
Black Box Polynomial Identity Testing of Generalized Depth-3

Arithmetic Circuits with Bounded Top Fan-in

Zohar S. Karnin∗ Amir Shpilka∗

Abstract

In this paper we consider the problem of determining whether an unknown arithmetic circuit,
for which we have oracle access, computes the identically zero polynomial. This problem is
known as the black-box polynomial identity testing (PIT) problem. Our focus is on polynomials

that can be written in the form f(x̄) =
∑

k

i=1
hi(x̄) · gi(x̄), where each hi is a polynomial that

depends on only ρ linear functions, and each gi is a product of linear functions (when hi = 1,
for each i, then we get the class of depth-3 circuits with k multiplication gates, also known as
ΣΠΣ(k) circuits, but the general case is much richer). When maxi(deg(hi · gi)) = d we say that
f is computable by a ΣΠΣ(k, d, ρ) circuit. We obtain the following results.

1. A deterministic black-box identity testing algorithm for ΣΠΣ(k, d, ρ) circuits that runs in
quasi-polynomial time (for ρ = polylog(n+ d)). In particular this gives the first black-box
quasi-polynomial time PIT algorithm for depth-3 circuits with k multiplication gates.

2. A deterministic black-box identity testing algorithm for read-k ΣΠΣ circuits (depth-3 cir-

cuits where each variable appears at most k times) that runs in time n2
O(k

2)

. In particular
this gives a polynomial time algorithm for k = O(1).

Our results give the first sub-exponential black-box PIT algorithm for circuits of depth higher
than 2. Another way of stating our results is in terms of test sets for the underlying circuit model.
A test set is a set of points such that if two circuits get the same values on every point of the
set then they compute the same polynomial. Thus, our first result gives an explicit test set, of
quasi-polynomial size, for ΣΠΣ(k, d, ρ) circuits (when ρ = polylog(n + d)). Our second result
gives an explicit polynomial size test set for read-k depth-3 circuits.

The proof technique involves a construction of a family of affine subspaces that have a rank-
preserving property that is inspired by the construction of linear seeded extractors for affine
sources of Gabizon and Raz [GR05], and a generalization of a theorem of [DS06] regarding the
structure of identically zero depth-3 circuits with bounded top fan-in.

∗Faculty of Computer Science, Technion, Haifa 32000, Israel. Email: {zkarnin,shpilka}@cs.technion.ac.il.
Research supported by the Israel Science Foundation (grant number 439/06).

1

Electronic Colloquium on Computational Complexity, Revision 2 of Report No. 42 (2007)

ISSN 1433-8092

Contents

1 Introduction 3

1.1 Known results . 3
1.2 Some definitions and statement of our results . 4
1.3 Our techniques . 5
1.4 Organization . 6

2 Preliminaries 6

2.1 Generalized Depth 3 Arithmetic Circuits . 7

3 Rank Preserving Subspaces 8

4 Black-box PIT for ΣΠΣ(k, d, ρ) circuits 10

4.1 Construction of rank-preserving subspaces . 12
4.2 The PIT algorithm for ΣΠΣ(k, d, ρ) circuits . 15
4.3 PIT for generalized ΣΠΣ(k, d, ρ) circuits . 17

5 PIT for read-k ΣΠΣ Circuits 18

5.1 Construction of rank-preserving subspaces for the family Fk 19
5.2 The PIT algorithm for read-k ΣΠΣ circuits . 21

A Proof of Lemma 4.5 24

2

1 Introduction

Finding an algorithm for polynomial identity testing (PIT) is a widely pursued open problem: We
are given as input a circuit that computes a multivariate polynomial, over some field, and we have
to determine whether it computes the zero polynomial. The importance of the polynomial identity
testing problem stems from its many applications: Algorithms for primality testing [AB03], for
deciding if a graph contains a perfect matching [Lov79, MVV87, CRS95] and more, are based on
reductions to the PIT problem (for more applications see the introduction of [LV98]). In this work
we consider the problem of determining whether an arithmetic circuit for which we only have oracle
access computes the identically zero polynomial. That is, the input is a black-box holding a circuit
C and we must find whether the polynomial computed by the circuit C is the identically zero
polynomial. In particular we can only ask the circuit for its value on points of our choice. It is
clear that every such algorithm must produce a test set for the circuit. Namely, a set of points such
that if the circuit vanishes on all the points then the circuit computes the zero polynomial. Note
that the values of a circuit on the points in the test set completely determine the circuit1, as if two
circuits agree on all the points then their difference is zero on all points of the set and therefore
their difference must be zero.

1.1 Known results

The complexity of the PIT problem is not well understood. It is one of a few problems for which we
have coRP algorithms but no deterministic sub-exponential time algorithms. The first randomized
black-box PIT algorithm was discovered independently by Schwartz [Sch80] and Zippel [Zip79].
In [LV98, AB03, CK00] randomized algorithms that use fewer random bits were given, however
these algorithms need to get the circuit as input, whereas the Schwartz-Zippel algorithm is in the
black-box model. The problem of finding an efficient deterministic algorithm, or proving that no
such algorithm exists, is believed to be difficult. In particular, Kabanets and Impagliazzo [KI04]
and Agrawal [Agr05] showed that efficient deterministic algorithms for PIT imply lower bounds
for arithmetic circuits. Conversely, [KI04] showed that from super-polynomial lower bounds on
the size of arithmetic circuits one can construct a sub-exponential time deterministic algorithm
for black-box PIT. However, known lower bounds are too weak and do not yield deterministic
sub-exponential time PIT algorithms as suggested by [KI04].

Nevertheless, deterministic polynomial time algorithms for several restricted classes are known:
For depth-2 arithmetic circuits (i.e. circuits computing sparse multivariate polynomials) there are
many works giving black-box PIT algorithms over various fields [GK87, BOT88, GKS90, CDGK91,
Wer94, SS96, KS96, KS01], for non-commutative arithmetic formulas there is a non black-box
algorithm [RS05] and for the class of read-once arithmetic formulas, sub-exponential time black
box algorithms were recently given in [SV08].

The question of giving efficient black-box polynomial identity testing algorithm for ΣΠΣ(3)
circuits (depth-3 circuits with only 3 multiplication gates) was raised by Klivans and Spielman
[KS01]. In the non black-box model this question was first solved in [DS06]. Their algorithm gets
as an input a depth-3 arithmetic circuit with bounded top fan in, and determines whether the
circuit computes the zero polynomial or not. The crux of that work is a theorem on the structure
of depth-3 arithmetic circuits that compute the zero polynomial. Specifically, for every depth-3
arithmetic circuit with bounded top fan in, if the circuit is simple (i.e. no linear function appears
in all of the multiplication gates) and minimal (i.e. no subset of the multiplication gates amounts

1However, it is a very interesting question (and very difficult) to reconstruct the circuit from its values on the test
set.

3

to a circuit computing the zero polynomial), then the dimension of the linear space spanned by all
the linear functions in the circuit is small. The algorithm of [DS06] runs in quasi-polynomial time.
This result was later improved by Kayal and Saxena [KS06] who gave a polynomial time algorithm
(in the non black-box model) using a different approach. Recently a similar result with a different
proof was given by Arvind and Mukhopadhyay [AM07]. For our results however, we shall need the
structural theorem of [DS06].

In this work we give a sub-exponential deterministic black-box algorithm for PIT of generalized
depth-3 circuits with bounded top fan-in. More precisely, the running time of our algorithm is sim-
ilar to the running time of the non black-box algorithm of [DS06]. This is the first sub-exponential
PIT algorithm in the black-box model for a class of circuits other than the widely studied class of
depth-2 circuits (the recent result of [SV08] also gives a sub-exponential black-box PIT algorithm).
In particular, our result answers the black-box version of the question of Klivans and Spielman
[KS01]. Before giving a formal statement of our results we need some definitions.

1.2 Some definitions and statement of our results

In this work we study a generalization of depth-3 circuits that we denote by ΣΠΣ(k, d, ρ) circuits.
A polynomial f(x̄) that is computed by a ΣΠΣ(k, d, ρ) circuit has the following form

f(x̄) =
k∑

i=1

Mi =
k∑

i=1

di∏

j=1

Li,j(x̄)

 · hi

(
L̃i,1(x̄), . . . , L̃i,ρi

(x̄)
)

(1)

where the Li,j ’s and the L̃i,j ’s are linear functions in the variables x̄ = (x1, . . . , xn), over F. Every hi

is a polynomial in ρi ≤ ρ variables, and the functions {L̃i,j}
ρi

j=1 are linearly independent. We shall
assume, w.l.o.g., that each hi depends on all its ρi variables. We call M1, . . . , Mk the multiplication
gates of the circuit (Mi =

∏di

j=1 Li,j · hi(L̃i,1(x̄), . . . , L̃i,ρi
(x̄))). For a ΣΠΣ(k, d, ρ) circuit C we

denote with d = deg(C) the maximal degree of its multiplication gates (i.e. maxi=1...k{deg(Mi)}).
When ρ = 0 (i.e. each hi is a constant function) we get the class of depth-3 circuits with k
multiplication gates and degree d, also known as ΣΠΣ(k, d) circuits. When k and d are arbitrary
we get the class of depth-3 circuits that we denote with ΣΠΣ. The following theorems summarize
our results for ΣΠΣ(k, d, ρ) arithmetic circuits:

Theorem 1 (Deterministic algorithm for ΣΠΣ(k, d, ρ) circuits). Let k, d, ρ, n be integers and F

a field. Then there is a deterministic black-box algorithm that on input k, d, ρ, n and black-box
access to a ΣΠΣ(k, d, ρ) circuit C in n indeterminates over F, determines whether C computes the
zero polynomial. The running time of the algorithm is poly(n) · exp

(
(log d)k−1 + kρ log d

)
. If 2

|F| ≤ O(d2 · n · (kρ + (log d)k−2)) then the algorithm is allowed to make queries to C from an
algebraic extension field of F.

In particular this gives a quasi-polynomial black-box PIT algorithm for ΣΠΣ(k, d) circuits for
a constant k. Our second result is for read-k depth-3 circuits. A read-k depth-3 circuit is a depth-3
circuit in which every variable appears at most k times (that is, every variable belongs to at most
k linear functions). We obtain the following results for read-k ΣΠΣ circuits.

Theorem 2 (Deterministic algorithm for read-k circuits). Let k, n be integers and F a field. Then
there is a deterministic black-box algorithm that on input k, n and black-box access to a read-k depth-

3 circuit C in n indeterminates over F, runs in time n2O(k2)
and determines whether C computes

2When k is a constant and ρ = o(deg(C)) all we need is a field of size larger than, say, n · deg(C)3.

4

the zero polynomial. If |F| ≤ O(n3 · k4), then the algorithm is allowed to make queries to C from
an algebraic extension field of F.

In particular this result gives a polynomial time black box PIT algorithm for multilinear depth-3
circuits with a constant number of multiplication gates. As corollaries of the above constructions
we get the following results.

Theorem 3 (Randomized algorithm for general circuits). Let C be a ΣΠΣ(k, d, ρ) circuit over
a field F, in n indeterminates, for some k, d, ρ, n. Then there is a coRP randomized black-box
algorithm that on input ε, k, d, ρ, n makes a single query to (a black-box holding) C and determines
whether C ≡ 0. Namely, if C 6≡ 0 then the algorithm outputs “non-zero circuit” with probability at
least 1 − ε and if C ≡ 0 then the algorithm always outputs “zero circuit”. The number of random
bits used by the algorithm is O

(
(log(d) + log(1/ε)) ·

(
log(d)k−2 + kρ

)
+ log(n)

)
. As in Theorem 1,

if |F| ≤ O(deg(C)2 · n · (kρ + (log d)k−2)) then the algorithm is allowed to make queries to C from
an algebraic extension field of F.

Another corollary is a generalization of Theorem 1 for the case where each variable appears in
at most k multiplication gates.

Theorem 4. Let C be a ΣΠΣ(m, d, ρ) circuit over a field F, in n indeterminates, where each input
variable appears in at most k multiplication gates, for some integers m, k, d, ρ, n. That is, there are
m multiplication gates but each variable belongs to at most k of them. Then there is a deterministic
black-box algorithm that on input m, k, d, ρ, n and black-box access to C determines whether C com-
putes the zero polynomial. The running time of the algorithm is poly(n)·exp

(
(log d)2k−1 + kρ log d

)
.

If |F| ≤ O(deg(C)2 · n · (kρ + (log d)k−2)) then the algorithm is allowed to make queries to C from
an algebraic extension field of F of polynomial size.

Note that the circuit considered in the theorem is stronger than read-k ΣΠΣ(m, d, r) circuits, as
every input variable can appear in each multiplication gate many times (we just bound the number
of gates in which the variable appears).

1.3 Our techniques

The idea behind our algorithms is the following: we consider several linear subspaces of Fn of
“low” dimension, and for each subspace V we verify that C|V ≡ 0. Note, that the verification step
requires O(deg(C)dim(V)) time using a simple brute force interpolation. Clearly if C ≡ 0 then we
will get that C|V ≡ 0. However, it is not clear why C ≡ 0 if all we know is that C|V ≡ 0, for
every subspace V in our family. Indeed, for general depth-3 circuits we cannot show that such a
naive approach works, but in the case of ΣΠΣ(k, d, ρ) circuits we have a structural theorem3 due
to [DS06] that (roughly) says that if C ≡ 0 then it can be written as a sum of circuits, that are
all identically zero, and such that each of the circuits essentially depends on a few linear functions
(the complete statement of this theorem is given in Section 2.1, and our strengthening is given in
Lemma 4.2). Thus, the structural theorem implies that for every subspace V , if C|V ≡ 0 then
it has the above structure. If we were guaranteed that for some V the “structure” of C remains
(more or less) the same when we restrict it to V , then the fact that C|V ≡ 0 will imply that C ≡ 0.
Indeed, our family of subspaces has the guarantee that for every ΣΠΣ(k, d, ρ) circuit C there will
be at least one subspace in the family (in fact most subspaces in the family will have the property)
for which the “structure” of C does not change much when restricted to V .

3Actually the theorem of [DS06] speaks about ΣΠΣ(k, d) circuits, but we prove a similar result for ΣΠΣ(k, d, ρ)
circuits.

5

The idea behind the construction of the family of subspace on which we will evaluate the
restriction of C comes from the construction of linear seeded extractors for affine sources of [GR05].
In their work Gabizon and Raz constructed a set of linear transformations from Fn to Fr such that
for every linear subspace of dimension r, at least one of the transformations (actually most of the
transformations) maps it onto the entire space. It turns out that by applying the idea of [GR05] we
can construct a family of subspaces that retains the structure of ΣΠΣ(k, d, ρ) circuits, and therefore
get a deterministic black-box PIT algorithm.

1.4 Organization

The paper is organized as follows. In section 2 we give some background on depth-3 arithmetic
circuits. In section 3 we provide the main idea behind our algorithms (Theorem 3.4). Section 4
contains the proofs of Theorem 1, 3 and 4. Finally, in section 5 we prove Theorem 2.

2 Preliminaries

For a positive integer k we denote [k] = {1, . . . , k}. Let F be a field. We denote with Fn the n’th
dimensional vector space over F. For a vector v ∈ Fn we denote with |v| the number of non zero
entries of v. We denote with {ei}i∈[n], the natural basis for Fn. That is, ei is an n-dimensional vector
that has 1 in the i-th coordinate and zeros elsewhere. We shall use the notation x̄ = (x1, . . . , xn)
to denote the vector of n indeterminates. For a linear functions L we denote its homogenous part
with LH (i.e., for L = a0 +

∑n
i=1 aixi we define LH =

∑n
i=1 aixi). For two linear functions L1, L2

we write L1 ∼ L2 whenever L1 and L2 are linearly dependent. The same notation will be used
for vectors. Let V = V0 + v0 ⊆ Fn be an affine subspace, where v0 ∈ Fn and V0 ⊆ Fn is a linear
subspace. Let L(x̄) be a linear function. We denote with L|V the restriction of L to V . Assume
that the dimension of V0 is t, then L|V can be viewed as a linear function of t indeterminates in the
following way: Let {vi}i∈[t] be a basis for V0. For v ∈ V let v =

∑t
i=1 yi ·vi+v0 be its representation

according to the basis. We get that

L(v) =
t∑

i=1

yi · L(vi) + L(v0)
4
= L|V (y1, . . . , yt).

We shall abuse notation and use both L|V (v) and L|V (y1, . . . , yt) to denote the value of L on
v ∈ V . Note that the representation of L|V (ȳ) depends on the chosen basis for V , but the value
of L|V (v) does not4. A linear function L will sometimes be viewed as a vector of n + 1 entries.
Namely, the function L(x1, . . . , xn) =

∑n
i=1 αi · xi + α0 corresponds to the vector of coefficients

(α0, α1, . . . , αn). Accordingly, we define the span of a set of linear functions of n variables as the
span of the corresponding vectors (i.e. as a subspace of Fn+1). For an affine subspace V = V0 + v0

of dimension t, the linear function L|V can be viewed as a vector of t+1 entries. Thus, V , equipped
with a basis {vi}i∈[t] for V0, defines a linear transformation from Fn+1 to Ft+1, that sends L(x̄) to
L|V (ȳ). We shall sometimes refer to this transformation as the linear transformation corresponding
to the affine subspace V , and denote it with TV .

4In order for L|V (y1, . . . , yt) to be well defined, it must correspond to some “default” basis of V0. When not stated
otherwise, we choose the gaussian elimination of some basis of V as its default basis

6

2.1 Generalized Depth 3 Arithmetic Circuits

We first recall the usual definition of depth-3 circuits. A depth-3 circuit with k multiplication gates
of degree d (also known as ΣΠΣ(k, d) circuit) has the following form:

C =
k∑

i=1

Mi =
k∑

i=1

di∏

j=1

Li,j(x1, . . . , xn) (2)

where each Li,j is a linear function in the input variables and d = maxi=1...k{deg(Mi)}. When k
and d are unimportant or unknown we just refer to the circuit as a ΣΠΣ circuit. Recall that we
defined a ΣΠΣ(k, d, ρ) circuit (see Equation 1) to be a circuit of the form

C =
k∑

i=1

Mi =
k∑

i=1

di∏

j=1

Li,j(x̄)

 · hi

(
L̃i,1(x̄), . . . , L̃i,ρi

(x̄)
)

. (3)

We thus see that in a generalized depth-3 circuit multiplication gates can have an additional
term that is a polynomial that depends on (at most) ρ linear functions. The following notions will
be used throughout this paper.

Definition 2.1. Let C be a ΣΠΣ(k, d, ρ) circuit that computes a polynomial as in Equation (3).

1. For every multiplication gate Mi we define Lin(Mi) =
∏di

j=1 Li,j(x̄). That is, Lin(Mi) is the
product of all the linear factors of Mi (we can assume w.l.o.g. that hi, the non-linear term of
Mi, has no linear factors). In particular, for a ΣΠΣ circuit, Lin(Mi) = Mi.

2. The derived ΣΠΣ(k, d) circuit is defined as Ĉ
4
=
∑k

i=1 Lin(Mi). This definition is interesting

only when C is a ΣΠΣ(k, d, ρ) circuit (as if ρ = 0 then Ĉ = C).

3. For each A ⊆ [k], we define CA(x̄) to be a sub-circuit of C as follows: CA(x̄) =
∑

i∈A Mi(x̄).

4. Define gcd(C) as the product of all the non-constant linear functions that divide all the mul-
tiplication gates. In other words, gcd(C) = g.c.d.(Lin(M1), . . . ,Lin(Mk)). A circuit will be
called simple if gcd(C) = 1.

5. The simplification of C, sim(C), is defined as sim(C)
∆
= C/ gcd(C). Notice that sim(C) is a

ΣΠΣ(k, d′, ρ) circuit for d′ = d − deg(gcd(C)).

6. We define Lin(C)
4
= {LH

i,j}i∈[k],j∈[di]∪

(⋃k
i=1 span

{
(L̃i,j)

H
}

j∈[ρi]

)
. Notice that we take every

linear function in the span of each {L̃H
i,j}j∈[ρi] to be in Lin(C).

7. We define rank(C) as the dimension of the span of the homogenous part of the linear functions
in C. That is, rank(C) = dim(Lin(C)).

A word of clarification is needed regarding the definition of Lin(C) and rank(C). Notice that
the definition seems to depend on the specific choice of linear functions L̃i,j . That is, it may be
the case (and it is indeed the case) that every polynomial hi(L̃i,1, . . . , L̃i,ρi

) can be represented as
a (different) polynomial in some other set of linear functions. However the following lemma from
[Shp07] shows that the specific representation that we chose does not change the rank nor the set
Lin(C).

7

Lemma 2.2 (Lemma 20 in [Shp07]). Let h(x̄) be a polynomial in exactly k linear functions5. Let
P (`′1, . . . , `

′
k) = h = Q(`1, . . . , `k) be two different representations for h. Then span({(`′i)

H}i∈[k]) =

span({(`i)
H}i∈[k]).

We shall use the notation C ≡ 0 to denote the fact that a ΣΠΣ(k, d, ρ) circuit computes the
identically zero polynomial. Notice that this is a syntactic definition, we are thinking of the circuit
as computing a polynomial and not a function over the field. We say that a ΣΠΣ(k, d, ρ) circuit C
is minimal if there is no ∅ 6= A ([k] such that CA ≡ 0. The following theorem of [DS06] gives a
bound on the rank of ΣΠΣ(k, d) identically zero circuits (the case that ρ = 0).

Theorem 2.3 (Lemma 5.2 of [DS06]). Let k ≥ 3 and C ≡ 0 be a simple and minimal ΣΠΣ(k, d)
circuit, of degree d ≥ 2. Then rank(C) < 2O(k2) logk−2(d).

For convenience, we define R(k, d) = 2O(k2) logk−2(d) as the bound on the rank given by Theo-
rem 2.3. It follows that R(k, d) is larger than the rank of any identically zero simple and minimal
ΣΠΣ(k, d) circuit.

3 Rank Preserving Subspaces

As mentioned in Section 1.3, we would like to find a family of subspaces that for each possible
circuit contains at least one subspace that preserves, to some extent, the “structure” of the circuit.
In this section we state a list of properties for a subspace V and circuit C such that when held,
C|V ≡ 0 implies that C ≡ 0. Later we shall see how to construct a family of subspaces having the
required properties (the construction is slightly different for the case that C is a ΣΠΣ(k, d, ρ) circuit
and for the case that C is a read-k depth-3 circuit). We now define r-rank-preserving subspaces.
Notice that this definition does not rely on the family of circuits that we work with. In particular
when we speak of depth-3 circuits we shall mean ΣΠΣ(k, d, ρ) circuits or ordinary ΣΠΣ circuits.

Definition 3.1. Let C be a depth-3 circuit and V an affine subspace. We say that V is r-rank-
preserving for C if the following properties hold:

1. Any two linearly independent linear functions that appear in Ĉ, that neither of them was
restricted to a constant function on V , remain linearly independent when restricted to V .

2. ∀A ⊆ [k], rank(sim(CA)|V) ≥ min{rank(sim(CA)), r}.

3. No multiplication gate M ∈ C vanishes on V . In other words M |V 6≡ 0 for every multiplication
gate M ∈ C.

4. Lin(M)|V = Lin(M |V) for every multiplication gate M in C (that is, the polynomial computed
by sim(M)|V has no linear factors).

The following lemma lists some useful properties of rank-preserving subspaces.

Lemma 3.2. Let C be a depth-3 circuit and V an r-rank-preserving affine subspace for C. Then
we have the following:

1. For every ∅ 6= A ⊆ [k], V is r-rank-preserving for CA.

2. V is r-rank-preserving for sim(C).

5That is, h can be written as a polynomial in k linear functions but not in k − 1 linear functions.

8

3. gcd(C)|V = gcd(C|V).

4. sim(C)|V = sim(C|V).

Proof. The first and second claims follow immediately from the definition of V . To prove the
third claim we note that as Lin(M)|V = Lin(M |V) for every multiplication gate, we have that
gcd(C|V) = g.c.d.{Lin(M |V)}M∈C = g.c.d.{Lin(M)|V }M∈C . Since Lin(M) is a product of linear
functions from C we get that g.c.d.{Lin(M)|V }M∈C = (g.c.d.{Lin(M)}M∈C) |V = gcd(C)|V . Where
the first equality holds as no new non-constant linear functions from the Lin(Mi)’s were added to
the g.c.d. after the restriction (as otherwise there will be two linearly independent linear functions
in Ĉ that become non-constant and dependent when restricted to V , in contradiction to Property 1
of Definition 3.1). The second equality is simply the definition of gcd(C)|V . The fourth claim is a
direct consequence of the third claim and the definition of sim(C). We note that the proof of the
third and forth claims did not use Property 2 of Definition 3.1.

We are now ready for the main theorem of this section. In order to state it in the most general
form we shall speak of a family of circuits having some closure properties. In this way we will not
have to state different results for different families of circuits. The following definition states the
required closure properties we want a family of depth-3 circuits to have.

Definition 3.3 (Closure property). Let V ⊆ Fn be a linear subspace. A family F of depth-3
circuits in n indeterminates is closed with respect to V if whenever C is a ΣΠΣ(k, d, ρ) circuit in
the family we have that

• C|V ∈ F .

• CA ∈ F , for every A ⊆ [k].

• sim(C) ∈ F .

We now give the statement of the theorem. In order to better understand it one can have in
mind the family of ΣΠΣ(k, d) circuits and RF = R(k, d) as defined after Theorem 2.3.

Theorem 3.4. Let F be a family of depth-3 circuits. Assume that there exists RF ∈ N such that
for every C ∈ F that is simple, minimal and computes the zero polynomial rank(C) < RF . Let
V ⊆ Fn be a subspace, such that F is closed with respect to V . Let C be a circuit in F and assume
further that V is an RF -rank-preserving subspace for C. Then, if C|V ≡ 0 then C ≡ 0.

Proof. Let k be the number of multiplication gates in C. The proof is in three steps. We first
prove the theorem for the case that C|V (which is identically zero) is simple and minimal. We then
remove the simplicity assumption, and finally we remove the minimality assumption.

Assume that C|V is identically zero simple and minimal. As CV ∈ F we get, by the assumption
on RF , that rank(C|V) < RF . From the fact that V is RF -rank-preserving for C and from
Property 2 of Definition 3.1 (applied to A = [k]) we get that rank(C|V) ≥ rank(C), and thus
rank(C|V) = rank(C). Denote by r the rank of the circuit C. Let L1, . . . , Lr be linear functions
forming a basis of Lin(C). It follows that there exists a polynomial P such that C ≡ P (L1, . . . , Lr).
Obviously, C|V ≡ P (L1|V , . . . , Lr|V) ≡ 0.

We now prove that the linear functions (L1|V)H , . . . , (Lr|V)H span Lin(C|V). Let L be a
linear function appearing in C. Then L = a0 +

∑r
i=1 aiLi, and L|V = a0 +

∑r
i=1 aiLi|V . Hence,

(L|V)H =
∑r

i=1 ai(Li|V)H . Since rank(C|V) = rank(C) = r, we have that (L1|V)H , . . . , (Lr|V)H are
linearly independent. Hence, P is the zero polynomial and C ≡ P (L1, . . . , Lr) ≡ 0. This completes

9

the proof for the case that C|V is simple and minimal. We now remove the simplicity assumption.
Assume that C|V is an identically zero minimal circuit. In a nutshell, the proof for this case has
the following form:

C|V ≡ 0
(1)
⇒ sim(C|V) ≡ 0

(2)
⇒ sim(C)|V ≡ 0

(3)
⇒ sim(C) ≡ 0

(4)
⇒ C ≡ 0. (4)

We now explain each of the implications in Equation (4).

• Implication (1) follows from property 3 of Definition 3.1 and Lemma 3.2 (as the lemma implies
that gcd(C)|V 6= 0).

• The second implication follows immediately from Lemma 3.2.

• To prove implication (3) we recall that by the closure property of F we have that sim(C) ∈ F ,
hence sim(C)|V ∈ F . Therefore, sim(C)|V is a simple (as sim(C)|V = sim(C|V)) and minimal
(by assumption) identically zero circuit in F . As V is also RF -rank-preserving for sim(C) we
get (by the case of simple and minimal C|V) that sim(C) ≡ 0.

• Step (4) follows immediately from the definition of sim(C).

We now prove the general case, that is we just assume that C|V ≡ 0. Clearly there exists a
partition A1, . . . , As of [k] (That is, the Ai’s are disjoint subsets of [k] whose union is [k]) such that
for every i ∈ [s] we have that CAi

|V is an identically zero minimal depth-3 circuit. Recall that
Definition 3.1 implies that V is also RF -rank-preserving for each CAi

. Furthermore, since F is
closed w.r.t. V , for each i ∈ [s], both CAi

|V and CAi
belong to F . Hence, by what we just showed

for minimal circuits, we get that CAi
≡ 0. It follows that C =

∑s
i=1 CAi

≡ 0. This completes the
proof of the theorem.

4 Black-box PIT for ΣΠΣ(k, d, ρ) circuits

In this section we prove Theorem 1. The proof relies on Theorem 3.4. Therefore, in order to use
the theorem we have to understand what is RF for the family of ΣΠΣ(k, d, ρ) circuits, and prove
closure properties for this family. As a first step we notice that for every subspace V , the family of
ΣΠΣ(k, d, ρ) is closed with respect to V . the proof is immediate from the definition of the circuits.

Lemma 4.1. The family of n variate ΣΠΣ(k, d, ρ) circuits is closed w.r.t. any subspace V ⊆ Fn.

Next we give a bound on RF where F is the family of ΣΠΣ(k, d, ρ) circuits (for some k, d, ρ).
That is, we give an upper bound, which we denote by R(k, d, ρ), on the rank of a simple and
minimal ΣΠΣ(k, d, ρ) circuit computing the zero polynomial. Our bound is related to R(k, d)
(whose definition is given after Theorem 2.3).

Lemma 4.2. Let C be a simple and minimal ΣΠΣ(k, d, ρ) circuit in n indeterminates computing

the zero polynomial. Then rank(C) < R(k, d, ρ)
∆
= R(k, d) + k · ρ.

Proof. For convenience we shall use the notations of Equation (3). That is, we denote

C =
k∑

i=1

Mi =
k∑

i=1

di∏

j=1

Li,j(x̄)

 · hi

(
L̃i,1(x̄), . . . , L̃i,ρi

(x̄)
)

.

10

Let r = dim
(
span{(L̃i,j)}i∈[k],j∈[ρi]

)
. Clearly, r ≤ k · ρ. Assume for simplicity and w.l.o.g. that

x1, . . . , xr form a basis to the linear space spanned by {L̃i,j}i∈[k],j∈[ρi]. Let F be the algebraic closure

of F. For each ū ∈ F
r

define C|(x1,...,xr)←ū to be the circuit resulting from substituting ui to xi

for i ∈ [r]. Notice that for each such ū, all the functions hi|(x1,...,xr)←ū are set to constants. In
particular, C|(x1,...,xr)←ū is a (non-generalized) ΣΠΣ circuit with (at most) k multiplication gates,
of degree bounded by d, that computes the zero polynomial. We shall now prove the existence of
ū ∈ F

r
such that C|(x1,...,xr)←ū is simple and minimal. For this ū we will get that

rank(C) ≤ rank(C|(x1,...,xr)←ū) + r < R(k, d) + k · ρ = R(k, d, ρ). (5)

We prove the existence of such ū by giving a non-zero r-variate polynomial q(y1, . . . , yr) such that
for each ū ∈ F

r
, if C|(x1,...,xr)←ū is not simple or minimal then q(ū) = 0. As q 6≡ 0, there are many

ū ∈ F
r

for which q(ū) 6= 0 and so Equation (5) holds. The polynomial q will be the product of two
polynomials. One of them will “take care” of the simplicity requirement and the other will “take
care” of the minimality requirement.

Lemma 4.3. Let C be a simple ΣΠΣ(k, d, ρ) circuit in n indeterminates, given by Equation (3).
Let r < n be an integer. Assume that the linear functions {L̃}i∈[k],j∈[ρi] depend only on the variables
x1, . . . , xr. Then there exists a non-zero r-variate polynomial p such that for every assignment ū
to x1, . . . , xr, if p(ū) 6= 0 then C|(x1,...,xr)←ū is also a simple circuit (that is, after substituting ui to
xi, for i ∈ [r], the resulting circuit is simple).

Proof. Assume that for some vector ū, C|(x1,...,xr)←ū is not simple. Assume further that no Mi was
set to zero by the assignment ū. Then it must be the case that gcd(C|(x1,...,xr)←ū) 6= 0. In particular,

for some pair of linearly independent linear functions L, L′ in Ĉ (see Definition 2.1), their restrictions
L(u1, . . . , ur, xr+1, . . . , xn) and L′(u1, . . . , ur, xr+1, . . . , xn) are non-constant linearly dependent lin-
ear functions. Note that there exists at most one γL,L′ ∈ F (that is independent of ū) such that
L(u1, . . . , ur, xr+1, . . . , xn) − γL,L′ · L′(u1, . . . , ur, xr+1, . . . , xn) = 0. For each such pair of linearly

independent linear functions we define pL,L′(x1, . . . , xn)
∆
= L(x1, . . . , xn) − γL,L′ · L′(x1, . . . , xn).

Since L and L′ are linearly independent, it follows that pL,L′ 6= 0. Let the polynomial p′ be defined
as:

p′(x1, . . . , xn)
∆
=

k∏

i=1

Mi ·
∏

L6=L′∈C

pL,L′ .

That is, p′ is the product of all of polynomials corresponding to the different pairs of linearly
independent linear functions times the product of all the multiplication gates. Clearly, p′ 6≡ 0.

In particular there exists an assignment w̄ ∈ F
n−r

to (xr+1, . . . , xn) such that p(x1, . . . , xr)
4
=

p′(x1, . . . , xr, w1, . . . , wn−r) 6≡ 0. Furthermore, for any vector ū for which C|(x1,...,xr)←ū is not
simple, p(ū) = 0 (because if none of the hi was set to zero by ū then one of the linear factors of p′

must vanish on ū). This completes the proof of Lemma 4.3.

We now construct a polynomial that will vanish on ū only if C|(x1,...,xr)←ū is not minimal.

Lemma 4.4. Let C be a minimal ΣΠΣ(k, d, ρ) circuit in n indeterminates. Let r < n be an integer.
Then there exists a non-zero r-variate polynomial p such that for every assignment ū to x1, . . . , xr,
if p(ū) 6= 0 then C|(x1,...,xr)←ū is also a minimal circuit (that is, after substituting ui to xi, for
i ∈ [r], the resulting circuit is minimal).

11

Proof. For every subset ∅ 6= A ([k] let pA = CA. That is, pA is the polynomial computed by
CA. As C is minimal we get that pA 6≡ 0. Let p′ be the product of all the different pA’s. That is,
p′(x1, . . . , xn) =

∏
∅6=A([k] pA(x1, . . . , xn). Clearly p′ is not the zero polynomial. In particular there

exists a substitution w̄ ∈ F
n−r

, such that p(x1, . . . , xr)
4
= p′(x1, . . . , xr, w1, . . . , wn−r) 6≡ 0. Now, if

ū is such that C|(x1,...,xr)←ū is not minimal then, in particular, for some ∅ 6= A ([k], we have that
(CA)|(x1,...,xr)←ū ≡ 0. In other words, we have that pA(u1, . . . , ur, w1, . . . , wn−r) = 0. This implies
that p(ū) = 0. This completes the proof of Lemma 4.4.

To complete the proof of Lemma 4.2 we define the polynomial q to be the product of the two
polynomials guaranteed by Lemma 4.3 and Lemma 4.4. It follows that if for some ū ∈ F

r
, q(ū) 6= 0,

then C|(x1,...,xr)←ū is minimal and simple. By the discussion before Equation 5 this is enough to
complete the proof of the lemma.

Next we construct a family of subspaces containing at least one R(k, d, ρ)-rank-preserving sub-
space for every possible ΣΠΣ(k, d, ρ) circuit.

4.1 Construction of rank-preserving subspaces

In this section we construct a small set of affine subspaces that contains an R(k, d, ρ)-rank-preserving
subspace for every possible ΣΠΣ(k, d, ρ) circuit. By Theorem 3.4 and Lemmas 4.1 and 4.2 we know
that if the restriction of a ΣΠΣ(k, d, ρ) circuit to each of the subspaces in the set computes the zero
polynomial, then so does the circuit itself. We note that the properties of rank-preserving subspaces
can be formalized as properties of the linear transformations corresponding to the subspaces (recall
the definition from Section 2). In [GR05] Gabizon and Raz make use of linear transformations with
very similar properties. As a consequence, our construction relies heavily on the construction of
[GR05].

The section is organized as follows. We first present a lemma from [GR05] that was slightly
modified to suit our notations and needs. We proceed by defining a subspace such that the trans-
formation corresponding to it is the same transformation defined in [GR05]. We end the section
with a theorem proving that the rank preserving properties of the transformations of [GR05] give
exactly what we need.

Lemma 4.5 (Lemma 6.1 of [GR05]). For an element 0 6= α ∈ F and integers m ≥ t > 0 define
ϕα,t,m : Fm → Ft to be the following linear transformation

ϕα,t,m(a0, . . . , am−1) =

(
m−1∑

i=0

aiα
i,

m−1∑

i=0

aiα
2i, . . . ,

m−1∑

i=0

aiα
t·i

)
.

Fix any number of subspaces W1, . . . , Ws ⊆ Fm of dimension at most t. Then there are at most
s ·(m−1) ·

(
t+1
2

)
elements α ∈ F for which there exists i ∈ [s] such that dim (ϕα(Wi)) < dim(Wi). In

other words, for all but s·(m−1)·
(
t+1
2

)
elements of F we have that ∀i ∈ [s], dim (ϕα(Wi)) = dim(Wi).

We now define, for each α ∈ F, an affine linear subspace Vα such that its corresponding linear
transformation is ϕα,R(k,d,ρ)+1,n+1. That is, by the notations of Section 2, TVα = ϕα,R(k,d,ρ)+1,n+1.

For convenience, we denote ϕα
∆
= ϕα,R(k,d,ρ)+1,n+1.

Definition 4.6. Let α ∈ F be a field element. Set r = R(k, d, ρ).

• For 0 ≤ j ≤ r define vj,α ∈ Fn as vj,α
∆
= (αj+1, . . . , αn(j+1)).

12

• Let Pα be the n × r matrix whose j-th column (for 1 ≤ j ≤ r) is vj,α. Namely,

Pα = (v1,α, . . . , vr,α) =

α2 α3 . . . αr+1

α4 α6 . . . α2(r+1)

...
. . .

...

α2n . . . αn(r+1)

.

• Let V0,α be the linear subspace spanned by {vj,α}j∈[r]. Let Vα ⊆ Fn be the affine subspace
Vα = V0,α + v0,α. In other words,

Vα = {Pαȳ + v0,α : ȳ ∈ Fr} .

Lemma 4.7. For every α ∈ F, we have that TVα = ϕα, where every linear function L|Vα(y1, . . . , yr)
is defined w.r.t. the basis {vj,α}j∈[r] of V0,α.

Proof. Let L be a linear function in n variables. Denote L(x1, . . . , xn) = a0 +
∑n

i=1 aixi. We need
to show that the vector corresponding to L|Vα is equal to ϕα(a0, . . . , an). Namely, we would like to
show that the vector of coefficients of L|V0 , with respect to the basis {vi,α}i∈[r] of V0,α, is

(
n∑

i=0

aiα
i,

n∑

i=0

aiα
2i, . . . ,

n∑

i=0

aiα
(r+1)i

)
.

For convenience, we denote L|Vα(y1, . . . , yr) =
∑r

i=1 biyi + b0. In other words, bi (0 ≤ i ≤ r) is the
i’th entry of the vector corresponding to L|Vα . Denote ā = (a1, . . . , an). We get that

L|Vα(ȳ) = L

(
r∑

i=1

yi · vi,α + v0,α

)
= L(Pα·ȳ+v0,α) = ā·(Pα · ȳ)+ā·v0,α+a0 = (ā · Pα)·ȳ+ā·v0,α+a0.

The free term in this equation is

b0 = ā · v0,α + a0 =
n∑

i=0

aiα
i.

For 1 ≤ j ≤ r we have that

bj = (ā · Pα)j =

n∑

i=0

aiα
(j+1)i

as required.

We now prove the main theorem of this section that shows that for a fixed ΣΠΣ(k, d, ρ) circuit
C, except of a small number of α ∈ F, we have that Vα is R(k, d, ρ)-rank-preserving for C.

Theorem 4.8. Let C be a ΣΠΣ(k, d, ρ) circuit over a field F. Then there are at most

((
dk

2

)
+ 2k

)
· n ·

(
R(k, d, ρ) + 2

2

)

different α ∈ F such that Vα is not R(k, d, ρ)-rank-preserving for C.

13

Proof. The proof is in two steps. We first construct several subspaces (that are defined using
linear functions from C), each of dimension ≤ R(k, d, ρ) + 1, such that if ϕα (= ϕα,R(k,d,ρ)+1,n+1),
the linear transformation given in Lemma 4.5, preserves the rank of all of them (in the sense of
Lemma 4.5) then Vα is a R(k, d, ρ)-rank-preserving subspace for C. We then use lemma 4.5 to
prove that except a small number of α-s, ϕα indeed preserves the rank of all those subspaces.

We shall use the following notations during the proof. Assume that C =
∑k

i=1 Mi as given by

Equation (3). Recall the definition of Ĉ =
∑k

i=1 Lin(Mi). We now define several sets of subspaces
such that if V preserves the rank of all of them then V is rank preserving for C.

1. For each pair of linear functions L 6= L′ that appear in Ĉ, where v and v′ are the corresponding
vectors of coefficients, we define WL,L′ = span(v, v′). Clearly dim(WL,L′) ≤ 2. The number

of such subspaces is at most
(
dk
2

)
.

2. For every i, let Wi be the subspace spanned by the vectors corresponding to the linear
functions {(L̃i,j)

H}j∈[ρi] and 1 (i.e., the constant function whose output is the field element
1). Clearly dim(Wi) ≤ ρi + 1 ≤ ρ + 1.

3. Let W = ∪k
i=1Wi. Clearly dim(W) ≤ k · ρ + 1.

4. For every ∅ 6= A ⊆ [k], let r̂A = rank(sim(CA)). Let rA = min(r̂A, R(k, d, ρ)). Let {LH
i }rA

i=1

be a set of linearly independent linear functions from Lin(sim(CA)). Let {vi}
rA

i=0 be their
corresponding vectors and the vector corresponding to the constant function 1. Set WA =
span {vi}

rA

i=0. Clearly dim(WA) = rA + 1 ≤ R(k, d, ρ) + 1. The number of such subspaces is
at most 2k − 1.

Note that for every i we have that Wi ⊆ W , but in order to ease the presentation we defined
the Wi’s as well. We now show that if ϕα preserves all these subspaces (i.e. for every subspace U
in our family rank(ϕα(U)) = rank(U)) then Vα is R(k, d, ρ)-rank-preserving for C. For this, we will
prove that Vα satisfies all the properties of Definition 3.1. Consider the first property. Let L, L′ be
two linearly independent linear functions appearing in Ĉ. As ϕα preserves the rank of WL,L′ we
get that dim(ϕα(WL,L′)) = dim(WL,L′), hence L|Vα , L′|Vα remain linearly independent.

To see Property 3 of Definition 3.1 we note that as ϕα preserves the rank of every WL,L′ , no
linear function in Lin(Mi) was restricted to zero. Hence Lin(Mi)|Vα 6≡ 0. We also note that since
dim(ϕα(Wi)) = dim(Wi), we have that (L̃i,1|Vα)H , . . . , (L̃i,ρi

|Vα)H are linearly independent. As hi

(the non-linear term of Mi) is not the zero polynomial then hi(L̃i,1|Vα , . . . , L̃i,ρi
|Vα) 6≡ 0. Hence,

Mi = Lin(Mi) · hi was not restricted to zero.
We note that by the same argument we also get Property 4, as basically each hi remains the

same polynomial after the restriction to Vα (up to applying an invertible linear transformation on
its inputs) and therefore it has the same factorization before and after the restriction. Hence no
new linear factors where added to sim(Mi)|Vα .

To see that Property 2 of Definition 3.1 is satisfied, we consider some sub-circuit CA, for
some ∅ 6= A ⊆ [k]. As we just showed that Properties 1,3 and 4 hold, we get by Lemma 3.2
that sim(CA)|Vα = sim(CA|Vα) (recall that the proof of this item from Lemma 3.2 did not use
Property 2 of Definition 3.1). Since ϕα preserves the rank of WA, and ϕα(WA) is contained in
span (Lin(sim(CA|Vα)) ∪ {1}), we get that

rank(sim(CA|Vα)) ≥ dim(ϕα(WA)) − 1 = dim(WA) − 1 = rA

= min(r̂A, R(k, d, ρ)) = min (rank(sim(CA)), R(k, d, ρ))

as required.

14

We now bound the number of α’s for which Vα does not preserve the rank of (at least) one of
the subspaces that we defined. The number of subspaces that we defined is clearly bounded by(
dk
2

)
+ 2k. Therefore, by Lemma 4.5 (for t = R(k, d, ρ) + 1 and m = n + 1) we get that there are at

most ((
dk

2

)
+ 2k

)
· n ·

(
R(k, d, ρ) + 2

2

)

bad α’s. In other words, except for
((

dk
2

)
+ 2k

)
·n ·
(
R(k,d,ρ)+2

2

)
many α’s, all the Vα’s are R(k, d, ρ)-

rank-preserving for C. This completes the proof of the theorem.

The following corollary shows how to get a (relatively) small set of subspaces such that for every
ΣΠΣ(k, d, ρ) circuit C, most of the subspaces are R(k, d, ρ)-rank-preserving for C.

Corollary 4.9. Let S ⊆ F be a set of n
((

kd
2

)
+ 2k

) (
R(k,d,ρ)+2

2

)
/ε different elements of the field6.

Then, for every ΣΠΣ(k, d, ρ) circuit C over F, there are at least (1 − ε)|S| elements α ∈ S such
that Vα is R(k, d, ρ)-rank-preserving subspace for C.

4.2 The PIT algorithm for ΣΠΣ(k, d, ρ) circuits

We now present our algorithms and prove Theorems 1 and 3. Algorithm 1 gives a quasi-polynomial
time deterministic algorithm for PIT of ΣΠΣ(k, d, ρ) circuits (when ρ is not too large) using the
method described in section 3. Algorithm 2 gives an efficient randomized algorithm that makes a
single query to the black-box.

Algorithm 1 Deterministic black-box PIT algorithm for ΣΠΣ(k, d, ρ) circuits

Input: k, n, d, ρ ∈ N, and oracle access to a ΣΠΣ(k, d, ρ) circuit C in n indeterminates.
Output: Determine whether C ≡ 0.

For α ∈ F let Pα be the n×R(k, d, ρ) matrix for which (Pα)i,j = αi(j+1). Let v0,α =
(
α, α2, . . . , αn

)
.

Let S, T ⊆ F be subsets such that |S| = n
((

kd
2

)
+ 2k

) (
R(k,d,ρ)+2

2

)
+ 1 and |T | = d + 1. Define

H =
{

Pαȳ + v0,α : α ∈ S and ȳ ∈ TR(k,d,ρ)
}

.

If for every point z̄ ∈ H, C(z̄) = 0, then return “zero circuit”.
Else, return “non-zero circuit”.

Lemma 4.10. Let C be a ΣΠΣ(k, d, ρ) circuit. Then Algorithm 1, when given k, d, ρ, n as input
and black-box access to C, returns “zero circuit” if and only if C ≡ 0. The running time of the
algorithm is |S| · (d + 1)R(k,d,ρ) (= poly(n) · exp((log d)k−1 + kρ log d)).

Proof. The claim regarding the running time is clear as the running time is equal to |H| and we
have

|H| = |S| · |T |R(k,d,ρ) =

(
n

((
kd

2

)
+ 2k

)(
R(k, d, ρ) + 2

2

)
+ 1

)
· (d + 1)R(k,d,ρ).

We now prove the correctness of the algorithm. For α ∈ S let Vα =
{
Pαȳ + v0,α : ȳ ∈ FR(k,d,ρ)

}
.

Denote Hα =
{
Pαȳ + v0,α : ȳ ∈ TR(k,d,ρ)

}
. In other words, Hα corresponds to a box isomorphic

6Recall our assumption that if |F| is not large enough then we work over an algebraic extension field of F.

15

to TR(k,d,ρ) inside Vα. Theorem 4.8 implies that for some α ∈ S, Vα is R(k, d, ρ)-rank-preserving for
C. As Vα is closed w.r.t. the family of ΣΠΣ(k, d, ρ) circuits (Lemma 4.1), we get by theorem 3.4
that if C 6≡ 0 then C|Vα 6≡ 0. Note that as C|Vα is a polynomial of degree at most d in {yi}i∈[R(k,d,ρ)]

then by the Schwartz-Zippel lemma below (see [Sch80, Zip79]) we have that C|Vα ≡ 0 if and only
if C|Hα = 0. In particular C ≡ 0 if and only if C|H = 0.

Lemma 4.11 (Schwartz-Zippel). Let f(x1, ..., xm) be a non-zero m-variate polynomial of degree
d, over a field F. Let S ⊆ F be a subset of the field. Then the probability that f vanishes on a
randomly chosen input from Sm is bounded by

PrC[f(x1, ..., xm) = 0] ≤
d

|S|
.

In particular, if |S| > d and f 6= 0 then f |Sm 6= 0. Moreover, if f is of degree at most d in each
variable (so the total degree can be d · m) and |S| > d then there exists some x̄ ∈R Sm such that
f(x1, ..., xm) 6= 0.

Theorem 1 now follows easily.

Proof of Theorem 1. By Lemma 4.10 we have that Algorithm 1 decides correctly whether C ≡ 0

and runs in time
(
n
((

kd
2

)
+ 2k

) (
R(k,d,ρ)+2

2

)
+ 1
)
· (d+1)R(k,d). As R(k, d, ρ) = O

(
(log d)k−2 + kρ

)

the theorem follows.

From Lemma 4.11 it is clear that if we make the set T large enough then if C 6≡ 0 then a random
input from H will be a non-zero of C with high probability. This is formalized in Algorithm 2.

Algorithm 2 Randomized black-box PIT algorithm for ΣΠΣ(k, d, ρ) circuits

Input: ε, k, n, d, ρ ∈ N, and oracle access to a ΣΠΣ(k, d, ρ) circuit C in n input variables.
Output: Determine whether C ≡ 0.

For α ∈ F let Pα be the n×R(k, d, ρ) matrix for which (Pα)i,j = αi(j+1). Let v0,α =
(
α, α2, . . . , αn

)
.

Let Sε, Tε ⊆ F be subsets such that |Sε| = 2n
((

kd
2

)
+ 2k

) (
R(k,d,ρ)+2

2

)
/ε and |Tε| = 2d/ε. Define

Hε =
{

Pαȳ + v0,α : α ∈ Sε and ȳ ∈ TR(k,d,ρ)
ε

}
.

Pick a random point z̄ ∈ H. If C(z̄) = 0 then return “zero circuit”.
Else, return “non-zero circuit”.

Lemma 4.12. Let C be a ΣΠΣ(k, d, ρ) circuit. Let ε > 0 be a constant. If C 6≡ 0 then Algorithm 2,
when given ε, k, d, n, ρ as input and black-box access to C, returns “non-zero circuit” with probability
at least 1 − ε. If C ≡ 0 then the algorithm always answers “zero circuit”. The number of random
bits used by the algorithm is

log |Hε| = log |Sε| + R(k, d, ρ) log |Tε| = O (R(k, d, ρ) log 1/ε + R(k, d, ρ) log d + log n)

Proof. As before, for α ∈ Sε let

Vα =
{

Pαȳ + v0,α : ȳ ∈ FR(k,d,ρ)
}

.

16

Denote
Hα,ε =

{
Pαȳ + v0,α : ȳ ∈ TR(k,d,ρ)

ε

}
.

Corollary 4.9 implies that if C 6≡ 0 then for (1−ε/2) of the elements α ∈ Sε, we have that C|Vα 6≡ 0.
For such an α we have that C|Vα is a polynomial of degree at most d in {yi}i∈[R(k,d,ρ)] and by the
Schwartz-Zippel lemma (Lemma 4.11) we have that

Prz̄∈RHα,ε [C(z̄) = 0] ≤
d

|Tε|
= ε/2.

In particular, if C 6≡ 0 then with probability at least 1− ε the algorithm outputs “non-zero circuit”.
The claim regarding the number of random bits is clear.

As before, Theorem 3 is an immediate corollary of Lemma 4.12. We note that the set H defined
in Algorithm 1, and the set Hε defined in Algorithm 2 give rise to test sets for ΣΠΣ(k, d, ρ) circuits.
More accurately, let H and Hε be the sets corresponding to ΣΠΣ(2k, d, ρ) circuits. Then, as an
immediate consequence of Theorem 1, we get that any two ΣΠΣ(k, d, ρ) circuit that agree on all
the points of H compute the same polynomial. Similarly we get that any two ΣΠΣ(k, d, ρ) circuits
that compute different polynomials get different values on 1 − ε of the points in Hε.

4.3 PIT for generalized ΣΠΣ(k, d, ρ) circuits

In this section we prove Theorem 4. The theorem concerns n-variate ΣΠΣ(m, d, ρ) circuits where
each variable appears in at most k multiplication gates. The number of multiplication gates m will
not play an important role in our results. Hence, we refer to this type of circuits as k-ΣΠΣ(·, d, ρ)
circuits. Obviously, a ΣΠΣ(k, d, ρ) circuit is also a k-ΣΠΣ(·, d, ρ) circuit. We give a PIT algorithm
for k-ΣΠΣ(·, d, ρ) circuits by reducing it to the case of PIT to ΣΠΣ(2k, d, ρ) circuits.

Let C be an n-variate k-ΣΠΣ(·, d, ρ) circuit. Algorithm 3 deterministically verifies whether
C ≡ 0. The idea is based on the following simple observation: Since each input variable appears in
at most k multiplication gates, then C ′ ≡ C − C|xn=0, is a ΣΠΣ(2k, d, ρ) circuit7.

Algorithm 3 Deterministic PIT for k-ΣΠΣ(·, d, ρ) circuits

Input: k, n, d, ρ ∈ N, and oracle access to a k-ΣΠΣ(·, d, ρ) circuit C in n input variables.
Output: Determine whether C ≡ 0.

Recursively verify that the k-ΣΠΣ(·, d, ρ) circuit, C|xn=0 (that has only n−1 inputs) computes the
zero polynomial. If not then return “non-zero circuit”. If C|xn=0 ≡ 0 then run Algorithm 1 on C,
viewed as an n-variate ΣΠΣ(2k, d, ρ) circuit and return its output.

Lemma 4.13. Algorithm 3 deterministically determines whether the given circuit computes the
zero polynomial. The running time of the circuit is bounded by O(n) times the running time of
Algorithm 1.

Proof. We begin by showing the algorithm correctness. In the first stage, if we find that C|xn=0 6= 0
then obviously, C 6= 0 and the algorithm outputs the correct answer. If indeed C|xn=0 ≡ 0, then

7Formally, for a ΣΠΣ(m, d, ρ) circuit C, the circuit C −C|xn=0 has 2m multiplication gates. However, we remove
every pair of multiplication gates that cancel each other (this removes all gates in which xn does not appear) and the
resulting circuit has at most 2k multiplication gates.

17

C ≡ C ′
4
= C −C|xn=0. Moreover, C ′ is a ΣΠΣ(2k, d, ρ) circuit. Hence, Algorithm 1 will determine

whether C ′, and therefore C, computes the zero polynomial.
The claim regarding the running time follows easily from the recursion formula Tn = Tn−1 +An,

where Tn is the running time of the algorithm when there are n variables (the parameters k, d, ρ are
part of Tn), and An is the running time of Algorithm 1 when given 2k, d, ρ, n as parameters.

5 PIT for read-k ΣΠΣ Circuits

In this section we deal with ΣΠΣ circuits in n variables in which every input variable appears in
at most k linear functions.8 This model is known as read-k ΣΠΣ circuit. Notice that a multilinear
ΣΠΣ(k) circuit is also a read-k ΣΠΣ circuit (recall that a multilinear ΣΠΣ circuit is a circuit in
which every multiplication gate computes a multilinear polynomial). The main result of this section
is a deterministic polynomial time black-box PIT algorithm for read-k ΣΠΣ circuits.

Using similar methods to those in section 4.3 we can reduce the problem of PIT for read-k
ΣΠΣ circuits to PIT of read-2k ΣΠΣ circuits with at most 2k multiplication gates. This can be
seen by noticing that as in section 4.3, the circuits C and C|xn=0 differ in at most k multiplication
gates. We define Fk to be the family of ΣΠΣ circuits that have at most 2k multiplication gates
and each multiplication gate is read-k. In particular, for a read-k ΣΠΣ circuit C, we have that
C − C|xn=0 belongs to Fk. Our proof follows the same line as Theorem 3.4. In order to apply the
theorem we need to bound the rank of a simple and minimal circuit from Fk that computes the
zero polynomial. Then we have to find a family of subspaces that is rank-preserving and that Fk is
closed with respect to them. The following lemma gives a simple lower bound on the rank of every
circuit in Fk.

Lemma 5.1. Let {Li(x̄)}d
i=1 be a set of d linear functions, such that every input variable appears

in at most k of the linear functions. Then rank
(
{Li(x̄)}d

i=1

)
≥ d/k. In particular, if C is a circuit

in Fk then rank(C) ≥ deg(C)/k.

Proof. The proof is by a induction on d. When there are 1 ≤ d ≤ k linear functions the claim
is obvious. Now, for k < d assume w.l.o.g. that x1 appears in the linear functions L1, . . . , Lt

for some t ≤ k, and in no other linear function. By the induction hypothesis we have that
rank

(
{Li(x̄)}d

i=t+1

)
≥ (d−t)/k ≥ d/k−1. Clearly L1 is not in the span of {Li(x̄)}d

i=t+1 (as x1 does
not appear in any of those linear functions). Therefore the total rank is at least d/k− 1 + 1 = d/k.

To prove the claim regarding a circuit C in Fk, we recall that every multiplication gate in such
a circuit is read-k. By the previous argument it follows that the rank of every multiplication gate
of degree d is at least d/k and so the rank of the circuit is at least deg(C)/k.

Combining the result of the lemma with Theorem 2.3 we get a bound on the rank of a zero,
simple and minimal circuit in Fk.

Corollary 5.2. There exists an integer function R(k) = 2O(k2) such that for every simple and
minimal zero circuit C in Fk, rank(C) < R(k).

Proof. Let d = deg(C). By combining Lemma 5.1 with Theorem 2.3 we get that d/k ≤ rank(C) <
2O(k2) · logk−2(d). It follows that d = 2O(k2) and so rank(C) < 2O(k2).

8Note that we do not put a restriction on the number of multiplication gates nor on the degree of the circuit.
However it is clear that neither can exceed n · k.

18

We now have to come up with a set of rank-preserving subspaces that Fk is closed with respect
to each of them. The delicate point here is that if we consider an arbitrary subspace V then most
likely if C is a read-k circuit, then C|V will not be read-k any more. For example, consider the
subspace of co-dimension 1 defined by the equation xn = x1 + x2 + . . . + xn−1. In the circuit C|V
we have to replace every appearance of xn with x1 + . . . + xn−1 (we can replace a different variable
instead of xn but the argument will not change). In particular, every linear function that contained
xn can now, possibly, contain all the variables. If we do it for subspaces of larger co-dimension
(and in our case dim(V) is small) then we may lose the read-k property. In order to avoid this kind
of trouble we construct rank-preserving subspaces that have a very special form - each variable
is either restricted to a constant or is shifted by a constant (that is, we do not “mix” different
coordinates). The construction is given in the next subsection.

5.1 Construction of rank-preserving subspaces for the family Fk

In this section we construct a set of subspaces that contain an r-rank-preserving subspace for every
circuit in Fk, for some given integer r. Each subspace will be composed from a projection on a
small set of coordinates and a shift. It is clear that the restriction of a read-k circuit to such a
subspace is again a read-k circuit. The projections alone will preserve the read-k property and will
satisfy Property 2 of Definition 3.1, but not Properties 1, 3 and 4. However, as we shall see, the
shifted projections will have all the required properties.

Definition 5.3. Let B ⊆ [n] be a non-empty subset of the coordinates and α ∈ F be a field element.

• Define VB as the following subspace: VB = span{ei : i ∈ B}, where ei is the vector that has
1 in the i’th coordinate and zeros elsewhere.

• Let v0,α be, as before, the vector v0,α =
(
α, α2, . . . , αn

)
.

• Let VB,α = VB + v0,α.

Obviously, for a read-k circuit C, the restricted circuit C|VB,α
is also read-k, for every B and

α (the restriction assigns the value αi to every xi for i 6∈ B, and shifts xi to xi + αi for i ∈ B).
In particular we get that Fk is closed with respect to any subspace VB,α. The following theorem
shows that if we just consider the set of all VB-s for |B| ≤ 4k · r then this set contains a subspace
that has Property 2 of Definition 3.1.

Theorem 5.4. Let C ∈ Fk be a circuit. Then, for every r > 0, there exists a subset B ⊆ [n] such
that |B| ≤ 4k · r and B has the following properties9:

1. ∀∅ 6= A ⊆ [2k], rank(sim(CA)|VB
) ≥ min{rank(sim(CA)), r}.

2. C|VB
∈ Fk.

Proof. It is clear that C|VB
has at most 2k multiplication gates and that every multiplication gate is

still read-k, and so we turn to prove that the first claim of the theorem holds. Let A1, A2, . . . , A4k−1

be the non-empty subsets of [2k]. We first show that for each Ai, there exists a subset Bi ⊆ [n] such
that |Bi| ≤ r and rank(sim(CAi

)|VBi
) = min{rank(sim(CAi

)), r}. Indeed, let Ri = rank(sim(CAi
)),

and let L1, . . . , LRi
∈ Lin(sim(CAi

)) be such that (L1)
H , . . . , (LRi

)H are linearly independent.
Denote by Z the Ri×n matrix whose rows correspond to the vectors of coefficients of {(Lj)

H}j∈[Ri].
Obviously, there are Ri linearly independent column-vectors in Z. Let Bi ⊆ [n] contain the indices

9We assume w.l.o.g. that C has exactly 2k multiplication gates.

19

of min{Ri, r} columns that are linearly independent. We now observe that the matrix corresponding
to the vectors of coefficients of the linear functions {(Lj |VBi

)H}j∈[Ri] is equal to Z on the columns
of Bi, and has zeros elsewhere. As the column rank of Z is equal to its row rank (that is equal to
min{Ri, r}) we get that the rank of {(Lj |VBi

)H}j∈[Ri] is at least min{Ri, r}. Hence we get that,

rank(sim(CAi
)|VBi

) ≥ min{rank(sim(CAi
)), r}.

Up till now we showed that for every Ai there is a set Bi satisfying |Bi| = min{Ri, r} such that
VBi

is good for CAi
. However, it may be the case that different Ai-s need different Bi-s. Therefore

we shall consider the set
B = ∪4k−1

i=1 Bi.

It is clear that |B| < 4k · r. Furthermore, for each ∅ 6= Ai ⊆ [2k] we have that

rank(sim(CAi
)|VB

) ≥ rank(sim(CAi
)|VBi

) ≥ min{rank(sim(CAi
)), r}.

This concludes the proof of the theorem.

The following is an immediate corollary of Theorem 5.4.

Corollary 5.5. For every C ∈ Fk and integer r > 0, there exists a subset B ⊆ [n], of size
|B| = 4k · r, such that C|VB

∈ Fk and VB satisfies property 2 of definition 3.1.

Proof. Let C ∈ Fk be a circuit and B′ ⊆ [n] be a subset guaranteed by theorem 5.4. Let B ⊆ [n]
be such that B′ ⊆ B and |B| = 4k · r. It is clear that B also satisfies the requirements of
theorem 5.4.

We also note that if VB satisfies theorem 5.4 for some circuit C, then so does VB,α for any α ∈ F.
The reason is that restricting to an affine shift of VB does not decrease the rank of the restricted
linear functions. The following theorem shows that for every circuit C ∈ Fk there are at most
poly(n) many α-s such that VB,α is not rank preserving for the set B guaranteed by Corollary 5.5.

Theorem 5.6. Let C ∈ Fk be a circuit over a field F and 0 < r ∈ N. Let B be the set guaranteed by
Corollary 5.5. Then there are less than 3n3k4 many α ∈ F such that VB,α is not r-rank-preserving
for C.

Proof. We already know that for every α, the subspace VB,α satisfies Property 2 of Definition 3.1.
We thus have to bound the number of α’s for which either Property 1, Property 3 or Property 4 are
not satisfied. As we discuss ΣΠΣ circuits, Property 4 is clearly satisfied, so we only have to take care
of Properties 1 and 3. We first bound the number of α-s for which VB,α does not satisfy Property 3.
Consider a linear function L that appears in C given by L(x1, . . . , xn) = a0 +a1x1 + . . .+anxn, and
the subspace VB,α for some α. Then the restriction of L to VB,α is given by

∑
i∈B aixi + L(v0,α) =∑

i∈B aixi +
∑n

i=0 aiα
i. It follows that L|VB,α

= 0 if and only if L is supported on [n] \ B (that is,
ai = 0 for i ∈ B) and a0 + a1α + . . . + anαn = 0. In particular α must be a root of the polynomial

pL(x)
∆
= a0 + a1x + . . . anxn

(notice that this polynomial does not depend on the set B). As pL(x) is a non-zero polynomial of
degree n it has at most n distinct roots. Going over all linear functions in C we see that there are
at most 2n2k2 (specifically, there are 2nk2 linear functions appearing in C and each function gives
at most n distinct roots) bad α-s for C (that is, these are the only α’s that are roots of one of the
pL’s).

20

We now bound the number of α-s for which VB,α violates Property 1. For simplicity we shall
only consider those α-s for which Property 3 is satisfied. Let L, L̃ be two linearly independent linear
functions appearing in C (= Ĉ). We have three cases. The first case is that both L and L̃ are
supported on [n]\B. In this case it is clear that the restriction of both functions to VB,α is constant,
for any α, and so all α-s are good. The second case is that exactly one of the functions is supported
on [n] \ B, say L. In this case L is restricted to a constant non-zero function and L̃ is restricted
to a non-constant function (no matter what α is) and so they remain linearly independent. The
third, and more interesting, case is when both functions are restricted to non constants. Denote
L(x̄) = a0 + a1x1 + . . . anxn and L̃(x̄) = ã0 + ã1x1 + . . . ãnxn. For L|VB,α

and L̃|VB,α
to be linearly

dependent there must exist a constant γ ∈ F, independent of α, such that L|VB
= γ · L̃|VB

. For this
γ we have that α must satisfy that L(v0,α) = γ · L̃(v0,α) or, equivalently, that (L− γ · L̃)(v0,α) = 0.
As we assumed that L and L̃ are linearly independent we have that L − γ · L̃ 6= 0. Define the
polynomial pL−γ·L̃(x) as before. We see that it must be the case that pL−γ·L̃(α) = 0. Thus, α is a

root of a degree n polynomial that depends only on L, L̃ and B. In particular, for our B there are

at most n ·
(
2nk2

2

)
< 2n3k4 many α-s such that VB,α violates Property 1.

Concluding, we see that for our B there are less than 2n2k2 + 2n3k4 < 3n3k4 many α-s for
which VB,α is not rank-preserving for C. This concludes the proof of the theorem.

Corollary 5.7. Let S ⊆ F be of size 3n3k4. Let C ∈ Fk. Then there exists B ⊆ [n] of size
|B| = 4k · R(k) and α ∈ S such that VB,α is R(k)-rank-preserving for C.

Proof. Follows immediately from Corollary 5.5 and Theorem 5.6.

5.2 The PIT algorithm for read-k ΣΠΣ circuits

In this section we give the PIT algorithm to read-k ΣΠΣ circuits and prove Theorem 2. Algo-
rithm 5.2 is a deterministic PIT algorithm for read-k ΣΠΣ circuits.

Algorithm 4 Deterministic PIT for read-k ΣΠΣ circuits

Input: k, n ∈ N, and oracle access to a read-k ΣΠΣ circuit C in n input variables.
Output: Determine whether C ≡ 0.

Let {0} ⊆ T ⊆ F be a subset of size k + 1. If n = 1 then if C vanishes on the different points of T
then output “zero”. Otherwise output “non-zero”.
For n > 1, recursively run the algorithm on the circuit C|xn=0, with parameters k, n − 1. If the
answer is “non-zero” then return “non-zero”. Otherwise let S ⊆ F be a subset of size 3n3k4. For
α ∈ F let v0,α = (α, . . . , αn) ∈ Fn. Define H as

H =
{

v + v0,α : v ∈ Tn, |v| ≤ 4k · R(k), α ∈ S
}

,

where |v| is the number of non-zero coordinates in v. If for every point z̄ ∈ H, C(z̄) = 0 then
output “zero”. Otherwise, return “non-zero”.

The following lemma shows that Algorithm 5.2 is correct, and gives a trivial upper bound on
its running time. Theorem 2 is an immediate corollary of the lemma.

Lemma 5.8. Let C be a read-k ΣΠΣ circuit. Then Algorithm 5.2, when given k, n as input and

oracle access to C, determines whether C ≡ 0. the running time of the algorithm is n2O(k2)
.

21

Proof. Certainly if C ≡ 0 then the algorithm returns zero-circuit. So assume that C 6≡ 0. If n = 1,
then as C is a read-k circuit, its degree (as a univariate polynomial) is at most k. According to the
Schwartz-Zippel lemma (Lemma 4.11), if C vanishes on k + 1 different points then C ≡ 0.

For n > 1 notice that if C|xn=0 6≡ 0 then the algorithm outputs “non-zero”. So assume that

C|xn=0 ≡ 0. It follows that C ′
∆
= C − C|xn=0 6≡ 0. Notice that C ′ ∈ Fk.

By Corollary 5.7 we see that there exists a set B ⊆ [n] of size 4k · R(k) and α ∈ S such that
VB,α is R(k)-rank-preserving for C ′. Theorem 3.4 combined with Corollary 5.2 assures us that
C ′|VB,α

, which is also in Fk, is not the zero polynomial. Let x̄B be the vector of indeterminates
that is supported on B, namely, replace xi with 0 for i 6∈ B. From the definition of VB,α we
get that C ′|VB,α

can be represented as C ′(x̄B + v0,α). Note, that C ′(x̄B + v0,α) is a polynomial

in |B| = 4k · R(k) variables of degree at most k in each variable (each variable appears at most
k times in every multiplication gate). By the Schwartz-Zippel lemma (Lemma 4.11) we get that

there is some w̄ ∈ T 4k·R(k) such that10 C(w̄ + v0,α) = C ′(w̄ + v0,α) 6= 0. We can think of w̄ as an
n-dimensional vector w̄ ∈ Tn of weight |w̄| ≤ |B| = 4k · R(k). Therefore z̄ = w̄ + v0,α ∈ H and so
the algorithm will output “non-zero circuit”.

To bound the running time we notice that we have the recursion formula

T (n) = T (n − 1) + |H| = T (n − 1) +
(
(k + 1)4

k·R(k)
)
·

(
n

4k · R(k)

)
· (3n3k4),

where T (n) is the running time of the algorithm on n inputs (k does not change during the execu-
tion). The solution to the recursion is

T (n) = nO(4k·R(k)) = n2O(k2)
.

References

[AB03] M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering.
JACM, 50(4):429–443, 2003.

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of
the 25th FSTTCS, volume 3821 of Lecture Notes in Computer Science, pages 92–105,
2005.

[AM07] V. Arvind and P. Mukhopadhyay. The ideal membership problem and polynomial
identity testing. ECCC Report TR07-095, 2007.

[BOT88] M. Ben-Or and P. Tiwari. A deterministic algorithm for sparse multivariate polynominal
interpolation. In Proceedings of the 20th Annual STOC, pages 301–309, 1988.

[CDGK91] M. Clausen, A. W. M. Dress, J. Grabmeier, and M. Karpinski. On zero-testing and in-
terpolation of k-sparse multivariate polynomials over finite fields. Theoretical Computer
Science, 84(2):151–164, 1991.

[CK00] Z. Chen and M. Kao. Reducing randomness via irrational numbers. SIAM J. on
Computing, 29(4):1247–1256, 2000.

10We abuse notations and “redefine” w̄ as an n-dimensional vector having zeros in the indices that are not in B

and its original elements in the other indices.

22

[CRS95] S. Chari, P. Rohatgi, and A. Srinivasan. Randomness-optimal unique element isolation
with applications to perfect matching and related problems. SIAM J. on Computing,
24(5):1036–1050, 1995.

[DS06] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434, 2006.

[GK87] D. Grigoriev and M. Karpinski. The matching problem for bipartite graphs with poly-
nomially bounded permanents is in NC (extended abstract). In Proceedings of the 28th
Annual FOCS, pages 166–172, 1987.

[GKS90] D. Grigoriev, M. Karpinski, and M. F. Singer. Fast parallel algorithms for sparse multi-
variate polynomial interpolation over finite fields. SIAM J. on Computing, 19(6):1059–
1063, 1990.

[GR05] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields. In
46th Annual FOCS, pages 407–418, 2005.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KS96] M. Karpinski and I. Shparlinski. On some approximation problems concerning sparse
polynomials over finite fields. Theoretical Computer Science, 157(2):259–266, 1996.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the 33rd Annual STOC, pages 216–223, 2001.

[KS06] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. In Proceed-
ingds of the 21st Annual IEEE Conference on Computational Complexity, pages 9–17,
2006.

[Lov79] L. Lovasz. On determinants, matchings, and random algorithms. In L. Budach, editor,
Fundamentals of Computing Theory. Akademia-Verlag, 1979.

[LV98] D. Lewin and S. Vadhan. Checking polynomial identities over any field: Towards a
derandomization? In Proceedings of the 30th Annual STOC, pages 428–437, 1998.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non commutative
models. Computational Complexity, 14(1):1–19, 2005.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
JACM, 27(4):701–717, 1980.

[Shp07] A. Shpilka. Interpolation of depth-3 arithmetic circuits with two multiplication gates.
In Proceedings of the 39th Annual STOC, pages 284–293, 2007.

[SS96] R. E. Schapire and L. M. Sellie. Learning sparse multivariate polynomials over a field
with queries and counterexamples. J. of Computer and System Sciences, 52(2):201–213,
1996.

[SV08] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. Manuscript, 2008.

23

[Wer94] K. Werther. The complexity of sparse polynomial interpolation over finite fields. Ap-
plicable Algebra in Engineering, Communication and Computing, 5:91–103, 1994.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In Symbolic and algebraic
computation, pages 216–226. 1979.

A Proof of Lemma 4.5

Notice that by the union bound it is enough to prove the theorem for the case that s = 1. Hence,
we assume w.l.o.g. that s = 1 and that we have only one subspace, W . We shall also assume that
dim(W) = t, as any subspace W such that dim(W) < t, is contained in a subspace W ⊆ W ′ of
dimension t, and the equality dim (ϕα(W ′)) = dim(W ′) implies that dim (ϕα(W)) = dim(W).

Let w̃(1), . . . , w̃(t) be a basis of W . For convenience we denote w̃(l) = (w̃
(l)
0 , . . . , w̃

(l)
m−1). For

j ∈ [t], let jmax to be the maximal i ∈ {0, . . . , m − 1} such that w̃
(j)
i is non-zero. Note that (e.g.

by using Gaussian elimination) there exists a basis w(1), . . . , w(t) of W such that

0 ≤ 1max < 2max < . . . < (t)max.

Denote with B the m × t matrix who’s j-th column is w(j). That is,

B = (w(1), . . . , w(t)).

Let Pϕα,t,m be the matrix corresponding to the linear transformation ϕα,t,m (with respect to the
basis {ei}i∈{0,1,...,m−1}). As W = B(Ft) we have that

ϕα,t,m(W) = (Pϕα,t,m · B)(Ft).

Let Cα the t × t matrix Pϕα,t,m · B. That is,

(Cα)j,l =
m−1∑

i=0

αji · w
(l)
i .

Recall that Cα(Ft) = Ft if and only if Det(Cα) 6= 0. Thus, our result will follow if we show that
for most α-s the determinant of Cα is non zero. Let f(α) = Det(Cα). We will show that f(α) is a
non-zero polynomial of degree not larger than (m− 1) ·

(
t+1
2

)
in α. Hence, Det(Cα) = 0 for at most

(m − 1) ·
(
t+1
2

)
values of α and the lemma follows. Consider the following representation of f

f(α) = Det(Cα) =
∑

σ∈St

sgn(σ) · fσ(α),

where St is the group of all permutations of t elements and

fσ(α) =
t∏

j=1

(Cα)j,σ(j).

Let Id ∈ St be the identity permutation. We will show that for every σ 6= Id in St, we
have that deg(fσ) < deg(fId). Assume for a contradiction that there exists σ 6= Id such that
deg(fσ) ≥ deg(fId). Fix a permutation σ 6= Id that maximizes deg(fσ). That is, deg(fσ) ≥ deg(fσ′)

24

for every σ′ ∈ St. By definition, (Cα)j,σ(j) is a polynomial of degree j · σ(j)max in α (as w
(σ(j))
i = 0

for i > σ(j)max). Therefore, fσ has degree

deg(fσ) =
t∑

j=1

j · σ(j)max. (6)

By our assumption, σ 6= Id, and so there exist j1 < j2 such that σ(j1) > σ(j2). Let τ =
(σ(j1), σ(j2)) · σ, i.e. the permutation τ consists of applying σ and then “switching” between
σ(j1) and σ(j2). By Equation (6) we get that

deg(fτ) − deg(fσ) = j2τ(j2)max + j1τ(j1)max − j2σ(j2)max − j1σ(j1)max

= j2σ(j1)max + j1σ(j2)max − j2σ(j2)max − j1σ(j1)max

= (j2 − j1)(σ(j1)max − σ(j2)max) > 0

which contradicts the maximality of deg(fσ).
Hence, for any σ 6= Id, deg(fσ) < deg(fId). Thus, the highest degree monomial in fId cannot

be cancelled out by the other summands in f(α), and therefore f(α) is a non-zero polynomial of
degree

deg(f) = deg(fId) =
t∑

j=1

j · jmax ≤ (m − 1) ·
t∑

j=1

j = (m − 1)

(
t + 1

2

)
.

This completes the proof of the lemma.

25

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

	Introduction
	Known results
	Some definitions and statement of our results
	Our techniques
	Organization

	Preliminaries
	Generalized Depth 3 Arithmetic Circuits

	Rank Preserving Subspaces
	Black-box PIT for (k,d,) circuits
	Construction of rank-preserving subspaces
	The PIT algorithm for (k,d,) circuits
	PIT for generalized (k,d,) circuits

	PIT for read-k Circuits
	Construction of rank-preserving subspaces for the family Fk
	The PIT algorithm for read-k circuits

	Proof of Lemma 4.5

