − x̄i i ∈ [n]

to force x̄ variables to have the opposite values of x variables.
We extend to Pcr the definitions of proof, refutation, degree, size and length given for Pc.

Observe that using the linear transformation x̄ 7→ 1− x, any Pcr refutation can be converted
into a Pc refutation without increasing the degree. Notice that such transformation could
increase the size exponentially. Moreover Pcr efficiently simulates Res with refutations of
degree equals to the width of the original Res proof.

Resolution on k-DNF (Resk) [18] is a sound and complete refutational system which extends

Resolution (Res) to k-DNFs. The rules are the following ones:

A
A∨l

Weakening
A∨l1 ··· A∨lj

A∨
Vj

i=1 li
∧-intro, 1 < j ≤ k

A∨
Vj

i=1 li
A∨li

∧-elim, 1 < j ≤ k
A∨

Vj
i=1 li B∨

Wj
i=1 ¬li

A∨B
Cut, 1 < j ≤ k

(1)

A proof of a k-DNF G from a set of clauses F , is a sequence of k-DNFs where each one is
either an axiom of Resk, or a clause in F , or is derived by one of the rule from two previously
derived k-DNFs. A refutation of F is proof of the empty disjunction. Let Π be a Resk proof.
Then the size of Π, S(Π), is the total number of symbols appearing in Π. The length of Π,
|Π|, is the number of lines in the sequence defining Π.

2.2 Notions from commutative algebra

We are going to define a notion of reminder on polynomials with respect to an ideal. We consider
the grlex order <P on monomials as given in [16]. In particular grlex is monotone with respect
to the product and satisfies the property that if deg(t1) < deg(t2), then t1 <P t2. <P can be
extended easily to polynomials (see [16]).

Given a polynomial q, we define RE(q) as the minimal, with resepct to <P, polynomial p
such that q − p ∈ Span(E).

RE(q) = min{p ∈ F[x1, . . . , xn] : q − p ∈ Span(E)}

In the following sections we use some properties of the operator RE which can be easily derived
from the definition:

Property 1. Let E be a set of polynomials and let p and q be two polynomials. Then:

• RE(p) ≤P p;

• if p− q ∈ Span(E), then RE(p) = RE(q);

• RE is a linear operator;

• RE(pq) = RE(p · RE(q)).

Notice that when the polynomials {x2
i −xi}i∈[n] ⊆ E, then, by minimality, RE(q) is multilin-

ear. We remark here that when we work in Polynomial Calculus, we implicitly assume to have
such polynomials always included in the set E. When p is multilinear and {x2

i − xi}i∈[n] ⊆ E,
RE(p) is the same polynomial given by the operator RE of Alekhnovich and Razborov in [5].
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3 Pcrk, degree complexity and switching lemma

Pcr combines Resolution with Pc. The strength of Pcr with respect to Pc is the ability of
representing a clause with only one monomial. We want Pcrk to be a system that combines
Resk with Pc and manages succint representations of k-DNF.

We introduce the notion of k-monomials, which are algebraic representations of k-DNFs
obtained as products of variables in V = {x1, . . . , xn, x̄1, . . . , x̄n} and expressions of the form
(1 −

∏j
i=1 yi) with 0 ≤ j ≤ k and yi ∈ V , where the product of 0 variables is intended to be

1. An example of a 3-monomial is: x3x̄2(1 − x̄5x2)x4(1 − x1x̄2x3). k-polynomials are linear
combinations of k-monomials.

k-monomials algebraically represent k-DNFs by the following sintactical transformation

∏

i

li ·
∏

j



1−

kj
∏

i=1

li



←→
∨

i

l̄i ∨
∨

j





kj
∧

i=0

li





Notice that this transformation is a essentially a bijection modulo the fact that a one variable
term x in a k-DNF can be equivalently mapped either to x̄ or (1− x).

The axioms of Pcrk includes those of Pcr plus axioms

1− y1y2 · · · yj − (1− y1y2 · · · yj) for j ≤ k, yi ∈ V

which introduce syntactical parentheses and allow to work with k-polynomials.
Analogously, the rules of Pcrk are those of Pcr with one more rule to deduce k-polynomials

p

(1− y1 · · · yj)p
for j ≤ k, yi ∈ V

A Pcrk proof of a k-polynomial g from k-polynomials f1, . . . , fn (denoted by f1, . . . , fn `k g)
is a sequence of k-polynomials ended by g, each one obtained from either an axiom or by applying
a rule to previously derived k-polynomials. In particular a Pcrk refutation is a proof of 1.

Given a k-polynomial p, let p∗ be the polynomial obtained expanding the parenthesis in p.
The degree of a k-polynomial deg(p) is defined as deg(p∗). Let Π be a refutation in Pcrk. The
degree deg(Π) af Π is the maximal degree of a k-polynomial used in Π. The size S(Π) is the
total number of k-monomials used in the proof Π. The length |Π| is the number of lines.

Given a k-polynomial p, it is possible to derive its equivalence with p∗ in Pcrk.

Fact 1. For any k-polynomial p we have `k p− p∗.

As an immediate corollary and by the completeness of Pcr, we get the completeness of
Pcrk. Indeed f1, . . . , fn |= g imply f∗

1 , . . . , f∗
n |= g∗, and, by Pcr completeness f∗

1 , . . . , f∗
n ` g∗

and finally, using previous lemma, f1, . . . , fn `k g.
Applying the transformation (1−x) 7→ x̄, we can define an homomorphism from 1-polynomials

into polynomials, which moreover maps Pcr1 proofs into Pcr proofs without increasing degree,
size and length.

From the previous observation Pcrk efficiently simulates Res, Pc, Pcr and by the next
lemma also Resk.

Lemma 1. Let Π be a Resk refutation of a CNF F . Let pF be the set of polynomials arising
from the polynomial translation of F . Then there is a Pcrk refutation Γ of pF such that
S(Γ) = O(2kS(Π)O(1))
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Proof. We refer to names and notation of Resk rules given in preliminaries (see (1)). Weakening
rule is simulated by multiplication rule. For the other three rules consider the case in which
A and B are empty DNFs. By completeness these rules can be easily simulated in size O(2k)
because they involve at most k original variables. Consider now non-empty k-DNFs A,B and the
corresponding k-monomials mA,mB . Observe that if p1, · · · pl `k q then mAp1, · · ·mApl `k mAq
in the same size. Also if p1, p2 `k q then mAp1,mBp2 `k mAmBp1,mAmBp2 `k mAmBq in size
equal to the original plus to the number of factors of mA and mB .

3.1 Degree complexity for k-polynomials

Given a boolean function f on x1, . . . , xn, with values in a field F, we denote as f̃ the multilinear
polynomial on x1, . . . , xn which evaluates as f on all boolean assignments. This polynomial
exists and is unique (see [23, 13]).

Definition 1. Given a boolean partial assignment ρ over {x1, . . . , xn}, we define its extension
ρe over {x1, . . . , xn, x̄1, . . . , x̄n} as follows: for each x ∈ ρ−1({0, 1}) : ρe(x̄) = 1− ρ(x), and for
each x ∈ ρ−1({∗}) : ρe(x̄) = ∗.

A k-polynomial p over {x1, . . . , xn, x̄1, . . . , x̄n}, computes a boolean function fp over {x1, . . . , xn}
defined in such a way that for all total assignment ρ over {x1, . . . , xn}, f �ρ= p �ρe . f̃p is the
multilinear representation over {x1, . . . , xn} of the k-polynomial p. We will write p̃ instead of
f̃p. Notice that over {x1, . . . , xn} the multilinear representaion of a k-polynomial p is unique.

Definition 2. The degree complexity DC(p) of a k-polynomial p is the degree of p̃.

A boolean decision tree over {x1, . . . , xn} as a binary tree structure where each internal node
is labelled by a variable, the leaves are labelled with values from a field F, the outgoing edges
of a node are labelled respectively with 0 and 1, and in each path from the root to a node each
variable appears at most once. The height ht(T ) of a tree T is the length of the longest path
in T . Each path from the root to a node defines a partial boolean assignment on {x1, . . . , xn}
in the usual way. So a decision tree computes a boolean function f with values in F if for each
path ρ from the root to a leaf, in all assignments completing ρ, f is equal to the value labelling
the leaf.

We say that a boolean decision tree represents a k-polynomial p if it computes fp. Given a
k-polynomial p, by ht(p) we indicate the height of the tree represeting p. Notice that in this
tree only variables from {x1, . . . , xn} appear.

Lemma 2. For any k-polynomial p, DC(p) ≤ ht(p).

Proof. Let ρ be a partial assignment induced by a path in the tree T representing p. Let
I = ρ−1(1), J = ρ−1(0) and χρ the polynomial

∏

i∈I xi ·
∏

j∈J(1 − xj). Then the polynomial
q =

∑

ρ(fp �ρ ·χρ), where ρ ranges over all paths in T , is multilinear (by definition of T ) and
clearly computes the same boolean function computed by p.

The following lemma shows that Pcrk refutations of low degree complexity can be trans-
formed into Pc refutations of low degree.

Lemma 3. Let Π be a Pcrk refutation over F[x1, . . . , xn, x̄1, . . . , x̄n] of a set of k-polynomials
Q = {q1, . . . , qn}. There exists a Pc refutation Γ over F[x1, . . . , xn] for Q̃ = {q̃1, . . . , q̃n} such
that deg(Γ) ≤ maxp∈Π DC(p) + k.
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Proof. Let Π = p1 · · · pl be a Pcrk refutation of Q. We build a Pc refutation p̃1 · · · p̃l of Q̃
such that deg(p̃i) ≤ DC(pi). We will show how to deduce each p̃i from Q̃ and p̃1 · · · p̃i−1. If pi

is an axiom, then there is nothing to prove. If pi is obtained from scalar addtion by p and q,

then pi is αp + βq and we can use the fact that ˜αp + βq ≡ αp̃ + βq̃ because of uniqueness of
multilinear representation. We show the case of the rule p

p(1−x̄1···x̄k) . The others are obtained
similarly. Assume pi is obtained from p using the above rule. Then from p̃ we can build a Pc

proof of p̃ ˜(1− x̄1 · · · x̄k), of degree at most DC(p) + k. Then we use boolean axioms to remove

squares to finally obtain a proof of ˜p(1− x̄1 · · · x̄k) which is p̃i. Notice that for all polynomials
pi, deg(p̃i) ≤ DC(pi), while intermediate lines have degree at most DC(pi) + k.

Notice that in the previous simulation the number of monomials could increase exponentially,
but we are interested only in the degree of such simulation.

3.2 Switching lemma for k-monomials

Recall Corollary 3.4 in [22].

Corollary 1. ([22]) Let k, s, d be positve integers, let γ and δ be real numbers from the range
(0, 1], and let D be a distribution on partial assignments so that for every k-DNF G, Prρ∈D[G�ρ 6=
1] ≤ d2−δ(c(G))γ

. For every k-DNF F ,

Pr
ρ∈D

[ht(F �ρ) > 2s] ≤ dk2−δ′sγ′

where δ′ = 2(δ/4)k and γ′ = γk.

Let F be a k-DNF F and mF the corresponding k-monomial, then F �ρ= 1 iff mF �ρe=
0. On the other hand any {0, 1} partial assignment for a k-monomial m which consistently
assigns variables x and x̄, can be viewed as the extension ρe of a boolean assignment ρ for the
corresponding k-DNF Fm, such that m�ρe= 0 iff Fm �ρ= 1.

Since any k-monomial evaluates to 0 iff the corresponding k-DNF evaluates to 1, swapping
0 and 1 in the leaves of a decision tree T representing a k-monomial we obtain a decision tree
that strongly represent (in the sense of Definition 3.1 in [22]) the corresponding k-DNF. Notice
that the height is not changing.

The mapping between k-monomials and k-DNFs and lemma 2 allow us to restate for k-
monomials and degree complexity, the switching lemma given for k-DNF in [22].

Definition 3. Let τ be a k-DNF on {x1, . . . , xn} we call c(τ) the size of the smallest set of
variables containing at least one variable from every term in τ . Let m be a k-monomial we define
c(m) as c(τm), where τm is the k-DNF corresponding to m. We call c the covering number.

Lemma 4. Let k, h be positive integers, and let D be a distribution over partial assignments
on {x1, . . . , xn} such that for every k-monomial m, Prρ∈D[m�ρe 6≡ 0] ≤ 2−δc(m), for some δ > 0.
Then for every k-monomial τ :

Pr
ρ∈D

[DC(τ �ρe) > h] ≤ k2−(δ/4)kh

Proof. Let m be a k-monomial, and Fm the corresponding k-DNF. By Lemma 2 and we have:

Pr
ρ∈D

[DC(m�ρe) > h] ≤ Pr
ρ∈D

[ht(m�ρe) > h]
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Moreover
Pr
ρ∈D

[ht(m�ρe) > h] = Pr
ρ∈D

[ht(Fm �ρ) > h]

by previous considerations.
Since for any k-DNF F , c(F ) = c(mF ) and F �ρ= 1 iff mF �ρe= 0, then by the hypothesis of

the lemma, we have that for any k-DNF F , Prρ∈D[F �ρ 6≡ 1] ≤ 2−δc(F ). Then we can apply the
switching lemma of [22]. Setting γ = 1, d = 1 and s = h/2 in Corollary 1, we get

Pr
ρ∈D

[ht(Fm �ρ) > h] ≤ k2−(δ/4)kh

3.3 An equivalent formulation of Pcrk

We give an equivalent and more compact formulation of Pcrk as follows: to the axioms of
Pcr we add the axioms 1− x− (1− x) for any variables (positive or negative) and the axioms
(0), 1 − (1), (1 − 1). To the rule of Pcr we add the new rule:

a(1− s) + p b(1− t) + q

ab(1− st) + asq + btp− pq
(2)

where a, b are k-monomials, s, t are products of variables such that st contains at most k
variables and p, q are k-polynomials.

It is not difficult to see that the two formulations are equivalent, in the sense that from the
axioms and the rules of one we can derive axioms and the rules of the other. Applying the rule
(2) to the k-polynomials 1− s− (1 − s) and 1− t− (1− t) we get 1− st− (1− st), so we can
build the axioms of Pcrk. Moreover applying the rule (2) to p + (1 − 1) and 1 − s − (1 − s)
we immediately derive p(1− s) and hence simulate the rule of Pcrk. On the other hand using
axioms and rules of Pcrk it is easy to simulate the rule (2).

4 A lower bound for refuting random 3-CNF in Pcrk

We will prove a lower bound on the number of k-monomials needed to refute a random 3-CNF
in Pcrk. We closely follow the proof method in Alekhnovich[1] to get size lower bounds for
random formulas in Resk. In the whole section we will always consider the systems Pc, Pcr
and Pcrk defined over a field of characteristic different from 2.

4.1 Expanders, random 3-CNF, encodings and Pc lower bounds

We start with the definition of boundary expander.

Definition 4. ([3, 5, 1]) Let A be a m × n boolean matrix. For a set of rows I we define
the boundary of I (denoted as ∂I) as the set of all j ∈ [n] (the boundary elements) such that
there exists exactly one row i ∈ I that contains j. Then, A is a (r, c)-expander if the following
condition holds: for all I ⊆ [m], if |I| ≤ r, then |∂I| ≥ c · |I|.

Let φn,∆ be the random 3-CNF obtained selecting ∆n clauses uniformly from the set of all
possible 3-clauses over n variables. Following [1], instead of proving a lower bound for φn,∆

refutations, we will prove it for a polynomial encoding of a set of linear mod 2 equations, which
semantically implies φn,∆. We will always consider linear systems modulo 2.
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For each possible formula φn,∆ consider the matrix Aφn,∆
defined by Aφn,∆

[i, j] = 1 iff the
i-th clause of φn,∆ contains the variable xj . Let bφn,∆

be the boolean m vector defined by
bφn,∆

[i] = (# of positive variables in the i-the clauses) mod 2. The random system of linear
equations we consider is the system defined by Aφn,∆

x = bφn,∆
.

Given a sistem of linear equations Ax = b, we define its polynomial encoding Poly(A, b) as
follows: for each equation ` ∈ Ax = b, let f` is the characteristic function of ` that is 0 if and
only if the equation is satisfied. Let ˜̀ be the unique multilinear polynomial representing the
function f`. Then Poly(A, b) =

⋃

`∈Ax=b
˜̀. Notice that deg(˜̀) = 3.

Lemma 5. Each Pcrk refutation of φn,∆ can be transformed into a Pcrk refutation of Poly(Aφn,∆
, bφn,∆

)
with a polynomial increase in the size.

Proof. Any equation ` in Aφn,∆
x = bφn,∆

semantically implies the clause C in φn,∆, from which
` arose. Then by completeness we have a Pcrk proof of the polynomial encoding of C from
˜̀.

The following observation is crucial to find 3-CNF which are hard for Pc, Pcr, Pcrk

refutation systems. Such result is rephrased and used many times (see [10, 12, 9, 5, 1, 3]).

Fact 2. ([14],[5]) For all constant ∆ > 0 and for all c < 1, let φn,∆ be a random 3− CNF of
n variables and ∆n clauses. Then with probability 1− o(1) φn,∆ is unsatisfiable and Aφn,∆

is a
( n
∆2/(1−c) , c)-expander.

The reason we consider the expansion of a random 3-CNF (of the corresponding linear
system) is the following theorem, stating expanders need high degree to be refuted by Pc and
Pcr.

Theorem 1. (Theorem 3.10 in [3]) Given an unsatisfiable linear system Ax = b where A is an
(r, c)-boundary expander, any Pcr refutation of Poly(A, b) in a field F with characteristic 6= 2
require degree ≥ rc

4 .

Definitions and results in the next three subsections are essentially taken from [1], sometimes
applied to k-monomials instead of k-DNFs.

4.2 How to restrict Ax = b preserving expansion

In the following subsections we will apply restrictions to linear systems Ax = b where A is an
expander. In some cases such restrictions could destroy the expansion property of the system.
Following [1] in this subsection we develop a tool which extracts a good expander from the
restricted system.

Definition 5. Let A be an m× n matrix and let r, c > 0. For a set J ⊆ [n], the relation `e
J,r,c

on the set [m] is defined as follows:

I `e
J,r,c I1 iff |I1| ≤ r/2 ∧ |∂I1 − (

⋃

i∈I

{j : A[i, j] = 1} ∪ J)| < (c/2)|I1|

Since r, c will be always clear from the context, from now on we will omit them. Let I and
J be subsets of the rows and the columns of a matrix A. Consider the following algorithm
Cle(A, I, J):

R := [m]
while (there exists I1 ⊆ R s.t I `e

J I1)
I := I ∪ I1

9



R := R− I1

end

output I;

Define Cle(J) := Cle(A, ∅, J). Two lemmata are immediate from the definition and proved
in [1].

Lemma 6. (Lemma 2.4 in [1]) Let A be any boolean m × n matrix and let J ⊆ [n]. Let
I ′ = Cle(J) and let J ′ =

⋃

i∈I′ Ai. Let Â be the matrix obtained from A removing the rows in

I ′ and the columns in J ′ ∪ J . Either Â is empty or it is a (r/2, c/2)-boundary expander.

Proof. For any set of row I ∈ Â, we will denote ∂AI and ∂ÂI the boundary computer w.r.t. A

and Â respectively. Assume |I| ≤ r/2. By construction ∂AI ⊆ ∂ÂI ∪ J ∪ J ′. I has no element
in common with Cle(J), then |∂AI − (J ′ ∪ J)| ≥ (c/2)|I|. It follows |∂ÂI| ≥ (c/2)|I|.

It is important to remark that Cle does not increase too much the number of columns to
remove from A.

Lemma 7. ([1, 4]) If A is an (r, c)-boundary expander, |J | ≤ cr/4, then |Cle(J)| < 2c−1|J |.

Proof. Assume |Cle(J)| ≥ 2c−1|J | and consider I1 · · · Ii · · · Il, the inference of Cle(J). Wlog
we can assume Ii to be pairwise dijoint. Consider the first step t such that C = ∪t

i=1Ii and
|C| ≥ 2c−1|J |. Since |C − It| < 2c−1|J | ≤ r/2 and |It| ≤ r/2, then |C| ≤ r. Thus |∂C| ≥ c|C|
by expansion of A. Then |∂C−J | ≥ c|C|− |J | ≥ c

2 |C|. But at any step each Ii add strictly less
than c/2 elements to |∂C − J |. We have the contraddiction.

We combine previous lemmata in a useful tool for restricting linear systems while keeping
both unsatisfiability and expansion.

Lemma 8. Consider Ax = b be an m equations, n variables unsatisfiable linear system where
A is an (r, c)-boundary expander. Let J be a set of columns (i.e. variables of the system) with
|J | ≤ cr

4 . Define:

• I ′ = Cle(J) and J ′ =
⋃

i∈I′{j : A[i, j] = 1};

• AI′x = bI′ as the linear system containing rows I ′ from Ax = b;

• Â is the matrix A with rows I ′ and columns J ∪ J ′ removed.

Then: (1) AI′x = bI′ is a satisfiable system on the variables corresponding to columns J ∪ J ′.
For any assignment ρ on such variables which satisfies AI′x = bI′, we have that: (2) (Ax = b) �ρ
is Âx = b̂ for some b̂, (3) Âx = b̂ is unsatisfiable and Â is and an (r/2, c/2)-boundary expander.

Proof. If AI′x = bI′ was unsatisfiable, then by gaussian elimination we could obtain a non
empty linear combination of rows resulting in 0 = 1, (in the field F2) such linear combination
is a subset H of rows. No variables in ∂H can be eliminated, so ∂H is empty. Since |J | ≤ cr

4 ,
then by Lemma 7 |I ′| ≤ r/2. Thus |H| ≤ r/2. But then, by the expansion of A, ∂H can’t be
empty. Contradiction.

(Ax = b) �ρ is Âx = b̂ because assigned columns become constants and satisfied conditions
are set to 0 = 0.

The expansion of Â is guaranteed by Lemma 6.
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4.3 Normal forms

Let us start by recalling that when speaking of k-monomials, a term is a either a variable or an
expression of the form (1−

∏

xi). For a term t, V (t) := {i : xi appears in t}.
Let us consider another relation on the set of rows of the matrix A.

Definition 6. ([5]) Let A be an m×n matrix and let r > 0. For a set J ⊆ [n] (a set of indices
of variables) the relation `J,r on the set [m] is defined as follows:

I `J,r I1 iff |I1| ≤ r/2 ∧ ∂I1 ⊆ (
⋃

i∈I

{j : A[i, j] = 1} ∪ J)

For J ⊆ [n], Cl(J) is the set of all rows that can be inferred from ∅ via the relation `r
J . For

a term t, Cl(t) := Cl(V (t)).
The next lemma is proved in [5, 1] and we omit its proof.

Lemma 9. ([5, 1]) If |J | ≤ cr/2, then |Cl(J)| ≤ c−1|J |.

Let t be a term over variables {x1, . . . , xn, x̄1, . . . , x̄n}. We identify t with the linear system
over {x1, . . . , xn} defined by x = εx for all variables appearing in t. εx = 1 for positive variables
and εx = 0 for negative variables. Such system is satisfied iff t = 0.

Definition 7. Let A a m×n matrix which is a (r, c)-boundary expander and let b be a boolean
m vector. Let t be a term and let I = Cl(t). t is locally consistent with respect to Ax = b if
the system t ∧AIx = bI is satisfiable.

Lemma 10. ([1]) Let Ax = b where A is an (r, c)-boundary expander, with r > 3/c. t is locally
consistent with Ax = b iff for any subset I of equations with |I| < r/2, the system t∧AIx = bI

is satisfiable.

Proof. Assume that t is locally consistent with A and that there exists a I s.t |I| < r/2 and
t∧AIx = bI inconsistent. Then by linear algebra there exist I ′ ⊆ I and a V ′ ⊆ V (t), such that
∑

i∈I′(Aix− bi) +
∑

x∈V ′(x− εx) ≡ 1. Then it must be that ∂I ′ ⊆ V (t). Thus I ⊆ Cl(t) which
is a contradiction with locally consistency of t. The other direction follows since by Lemma 9
Cl(t) < r/2.

Corollary 2. Let Ax = b where A is a m × n boolean matrix which is an (r, c)-boundary
expander, with r > 3/c. Then for any set I ⊆ [m] such that |I| < r/2 the system AIx = bI is
satisfiable.

Proof. The statement follows immediately by proving that the constant 0 is locally consistent
with respect to Ax = b. This in turn follows since otherwise there was a set I whose boundary
is empty. But this is in contradiction with expansion of A.

Definition 8. Let A be a boolean m×n matrix and let b be a boolean m vector. A k-monomial
m is in normal form with respect to Ax = b if each of its term is locally consistent wrt Ax = b.

Definition 9. Let Ax = b be an unsatisfiable system where A is boolean m × n matrix and b
be a boolean m vector. A Pcrk refutation Π of Poly(A, b) is in normal form with respect to
Ax = b if all the locally inconsistent terms wrt to Ax = b appearing in Π are only in monomials
of degree O(k).

We end by showing that, as long as k = O(log n), every Pcrk refutation of Poly(A, b) can
be transformed into a Pcrk refutation in normal form with only a polynomial increase in the
number of k-monomials.
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Lemma 11. Let be a linear system Ax = b where A is an m × n matrix which is an (r, c)-
boundary expander. Let k = O(log n) and Γ be a Pcrk refutation of Poly(A, b). Then there is
refutation Π of Poly(A, b) in normal form and such that S(Π) = S(Γ)O(1).

Proof. We first get rid from Γ of the locally inconsistent terms of the form t = (1−
∏

1≤i≤k xi).
We want to replace this term by the constant 1 along the proof. By defitinion there exists some
set I = Cl(t) of rows, with |I| ≤ k/c, such that t is inconsistent with the system AIx = bI .
By completeness of Pcr there must be a Pcr proof Γt of

∏

i xi from Poly(AI , bI). Such proof
involves at most O(k) variables so S(Γt) = 2O(k) and deg(Γt) = O(k).

Let Π′ be the proof where all occurrence of t will be deleted as follows. t could have been
introduced in some k-monomial either by the multiplication rule, in which case in the Π′ we
simply skip this rule, or it was introduced by some axiom of the form 1 −

∏

i xi − (1 −
∏

i xi).
In this case in the new proof we replace this axiom with the Pcr proof Γt of

∏

i xi. Notice
that the Pcr proofs Γt could introduce in Π′ locally inconsistent terms but only occurring in
monomials of degree O(k).

Now we obtain Π getting rid from Π′ of the locally inconsistent terms t = x with only
one variable. Using the Pcr proofs Γt of x̄, we can delete x in the axioms of Poly(A, b), in
the axioms 1 + x + x̄ and x2 − x. The Pcrk axioms containing x can be just replaced by
the same axiom without x. So x disappears from Π′. As above the Γt Pcr proofs are of size
S(Γt) = 2O(k) and degree deg(Γt) = O(k) and can introduce locally inconsistent terms in Π, but
only occurring in monomials of degree O(k). So Π is in normal form and, since k = O(log n),
S(Π) is polynomial in S(Γ).

4.4 Random restriction lemma

In this section we define the distribution D over partial assignments over {x1 . . . , xn} that will
guarantee the applicability of the switching lemma (Lemma 4). The distribution is that defined
by Alekhnovich in [1].

Definition 10. Let A be a m × n boolean matrix which is a (r, c)-boundary expander. Let
b ∈ {0, 1}m. Let X be the set of variables {x1, . . . , xn}. Let DA,b be the distribution over partial
assignments ρ over X obtained by the following experiment: choose a random subset X1 of X
of size cr/4. Let Î = Cle(X1). Let X̂ = X1 ∪ Y1, where Y1 = {j : ∃i ∈ X̂ : A[i, j] = 1}. ρ is
obtained by selecting uniformly at random an assignment x̂ for the set of variables whose indices
are in X̂ that satisfies the system AÎ x̂ = bÎ .

The proof of the next main lemma is the same as that of the analogous Theorem 3.1 in [1]
where instead of k-DNF we use k-monomials.

Lemma 12. ([1]) Let A be a m × n boolean matrix which is a (r, c)-boundary expander such
that A has at most ∆̂ ones in each column. Let b ∈ {0, 1}m and assume r = Ω(n/∆̂). For any
k-monomial m in normal form,

Pr
ρ∈DA,b

[m�ρe 6= 0] < (1− 2−k)c(m)/∆̂O(k)

Corollary 3. There exists a constant D such that, under the assumptions of the previous
lemma, for any k-monomial in normal form m we have:

Pr
ρ∈DA,b

[m�ρe 6= 0] < 2−c(m)/∆̂Dk
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4.5 Main result

We are ready to give the main result of this section.

Theorem 2. For any constant ∆ let φn,∆ be a random 3-CNF on n variables and ∆n clauses.
For k = o(

√

log n/ log log n) any refutation of φn,∆ in Pcrk over a field with characteristic

different from 2, has size S > 2n1−o(1)
with high probability.

Proof. Assume that φn,∆ is an unsatisfiable formula and Aφn,∆
is an (r, c)-expander for some

constant c < 1 and any r = Ω(n). Consider the system Aφn,∆
x = bφn,∆

as defined in Subsection
4.1. For easiness of notation let us omit the indices φn,∆ from both A and b. Remember k is
O(log n) and let Γ be a Pcrk refutation of φn,∆ of size S. Then by Lemma 5 there is a Pcrk

refutation Π of Poly(A, b) of size SO(1).
To apply the switching Lemma 4, according to Corollary 3 we need to transform the proof

Π of Poly(A, b) in a proof of Poly(Â, b̂) where k-monomials are in normal form and Â only
contains a constant ∆̂ number of ones in each column.

Pick in A the set J of the cr/4 columns with the biggest number of ones, By Lemma 8
there is a restriction α that, applied to Ax = b, restricts this system to Âx = b̂, where Â is
a submatrix of A with at least the columns J removed and is an (r/2, c/2)-expander. Notice
moreover that in each column of Â there are at most ∆̂ ≤ 12∆n/cr ones, which is a constant
since r = Ω(n). If we now apply Lemma 11 to Π �α we get a Pcrk normal form refutation Π̂
of Poly(Â, b̂) of size at most SO(1).

Let now ρ drawn from DÂ,b̂ according to Definition 10 and denote by A′x = b′ and Π′

respectively the system and the refutation obtained restricting Âx = b̂ and Π̂ by ρe.
By Corollary 3 and by setting the parameter of Lemma 4 as follows: δ = (1/∆̂)Dk and

h = (rc/64) − k − 1, we have that for any k-monomial in normal form m in Π̂

Pr
ρ

[DC(m�ρe) > (rc/64) − k − 1] ≤ 2
−rc

2O(k2)

With probability greater than 1−SO(1)·2
−rc

2O(k2) we have that Π′ = Π̂�ρe has degree complexity
strictly less than (rc/64) − k by union bound1, and it is a refutation of Poly(A′, b′).

Fix any c < 1 and r = n
∆2/(1−c) . Notice that ρ ∈ DÂ,b̂ is defined in such a way that Lemma

8 applies. Thus A′ is an (r/4, c/4)-boundary expander. If S < 2
rc

2O(k2) then using Lemma 3
on Π′ we get a Pcr refutation of Poly(A′, b′) of degree < rc/64. This is impossible because of

Theorem 1, and then it follows S ≥ 2
rc

2O(k2) .
Since by Fact 2 with high probability A is an (r, c)-boundary expander, then the theorem

follows.

5 A degree lower bound for Graph Ordering Principle in Pc

In this section we prove that certain graph ordering tautologies have no low degree Pc refu-
tations. Ordering tautologies are considered in [11] to prove the optimality of the size-width
relation found in [10] for resolution. In [22] they consider an ordering tautology on a graph to
prove separation between Resk and Resk+1 proof systems.

We want to encode into a formula the following Graph Ordering Principle: if we give direc-
tions to the edges of a simple undirected graph G according to a total order ≺ on its vertices,
then there will be a source node in G.

1Notice that locally inconsistent terms which were not eliminated from Π̂ occur in monomial of degree at most
O(k) because of Lemma 11
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We consider variables xa,b for any a, b ∈ [n] such that a < b, where < is the standard order
on integers. The variables xa,b are intended to take the value 1 when a ≺ b. The negation of
the principle is made of two sets of constraints. The first one, that we call T , expresses that
the relation ≺ is a total order on [n]:

∀a < b < c xa,bxb,c(1− xa,c) (3)

∀a < b < c (1 − xa,b)(1 − xb,c)xa,c (4)

Notice that equations in (3) and (4) also say there are no cycles of three elements in [n]
according to ≺. Moreover notice that we do not need the usual antisimmetry constraints because
of the definition of our variables. Equations in T are satisfied if and only if the assignment defines
a proper total order over [n].

The second set of constraints depends on the underlying graph G and expresses that there
will be no source node in G. We denote Γ(u) the set of vertices adjacent to u in G.

∀u ∈ V
∏

a∈Γ(u):a<u

(1− xa,u) ·
∏

a∈Γ(u):a>u

xu,a (5)

Each equation has degree at most equal to the degree of G. To simplify notations, we denote
as u both a vertex of G and the corresponding equation in (5) and we extend this notation to
sets of vertices: for U ⊆ [n] we denote with U also the corresponding set of constraints in (5).
We call Gop(G) the union of T and equations [n] induced by G.

Let GOP ∗(G) the graph ordering principle used in [22]. From the resolution refutations of
width O(n) for this principle we immediately get Pcr refutations of degree O(n) for the same
principle. In this proof we first apply the transformations xi,j 7→ x̄j,i and x̄i,j 7→ xj,i for i > j to
reduce to our set of variables (notice that this way the antisimmetry axioms simplify to 0); then
we further apply the transformation x̄ 7→ (1− x) to get a proper a Pc refutation of Gop(G).

Lemma 13. There are degree O(n) Pc and Pcr refutations for Gop(G). Moreover Pcr
refutations can be done with O(n3) monomials.

To prove a degree lower bound for Gop(G) we follow the approach of [5].

Definition 11. Let a graph G = (V,E) be given, for any U ⊆ V we say Γ(U) is the set of
vertices in V/U which have an adjacent vertex in U . It is called the vertex boundary of U .
The graph G is said to be an (r, c)-vertex expander if for any set U with less or equal than r
vertices, its vertex boundary Γ(U) is greater or equal than c|U |.

The degree lower bound for Gop(G) is a corollary of the existence of a non trivial linear
operator which sets to 0 all consequences of Gop(G) derived in low degree. This strategy follows
that of [20, 5].

Lemma 14 ([5, 20]). Let G be a (r, c)-vertex expander. There exists a linear operator L defined
on polynomials such that: (1) L(p) = 0, for all polynomial p ∈ Gop(G); (2) L(x2 − x) = 0 for
all variable x of Gop(G); (3) for each monomial t and for each variable x, if deg(t) < cr/4,
then L(x · t) = L(x · L(t)); (4) L(1) = 1.

We postpone the proof of this lemma to the end of the section.

Theorem 3. If G is an (r, c)-vertex expander then there is no Pc refutation of Gop(G) of
degree less than or equal to cr/4.
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Proof. Assume for the sake of contradiction such refutation does exist. Then by lemma 14 all
polynomials in this proof are mapped to 0 by L. This is a contradiction with the fact that the
last line (i.e the polynomial 1) is not mapped to 0 by L.

In the following we assume G to be given and to be an (r, c)-vertex expander. All the
definitions are given w.r.t. such graph.

Definition 12. We call V ertex(p) the set of vertices which appears in the variables in p. Given
a set of vertices U we define the inference relation  U in this way: For A,B ⊆ [n],

A U B if |B| ≤
r

2
and Γ(B) ⊆ A ∪ U

Sup(U), the support of U , is defined as the closure of ∅ with respect to  U . We denote by
Sup(p) the set Sup(V ertex(p)) for any polynomial p.

The notion of support is closely related with the notion of vertex boundary in a graph:
Sup(U) is the maximal set of vertices for which the vertex-boundary is inside U and which is
not big enough to break the expansion barrier r. The following lemma gives the link between
the vertex expansion and degree of monomials: a small set of vertices (hence a low degree term)
has small support.

Lemma 15. If a set U has size less or equal than cr/2 then Sup(U) has size less or equal than
r/2. If a monomial t has degree less than cr/4 then Sup(t) has size less or equal than r/2.

Proof. Let Sup(U) = I1 ∪ I2 ∪ I3 ∪ · · · ∪ Il where each Ii is the set added in the i-th step of the
inference. Assume it has size strictly greater than r/2, then there is a step j where such size is
overcome. Let us denote A = I1∪ . . .∪ Ij−1 and I = Ij . Then |A| ≤ r/2 and |A∪ I| > r/2. Also
|I| ≤ r/2 because of the size constraint in the definition of  U . Then |A∪ I| ≤ r and hence by
the vertex-expansion condition |Γ(A∪ I)| > cr/2. This proves the first part since Γ(A∪ I) ⊆ U .

The second part follows since the vertices appearing in term t are at most twice the degree
of t.

Recall the definition of RE(p) from subsection 2.2 and that in the set of polynomials E we
always implicitly include the polynomials x2 − x, for all variables of Gop(G).

Lemma 16. Let t be a term. For any not empty set of vertices A of size less or equal than
r/2 and such that A ∩ Sup(t) = ∅, there exists an edge (u, v) in G such that v ∈ A, u 6∈
Sup(t) ∪A ∪ V ertex(t).

Proof. By definition of Sup(t) and the hypothesis of the lemma, it follows that Sup(t) 6 V ertex(t) A.
Then Γ(A) 6⊆ Sup(t) ∪ V ertex(t), therefore there is an edge between A and Γ(A)/(Sup(t) ∪
V ertex(t)).

A partial assignment ρ to the variables of Gop(G)is a u-cta (critical truth assignment) when
it sets u as a global minimum.

ρ =

{

xa,u = 1 ∀a, a < u
xu,a = 0 ∀a, u < a

Lemma 17. Let t be a term. Let I be a set of vertices such that |I| ≤ r/2 and I ⊃ Sup(t).
Then there exists a v ∈ I/Sup(t) such that:

RT ,I(t) = RT ,I/{v}(t)
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Proof. Applying lemma 16 to t and I/Sup(t) we get an edge (u, v) such that v ∈ I/Sup(t)
and u 6∈ I ∪ V ertex(t). Let ρ be a u-cta. Note that any equation in T containing the vertex
u is satisfied by ρ. Any other equation in T is not touched, so T �ρ⊆ T . Moreover since
u 6∈ V ertex(t), t �ρ= t. Finally note that I �ρ⊆ I/{v} since ρ is setting to 0 at least v. Recall
that if A ` p, then B ` p, for any p, A and B ⊇ A. Thus we have the following derivations:

T , I ` t−RT,I(t) By definition of RE (6)

T �ρ, I �ρ ` t�ρ −RT ,I(t)�ρ By restriction from (6) (7)

T , I/{v} ` t−RT ,I(t)�ρ By previous observations on (7) (8)

From (8) and minimality of the remainder we then have that RT,I/{v}(t) ≤P RT ,I(t) �ρ.
Moreover, since T , I ` t − RT,I/{v}(t), we have that RT,I(t) ≤P RT,I/{v}(t), also by the mini-
mality. Finally RT ,I(t) �ρ≤P RT,I(t) holds since a restriction can only decrease the order of a
polynomial. Hence it must be RT,I/{v}(t) = RT,I(t).

Lemma 18. Let t be a term. For any set of vertices I of size less than or equal to than r/2
and such that I ⊇ Sup(t), the following holds:

RT ,I(t) = RT ,Sup(t)(t)

.

Proof. If I = Sup(t) then RT ,I(t) = RT ,Sup(t)(t). If I is strictly bigger than S, then by lemma
17 there is a vertex v ∈ I/Sup(t) such that RT ,I(t) = RT ,I/{v}(t), from which the lemma follows
by iterating the argument.

Lemma 19. For any term t, V ertex(RT ,Sup(t)(t)) ⊆ Sup(t) ∪ V ertex(t).

Proof. Assume for the sake of contradiction that there is a node u ∈ V ertex(RT ,Sup(t)(t)) not
in V ertex(t) ∪ Sup(t). Consider a u-cta ρ. By an argument analogous to that of lemma 17 we
then have RT ,Sup(t)(t) ≤P RT ,Sup(t)(t)�ρ<P RT ,Sup(t)(t).

We are ready to give the proof of Lemma 14.

Proof. Lemma 14

For any monomial t, the linear operator L(t) is defined by

L(t) := RT ,Sup(t)(t)

and is extended by linearity to any polynomial.
First we prove that for any polynomial p ∈ Gop(G), L(p) = 0. If p is in T , then RT (p) = 0.

Now, L(p) =
∑

βiL(ti) ≤P

∑

βiRT (ti) = RT (p) = 0. For any axiom v ∈ [n] let v = t+w, where
t is the leading term. Since Γ(v) ⊆ V ertex(t), then v ∈ Sup(t). Hence L(v) = L(t) + L(w) ≤P

R{v}(t) + L(w) = −w + L(w) ≤P −w + w = 0.
For the second property, consider that Sup(x2) = Sup(x) and that we are reducing also

against x2 − x. Then:

L(x2 − x) = L(x2)− L(x)

= RT,Sup(x)(x
2)−RT,Sup(x)(x)

= RT,Sup(x)(x
2 − x) = 0
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Let us prove that L(xt) = L(xL(t)) for any term t of degree strictly less than rc
4 . Notice

that by monotonicity of Sup function, Sup(xt) ⊇ Sup(t). Moreover since deg(xt) ≤ cr
4 , then

by lemma 15 we get |Sup(xt)| ≤ r/2. Therefore we have the following chain of equalities by
applying respectively: in (9) the definition; in (10) the Property 1; in (11) the monotonicity of
Sup and lemma 18; in (12) again the definition.

L(xt) = RT ,Sup(xt)(xt) (9)

= RT ,Sup(xt)(xRT ,Sup(xt)(t)) (10)

= RT ,Sup(xt)(xRT ,Sup(t)(t)) (11)

= RT ,Sup(xt)(xL(t)) (12)

Let us write xL(t) as a polynomial
∑

αiri. The following inclusions hold respectively: in
(13) because ri is a monomial in the polynomial expansion of xL(t); in (14) by lemma 19; in
(15) by monotonicity of Sup.

V ertex(ri) ⊆ V ertex(x) ∪ V ertex(L(t)) (13)

⊆ V ertex(x) ∪ V ertex(t) ∪ Sup(t) (14)

⊆ V ertex(xt) ∪ Sup(xt) (15)

From the definition of Sup and the previous inclusions it follows that Sup(ri) ⊆ Sup(xt).
Finally the third property of the operator is obtained from the following chain of equalities

given respectively: in (16) by definition; in (17) by lemma 18 applied to Sup(ri) and Sup(xt);
in (18) by linearity; in (19) by the form of xL(t); finally in (20) by equalities (9)-(12).

L(xL(t)) =
∑

αiRT ,Sup(ri)(ri) (16)

=
∑

αiRT ,Sup(xt)(ri) (17)

= RT ,Sup(xt)(
∑

αiri) (18)

= RT ,Sup(xt)(xL(t)) (19)

= L(xt) (20)

Finally for the fourth property observe that the support of a constant is the empty set, so
L(1) = RT (1) = 1 since T is satisfiable.

To complete the proof we need to show that a constant degree (r, c)-vertex expander exists.
Consider a graph G = (V,E) of degree d (i.e. all vertices have at most d edges). The adjacency
matrix is a (r, c′)-boundary expander if and only if for any set S ⊆ V smaller than r, the edges
going outside S are at least c′ · |S|. At most d edges can be connected to a single vertex. Thus
such graph is an (r, c′/d)-vertex expander. This reduce the search of a vertex expander to the
search of a constant degree boundary expander. An efficient construction is given in [17] using
a graph composition devised in [21] and called zig-zag product.

Proposition 1. (Proposition 9.2 [17]) For any t and d an undirected graph G can be con-

structed, such that G has d4t vertices, it is d2 regular and is a (V (G)
2 , 1/2)-boundary expander.

Theorem 4. There exists an infinite family G of simple graphs of constant degree such that
for any G in G the principle Gop(G) has polynomial size in |V (G)| and any Pc refutation of

Gop(G) requires degree at least |V (G)|
108 .
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Proof. Fix any integer t. By construction claimed in Proposition 1 we can construct a 9-regular
graph G of n := 81t vertices, such that G is (n

2 , 1
2)-boundary expander. Since G is 9-regular, it

is a (n/2, 1/18)-vertex expander. To obtain a simple graph without losing vertex expansion it
is sufficient to remove edges in excess between pair of nodes.

By Theorem 3 the theorem follows.

6 A separation between Pcrk and Pcrk+1

In this section we will give a variant of Gop(G), which is polynomially refutable by Pcrk+1

but it’s not polynomially refutable by Pcrk. We closely follows the ideas developed for Resk

in [22].
Let Even(a1, . . . , ak) be the function from {0, 1}k to {0, 1} which gives 0 if the number of

input variables at 0 are even. Such function can be written as a 2k−1 size multilinear polynomial
with degree k.

For each variable xa,b of Gop(G) we introduce k new variables x1
a,b, . . . , x

k
a,b. Gop⊕k(G)

is defined as a modification of Gop(G): substitute any xa,b with Even(x1
a,b, . . . , x

k
a,b). Such

principle is specified by kd degree polynomials with less than 2dk monomials each, where d is
the degree of G. We now give a polynomial refutation in Pcrk for Gop⊕k(G).

Proposition 2. For any graph G, Gop⊕k(G) has a polynomial size refutation in Pcrk

Proof. We consider an auxiliary principle called pseudo-Gop⊕k(G), we give a polynomial Pcrk

refutation for this and we polynomially reduce Gop⊕k(G) to pseudo-Gop⊕k(G).
First notice that Even(x1

a,b, . . . , x
k
a,b) (respectively 1 − Even(x1

a,b, . . . , x
k
a,b)) can be written

as
∏

(1 − l1 · · · lk) where l1 · · · lk range among all tuples of variables x1
a,b, . . . , x

k
a,b with an even

(respectively odd) number of negated variables. We denote such k-monomials as Evena,b and
Odda,b.

pseudo-Gop⊕k(G) is defined form Gop(G) as follows: each xa,b is substituted with the k-
monomial Evena,b. pseudo-Gop⊕k(G) has the property to translate any monomial in Gop(G)
with a single k-monomial in pseudo-Gop⊕k(G). So a Pcr refutation of Gop(G) can be trans-
lated in a Pcrk refutation of pseudo-Gop⊕k(G) by the mapping {xa,b 7→ Evena,b, x̄a,b 7→
Odda,b} and the pseudo axioms: Evena,b · Evena,b − Evena,b, Odda,b · Odda,b − Odda,b and
1 − Odda,b − Evena,b. Each of these pseudo axioms is derivable in Pcrk with a size at most
exponential in k.

Since Evena,b (respectively Odda,b) are semantically equivalent to Even(x1
a,b, . . . , x

k
a,b) (re-

spectively 1 − Even(x1
a,b, . . . , x

k
a,b)) then, by completeness, in Pcrk we can derive the axioms

of pseudo-Gop⊕k(G) from those of Gop⊕k(G) with a proof of size at most O(2k) each.

We now prove the lower bound for Pcrk. Following [22], given a graph G, we consider the
distribution Dk+1(G) on partial assignments on variables of Gop⊕k+1(G) defined as follows:
for any variable xa,b of Gop(G), select uniformly and independently i ∈ [k + 1] and then for

all j ∈ [k + 1]−{i} uniformly and independently assign a {0, 1} value to xj
a,b. The next lemma

guarantees the applicability of the switching lemma and was proved in [22] for k-DNF. We
rephrase it in terms of k-monomials, but its proof is exactly the same.

Lemma 20. ([22]) Let k be give and let m be a k-monomial formed by variables of Gop⊕k+1(G)
and their negations. There exists a constant γ > 0, dependent only on k, such that

Pr
ρ∈Dk+1(G)

[m�ρe 6= 0] < 2−γc(m)
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Proof. We say a collection of terms is independent when for any vertices a, b in G, at most
one of its term contains a variable in {X1

a,b, . . . ,X
k+1
a,b } or in the corresponding negated set.

The greatest independent collection of terms in m has at least c(m)
k(k+1) members (otherwise we

could build a cover smaller than c(m)). Notice that restrictions distributed according to Dk+1

act independently on terms in such collection. A term contains at most k variables, each one
assigned by the restriction with probability at least 1/2: whatever happens to the variables
corresponding to the same couple of vertices, only k of then are considered in an independent
collection. Thus for each variable there is always at least 1/2 probability that an alternative
variable is left unassigned. Then with probability (1/2)k the term is fully assigned. With
probability (1/4)k it is set to zero. Then the restriction fails to satisfy with probability

(1−
1

4
)

c(m)
k(k+1) < 2−γc(m)

for a γ which depends only from k.

Notice that when we apply a restriction ρ ∈ Dk+1(G) to Gop⊕k+1(G) we not always reduce
exactly to Gop(G). It could happen that some variables have the opposite polarity. Anyway is
clear that from a Pcr refutation of Gop⊕k+1(G)�ρ we can reconstruct a Pcr proof of Gop(G)
of the same degree. Hence applying Theorem 3 we have the following Corollary.

Corollary 4. Let G be an (r, c)-vertex expander. Then for all k ≥ 1 and for all ρ ∈ Dk+1(G),
there are no Pc refutations of Gop⊕k+1(G)�ρ of degree less than or equal to cr/4.

Theorem 5. Let G be (δn, c)-vertex expander on n vertices, for some δ > 1. Let k ≥ 1, there
exists a constant εk,c, such that any Pcrk refutation of Gop⊕k+1(G) contains at least 2εk,cn

k-monomials.

Proof. Let r = δn. By Lemma 20 applying the Switching Lemma setting h = (rc/4 − k), we
have that for any k-monomial m,

Pr
ρ∈Dk+1(G)

[DC(m�ρe) > (rc/4− k)] ≤ k2−(γ
4
)(rc/4−k)

Hence there exists a constant εk,δ such that

Pr
ρ∈Dk+1(G)

[DC(m�ρe) > (rc/4 − k)] ≤ 2−(εk,cn)

Assume that there is Pcrk refutation of Gop⊕k+1(G) of size strictly less than 2−(εk,cn), then
by the union bound there is a Pcrk refutation Π of Gop⊕k+1(G)�ρ with DC(Π) ≤ (rc/4 − k).
Hence by Lemma 3 there is a Pc refutation of Gop⊕k+1(G)�ρ of degree ≤ rc/4. This is in
contradiction with Corollary 4.

Using the family of vertex expander used at the end of Section 5, previous Theorem and
Proposition 2 we get the following exponential separation.

Corollary 5. There is a family of contradictions F over n variables separating exponentially
Pcrk from Pcrk+1, that is such that there are polynomial size refutations of F in Pcrk+1 and
any refutation of F in Pcrk requires exponential size.
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