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Abstract

We consider two well-known algebraic proof syster®slynomial CalculugPc) andPolyno-
mial Calculus with Resolutio(PCR), a system introduced in [2] which combines togetherand
Resolution.

Moreover we introduce an algebraic proof systearRp, which combines togethdtolynomial
Calculus(Pc) andk-DNF ResolutiofRESy). This is a natural generalization tceB, of PCR.
In the paper we study the complexity of proofs in such systems
First we prove that a set of polynomials encodir@raph Ordering Principl GoP(G)) requires
Pcrrefutations of degre®(n). This is the first linear degree lower bound farsrefutations for or-
dering principles. This result immediately implies thag gize-degree tradeoff fordR Refutations
of Alekhnovichet al.[3] is optimal, since there are polynomial size#Prefutations for @P(G).
We then study the complexity of proofs ircRy, extending to these systems the lower bounds
known for REs;,:
e we prove that randorg-CNF formulas with a linear number of clauses are hard to einv
PcRry. (over afield with characteristic different froR) as long as: is in o(y/log n/ loglog n).
This is the strongest daglike system whar€NF formulas are hard to prove.

e Moreover we prove a strict hierarchy result showing tharRf, 1 is exponentially stronger
than RERy,.

1 Introduction

Algebraic proof systems were studied for the first time indbetext of Proof Complexity by Beame et
al. in [7], where they introduce a refutational system bamethe Hilbert Nullstellensatz. Later, Clegg
et al. in [15] defined a more natural algebraic proof systeatied Polynomial Calculus & and based
on deriving elements of the ideal generated from a set ohgdatynomials.

These systems have great importance for two reasons. Iréssigeneralize the well-studied, used
and known boolean system of Resolution. Second because aphlications in the field of automatic
generation of proofs that well-known algorithms, like thebfner Basis Algorithm, can have. One of
the main problem arising in proof complexity is that of prayidegree lower bounds for these systems.
The work of Razborov [21] proving linear degree lower boufatghe Pigeonhole principle ind®was
followed by several other important results [9, 12, 5, 2@Mimg degree lower bounds also for random
formulas, which is one of the prominent class of formulas/pdoto be hard in many systems.

The Rc system was extended in [2, 3] to a system combining togetteestrength of Resolution
and R called Polynomial Calculus with Resolution¢cR. Since in this system clauses can be translated
directly to monomials, then thevidth of a clause (i.e. the number of literals) in Resolution has it
counterpart in the degree ircR. This system has been also well studied. Several degree mwads
have been proved for random formulas and for a more genexat @f contradictions arising from
pseudorandom generators [3, 20]. It is important to notie¢ the well known tradeoff betwe&¥hit#HHEL2



of clauses and width, found for Resolution by Ben-SassonVdligdierson in [10], has its counterpart
in the tradeoff between number of monomials and degreecim fBund by Alekhnovich, Ben-Sasson,
Razborov and Wigderson in [3].

The Resolution system was extended by Krajicek in [19] gystem, called:-DNF Resolution
(REs:), where instead of clauses we have the power of derivifigNFs, i.e. disjunctions of-
conjunctions. Although a subsystem of bounded depth Fregere we already know lower bounds
for the Pigeon Hole principle [8], BS, has a lot of importance. It is a natural extension of reso-
lution and moreover is a powerful system to experiment neshrtigjues to prove lower bounds for
random formulas, whose complexity in bounded depth Fregilisunknown. Indeed lower bounds
for random3-CNF formulas had been firstly proved fole® in [6]. Then a lower bound for random
O(k?) — CNF in RES;, was proved in [23]. Finally a random 3-CNF lower bound iesg was proved
for k = o(y/logn/loglogn) in [1]. Moreover Segerlind et al. in [23] proved a strict laisrhy result,
finding family of contradictions requiring exponential siin RES;, but provable in polynomial size in
RES]H_l.

In this paper we generalize theR system, defining the systentR; which combines the strength
of Pc and that of Rs;. Exactly as in BR monomials succinctly represent clauses, ¢rRPwe gen-
eralize monomials td&-monomials in such a way to succinctly represgfDNFs. Then we define
k-polynomials as linear combinations fmonomials. As the role of the degree is the same foaRd
PcRrefutations, we have that ind®;, the degree of a refutation is essentially the same agiorfPCR.

In this paper we investigate f-monomials allow to refute more efficiently tharcBnd RCR.

First we prove that ERry, is a natural generalization ofeR®;, showing that any Rs;, refutation can
be simulated efficiently in number éEmonomials in BR.

To study the complexity of proofs ind®;, we follow the approach used by Segerlind et al. in [23] to
prove Res, lower bounds. We can easily adapt their Switching Lemmaatasfiormk-DNFs into low
height decision trees, into an analogous Switching Lemmteatssformk-monomials into multilinear
polynomials of low degree. So exactly as Segerlind et al28] £an reduce lower bounds foER, to
width lower bounds in Resolution, we can reduce lower boumdhe number ok-monomials in Ry,
to degree lower bounds incRor PCR.

Using Segerlind’s et al. Switching Lemma [23], Alekhnovidh was able to get exponential lower
bounds for ks, refutations of random-CNF. We apply the technique used by Alekhnovich TRp.
Using a R degree lower bound for certain encodings of systems ofiiagaations developed in [3],
we get that with high probability (as long &s= o(\/logn/loglogn)), any RCR; (over a field with
characteristic different from 2) refutation of rand@¥CNF over a linear number of clauses requires
an exponential number df-monomials. Lower bounds ford®; can be also obtained (but only for
certain counting principles) by a result of Krajicek ir8]Jproving lower bounds for a stronger system.
Nevertheless our result give the strongest daglike systemviiich we can prove hardness of refuting
random3-CNF’s.

In analogy with RS, we then approach the question of proving a strict hierarelylt for RCRy,
too. Together with the switching lemma, the main part of thesRhierarchy separation in [23] was
proving that a family of contradictions arising from a gragldering principle is refutable in polynomial
size but always demands high width in Resolution. This exarispa generalization of thé€1" contra-
diction of [11] proving that the size-width tradeoff for Rabstion is optimal. While for Resolution this
optimality is known, that is not the case for the analogoadénff between size and degree farP
found in [3].

Our first step towards thed®;, hierarchy separation is then that of proving the optimaditythe
size-degree tradeoff ford®, i.e. finding a family of contradictions admittingcR refutations with a
polynomial number of monomials, but always requiring higlgicee. We use a slight modification of
the graph ordering principle @(G) of [23], and we get the expected result wh&rhas good vertex
expansion properties. To prove the lower bound we followrttethod, invented by Razborov in [21]



and refined in [5], of finding a linear operator which sets teetall the consequence of a given set of
polynomials derivable in low degree. It should be noticeat tthe Razborov’s technique so far was
applied and worked for “matching-like” examples of formalas the Pigeonhole formulas, random
CNF's, etc. [21, 20, 3, 5]. We extend the use of this technajse to other examples of formulas, giving
a stronger evidence that whenever we have width lower bomrfifssolution, we also have degree lower
bounds in R (at least for certain polynomial encodings of formulae).

With this result in hand we then can use our version of thechiviy lemma and follow the approach
of Segerlind et al in [23] to prove the desired®. hierarchy exponential separation.

The paper is organized as follows. In Section2 we give thinpireary definitions and define all the
known proof system we cite and use in the paper. In section Bitnaduce the BR; proof system, we
show its relation with other systems and we prove the switglémma we use in the paper. In Section 4
we prove the lower bounds for rand@¥CNFs. In Section 5 we introduce our graph ordering prircipl
and prove a degree lower bounds iocH? Finally in Section 6 we prove the exponential separation
between BR;, and RERy 1.

Notice that Section 4 is added for completeness: althouffreintly organized, a big part of it is
already contained in the paper of Alekhnovich [1]. We addmtes parts not contained there or that we
found should have been slightly modified. Section 5 can be i@@ependently from the rest after the
Preliminaries section.

2 Preliminaries

Let V' be a set of boolean variables. A litedals either a variable: or is negationz. A k-clauseis a
disjunction of at mosk literals; ak-termis a conjunction of at mogt-literals. A boolean formuld’ is
ak-CNF if it is a conjunction ofc-clauses; it is &-DNF if it is the disjunction ofk-terms. If we omitk
we have no bounds on the number of literals in clauses or teFheswidth of a clause is the number of
literals in the clausel’ ars(F') denotes the set of variables occurringfinAn assignment to a formul&l

is a mapping : Vars(F) — {0,1}. A partial assignment t&' is a mapping : Vars(F') — {0, 1, x};
we let Dom(p) to bep~1({0,1}). Given a restrictiorp for F by F |, we denote the formula obtained
from F' after setting all the variables iRom(p) according top, simplifying F' in the standard way and
leaving all the other variables unassigned.

Given a fieldF, we consider polynomials ovéf[z1,...,z,]. Given a sett = {f1,..., f,} of
polynomials, bySpan(E) we denote the ideal generated By that is the sef{ > .(fi-hi) | hi €
Flz1,...,z,]}. Polynomials will be always evaluated ¢f, 1} assignments. We extend the notions
of assignment, restriction and domain from boolean forsmtitapolynomials. We say that a set of
polynomialsfi, ..., f, semantically impliea polynomialg if any {0, 1} assignment that satisfigs= 0
for all i € [n], also satisfieg = 0. We write f1,..., f, = g. Notice that ifg € Span(E U {2? —

Titien)) thenE = g.

2.1 Proof systems

ThePolynomial CalculugPc) is a refutational system, defined in [15], and based on tiggflfizy, . . . , 2]
of polynomials. We always assume equations of the fpre 0 so we refers only t@. To restrict the
polynomials to be evaluated only g, 1}, the system contains the following axioms:

2
€Z;

-z, 1€ [n]
Moreover it has two rules. For any, 8 € T, p, ¢ polynomials and variable:

P q
ap + Bq

Scalar Addition ~—X— Multiplication
zp



A Pc proof of a polynomialy from a set of initial polynomialdi, . .., f., (denoted byfi,..., fm F
g) is a sequence of polynomials where each one is either aaliaiie, or a an axiom, or is obtained
applying one of the rules to previously derived polynomi@l$>c refutation is a proof of the polynomial
1.

Observe that a polynomigl has a R proof from a sett of polynomials iffg € Span(E U {z? —
Ti}icm)). MoreoverE has no commor0, 1} solutions (we callZ contradictory) iff1 € Span(E U
{x2 — T }ien)) @nd in particular ift = g, thenE = g (see Theorem 5.2 in [13]).

Given a R proof I, thedegreeof II, deg(II), is the maximal degree of a polynomial in the proof;
thesizeof I1, S(II), is the number of monomials in the proof, tleagthof II, |I1|, is the number of lines
in the proof.

Polynomial Calculus with Resolutidi’CR) [3] is a refutational system which extends B poly-
nomials in the rindf[z1, . .., s, Z1, . . ., T,], Wherezy, . .., T, are new formal variables.d® includes
the axioms and rules ofd®plus a new set of axioms defined by

1l—z;, —x; ’LE[TL]

to forcez variables to have the opposite valuescofariables.

We extend to BR the definitions of proof, refutation, degree, size and lemgiten for R. Observe
that using the linear transformatian— 1 — z, any RCRrefutation can be converted into & Refutation
without increasing the degree. Notice that such transfoomacould increase the size exponentially.
Moreover RR efficiently simulates Rs with refutations of degree equals to the width of the origjina
REs proof.

Resolution ork-DNF (Res;) [19] is a sound and complete refutational system whichrelg®es-
olution (Res) to k-DNFs. The rules are the following ones:

A - AVl - AV - :
i Weakening W A-intro, 1 < j < k
(1)
i , . i, i, .
%ﬁ'zlll A-elim, 1< j <k Ahm i BV T cut1 < j <k

A proofof a k-DNF G from a set of clauses), is a sequence @¢f-DNFs where each one is either an
axiom of REs;, or a clause inF", or is derived by one of the rule from two previously derive®NFs.
A refutationof F' is proof of the empty disjunction. Lé&i be a Res;, proof. Then thesize of IT, S(II), is
the total number of symbols appearindIn Thelength of I, |TI|, is the number of lines in the sequence
definingIl.

2.2 Notions from commutative algebra

We are going to define a notion of reminder on polynomials wépect to an ideal. We consider the
grlex order <p on monomials as given in [16]. In particulgrlex is monotone with respect to the
product and satisfies the property thatléfy(t1) < deg(t2), thent; <p t2. <p can be extended easily
to polynomials (see [16]).

Given a polynomial;, we defineRg(q) as the minimal, with resepct tap, polynomialp such that
q—p € Span(E).

Rg(q) = min{p € F[z1,...,2,) : ¢—p € Span(E)}

In the following sections we use some properties of the daperd; which can be easily derived from
the definition:

Property 1. Let E be a set of polynomials and letand ¢ be two polynomials. Then:

4



e Rp(p) <pp;
if p—q € Span(E), thenRg(p) = Rp(q);

e Rpgis alinear operator;

* Rp(pq) = Re(p- Re(q)).

Notice that when the polynomiafs:? —Ti}iem) € E, then, by minimality,R(q) is multilinear. We
remark here that when we work in Polynomial Calculus, we iaifhf assume to have such polynomials
always included in the sef. Whenp is multilinear and{z? — 2;},c;,) C E, Re(p) is the same
polynomial given by the operatd® i of Alekhnovich and Razborov in [5].

3 PcRry, degree complexity and switching lemma

PcRrR combines Resolution withd The strength of BrR with respect to B is the ability of representing
a clause with only one monomial. We want®, to be a system that combine€& with Pc and
manages succint representationg-adNF.

We introduce the notion of-monomials which are algebraic representationskeDNFs obtained
as products of variables W = {z1,...,2,,%1,...,%,} and expressions of the forfd — [[]_, v;)
with 0 < j < k andy; € V, where the product db variables is intended to be An example of a
3-monomial is:z3Ze(1—Z5x2)x4(1—21Z223). k-polynomialsare linear combinations éfmonomials.

k-monomials algebraically represga®DNFs by the following sintactical transformation

k; k;
[Te-I0 (1 -TT6 ) — VivV (A
i j i=1 i J \i=0
Notice that this transformation is a essentially a bijettimodulo the fact that a one variable ternn a

k-DNF can be equivalently mapped eithertor (1 — x).
The axioms of BR;, includes those of €r plus axioms

L—yiy2-yj — (L —y1ye---y;)forj < k,y; €V

which introduce syntactical parentheses and allow to watk &+polynomials.
Analogously, the rules of &R, are those of ER with one more rule to dedudepolynomials

p

— = forj<k,y, €V
1—y1---y)p

A PcCRy, proof of ak-polynomial g from k-polynomialsfy, ..., f, (denoted byfi, ..., f, Fr g) is
a sequence df-polynomials ended by, each one obtained from either an axiom or by applying a rule
to previously derived:-polynomials. In particular a &, refutationis a proof ofl.

Given ak-polynomial p, let p* be the polynomial obtained expanding the parenthesis ifhe
degree of a-polynomial deg(p) is defined asleg(p*). LetIl be a refutation in BR,. The degree
deg(IT) af IT is the maximal degree of /&polynomial used ifdl. ThesizeS(II) is the total number of
k-monomials used in the prodf. Thelength|II| is the number of lines.

Given ak-polynomialp, it is possible to derive its equivalence within PCRy.

Fact 1. For any k-polynomialp we have-; p — p*.



As an immediate corollary and by the completeness ©k,Rve get the completeness otR;.
Indeedfi, ..., f, = gimply ff,...., fi = ¢*, and, by RR completenesg;, ..., f - ¢* and finally,
using previous lemmafy, ..., fn Fr g.

Applying the transformatioil — x) — z, we can define an homomorphism frarpolynomials
into polynomials, which moreover mapsR, proofs into R proofs without increasing degree, size
and length.

From the previous observatiorcR, efficiently simulates Rs, Pc, PCr and by the next lemma also
RES;.

Lemma 1. LetII be aRes; refutation of a CNFF'. Letpr be the set of polynomials arising from the
polynomial translation of". Then there is #CRy, refutationT” of pz such thatS(T') = O(2FS(IT)°M))

Proof. We refer to names and notation oER, rules given in preliminaries (see (1)). Weakening rule
is simulated by multiplication rule. For the other threeesutonsider the case in whichand B are
empty DNFs. By completeness these rules can be easily sadltasizeO (2") because they involve at
mostk original variables. Consider now non-empgiyDNFs A, B and the correspondingrmonomials
ma, mp. Observe that ifp1,---p; Fr g thenmapy,---map; Fr maq in the same size. Also if
1, p2 Fr gthenmapy, mpps b mamppr, mampps Fr mampq in size equal to the original plus to
the number of factors oh 4 andmp. O

3.1 Degree complexity fork-polynomials

Given a boolean functiorf on z1, ..., z,, with values in a fieldF, we denote a5 the multilinear
polynomial onx, ..., x, which evaluates ag on all boolean assignments. This polynomial exists and
is unique (see [24, 13)).

Definition 1. Given a boolean partial assignmepover{x, ..., z,}, we define itextensiony® over
{x1,...,2n,%1,...,Z,} as follows: for eache € p~1({0,1}) : p°(z) = 1 — p(z), and for each
z € p t({x}) : p°(7) = *.

A k-polynomialp over{x,...,z,,21,...,Z,}, computes a boolean functigip over{z, ..., z,}
defined in such a way that for all total assignmeowver{z,...,z,}, f[,=p . fp is themultilinear
representation ovefzy,. .., z,} of thek-polynomialp. We will write  instead offp. Notice that over
{z1,...,x,} the multilinear representaion ofkapolynomialp is unique.

Definition 2. Thedegree complexity)C'(p) of a k-polynomialp is the degree of.

A booleandecision treeover {z1,...,z,} as a binary tree structure where each internal node is
labelled by a variable, the leaves are labelled with valves fa fieldF, the outgoing edges of a node
are labelled respectively with and1, and in each path from the root to a node each variable appears
at most once. The heighitt(T") of a treeT is the length of the longest path i Each path from the
root to a node defines a partial boolean assignmenfagn. ..z, } in the usual way. So a decision
tree computes a boolean functighwith values inF if for each pathp from the root to a leaf, in all
assignments completing f is equal to the value labelling the leaf.

We say that a boolean decision trepresentsa k-polynomial p if it computes f,,. Given ak-
polynomial p, by ht(p) we indicate the height of the tree represetingNotice that in this tree only
variables from{z1,...,z,} appear.

Lemma 2. For any k-polynomialp, DC(p) < ht(p).

Proof. Let p be a partial assignment induced by a path in the Treepresenting. Let I = p~1(1),
J = p~1(0) andx,, the polynomial[ ], z; - [1;c,(1 —z;). Then the polynomiag = >_ (fy Iy Xp),
wherep ranges over all paths i, is multilinear (by definition ofl") and clearly computes the same
boolean function computed by O



The following lemma shows thatd®;, refutations of low degree complexity can be transformed int
Pc refutations of low degree.

Lemma 3. LetII be aPcRry;, refutation overF[zy, ..., z,, o1, ..., Ty) ofa set ofk-polynomials =
{q1,...,q,}. There exists &c refutationI" over F[zy,...,z,] for @ = {qi,...,¢,} such that
deg(T") < maxpyer DC(p) + k.

Proof. LetII = p, - - - p; be a RR;, refutation ofQ. We build a R refutationp; - - - §; of Q such that
deg(p;) < DC(p;). We will show how to deduce eagh from Q andp, - - - p;_1. If p; is an axiom, then
there is nothing to prove. If; is obtained from scalar addtion yandgq, thenp; is ap + B¢ and we
can use the fact thatmq = ap + [q because of uniqueness of multilinear representation. \Gie sh

the case of the rulm. The others are obtained similarly. Assumés obtained fromp using

the above rule. Then frojwe can build a B proof of p(1 — z; - - - 7 ), of degree at mosbC (p) + k.

Then we use boolean axioms to remove squares to finally ohtpnoof ofp(1 — z; - - - %) which is
p;. Notice that for all polynomialg;, deg(p;) < DC(p;), while intermediate lines have degree at most
DC(pZ‘) + k. ]

Notice that in the previous simulation the number of mondsni@uld increase exponentially, but
we are interested only in the degree of such simulation.

3.2 Switching lemma fork-monomials
Recall Corollary 3.4 in [23].

Corollary 1. ([23]) Let £, s, d be positve integers, let and ¢ be real numbers from the randé, 1],
and letD be a distribution on partial assignments so that for evefPNF G, Pr,cp|G [,# 1] <
d2—%((@)”  For everyk-DNF F,

Pr [ht(F,) > 2s] < dk2~°"*"
peD

whered’ = 2(5/4)* andy’ = +*.

Let ' be ak-DNF F' andmr the corresponding-monomial, then?' [ ,= 1 iff mp [,e= 0. On the
other hand any0, 1} partial assignment for &monomialm which consistently assigns variableand
Z, can be viewed as the extensighof a boolean assignmenptfor the corresponding-DNF F;,,, such
thatm [ ,e= 0 iff Fy, [,= 1.

Since anyk-monomial evaluates t0 iff the corresponding:-DNF evaluates td, swapping0 and
1 in the leaves of a decision trédérepresenting &-monomial we obtain a decision tree tisitongly
represen{(in the sense of Definition 3.1 in [23]) the correspondir®NF. Notice that the height is not
changing.

The mapping betweek-monomials and:-DNFs and lemma 2 allow us to restate femonomials
and degree complexity, the switching lemma givenfadNF in [23].

Definition 3. Letr be ak-DNF on{x1,...,z,} we call¢(r) the size of the smallest set of variables
containing at least one variable from every termrinLetm be ak-monomial we define(m) asc(7,,),
wherer,, is thek-DNF corresponding tan. We callc the covering number

Lemma4. Letk, h be positive integers, and I&t be a distribution over partial assignments ény, ..., x, }
such that for every;-monomialm, Pr,ep[m [,e% 0] < 279%™ for somes > 0. Then for every:-
monomialr:

Pr[DC(r ] ,) > h] < k2~ (0/9"h
peD



Proof. Let m be ak-monomial, andF,,, the corresponding-DNF. By Lemma 2 and we have:

€ < €

pfe’%[DC(m [pe) > h] < pErD[ht(m [pe) >
Moreover

Pr [ht e) > h] = Pr [ht(F,, h

Priht(m ) > hl = Pr(ht(Fn 1) > A
by previous considerations.

Since for anyk-DNF F', ¢(F') = ¢(mp) andF [,= 1 iff mp [,e= 0, then by the hypothesis of the

lemma, we have that for aryyDNF F', Pr cp[F [,# 1] < 2-9¢(F) Then we can apply the switching
lemma of [23]. Settingy = 1,d = 1 ands = h/2 in Corollary 1, we get

Pr [ht(F, [,) > h] < k2~ /0"
pED

3.3 An equivalent formulation of PCR;,

We give an equivalent and more compact formulation oRpPas follows: to the axioms of &k we add
the axiomsl — = — (1 — x) for any variables (positive or negative) and the axidfis1 — (1), (1 —1).
To the rule of RR we add the new rule:

a(l—s)+p b(l—t)+gq

2
ab(1 — st) + asq + btp — pq @

wherea, b arek-monomials,s, t are products of variables such thatcontains at most variables
andp, g arek-polynomials.

It is not difficult to see that the two formulations are eqievd, in the sense that from the axioms
and the rules of one we can derive axioms and the rules of tier.oApplying the rule (2) to thé-
polynomialsl — s — (1 — s) and1l — ¢t — (1 — t) we getl — st — (1 — st), so we can build the axioms
of PCR;. Moreover applying the rule (2) to+ (1 — 1) and1 — s — (1 — s) we immediately derive
p(1 — s) and hence simulate the rule oER;.. On the other hand using axioms and rules oRPit is
easy to simulate the rule (2).

4 A lower bound for refuting random 3-CNF in PCR;

We will prove a lower bound on the number/eimonomials needed to refute a randdr@NF in PCR.
We closely follow the proof method in Alekhnovich[1] to géteslower bounds for random formulas in
REs;. In the whole section we will always consider the systerasfR and RCR;, defined over a field
of characteristic different fror.

4.1 Expanders, random3-CNF, encodings andPc lower bounds

We start with the definition of boundary expander.

Definition 4. ([3, 5, 1]) Let A be am x n boolean matrix. For a set of rowswe define thdoundary

of I (denoted a®$)I) as the set of alj € [n] (the boundary elements) such that there exists exactly one
row: € [ that containsj. Then,A is a(r, ¢)-expander if the following condition holds: for alC [m)],

if |I| < r, then|dI| > c-|I|.



Let ¢, A be the randon3-CNF obtained selectingn clauses uniformly from the set of all possible
3-clauses oven variables. Following [1], instead of proving a lower bouwnd$,, A refutations, we will
prove it for a polynomial encoding of a set of lineand 2 equations, which semantically implies .
We will always consider linear systems modulo 2.

For each possible formula, A consider the matrixd,, . defined byAy ,[i,j] = 1 iff the i-
th clause ofg, A contains the variable;. Letb,, , be the booleamn vector defined by, ,[i] =
(# of positive variables in théthe clauses) mod 2. The random system of linear equatiorconader
is the system defined b§;, \z = by, -

Given a sistem of linear equatiods: = b, we define itgpolynomial encodind?oly (A, b) as follows:
for each equatiof € Ax = b, let f, is the characteristic function df that is0 if and only if the
equation is satisfied. Letbe the unique multilinear polynomial representing the fiamc f,. Then
Poly(A,b) = Uye ap_p (- Notice thatdeg(f) = 3.

Lemma 5. EachPcRy, refutation of¢,, A can be transformed into BCR, refutation ofPoly(Ag, 4, b4, »)
with a polynomial increase in the size.

Proof. Any equation? in A, ,» = by, , semantically implies the clausg in ¢, A, from which ¢
arose. Then by completeness we haveaPproof of the polynomial encoding @ from /. O

The following observation is crucial to find 3-CNF which arardh for R, PCR, PCR;, refutation
systems. Such result is rephrased and used many times 6&[B, 5, 1, 3)).

Fact 2. ([14],[5]) For all constant A > 0 and for all ¢ < 1, let ¢, o be a random3 — CNF of
n variables andAn clauses. Then with probability — o(1) ¢, A is unsatisfiable and4,, . is a
(xz7(=5 > ¢)-expander.

The reason we consider the expansion of a random 3-CNF (afativesponding linear system) is
the following theorem, stating expanders need high degrée tefuted by B and RER.

Theorem 1. (Theorem 3.10 in [3]) Given an unsatisfiable linear systdm= b where A is an (r, c)-
boundary expander, ariycR refutation of Poly(A, b) in a fieldF with characteristic# 2 require degree
> rc

Definitions and results in the next three subsections aemtally taken from [1], sometimes applied
to k-monomials instead g§-DNFs.

4.2 How to restrict Ax = b preserving expansion

In the following subsections we will apply restrictions iiedar systemslz = b whereA is an expander.
In some cases such restrictions could destroy the expapsiperty of the system. Following [1] in this
subsection we develop a tool which extracts a good expanolerthe restricted system.

Definition 5. Let A be anm x n matrix and letr, ¢ > 0. For a set/ C [n], the relation~ . . on the set
[m] is defined as follows:

I+, Lt |0 < /27100 — (4 + Alig] = 13U D) < (/2]
iel

Sincer, ¢ will be always clear from the context, from now on we will orttiem. Let/ and.J be
subsets of the rows and the columns of a matrixConsider the following algorithr'i€(A, I, J):



R :=[m]
while (there existd; C Rs.tl =5 )

I:=I1UL
R:=R-— Il
end
output/;

DefineCi¢(J) := CI¢(A, 0, J). Two lemmata are immediate from the definition and proved]n [

Lemma 6. (Lemma 2.4 in [1]) LetA be any booleamn x n matrix and letJ C [n]. LetI" = CI¢(J)
and letJ’ = (J,.;» A;. Let A be the matrix obtained from removing the rows i’ and the columns in

J'U.J. Either A is empty or it is ar /2, ¢/2)-boundary expander.

Proof. For any set of rowl € A, we will denoted 4 I andd ;I the boundary computer w.r.4 and A
respectively. Assumg| < r/2. By constructionrd l € 9;I U J U J'. I has no element in common
with C1¢(.J), then|0al — (J' U J)| > (c¢/2)|I]. Itfollows [0 41| > (c/2)I]. O

It is important to remark that'/® does not increase too much the number of columns to remonre fro
A.

Lemma 7. ([1, 4]) If Aisan(r,c)-boundary expandef,J| < cr/4, then|CI¢(J)| < 2¢71|J].

Proof. Assume|CI¢(.J)| > 2¢~1|J| and considef; - - - I; - - - I;, the inference of1¢(.J). Wlog we can
assumel; to be pairwise dijoint. Consider the first steguch thatC = U!_,I; and|C| > 2¢71|J].
Since|C — I;| < 2¢7YJ| < r/2 and|l;| < 7/2, then|C| < r. Thus|dC| > ¢|C| by expansion of
A. Then|oC — J| > ¢|C| — |J| > §|C|. But at any step each add strictly less than/2 elements to
|0C' — J|. We have the contraddiction. O

We combine previous lemmata in a useful tool for restrictingar systems while keeping both
unsatisfiability and expansion.

Lemma 8. ConsiderAx = b be anm equationsy variables unsatisfiable linear system whetés an
(r,c)-boundary expander. Let be a set of columns (i.e. variables of the system) with< . Define:

o I'=Cl°(J)andJ" = U+ Ali, 5] = 1}
e Apx = by as the linear system containing row/sfrom Ax = b;
e A is the matrixA with rowsI’ and columns/ U .J’ removed.

Then: (1)A;x = by is a satisfiable system on the variables corresponding tenons.J U {’. For any
assignmenp on such variables which satisfigly:x = by, we have that: (2JAx = b) [, is Az = b for
someb, (3) Az = b is unsatisfiable andl is and an(r/2, ¢/2)-boundary expander.

Proof. If Apxz = by was unsatisfiable, then by gaussian elimination we couldimlatnon empty linear
combination of rows resulting i = 1, (in the fieldFs) such linear combination is a subgétof rows.
No variables iDH can be eliminated, s8H is empty. Sincg.J| < & , then by Lemma 7I'| < /2.
Thus|H| < r/2. But then, by the expansion of, 0 H can’t be empty. Contradiction.

(Az = b) |, is Az = b because assigned columns become constants and satisfitiibosnare set
to0 = 0.

The expansion ofl is guaranteed by Lemma 6. O
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4.3 Normal forms

Let us start by recalling that when speakingcehonomials, dermis a either a variable or an expression
of the form(1 — [ =;). For aterm, V(¢) := {i : x; appears ir}.
Let us consider another relation on the set of rows of theirmatr

Definition 6. ([5]) Let A be anm x n matrix and letr > 0. For a setJ C [n] (a set of indices of
variables) the relation- ;. on the sefm] is defined as follows:

Iy, Liff (L) <r/2n00 C (|4« Aligl=13U))
iel
ForJ C [n], Cl(J) is the set of all rows that can be inferred fr@nvia the relatior";. For a term
t, Cl(t) := CLV(t)).
The next lemma is proved in [5, 1] and we omit its proof.

Lemma 9. ([5, 1]) If |.J| < ¢r/2, then|Cl(J)| < ¢ 1]J|.

Let ¢t be a term over variable§ey, ..., z,, 71, ..., %, }. We identify¢ with the linear system over
{z1,...,x,} defined byr = ¢, for all variables appearing it ¢,, = 1 for positive variables ane,, = 0
for negative variables. Such system is satisfied #f 0.

Definition 7. Let A a m x n matrix which is a(r, c)-boundary expander and létbe a booleann
vector. Lett be aterm and lef = CI(¢). t is locally consistent with respect tdz = b if the system
t AN Arx = by is satisfiable.

Lemma 10. ([1]) Let Az = b where A is an (r, ¢)-boundary expander, with > 3/c. ¢ is locally
consistent withAz = b iff for any subset/ of equations withI| < r/2, the systemt A A;x = by is
satisfiable.

Proof. Assume that is locally consistent wittd and that there existslas.t|I| < r/2 andt A\ Ajx = by
inconsistent. Then by linear algebra there eXist I and alV’’ C V(t), such thay",_;/ (A;z — b;) +
> zevi( —€) = 1. Then it must be thabl’ C V(). ThusI C Ci(t) which is a contradiction with
locally consistency of. The other direction follows since by Lemmal9(¢) < r/2. O

Corollary 2. Let Az = b whereA is am x n boolean matrix which is afir, c)-boundary expander,
with» > 3/c. Then for any sef C [m] such that/| < r/2 the systemd;z = b; is satisfiable.

Proof. The statement follows immediately by proving that the cans0 is locally consistent with
respect toAx = b. This in turn follows since otherwise there was a E&those boundary is empty.
But this is in contradiction with expansion df. O

Definition 8. Let A be a booleann x n matrix and letb be a booleann vector. Ak-monomialn is in
normal formwith respect tadx = b if each of its term is locally consistent witz = b.

Definition 9. Let Ax = b be an unsatisfiable system wheteis booleanm x n matrix andb be a
booleanm vector. APCR;, refutationII of Poly(A,b) is in normal formwith respect todz = b if all
the locally inconsistent terms wrt tdz = b appearing inlI are only in monomials of degre@(k).

We end by showing that, as long &s= O(logn), every R, refutation of Poly(A,b) can be
transformed into a €r;, refutation in normal form with only a polynomial increasetive number of
k-monomials.

Lemma 11. Let be a linear systemz = b where A is anm x n matrix which is an(r, ¢)-boundary
expander. Let = O(logn) andI" be aPcRy, refutation of Poly(A,b). Then there is refutatioil of
Poly(A,b) in normal form and such thag(IT) = S(I")°M),
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Proof. We first get rid fromI" of the locally inconsistent terms of the fortn= (1 — [, ;). We
want to replace this term by the constaralong the proof. By defitinion there exists someket Ci(t)
of rows, with|I| < k/c, such that is inconsistent with the syster;x = b;. By completeness of &R
there must be a®Rr proofI'; of [ [, z; from Poly(Ar,b;). Such proof involves at mos(k) variables
s0S(Ty) = 290 anddeg(T';) = O(k).

LetIT’ be the proof where all occurrencetofill be deleted as followst could have been introduced
in somek-monomial either by the multiplication rule, in which casetheIl’ we simply skip this rule,
or it was introduced by some axiom of the foim- [, ; — (1 — [ [, ;). In this case in the new proof
we replace this axiom with thed® proofI'; of [ [, z;. Notice that the BR proofsI'; could introduce in
IT' locally inconsistent terms but only occurring in monomiaislegreeO (k).

Now we obtainlI getting rid fromII’ of the locally inconsistent terms= z with only one variable.
Using the R proofsT'; of z, we can delete: in the axioms ofPoly(A,b), in the axiomsl + = + z
andz? — 2. The RCR;, axioms containing: can be just replaced by the same axiom withouSo x
disappears frorfil’. As above thd'; PCR proofs are of size§(T;) = 2°*) and degredeg(T;) = O(k)
and can introduce locally inconsistent termglinbut only occurring in monomials of degré¥k). So
IT is in normal form and, sincé = O(logn), S(II) is polynomial inS(I"). O

4.4 Random restriction lemma

In this section we define the distributi@mover partial assignments ovgr; . . ., z,, } that will guarantee
the applicability of the switching lemma (Lemma 4). The wlsttion is that defined by Alekhnovich in

[1].

Definition 10. Let A be am x n boolean matrix which is &-, ¢)-boundary expander. Léte {0, 1}™.
Let X be the set of variable$xy,...,z,}. LetDy, be the distribution over partial assignmenis
over X obtained by the following experiment: choose a random duliseof X of sizecr/4. Let
I = ClI¢(X,). LetX = X, UY;, whereY; = {j : 3i € X : Afi,j] = 1}. pis obtained by selecting
uniformly at random an assignme#tfor the set of variables whose indices arefnthat satisfies the
systemA;z = b;.

The proof of the next main lemma is the same as that of the goafoTheorem 3.1 in [1] where
instead ofk-DNF we usek-monomials.

Lemma 12. ([1]) Let A be am x n boolean matrix which is &r, ¢)-boundary expander such thait
has at mosiA ones in each column. Léte {0,1}™ and assume = Q(n/A). For anyk-monomialmn
in normal form,
Pr [m,e# 0] < (1 — 27 F)m/A%®
pPED A
Corollary 3. There exists a constaii? such that, under the assumptions of the previous lemmanfor a
k-monomial in normal formm we have:

P 0 Q*C(m)/ADk
PGDII;,b[m rp 7 ] <

45 Main result

We are ready to give the main result of this section.

Theorem 2. For any constantA let ¢, Ao be a random 3-CNF om variables andAn clauses. For
k = o(+/logn/loglogn) any refutation ok, A in PCR;, over a field with characteristic different from
2, has sizes > 27" °" with high probability.
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Proof. Assume thatp,, A is an unsatisfiable formula antl,, , is an(r, c)-expander for some constant
c < 1 and anyr = Q(n). Consider the system,, ,= = by, . as defined in Subsection 4.1. For
easiness of notation let us omit the indiggsa from both A andb. Remembet: is O(logn) and letl’

be a RR;, refutation of¢, A of sizeS. Then by Lemma 5 there is acR;, refutationII of Poly(A,b)

of size SO,

To apply the switching Lemma 4, according to Corollary 3 wedé& transform the prodfl of
Poly(A,b) in a proof of Poly(A, b) where k-monomials are in normal form and only contains a
constantA number of ones in each column.

Pick in A the setJ of the ¢r/4 columns with the biggest number of ones, By Lemma 8 there is a
restrictiona that, applied todz = b, restricts this system tdz = b, whereA is a submatrix of4 with
at least the columng removed and is afr/2, ¢/2)-expander. Notice moreover that in each column of
A there are at mosh < 12An/cr ones, which is a constant singe= Q(n). If we now apply Lemma
11 toll |, we get a RR;, normal form refutatioril of Poly(A, b) of size at moss°®.

Let now p drawn fromD ; ; according to Definition 10 and denote Hyr = v’ andIl’ respectively

the system and the refutation obtained restricting= b andII by p°. )
By Corollary 3 and by setting the parameter of Lemma 4 asvalod = (1/A)PF andh =
(rc/64) — k — 1, we have that for ang-monomial in normal formm in 1T

—rc

P:)r[DC(m [pe) > (re/64) — k — 1] < 22067

With probability greater than — SO . 25007 we have thall’ = I1 |« has degree complexity
strictly less thar(rc/64) — k by union bound, and it is a refutation oPoly(A’, ).
Fix anyc < 1 andr = A= - Notice thatp € D ; is defined in such a way that Lemmsa

applies. ThusA’ is an(r/4,c/4)-boundary expander. B < 2:0+* then using Lemma 3 o’ we get
a Pcrrefutation of Poly(A’,b') of degree< rc¢/64. This is impossible because of Theorem 1, and then

it follows S > 23007 |
Since by Fact 2 with high probabilityl is an(r, ¢)-boundary expander, then the theorem follows.
O

5 A degree lower bound for Graph Ordering Principle in Pc

In this section we prove that certain graph ordering tagfe® have no low degreecPrefutations.
Ordering tautologies are considered in [11] to prove thénmgdity of the size-width relation found in
[10] for resolution. In [23] they consider an ordering tdatgyy on a graph to prove separation between
REs; and ReS, 1 proof systems.

We want to encode into a formula the followiGraph Ordering Principle if we give directions to
the edges of a simple undirected gra@laccording to a total ordex on its vertices, then there will be

a source node itr.

We consider variables, ; for any a,b € [n] such thata < b, where< is the standard order on
integers. The variables, ; are intended to take the valdevhena < b. The negation of the principle
is made of two sets of constraints. The first one, that weLalixpresses that the relatienis a total
order on[n|:

Va<b<e xa,bmb,c(l - xcwi) (3)
Va<b<c (1—=m4p)(1—2xpe)Tae (4)

!Notice that locally inconsistent terms which were not efiated fromII occur in monomial of degree at moék(k)
because of Lemma 11
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Notice that equations in (3) and (4) also say there are n@syafithree elements [n] according to
<. Moreover notice that we do not need the usual antisimmetngtcaints because of the definition of
our variables. Equations ih are satisfied if and only if the assignment defines a propat eotler over

The second set of constraints depends on the underlyind gfamd expresses that there will be no
source node id7. We denotd’(u) the set of vertices adjacent#an G.

YueV H (1 - m(hu) : H Tu,a (5)

a€l(u):a<u a€l(u):a>u

Each equation has degree at most equal to the degr@e @ simplify notations, we denote as
both a vertex of7 and the corresponding equation in (5) and we extend thigioote sets of vertices:
for U C [n] we denote withJ also the corresponding set of constraints in (5). We calb@) the
union of 7 and equationgr] induced byG.

Let GOP*(G) the graph ordering principle used in [23]. From the resolutiefutations of width
O(n) for this principle we immediately getd® refutations of degre®(n) for the same principle. In
this proof we first apply the transformations; — z;; andz; ; — x;; for ¢ > j to reduce to our
set of variables (notice that this way the antisimmetry apdsimplify to0); then we further apply the
transformationz — (1 — ) to get a proper a ®refutation of GP(G).

Lemma 13. There are degre®(n) Pc and PcR refutations forGOP(G). MoreoverPcR refutations
can be done witl®(n3) monomials.

To prove a degree lower bound folo®(G) we follow the approach of [5].

Definition 11. Let a graphG = (V, E) be given, for anyJ C V we sayI'(U) is the set of vertices in
V/U which have an adjacent vertex ih. It is called thevertex boundaryf U. The graphG is said to
be an(r, ¢)-vertex expandeif for any setl with less or equal tham vertices, its vertex boundaiy(U )
is greater or equal tham|U]|.

The degree lower bound for@(G) is a corollary of the existence of a non trivial linear opera
which sets td) all consequences of @(() derived in low degree. This strategy follows that of [21, 5]

Lemma 14 ([5, 21]). Let G be a(r,c)-vertex expander. There exists a linear operafodefined on
polynomials such that: (1£(p) = 0, for all polynomialp € Gor(G); (2) L(z? — x) = 0 for all
variablex of GOP(G); (3) for each monomiad and for each variable:, if deg(t) < cr/4, thenl(z-t) =
L(z-L(t); (4) L(1) =1.

We postpone the proof of this lemma to the end of the section.

Theorem 3. If G is an (r, ¢)-vertex expander then there is e refutation ofGOrP(G) of degree less
than or equal tacr /4.

Proof. Assume for the sake of contradiction such refutation doést.ekhen by lemma 14 all polyno-
mials in this proof are mapped @by L. This is a contradiction with the fact that the last line the
polynomiall) is not mapped t® by L. O

In the following we assumé' to be given and to be am, c)-vertex expander. All the definitions are
given w.r.t. such graph.

Definition 12. We callVertex(p) the set of vertices which appears in the variablep.iGiven a set of
verticesU we define the inference relatior; in this way: ForA, B C [n],
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A~y B if ]B\gg and T'(B)C AUU

Sup(U), the support ot/ is defined as the closure dfwith respect to-;;. We denote bygup(p)
the setSup(Vertex(p)) for any polynomiabp.

The notion of support is closely related with the notion after boundary in a graphSup(U) is the
maximal set of vertices for which the vertex-boundary isdag/ and which is not big enough to break
the expansion barrier. The following lemma gives the link between the vertex exgiam and degree
of monomials: a small set of vertices (hence a low degree)teasm small support.

Lemma 15. If a setU has size less or equal than/2 thenSup(U) has size less or equal than2. If
a monomialt has degree less tham /4 thenSup(t) has size less or equal tha(2.

Proof. Let Sup(U) = UI,UI3U- - -UI; where eacH; is the set added in theth step of the inference.
Assume it has size strictly greater thaf2, then there is a stepwhere such size is overcome. Let us
denoteA = I U...UI;_; andl = I;. Then|A| < r/2and|AUI| > r/2. Also |I| < r/2 because
of the size constraint in the definition ef;;. Then|A U I| < r and hence by the vertex-expansion
condition|I'(A U I)| > ¢r/2. This proves the first part sind§A U I) C U.

The second part follows since the vertices appearing in teara at most twice the degreeiof [

Recall the definition ofRz(p) from subsection 2.2 and that in the set of polynomiale/e always
implicitly include the polynomials:? — z, for all variables of ®P(G).

Lemma 16. Lett¢ be a term. For any not empty set of verticé®f size less or equal thary2 and such
that A N Sup(t) = 0, there exists an edde:, v) in G such thatw € A, u & Sup(t) U AU Vertex(t).

Proof. By definition of Sup(t) and the hypothesis of the lemma, it follows tatp(t) v ertea(r) A-
ThenI'(A) Z Sup(t)UVertex(t), therefore there is an edge betweeandl'(A)/(Sup(t)UVertex(t)).
U

A partial assignmenp to the variables of GP(G)is au-cta (critical truth assignment) when it sets
u as a global minimum.
_J xgu=1 Va,a<u
p—{ Tua=0 Va,u<a

Lemma 17. Lett be a term. Lef be a set of vertices such thdl < /2 andI O Sup(t). Then there
exists av € I/Sup(t) such that:

Rr1(t) = Ry 1/{0} (1)

Proof. Applying lemma 16 tot and I /Sup(t) we get an edgéu,v) such thatv € I/Sup(t) and
u ¢ I UVertex(t). Let p be au-cta. Note that any equation i containing the vertex is satisfied
by p. Any other equation irf” is not touched, s@ [,C 7. Moreover sincew ¢ Vertex(t), t [,= t.

Finally note that/ [,C I/{v} sincep is setting to0 at least. Recall that ifA +- p, thenB F p, for any
p, AandB D A. Thus we have the following derivations:

7,1 Ft— Rrr(t) By definition of R (6)
T1,11, Ftl,—Rr(t), By restriction from (6) (7)
T,1/{v} +Ft—Rr(t), By previous observations on (7) (8)

From (8) and minimality of the remainder we then have thay /1., (t) <p Rt 1(t),. Moreover,
since7, I - t — Ry /4, (t), we have thaty ;(t) <p Ry /() (t), also by the minimality. Finally
Rt 1(t) I,<p Rt (t) holds since a restriction can only decrease the order ofynpuoiial. Hence it
must beRTJ/{v} (t) = Rr1(1). ]
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Lemma 18. Lett be a term. For any set of verticdsof size less than or equal to thaff2 and such
that I O Sup(t), the following holds:

RT1(t) = Ry sup(r)(t)

Proof. If I = Sup(t) then R 1(t) = Ry sup)(t). If 1 is strictly bigger thanS, then by lemma 17
there is a vertex € I/Sup(t) such thatRr ;(t) = Ry 1/, (t), from which the lemma follows by
iterating the argument. O

Lemma 19. For any termt, Vertex(Ry sup)(t)) € Sup(t) U Vertex(t).

Proof. Assume for the sake of contradiction that there is a nede Vertex(Rz gyup)(t)) not in
Vertex(t) U Sup(t). Consider ai-ctap. By an argument analogous to that of lemma 17 we then have

RT,Sup(t) (t) <p RT,Sup(t) (t) rp<]P‘ RT,Sup(t) (t) O
We are ready to give the proof of Lemma 14.

Proof. Lemma 14
For any monomiat, the linear operato£(t) is defined by

[’(t) = RT,Sup(t) (t)

and is extended by linearity to any polynomial.

First we prove that for any polynomial € GoP(G), L(p) = 0. If pisin 7, thenRr(p) = 0.
Now, L(p) = > BiL(t:) <p Y BiR7r(t;) = Rr(p) = 0. For any axionw € [n] letv = t + w, where
t is the leading term. SincB(v) C Vertex(t), thenv € Sup(t). HenceL(v) = L(t) + L(w) <p
Ry (t) + L(w) = —w + L(w) <p —w +w = 0.

For the second property, consider tifatp(z?) = Sup(z) and that we are reducing also against
2? — x. Then:

L(z®—x) = L(z%) - L(z)
= RT,Sup(z) (x2) - RT,Sup(a:) (CC)
= RT,Sup(a:) (562 - ‘T) =0
Let us prove that(xt) = L(xL(t)) for any term¢ of degree strictly less thaff Notice that by

monotonicity of Sup function, Sup(zt) 2 Sup(t). Moreover sinceleg(zt) < 7, then by lemma 15
we get|Sup(xt)| < r/2. Therefore we have the following chain of equalities by §imy respectively:
in (9) the definition; in (10) the Property 1; in (11) the mamwtity of Sup and lemma 18; in (12) again
the definition.

L(xt) = RT sup(er)(t) 9)
= Ry sup(at)(TRT Sup(ar)(t)) (10)
= Ry sup(at)(@RT supe)(t)) (11)
= Ry sup(at)(TL(1)) (12)

Let us writezL(t) as a polynomialy «;r;. The following inclusions hold respectively: in (13)
becauser; is a monomial in the polynomial expansion ©f(¢); in (14) by lemma 19; in (15) by
monotonicity ofSup.

Vertex(r;) C Vertex(x)U Vertex(L(t)) (13)
C Vertex(x) U Vertex(t) U Sup(t) (14)
C Vertex(xt) U Sup(xt) (15)
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From the definition oSup and the previous inclusions it follows théitp(r;) C Sup(xt).

Finally the third property of the operator is obtained frdme following chain of equalities given
respectively: in (16) by definition; in (17) by lemma 18 apglito Sup(r;) and Sup(zt); in (18) by
linearity; in (19) by the form of:£(¢); finally in (20) by equalities (9)-(12).

LL®) = > iRy gupry(ri) (16)
= > RT Sup(on (i) (17)

= Rr sup(at)(D_ ciri) (18)

R7 Sup(aty(TL(E)) (19)

L(xt) (20)

Finally for the fourth property observe that the support @oastant is the empty set, €41) =
Rr(1) = 1 since7 is satisfiable. O

To complete the proof we need to show that a constant dégreevertex expander exists. Consider
agraphG = (V, E) of degree (i.e. all vertices have at mogtedges). The adjacency matrix igrac’)-
boundary expander if and only if for any s&tC V' smaller thanr, the edges going outside are at
leastc’ - |S|. At mostd edges can be connected to a single vertex. Thus such graph(isca/d)-
vertex expander. This reduce the search of a vertex expémtler search of a constant degree boundary
expander. An efficient construction is given in [17] using-aap composition devised in [22] and called
Zig-zag product

Proposition 1. (Proposition 9.2 [17]) For anyt andd an undirected grapliz can be constructed, such
that G hasd* vertices, it isd® regular and is a(@, 1/2)-boundary expander.

Theorem 4. There exists an infinite famil§ of simple graphs of constant degree such that for @y
in G the principle GoP(G) has polynomial size il (G)| and anyPc refutation of GOP(G) requires

V(G)|
degree at Ieasil(o—s.

Proof. Fix any integett. By construction claimed in Proposition 1 we can construgregular graphG
of n := 81° vertices, such tha® is (%, 5)-boundary expander. Sinceis 9-regular, it is an/2,1/18)-
vertex expander. To obtain a simple graph without losingexeexpansion it is sufficient to remove
edges in excess between pair of nodes.

By Theorem 3 the theorem follows. O

6 A separation betweenPCcR; and PCR; 4

In this section we will give a variant of @((), which is polynomially refutable by R, but it's not
polynomially refutable by Br,.. We closely follows the ideas developed foE® in [23].

Let Even(ay, ..., ax) be the function from{0, 1}* to {0, 1} which gives 0 if the number of input
variables at 0 are even. Such function can be written2ts & size multilinear polynomial with degree
k.

For each variable, ; of GOP(G) we introducek new variables:;b, cees xl;,b. GopPP* (@) is defined
as a modification of GP(G): substitute any, , with Even(:cclhb, e ,xla‘:b). Such principle is specified
by kd degree polynomials with less thaf* monomials each, whereis the degree ofy. We now give
a polynomial refutation in BR;, for Gor®*(G).

Proposition 2. For any graphG, Gor®*(G) has a polynomial size refutation PCRy,
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Proof. We consider an auxiliary principle called pseudo+&* (G), we give a polynomial BR;, refu-
tation for this and we polynomially reducecID@’“( ) to pseudo-@PF* ().

First notice thatBven(z, ,, ...,k ,) (respectivelyl — Even(z},, ..., ab)) can be written as
[T(1 =1 ---1) wherely - - - [, range among all tuples of varlable§b, . xa , With an even (respec-
tively odd) number of negated variables. We denote dunionomials asEven’mb andOddy, .

pseudo-@P?* (@) is defined form ®P(G) as follows: eaclr, ; is substituted with th&-monomial
Even, ;. pseudo-@pP®*(G) has the property to translate any monomial inF&G) with a singlek-
monomial in pseudo-GP¥* (G). So a RR refutation of GP(G) can be translated in ad®;, refutation
of pseudo-®pP®*(G) by the mapping{z,, — Evengyp,Zqp — Odd,;} and the pseudo axioms:
Evengp - Evengp — Evengy, Oddgy - Odd,, — Odd,, and1l — Odd, , — Even, ;. Each of these
pseudo axioms is derivable ircR; with a size at most exponential in

Since Even, , (respectivelyOdd,, ;) are semantically equivalent tﬁven(x}l’b, s Ty b) (respec-
tively 1 — Even(x}l’b, . ,x’;vb)) then, by completeness, ircR, we can derive the axioms of pseudo-
GorPP* (@) from those of ®PP* () with a proof of size at mosD(2*) each. O

We now prove the lower bound fordR,,. Following [23], given a grapliz, we consider the distribu-
tion Dy 1(G) on partial assignments on variables ab&*+1(G) defined as follows: for any variable
x4 Of GOP(G), select uniformly and independentﬂye [k + 1] and then for allj € [k + 1] — {i}
uniformly and independently assign{@, 1} value tox’ ab- The next lemma guarantees the applicability
of the switching lemma and was proved in [23] k)DNF We rephrase it in terms é@fmonomials, but
its proof is exactly the same.

Lemma 20. ([23]) Let k be give and letn be ak-monomial formed by variables Gor®**+1(G) and
their negations. There exists a constant- 0, dependent only ok, such that

Pr [m],es 0] < 277
PeDk+1(G)[ 7 ]
Proof. We say a collection of terms is independent when for any aesti, b in G, at most one of
its term contains a variable i’.le1 .. ijl} or in the corresponding negated set. The greatest

independent collection of terms # has at Ieasgm members (otherwise we could build a cover
smaller thare(m)). Notice that restrictions distributed according®p,; act independently on terms in
such collection. A term contains at mdstariables, each one assigned by the restriction with piibtyab
at leastl /2: whatever happens to the variables corresponding to the saople of vertices, only of
then are considered in an independent collection. Thusdoh &ariable there is always at ledgt
probability that an alternative variable is left unassiyn€hen with probability(1/2)* the term is fully
assigned. With probabilityl /4)* it is set to zero. Then the restriction fails to satisfy witolgability

_c(m)

(1— 4) Rk+1) < 9—ve(m)

for a~ which depends only fror. O

Notice that when we apply a restrictipne Dy, 1 (G) to Gor®**+1(G) we not always reduce exactly
to GoP((7). It could happen that some variables have the oppositeifyolanyway is clear that from
a PcR refutation of GPP*1(G), we can reconstruct ad® proof of GoP(G) of the same degree.
Hence applying Theorem 3 we have the following Corollary.

Corollary 4. LetG be an(r, c)-vertex expander. Then for @l> 1 and for all p € Dy1(G), there are
no Pc refutations ofGor®*+1(G)I, of degree less than or equal to /4.

Theorem 5. Let G be (dn, c)-vertex expander on vertices, for somé > 1. Letk > 1, there exists a
constante, ., such that anyPcr;, refutation ofGoPP**1(@3) contains at leasg®*<" k-monomials.
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Proof. Letr = on. By Lemma 20 applying the Switching Lemma setting- (rc/4 — k), we have that
for any k-monomialm,

Pr  [DC(ml,e) > (rc/d — k)] < k2~ (3)(re/4=k)
Pr DOl > e/t )] <

Hence there exists a constapt; such that

Pr DC(m.e) > (re/d — k)] < 2~ (¢k.en)
Pt [DCml) > e/t~ )] <

Assume that there isd®, refutation of @PP*+1(Q) of size strictly less thag~ (k<) then by the
union bound there is ad®, refutationIl of Gor®*+1(G)[, with DC(IT) < (rc/4 — k). Hence by
Lemma 3 there is a ®@refutation of GPP*+1(G)I, of degree< rc/4. This is in contradiction with
Corollary 4. O

Using the family of vertex expander used at the end of Seé&jgmevious Theorem and Proposition
2 we get the following exponential separation.

Corollary 5. There is a family of contradictiong overn variables separating exponentialBcRr;, from
PCRy. 1, that is such that there are polynomial size refutationg"oh PCR;,; and any refutation ofF
in PCR;, requires exponential size.
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