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Abstract

Motivated by the study of Parallel Repetition and also by the Unique Games Conjecture, we in-
vestigate the value of the “Odd Cycle Games” under parallel repetition. Using tools from discrete
harmonic analysis, we show that after d rounds on the cycle of length m, the value of the game is at
most 1− (1/m) · Ω̃(

√
d) (for d ≤ m2, say). This beats the natural barrier of 1−Θ(1/m)2 ·d for Raz-style

proofs [Raz98, Hol06] (see [Fei95]) and also the SDP bound of Feige-Lovász [FL92, GW95]; however, it
just barely fails to have implications for Unique Games. On the other hand, we also show that improving
our bound would require proving nontrivial lower bounds on the surface area of high-dimensional foams.
Specifically, one would need to answer: What is the least surface area of a cell that tiles R

d by the lattice
Z

d?

1 Introduction

In this paper we observe some intriguing relations between problems from different areas, which seem unre-
lated at first look. In particular, we show that any significant improvement on bounds for parallel repetition
on 2-player games would entail progress on a certain foam problem in R

d which is currently wide open. On
the other hand, we manage to translate a known bound for the foam problem to get an improved bound for
a special case of the Strong Parallel Repetition Problem.

1.1 Problems and relations

We now state some of the problems which are discussed in this paper, and discuss their relations in detail.
The definitions of other problems and of some of the notions used here appear in Subsection 1.2 below.

We begin with the Strong Parallel Repetition Problem, which asks whether the parameters in the Parallel
Repetition Theorem [Raz98, Hol06] can be significantly improved. It is a natural open question in game
theory, and as discussed in Section 2, it has implications in complexity theory as well. This problem was
one of the original motivations of this work.

Strong Parallel Repetition Problem: Let G be a 2-player 1-round game where the players’ answers
are in the sets A and B respectively. Is it true that val(G) ≤ 1− ε implies val(G⊗d) ≤ (1−Ω(ε))d/ log(|A||B|)?

The Strong Parallel Repetition Problem for XOR Games (defined in Subsection 1.2) is an interesting
special case of the Strong Parallel Repetition Problem, and a very special case of that is our Odd Cycle
Parallel Repetition Problem, which asks whether one can get improved parameters for parallel repetition
over a very specialized type of games.

∗Some of this research was done while the author was at Microsoft Research. Research was partially funded by the Israel
Science Foundation (ISF).
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Odd Cycle Parallel Repetition Problem: Let GCm be the length-m Odd Cycle Game (see Defi-
nition 1.3), satisfying val(GCm) = 1 − Θ(1/m). What is val(G⊗d

Cm
), its value after d rounds of parallel

repetition? Is it true that val(G⊗d
Cm

) ≤ 1 − (1/m) · Ω(d) for d ≤ m?

The observation which is reflected in the title of this paper is that upper bounds for the value of G
⊗d
Cm

translate to lower bounds on the surface area of cells that tile R
d by a certain lattice. Thus good bounds for

the Strong Parallel Repetition Problem, which must apply to the Odd Cycle Parallel Repetition subproblem,
also translate to bounds for the surface area of certain periodic foams, and thus must increase our under-
standing of these little understood objects – many problems of minimal surface-area foams are longstanding,
notorious problems in geometry, and may be difficult to solve.

Foam Problem on R
d/Z

d: What is the least surface area A(d) of a cell that tiles R
d by Z

d?

Bounds for the Odd Cycle Parallel Repetition Problem translate to foams through a problem of elimi-
nating cycles in a certain torus-like graph.

Cycle Elimination Problem on (Zd
m)∞: Let (Zd

m)∞ denote the discrete torus graph on vertex set Z
d
m

in which two vertices are connected if their `∞ distance is at most 1. What is the least fraction of edges
δ(d, m) that need to be deleted from (Zd

m)∞ so as to eliminate all of the topologically nontrivial cycles?

The Cycle Elimination Problem on (Zd
m)∞ is in fact almost equivalent to the Odd Cycle Parallel Rep-

etition Problem (equivalence truly holds for a slight variation of it, the Odd Cycle Elimination Problem
on K2 × (Zd

m)∞). In the most technically challenging part of this work, we manage to translate a simple
lower-bound for the Foam Problem back to a bound for the Cycle Elimination Problem, and from it, to
the Odd Cycle Parallel Repetition Problem, getting bounds that are better than can be achieved with the
current Parallel Repetition Theorems.
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Cycle Elim. on  
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Figure 1: The Strong Parallel Repetition Problem for XOR Games is special case of the Strong Parallel Repetition Problem. A
very special case of that is our Odd Cycle Parallel Repetition Problem. This problem is equivalent to the Odd Cycle Elimination

Problem on K2 × (Zd
m)∞, a slight variant of our Cycle Elimination Problem on (Zd

m)∞. When d � m this last problem seems
essentially similar to the Foam Problem on R

d/Z
d, which is connected to longstanding, notorious problems in geometry.

1.2 Definitions

Before we give precise statements of our results, let us give the definitions of the notions used so far, and of
a few more problems. We begin with 2-player 1-round games, and parallel repetition.

Definition 1.1 A 2-player 1-round (2P1R) game G with question sets X and Y and answer sets A and
B is a tuple that consists of a probability distribution π on X × Y and a family of predicates (Vxy)x∈X ,y∈Y
each on A×B. It describes a game in which a “verifier” chooses (X, Y ) randomly according to π and sends

2



question X to player “Alice” and question Y to player “Bob”. Without further communication, Alice must
reply with an answer A and Bob with an answer B. The verifier then checks whether VXY (A, B) holds; in
this case Alice and Bob “win”.

The value of the game is

val(G) = sup
fA,fB

E
(X,Y )←π

[VXY (fA(X), fB(Y ))] ,

where the sup is over strategies fA : X → A and fB : Y → B for Alice and Bob.

Equivalently, one can think of a 2P1R game as a constraint satisfaction problem on a weighted bipartite
graph (X × Y, π), with label sets A for X and B for Y and constraints given by the Vxy’s. In this paper we
will be particular interested in some special classes of 2P1R games:

Definition 1.2 A 2P1R game is binary if A = B = {0, 1}. It is said to be a unique game if: (i) |A| = |B|
and (ii) for every x ∈ X , y ∈ Y, there is a permutation σxy : A → B such that Vxy(a, b) is true iff b = σxy(a).
Finally, a binary unique game is called an XOR game; for such games, each constraint Vxy is of the form
a + b = 0 (mod 2) or a + b = 1 (mod 2); equivalently, a = b or a 6= b.

Perhaps the simplest family of XOR games is the family of Odd Cycle Games:

Definition 1.3 The m-Cycle Game (for m odd), denoted GCm , is a 2P1R game in which X = Y = Zm

and A = B = Z2. The distribution π on Zm × Zm is given by choosing the first coordinate X uniformly at
random and setting the second coordinate Y to be X + Λ, where Λ is chosen independently and uniformly
from {−1, 0, 1}. The winning predicate Vxy(a, b) is defined to be the equality constraint a = b when x = y,
and to be the inequality constraint a 6= b when x 6= y.

Remark 1.4 The m-Cycle Games are XOR games. They satisfy val(GCm) = 1 − (2/3)(1/m).

Given any 2P1R game, we can produce new, more complicated 2P1R games via the operation known as
parallel repetition:

Definition 1.5 Given a 2P1R game G as in Definition 1.1 and d ∈ N, the d-“round” parallel repeated
version is the 2P1R game G

⊗d with question sets X d and Yd, answer sets Ad and Bd, the product distribution
π⊗d on X d × Yd, and the family of predicates (V ⊗d

xy )x∈X d,y∈Yd defined by

V ⊗d
xy (a, b) = Vx1y1

(a1, b1) ∧ Vx2y2
(a2, b2) ∧ · · · ∧ Vxdyd

(ad, bd).

One of our main problems, the Odd Cycle Parallel Repetition Problem, is to give bounds on the value
of GCm after d rounds of parallel repetition. When G

⊗d
Cm

is viewed as a constraint satisfaction problem on a
bipartite graph, the graph in question is the double cover of a discrete torus graph.

Definition 1.6 Given d, m ∈ N, the discrete torus graph with `∞ edge structure, denoted (Zd
m)∞, is the

graph on vertex set Z
d
m in which two vertices are connected if their `∞ distance is at most 1. For the purposes

of edge counting, the self-loops of (Zd
m)∞ count as half-edges.

Definition 1.7 The double cover of the discrete torus graph (Zd
m)∞, which we denote by K2 × (Zd

m)∞, is
the bipartite graph whose vertex set consists of two disjoint copies of Z

d
m, called the A-side and the B-side.

The graph has an edge from x on the A-side to y on the B-side whenever (x, y) is an edge in (Zd
m)∞. Given

a vertex, edge, or cycle in K2 × (Zd
m)∞, we say its projection to (Zd

m)∞ is the vertex, edge, or cycle in
(Zd

m)∞ one gets by ignoring the distinction between the A- and B-sides.

Determining val(G⊗G
Cm

) can be viewed as the problem of finding an optimal Z
m
2 -labeling of the vertices

of K2 × (Zd
m)∞ so as to satisfy certain constraints. However it turns out that it is equivalent to a simpler

problem. To describe this problem though, we need to introduce some topological notions.

Definition 1.8 The d-dimensional unit cubic torus, denoted T d, is R
d/Z

d (interpreted as a Riemannian
manifold, say); i.e., the unit cube [0, 1]d with opposite faces identified.
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Figure 2: (Z2
5)∞ — self-loops not pictured

The graph (Zd
m)∞ can be naturally embedded in T d, with its edges being straight line segments. We

sometimes think of it as a discretization of T d.

Definition 1.9 Given an (oriented) cycle L in the graph (Zd
m)∞, its homotopy class, denoted [L] ∈ Z

d, is
defined to be the homotopy class of the closed loop in T d with which it is naturally identified. I.e., if L “wraps
around the boundary” ci times in the ith direction, then [L] = (c1, c2, . . . , cd). For a cycle L in K2 × (Zd

m)∞
we define its homotopy class [L] to be the homotopy class of its projection to (Zd

m)∞.

Definition 1.10 We say that a cycle L (in (Zd
m)∞ or in K2× (Zd

m)∞) is topologically nontrivial if [L] 6= 0.
We say that it is topologically odd if [L]i is odd for some coordinate 1 ≤ i ≤ d. Note that a topologically
odd cycle is topologically nontrivial.

We now present the simpler problem which is equivalent to determining val(G⊗d
Cm

):

Odd Cycle Elimination Problem on K2 × (Zd
m)∞: What is the least fraction of edges δ′(d, m) that

need to be deleted from K2 × (Zd
m)∞ so as to eliminate all of the topologically odd cycles?

Finally, we mention the notion of foams. In geometric measure theory, a foam is a “a piecewise smooth
arrangement of connected, bounded regions (‘bubbles’) tiling space (of arbitrary dimension) [in which] the
bubble volumes are taken to be fixed.” [WKC+04]. Usually one is interested in studying foams of minimal
surface area. In particular, the Foam Problem on R

d/Z
d is concerned with finding the best foam among

those that are periodic with respect to the integer lattice.

1.3 Our results

We now describe our results; specifically, our bounds for the Odd Cycle Parallel Repetition Problem. Refer-
ring back to Figure 1, the reductions illustrated there imply that an upper bound for the Foam Problem on
R

d/Z
d — i.e., a cell with small surface area that tiles R

d by Z
d — yields good strategies for the players in

G
⊗d
Cm

. Specifically, we have the following results, the proofs of which are not hard:

Theorem 1.11

val(G⊗d
Cm

) = 1 − δ′(d, m)

(proven in Proposition 2.4)

≥ 1 − 2δ(d, m)

(proven in Remark 2.5)

≥ 1 − (1/m) · O(A(d))

(proven in Theorem 3.1).

4



Regarding A(d), the least surface area of a cell that tiles d-dimensional space by the integer lattice, in
Section 3.2 we remark that the following easy bounds hold (it turns out that A(d)/2 is a slightly more
natural quantity to study than A(d)):

Proposition 1.12

d − exp(−O(d log d)) ≥ A(d)

2
≥
{

√

πe/2
√

d − o(
√

d),√
d.

The first lower bound is in fact always better than the second, although just by the constant factor
√

πe/2 ≈ 2.066. However it uses the classical isoperimetric inequality, whereas the
√

d bound just uses
elementary reasoning.

If we place a cell that tiles R
d by Z

d inside the unit torus T d, its surface has the property that it blocks
all homotopically nontrivial loops in T d. Thus A(d)/2 can also be viewed as the least amount of surface
that needs to be deleted from T d so as to eliminate all topologically nontrivial cycles from T d (one divides
by two since each point on the cell’s surface is counted twice — from the inside and from the outside). This
forms the intuitive connection between our Foam Problem and our Cycle Elimination Problem, especially
for the case of large m in which the fine granularity of (Zd

m)∞ approximates the continuous torus T d.
Unfortunately, it’s not clear that the connection between the two problems can be put precisely; in

contrast to Theorem 3.1 we don’t show that lower bounds for A(d) automatically translate into lower bounds
for δ(d, m). The main issue is that whereas solutions to the Foam Problem are defined to be surfaces, it’s not
clear how to show that the minimal solution to the Cycle Elimination Problem on (Zd

m)∞ is “surface-like”.
In fact, it seems that it won’t be if m is small compared to d.

Nevertheless, the main theorem of this paper shows that the elementary reasoning which shows A(d)/2 ≥√
d can be translated — albeit very elaborately — into an essentially equivalent lower bound on δ(d, m):

Main Theorem, Theorem 4.1 Provided m ≥
√

d/ log d,

δ(d, m) ≥ (1/m) · Ω(
√

d/ log d),

and indeed δ′(d, m) ≥ (1/m) · Ω(
√

d/ log d) as well.

Using val(G⊗d
Cm

) = 1 − δ′(d, m) (proven in Proposition 2.4 as mentioned in Theorem 1.11) we get as a
corollary:

Corollary 1.13 Provided d ≤ m2 log m,

val(G⊗d
Cm

) ≤ 1 − (1/m) · Ω(
√

d/ log d).

Unfortunately, this result does not get as far as we wanted for the Odd Cycle Parallel Repetition Problem.
However from Theorem 1.11 we see that getting an improved lower bound (beyond the

√
log d factor) would

require making an advancement on the Foam Problem on R
d/Z

d, specifically, proving a better lower bound
than Θ(

√
d).

Finally, we note that perfect parallel repetition does not hold for m-cycle games. That is, while the value
of the m-cycle game is val(GCm) = 1 − (2/3)(1/m) (see Remark 1.4), there are at least some values of d for
which val(G⊗d

Cm
) > (1 − (2/3)(1/m))d.

Theorem 1.14 There exists a constant 0 < δ < 1, such that for sufficiently large odd m and for the largest
integer d such that (1 − 2/3m)d > 1/m,

val(G⊗d
Cm

) > 1/mδ.

Due to space limitations, the proof of Theorem 1.14 will only appear in the full version of the paper.
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1.4 Outline of the rest of paper

In Section 2 we discuss Parallel Repetition in general and explain some motivations for studying it on the Odd
Cycle Games — namely, understanding the rate of parallel repetition, and the Unique Games Conjecture. We
also summarize what is known about the Odd Cycle Parallel Repetition Problem and prove Proposition 2.4.
In Section 3 we discuss foam problems and prove Theorem 3.1, and in Section 4 we prove our main theorem,
Theorem 4.1.

1.5 Acknowledgments

The authors are grateful to John M. Sullivan for his expertise on foams, for directing us to [Cho89], and for
his suggestion to calculate the surface area of the Voronoi cell of the A∗d lattice. The authors would also like
to thank Madhu Sudan and Avi Wigderson for helpful discussions.

2 Parallel Repetition

Two-prover one-round games were introduced to complexity theory in the study of interactive proofs [BOGKW88].
In this context, val(G) often represents the probability that the proof of a false statement is accepted. Of
course if val(G) is close to 1, it is important to analyze how G can be transformed into a new 2P1R game
with much smaller value. Parallel repetition is the most natural thing to try.

By using the optimal strategies for G in a coordinatewise fashion, it is easy to see that for any game G it
holds that val(G⊗d) ≥ val(G)d. But early on it was observed [For89] that the reverse inequality need not be
true, since optimal strategies fA : X d → Ad and fB : Yd → Bd for G

⊗d are not necessarily coordinatewise.
It is not particularly easy even to improve on the trivial bound val(G⊗d) ≤ val(G) (which holds because
if the players are to win in the repeated game they must at least win on the first coordinate). In fact, no
improvement on this is even possible if d is only 2, as Feige [Fei91] showed for a certain 2P1R game with
answer size 3.

Extra impetus for understanding the rate of parallel repetition came from the fundamental PCP Theo-
rem [AS98, ALM+98] of computational complexity, which is equivalent to the following statement: There
are universal constants k ∈ N and ε > 0 such that given a 2P1R game G with answer sets of size k, it is
NP-hard to distinguish the cases val(G) = 1 and val(G) ≤ 1 − ε. For applications to hardness of finding
approximate solutions to combinatorial optimization problems, it is of tremendous importance to improve
this to hardness of distinguishing val(G) = 1 from val(G) ≤ ε for every ε > 0, with k being allowed to depend
on ε. This was first achieved by Feige and Kilian [FK00]. However a bound with much better dependence
of k on ε followed immediately when Raz proved his famous Parallel Repetition Theorem:

Theorem 2.1 (Raz’s Parallel Repetition Theorem.) For every v < 1 there exists v′ < 1 such that the
following holds: If G is any 2P1R game with val(G) < v, then

val(G⊗d) ≤ (v′)d/ log(|A||B|).

As was necessary for PCP applications, there is no dependence here on the sizes of the questions sets,
|X | and |Y|. Regarding the sizes of the answer sets, Feige and Verbitsky [FV02] demonstrated that the
logarithmic dependence is essentially necessary. However another quantitative aspect of the theorem has
remained relatively unexplored: the dependence of v′ on v in the range near 1.

2.1 The rate of parallel repetition

In Raz’s original work, when v is of the form 1 − ε for small ε, the quantity v′ is equal to 1 − poly(ε).
Holenstein [Hol06] recently tightened this dependence to 1 − Ω(ε3):

Theorem 2.2 (Holenstein.)

val(G) ≤ 1 − ε ⇒ val(G⊗d) ≤ (1 − Ω(ε3))d/ log(|A||B|).
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For some 2P1R games, an early result of Feige and Lovász [FL92] may give an improved bound. In particular,
for each game G, Feige and Lovász introduced a certain semidefinite program whose value, σ̄(G), is an upper
bound on the game’s value val(G). They then showed that val(G⊗d) ≤ σ̄(G)d. This bound is not always
useful, since in principle it may be that val(G) ≤ 1 − ε and yet σ̄(G) = 1. Nevertheless, as describe below,
there are some classes of games with val(G) ≤ 1 − ε for which σ̄(G) has a provably better dependence on ε
than Holenstein’s 1 − Ω(ε3).

A natural question to ask is what the best possible dependence on ε can be. In particular, can it be made
linear? This is the content of our Strong Parallel Repetition Problem from Section 1.1, which we repeat
here:

Strong Parallel Repetition Problem:

Does val(G) ≤ 1 − ε imply that val(G⊗d) ≤ (1 − Ω(ε))d/ log(|A||B|)?

Understanding this problem was one of the main motivations of this work. Some remarks on it are in order:

1. The problem is open even in the significantly special case of XOR Games; in this case, the question is
simply whether val(G) ≤ 1 − ε implies val(G⊗d) ≤ (1 − Ω(ε))d. This is the Strong Parallel Repetition
Problem for XOR Games mentioned in Figure 1 of Section 1.1.

2. As stated in Theorem 1.14, perfect parallel repetition does not even hold for XOR games (an earlier
example of this appears in [BCH+02]). On the other hand, perfect parallel repetition does hold for
XOR games in the setting of quantum 2P1R games, as shown in [CSUU06]; i.e., valq(G

⊗d) = valq(G)d

if G is an XOR game.

3. Feige [Fei95] sketched an argument for why the inductive proof strategy of Raz (and Holenstein) does
not seem likely to be able to give a bound better than quadratic dependence, (1 − ε2)d/ log(|A||B|).

4. For XOR games G it is known (see [FG95]) that Feige and Lovász’s σ̄(G) is equal to Goemans and
Williamson’s [GW95] SDP relaxation for Max-2Lin,

σ̄(G) = sup
u:X→Sn−1

v:Y→Sn−1

E
π

[

1
2 ± 1

2 〈u(X), v(Y )〉
]

, (1)

where Sn−1 denotes the unit sphere in n dimensions (the sup is over n as well) and the ± sign is
chosen to be + when VXY is the equality constraint and − when it is the inequality constraint. As a
consequence of Goemans and Williamson’s rounding algorithm we get the following quadratic bound:

Theorem 2.3 Let G be an XOR game. Then

val(G) ≤ 1 − ε ⇒ val(G⊗d) ≤ (1 − c · ε2)d,

where c = π2/4 − oε(1).

5. Non-strong parallel repetition guarantees have the seeming shortcoming that they are worse than trivial
for superconstant values of d. For example, even with Theorem 2.3 we get no nontrivial upper bound
on val(G⊗d) for XOR games G having value 1 − ε until d ≥ Ω(1/ε). However, we cannot rule out the
possibility that this may be the true behavior for some such games.

2.2 The Unique Games Conjecture

One of the original motivations for this paper has to do with the now-notorious Unique Games Conjecture
of Khot [Kho02]:
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Unique Games Conjecture For every ε > 0 there exists k ∈ N such that given a unique 2P1R game G

with answer sets of size k, it is NP-hard to distinguish the cases val(G) ≥ 1 − ε and val(G) ≤ ε.

The Unique Games Conjecture has been shown to have strong consequences for hardness of approx-
imation [CKK+05, DMR06, Kho02, KKMO04, KO06, KR03, KV05, ST06], and by now it is becoming
common to refer to these as “UG-hardness” results. This raises a natural question: are there any interesting
“UG-completeness” results? I.e., which of the consequences of the UGC are actually equivalent to it?

The most intriguing possibility comes from the Max-Cut problem. Khot, Kindler, Mossel and O’Donnell [KKMO04],
in combination with a result of Mossel, O’Donnell and Oleszkiewicz [MOO05], proved the following UG-
hardness result: for sufficiently small ε > 0, it is UG-hard to distinguish graphs in which the maximum cut
is a 1 − ε fraction of the edges from graphs in which the maximum cut is a 1 −

√

2/π · √ε fraction of the
edges. (No stronger hardness result is possible, because of the Goemans-Williamson SDP-rounding result
that gives us Theorem 2.3.) It would be particularly appealing to show the reverse, that the UGC follows
from 1−ε vs. 1−Ω(

√
ε) NP-hardness for Max-Cut: Max-Cut is the simplest APX-hard problem and perhaps

one could even conceive of improving the best known hardness result for Max-Cut (1− ε vs. 1− (5/4)ε, due
to [H̊as01, TSSW00]) by gadgets.

Since Max-Cut is a constraint satisfaction problem with “unique constraints”, and since parallel repetition
preserves the uniqueness property, it seems highly natural to try to use straight parallel repetition to prove
the UGC given 1 − ε vs. 1 − Ω(

√
ε) hardness for Max-Cut. There is a slight technicality to deal with first:

hard Max-Cut instances are of course not bipartite, so we would not be in the setting of 2P1R games.
However it is easy to convert a Max-Cut instance into an XOR 2P1R game: with some constant probability
have the verifier pick a random vertex, ask both Alice and Bob for its label, and check that the answers are
the same; with the remaining probability have the verifier pick a random edge, ask Alice for one endpoint’s
label and Bob for the other’s, and check that the answers are different. Using this construction it is easy to
see that 1 − ε vs. 1 − Ω(

√
ε) hardness for Max-Cut implies hardness of distinguishing val(G) ≥ 1 − ε from

val(G) ≤ 1 − Ω(
√

ε) for XOR games.
Rather, the real catch with this approach is that non-strong parallel repetition may destroy a 1 − ε vs.

1 − Ω(
√

ε) gap. In other words, suppose we try to reduce an XOR game G to the unique game G
⊗d with

answer size 2d, perhaps with d taken to be 1/(ε log(1/ε)). In the “completeness case” when val(G) ≥ 1 − ε,
we get val(G⊗d) ≥ (1 − ε)1/(ε log(1/ε)) ≥ 1 − 1/ log(1/ε). However, though we might hope to get val(G⊗d) ≤
(1 − Ω(

√
ε))1/(ε log(1/ε)) = exp(−Ω̃(1/

√
ε)) in the “soundness case”, in fact Theorem 2.3 gives us exactly

nothing, since the 1 − Ω(
√

ε) jumps up to 1 − c · (Ω(
√

ε))2 > 1 − ε.
Thus we see that this approach will work if and only if we can break the “quadratic barrier” for parallel

repetition of XOR games, found in both Feige’s argument (remark #3 of Section 2.1) and Theorem 2.3.

2.3 The Odd Cycle Games

To study the Strong Parallel Repetition Problem for XOR Games, we look at the simplest possible parame-
terized family of XOR games whose values approach 1: the Odd Cycle Games. Recall the definition of GCm

from Definition 1.3 and that val(GCm) = 1 − (2/3)(1/m) = 1 − Θ(1/m).

The best upper bound on val(G⊗d
Cm

) previously known follows from the Feige-Lovász SDP method: It
is well-known that the optimal solution to the Goemans-Williamson SDP for the m-cycle (m odd) maps

x ∈ Zm to (cos x(m−1)π
m , sin x(m−1)π

m ) ∈ S1; it is easy to check further that the optimal solution to (1) for
GCm involves taking both u and v to be this map. This implies

σ̄(GCm) = 2
3 + 1

3 cos(π/m) = 1 − c′ · (1/m)2,

and thus
val(G⊗d

Cm
) ≤ 1 − Θ(1/m)2 · d, for d ≤ m2, (2)

where c′ = π2/6 − om(1). Notice that this improves on Theorem 2.3 by only a constant factor.

The main result of this paper improves on this bound (for d ≤ m2/ log m):
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Corollary 1.13 Provided d ≤ m2 log m,

val(G⊗d
Cm

) ≤ 1 − (1/m) · Ω(
√

d/ log d).

Let us make some remarks on this bound, writing ε = 1/m and disregarding the logarithmic factor for
clarity. (The reader should thus note that the following remarks only hold up to a logarithmic factor.) First,

since ε ·
√

d =
√

ε2 · d, the former quantity is always larger when the quantities are less than 1; hence our
bound improves upon the Feige-Lovász SDP bound (2) in an essential way. (See Figure 3 for a sketch.)
It also circumvents the 1 − ε2 · d bound suggested by Feige for Raz/Holenstein-style proofs. Second, our
bound has a strong guarantee that is not present in (2): namely, it gives something nontrivial for small, even
constant d. By way of contrast, (2) has no content until d is bigger than 1/ε.

Figure 3: val(G⊗d
C33

) vs. d. Trivial bound in black, SDP bound in blue, our bound in red.

Finally, however, our bound just barely fails to improve the asymptotic relationship of 1− ε vs. 1−Θ(
√

ε)
gaps, the necessary condition for showing that 1 − ε vs. 1 − Ω(

√
ε) NP-hardness for Max-Cut implies the

Unique Games Conjecture via parallel repetition. This is because for any number of parallel repetitions d,
our theorem transforms a 1 − ε vs. 1 − Θ(

√
ε) gap into a 1 − Θ(ε · d) vs. 1 − Θ̃(

√
ε · d) gap, which merely

maintains the square-root gap relationship rather than improves it.

We end this section by showing that determining val(G⊗d
Cm

) is equivalent to determining the solution

δ′(d, m) to the Odd Cycle Elimination Problem on K2 × (Zd
m)∞:

Proposition 2.4 val(G⊗d
Cm

) = 1 − δ′(d, m).

Proof: Say that a labeling of K2 × (Zd
m)∞ is a function f mapping the vertices of K2 × (Zd

m)∞ into Z
d
2.

Given an edge in this graph connecting (A, x) to (B, x + λ) (where x ∈ Z
d
m, λ ∈ {−1, 0, 1}d), say that it is

satisfied by the labeling if f(A, x) − f(B, x + λ) = λ (mod 2) and is violated otherwise. We now have that
the quantity 1 − val(G⊗Cm

) is equal to the minimum over all labelings of the fraction of violated edges.

If E is a set of edges of K2 × (Zd
m)∞, say that it is a blocking solution if deletion of the edges E yields a

graph (K2 × (Zd
m)∞) \ E with no topologically odd cycles. The proposition follows from showing two things:

(i) in any labeling of K2 × (Zd
m)∞, the set of violated edges form a blocking solution; and, (ii) if E is a

blocking solution then there is a labeling of K2 × (Zd
m)∞ so that the only violated edges are in E .

For (i), given any labeling f , let E be the set of violated edges. Suppose by way of contradiction that E
is not a blocking solution. Then there must be some cycle L in (K2 × G) \ E and a coordinate 1 ≤ i ≤ d

9



such that [L]i is odd. Projecting L into (Zd
m)∞ and restricting attention to the cycle’s ith coordinate, we get

a cycle in the graph (Z1
m)∞ which “wraps around” an odd number of times. It’s easy to see that in going

along this cycle, the number of length-1 steps (i.e., the number of non-self-loop steps) must be odd. Now
consider the sequence of ith coordinates of the labels f gives to the vertices along L. Since all edges in L
are satisfied, this sequence must change value (in Z2) an odd number of times. But this is impossible since
it starts and ends at the same value.

For (ii), given a blocking solution E , delete its edges from K2 × (Zd
m)∞; we claim it is now possible to

label the vertices so that all remaining edges are satisfied. In particular, label any starting vertex arbitrarily,
and then “greedily” propagate labels along the edges remaining in (K2 × G) \ E (all choices are forced). Do
this for all connected components of (K2×G)\E . The only way we could get “stuck” is if there exists a cycle
L in the graph which can’t be labeled in this fashion. But it is easy to see that such a labeling scheme fails
for L only if there is a coordinate i such that L makes an odd number of length-1 steps in the ith coordinate.
But again, this implies that [L]i is odd, contradicting the fact that E is a blocking solution. 2

Remark 2.5 The Odd Cycle Elimination Problem on K2 × (Zd
m)∞ is related to the Cycle Elimination

Problem on (Zd
m)∞ as follows: δ′(d, m) ≤ 2δ(d, m). To see this, let E be a set of edges in (Zd

m)∞ whose
deletion eliminates all topologically nontrivial cycles in (Zd

m)∞, and take

E ′ = {(A, x)-(B, y) : (x, y) ∈ E}
∪ {(B, x)-(A, y) : (x, y) ∈ E}

to be a set of edges in K2 × (Zd
m)∞. Then |E ′| = 2|E|, and clearly deleting E ′ from K2 × (Zd

m)∞ eliminates
all topologically nontrivial cycles (and hence all topologically odd cycles) in K2 × (Zd

m)∞.

3 Foams

The problem of determining A(d), the least surface area of a cell that tiles R
d by the lattice Z

d, is an example
of a foam problem. The most famous of all foam problems is the Kelvin Problem, which asks for the foam
of minimal surface area foam which partitions R

3 into cells of volume 1.1 This problem has been studied
since at least 1781 [Lhu81]; it is named after Thomson, a.k.a. Lord Kelvin, who in 1887 [Tho87] proposed
the following solution: Take the Voronoi cells of the root lattice A∗3 (appropriately scaled), and then slightly
“relax” them so that they satisfy the Plateau rules [Pla73] for soap films. This was believed to be minimal
for about a century, until the Weaire-Phelan foam was discovered in 1993 [WP94]. Two centuries ago the
Kelvin Problem was described as “one of the most difficult in geometry” [Lhu81] and Morgan has recently
speculated (see [Hal00]) that it might take another century to solve. The 2-dimensional version was solved
only in 1999, by Hales [Hal01], with the regular hexagon tiling — i.e., the Voronoi cells of the lattice A∗2 —
being minimal, as expected. Very little is known about the problem in dimensions d > 3.

Our Foam Problem on R
d/Z

d is a special case of the d-dimensional Kelvin Problem in which the foam is
required to be periodic with period Z

d. It is also natural to consider the version in which the foam is only
required to periodic with respect to some lattice (as the Kelvin foam is, but the Weaire-Phelan foam isn’t).
For reasons to be described shortly, we call this the Choe Problem for Flat Tori.

Choe Problem for Flat Tori: What is the least surface area of a cell that tiles R
d by a determinant-1

lattice Λ?

One may restate this problem as, “What is the least surface area of a fundamental domain for a unit-
volume flat torus, R

d/Λ?” Choe [Cho89] studied this problem for all 3-dimensional smooth Riemannian
manifolds, not just flat tori, and for each showed existence of a minimizer. It has been conjectured by
Sullivan and others [SM96] that the Kelvin foam solves the Choe Problem for Flat Tori in three dimensions
(with Λ being A∗3, appropriately scaled). Choe’s work also completely solves the problem in 2 dimensions; it
implies that for any lattice, the optimal cell is the unique hexagon with straight sides and 120◦ angles; and,

1In fact, it is not currently known if a minimal such surface exists.
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the optimal lattice is the triangular one, leading to the regular hexagon. For d > 3 it is not even known if
a least-area cell exists; one of the few things known is that in any lattice tiling the cell surfaces are minimal
surfaces (i.e., have mean curvature 0) [WKC+04]. Choe explicitly posed our Foam Problem on R

3/Z
d as an

open problem; as far as we know, there is not even a conjecture for the minimizer in this case.

3.1 Cycle Elimination on (Zd
m)∞ reduces to the Foam Problem on R

d/Z
d

In this section we show that good solutions to the Foam Problem on R
d/Z

d translate into good solutions
for the Cycle Elimination Problem on (Zd

m)∞, and thus upper bounds for val(G⊗d
Cm

). A somewhat related
relation was observed by Bollobás, Kindler, Leader, and O’Donnell in [BKLO06].

Theorem 3.1 Let C be a cell with piecewise smooth surface that tiles R
d by Z

d and has surface area A.
Then δ(d, m) ≤ 2

√

2/3 · A/m.

Proof: Let S denote the boundary surface of C modulo Z
d. Note that S has area A/2, since the boundary

of C overlaps with itself when it is placed inside the torus. Further, note that S has the property that every
homotopically nontrivial loop inside T d touches S; for otherwise, it could be pulled back to an unbounded
path in R

d avoiding the foam generated by C’s boundary.
Let T ∈ [0, 1)d be a random translate in T d, and define S′ to be T +S′; i.e., S translated by T within T d.

Certainly S′ also has the property that every homotopically nontrivial loop in T d touches it. Now embed
the graph (Zd

m)∞ in T d in the natural way, with vertices as points and its edges as straight line segments.
Finally, let E denote the set of all edges that intersect S′ (a random set depending on T ). It’s clear that
deleting the edges E from the graph (Zd

m)∞ eliminates all topologically nontrivial cycles in (Zd
m)∞, since

cycles in (Zd
m)∞ correspond to actual piecewise straight loops in T d with the same homotopy class. Hence

we may complete the proof by showing

E
T

[

|E|
/

((3m)d/2)
]

≤ 2
√

2/3 · A

(since (3m)d/2 is the number of edges in (Zd
m)∞), or equivalently,

E
T

[|E|] ≤ 2
√

2/3 · 3d · area(S). (3)

To do this we decompose S into finitely many small patches. Specifically, we write S =
⋃N

i=1 Pi, where:

1. Pi is a smooth closed oriented surface with piecewise smooth boundary;

2. for each i, the Euclidean distance between every pair of points in Pi is at most 1/2;

3.
∑N

i=1 area(Pi) = area(S).

Now to prove (3), by linearity of expectation it suffices to show that

E
T

[# edges that touch T + Pi] ≤ 2
√

2/3 · 3d · area(Pi) (4)

for all i. Let λ ∈ {−1, 0, 1}d be an edge “type”. By property (2) above, any translate T + Pi touches at
most two edges of type λ (since given three points on distinct edges of the same type, some two must be at
distance at least 1). It follows that

E
T

[# edges that touch T + Pi] ≤ 2
∑

λ∈{−1,0,1}d

Pr
T

[T + Pi touches an edge of type λ] .

Further, T +Pi touches at least one edge of type λ if and only if T +(Pi ⊕λ) contains a lattice point, where
(Pi ⊕ λ) denotes the Minkowski sum of Pi and the line segment joining 0 and λ. The probability of this is

area(Pi ⊕ λ) ≤
∫

Pi

|~n · λ| dS,
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where ~n denotes the unit normal to the surface. We conclude

E
T

[# edges that touch T + Pi] ≤ 2

∫

Pi

(

∑

λ

|~n · λ|
)

dS

≤ 2 · 3d ·
∫

Pi

√

E
λ
[(~n · λ)2] dS = 2 · 3d ·

∫

Pi

√

2/3 dS = 2
√

2/3 · 3d · area(Pi),

where the second inequality is by Cauchy-Schwarz and the following equality is by direct calculation, using
the fact that ~n is a unit vector. This is the desired (4), completing the proof. 2

3.2 Bounds on A(d)

In this section we give bounds on A(d)/2, where A(d) denotes the least surface area of a cell that tiles R
d

by Z
d.

When d = 2, the work of Choe [Cho89] implies that the optimal cell is the hexagon with 120◦ angles
pictured in Figure 4. This implies A(2)/2 = (1 +

√
3)/

√
2 ≈ 1.93.

Figure 4: Solution to the Foam Problem on R
2/Z

2

For general d, we essentially only know the “obvious” bounds. For an upper bound we have A(d)/2 ≤ d,
since the unit cube tiles R

d by Z
d and has surface area 2d. It is possible to improve this very slightly to

d−exp(−O(d log d)) by inserting a radius-1/2 sphere at the corners of the cubic tiling (the details will appear
in the full version of this paper). Although this gives no significant improvement on the bound, it does show
that the cube is not optimal.

For a lower bound, the isoperimetric inequality implies that any cell of volume 1 has surface area at least
that of the ball of volume 1. An easy calculation using Stirling’s formula shows that in d dimensions the ball
of unit volume has surface area

√
2πe

√
d(1±o(1)). This gives the lower bound A(d)/2 ≥

√

πe/2
√

d−o(
√

d).

Another way to prove an Ω(
√

d) lower bound is as follows: Suppose C tiles R
d/Z

d. As in the proof
of Theorem 3.1, place C inside the unit cubic torus (Zd

m)d
∞ and let S denote its boundary surface therein.

Again, S has the property that it blocks all topologically nontrivial loops, and so in particular it blocks all of
those loops that simply travel straight, parallel to a coordinate axis. As a consequence we have that when S
is projected onto any one of the d lower-dimensional faces of [0, 1)d, the projection must be onto. Hence if one
integrates |~n · ~ei| along the surface of S (with ~n denoting a unit normal and ~ei denoting (0, . . . , 0, 1, 0, . . . , 0)),
the integral must be at least 1, for each i. Summing this over i = 1 . . . d yields that the integral of ‖~n‖1 over
S is at least d. But since ‖~n‖1 ≤

√
d, one concludes that the area of S must be at least d/

√
d =

√
d. This
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proves A(d)/2 ≥
√

d.

As remarked, this lower bound is in fact worse than the isoperimetric inequality lower bound A(d)/2 ≥
√

πe/2
√

d(1 − o(1)) ≈ 2.066
√

d. But this is the method that we manage to translate back to a lower bound
for the Cycle Elimination Problem on (Zd

m)∞, which is discussed in the next section.

Regarding the generalized problem in d dimensions, i.e. Choe’s Problem for Flat Tori, Sullivan remarked
to us that a natural candidate for a good solution would be the Voronoi cell for the lattice A∗d (appropriately
scaled); the reason is that this yields the best solution for d = 2, 3. In Appendix A we show that this cell
has surface area 2K · d ± O(d2/3), where

K =
∞
∑

R=1

RR−3/2

R!
e−R ≈ .6186.

Thus this cell is only marginally better than the unit cube.

Finally, we would like to remark that for the Foam Problem for R
3/Z

3, which Choe left as an open
problem, we know no bounds better than (9π/2)1/3 ≤ A(3)/2 ≤ 3, and know no conjectured best solution.

4 A lower bound for the Cycle Elimination Problem

The remainder of this paper is devoted to proving our main theorem, a lower bound for the Cycle Elimination
Problem on (Zd

m)∞ (and for the Odd Cycle Elimination Problem on K2 × (Zd
m)∞):

Theorem 4.1 Provided m ≥
√

d/ log d,

δ(d, m) ≥ (1/m) · Ω(
√

d/ log d), (5)

and indeed δ′(d, m) ≥ (1/m) · Ω(
√

d/ log d) as well.

We concentrate for now on proving (5) — as observed in Claim 4.8, our proof technique actually gives
the lower bound on δ′(d, m) for free.

Idea of the proof: Our strategy for proving Theorem 4.1 will be to try to “discretify” the
√

d lower
bound for the Foam Problem on R

d/Z
d that comes from showing that all straight axis-parallel loops must

be blocked. This discretization turns out to be quite elaborate. Obviously it no longer suffices just to look
at axis-parallel loops — i.e., loops formed only by using edges of “type” λ = (0, . . . , 0, 1, 0, . . .0) — since
these constitute only a 1/3d or so fraction of all edges. Instead, we look at “essentially” axis-parallel loops,
i.e. cycles that stay within narrow axis-parallel tubes.

Let us introduce some definitions that were first considered in the work of Saks, Samorodnitsky and
Zosin [SSZ04] (and later in [BKLO06]) on the vertex -deletion version of the Cycle Elimination Problem on
(Zd

m)∞. In the following definition, and in the rest of the paper, we call elements of Z
d
m points vertices and

points.

Definition 4.2 Let 1 ≤ i ≤ d be a direction. We introduce the following kinds of subsets of vertices of
(Zd

m)∞:

• A section in direction i: a set of the form x + {0, 1}i−1 × {0} × {0, 1}d−i for some x ∈ Z
d
m. The point

x is called the base point of the section.

Two sections are called successive if they are both in the same direction i and the difference between
their base points is (0, . . . , 0, 1, 0, . . .0).

• A tube in direction i: a set of the form x + {0, 1}i−1 × Zm × {0, 1}d−i for some x ∈ Z
d
m.

(Note that a tube T is the union of m successive sections oriented in the same direction as T .) We
say that a section belongs to a tube T , or that it is contained in T , if it is contained in T and has the
same direction as T .
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• A cube: a set of the form x + {0, 1}d for some x ∈ Z
d
m.

Note that a cube can be obtained in d many ways as a union of two successive sections.

We have that a section contains 2d−1 points, a cube contains 2d points, and a tube contains m2d−1 points.
The reader may find it helpful to visualize these definition in 3 dimensions (and think of a section as a
“square”).

Fix E to be a set of “deleted edges” that block all topologically nontrivial cycles in (Zd
m)∞. Our goal is

to show that the fractional size of E , i.e. |E|/((3m)d/2), is bounded below by (1/m) · Ω(
√

d/ log d). We do
this by considering the vertices which have a constant fraction of their edges in E , and showing that they
constitute a (1/m) · Ω(

√

d/ log d) fraction of all vertices.

Definition 4.3 A vertex x in (Zd
m)∞ is said to be marked if at least a 10−6 fraction of the edges touching

it are in E.

The following lemma immediately implies (5).

Lemma 4.4 The fraction of vertices in (Zd
m)∞ that are marked is at least (1/m) · Ω(

√

d/ log d).

The basis of our proof of Lemma 4.4, and thus of (5) is the following: If we are to eliminate all topolog-
ically nontrivial cycles in (Zd

m)∞, then at the very least, for each tube T we must eliminate all cycles that
“wrap around once along the vertices of (Zd

m)∞”.

The proof of Lemma 4.4 now divides into two parts. First we argue in Theorem 4.6 that every tube T
must contain some section where the fraction of marked points is very large — at least 95%.2 Otherwise,
we show that one can find cycles that march through the successive sections of T . In the second part,
Theorem 4.7, we show that if every tube contains a section with 95% of its points marked then the overall
fraction of marked vertices in (Zd

m)∞ is at least (1/m) ·Ω(
√

d/ log d) as required for Lemma 4.4. In order to
formalize the statements in these two parts, we need to define what we mean by cycles that “wrap around
once along the vertices of (Zd

m)∞”.

Definition 4.5 Let L be a cycle in (Zd
m)∞, and T be a tube in it. Write the successive sections of

T as S0, S1, . . . , Sm−1, Sm = S0. We say that L is an even T -cycle if it is a concatenation of paths
P0,Q0,P1,Q1,. . . ,Pm−1,Qm−1 with the following properties:

1. For every i, Pi is the concatenation of length-2 paths connecting vertices in Si.

2. For every i, Qi is a length-2 path connecting a vertex in Si to a vertex in Si+1.

It is easy to see that if the tube T is in direction i, then the homotopy class of an even T -cycle is (0, . . . , 0, 1, 0, . . . , 0),
where the 1 is in the ith coordinate.

Lemma 4.4, and thus (5), is immediately implied by the following two theorems.

Theorem 4.6 Let E be a set of deleted edges in (Zd
m)∞ and let T be a tube in (Zd

m)∞ such that every section
in T has less than 95% of its points marked. Then there exists an even T -cycle in (Zd

m)∞ \ E.

Theorem 4.7 Let m and d be integers such that m ≥
√

d/ log d. Let V be a set of marked vertices in (Zd
m)∞

such that every tube in (Zd
m)∞ contains a section with at least 95% of its points marked. Then the overall

fraction of marked points, |V|/md, is at least (1/m) · Ω(
√

d/ log d).

In fact, the two theorems above also imply the same lower bound on δ′(d, m), and thus our main theorem,
Theorem 4.1.

Claim 4.8 Theorem 4.6 and Theorem 4.7 imply that δ′(d, m) ≥ (1/m) · Ω(
√

d/ log d).

2Our proof is such that we can make this quantity 1 − η at the expense of making the “marked” fraction Ω(η3).
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Proof: Let E ′ be a set of deleted edges in K2 × (Zd
m)∞ of fractional size α, and suppose that E ′ blocks all

topologically odd cycles. We would like to show that the lower bound in (5) applies to α. Project the edges
of E ′ into (Zd

m)∞ in the natural way, obtaining a set E of edges in (Zd
m)∞ of fractional size at most 2α. We

argue that E blocks all even T -cycles in (Zd
m)∞.

Otherwise, there is a tube T in (Zd
m)∞ and an even T -cycle L which is not blocked by E . Because this

cycle is of even length, we can lift it into a cycle L′ in K2 × (Zd
m)∞, which is clearly not blocked by E ′. Also,

being an even T -cycle, the homotopy class of L is a unit vector and so L is topologically odd; thus L′ is also
topologically odd, since it projects to L. But this contradicts the assumption that E ′ blocks all topologically
odd cycles in K2 × (Zd

m)∞.
Since E blocks all even T -cycles, Theorem 4.6 and Theorem 4.7 now easily imply that 2α ≥ (1/m) ·

Ω(
√

d/ log d), completing the proof of the claim. 2

In the next two sections we prove Theorem 4.6 and Theorem 4.7, completing the proof of our main
theorem, Theorem 4.1.

4.1 Proof of Theorem 4.6

The main tool used to prove this theorem is the recent isoperimetric inequality on the discrete cube due
to Mossel, O’Donnell, Regev, Steif and Sudakov [MOR+06], based on the reverse Bonami-Beckner inequality.

We show the existence of an even T -cycle L in (Zd
m)∞ \ E in two steps. First we show that every section

in T contains a “giant” component of unmarked vertices. More specifically, we show that for every section in
T there exists a set of 2% ·2d−1 unmarked vertices, every two of which are connected by a path in (Zd

m)∞ \E
that has the Pi type described in Definition 4.5. We then show that the giant components in every pair of
successive sections are connected by paths of length 2. Using the paths within the giant components and
the length-2 paths between them, one easily constructs an even T -cycle.

Giant components: To accomplish the first step, we show that in a particular section, if A and B are
any two sets of unmarked vertices each of size at least 2% · 2d−1, then there is a path of length 2 between
A and B. This implies the existence of the desired connected component of unmarked vertices of size
(1 − 95%) − 2% > 2%. So suppose that T is in the direction i. Now any unmarked point has only a 10−6

fraction of its edges in E , so at most a 3 · 10−6 fraction of its edges with 0 displacement in the ith direction
are in E . So we can reduce to a problem on the (d − 1)-dimensional lattice, and in particular, the following
claim establishes the existence of the desired giant components (when applied with c = d − 1):

Claim 4.9 Let A, B ⊆ {0, 1}c ⊆ Z
c
m be subsets of size at least 2% · 2c each, and suppose that a set E of

deleted edges contains at most 3 · 10−6 of the edges of each vertex in A ∪ B. Then there exists a path of
length 2 from A to B.

Proof: Pick a random length-2 path by uniformly choosing a random point x ∈ {0, 1}c, then walking along
a random edge from that point into {−1, 0, 1, 2}c (we allow walking on deleted edges), and then taking a
uniformly random edge from that point back into a point y ∈ {0, 1}c. Note that this yields the uniform
probability distribution on y and that the second edge in this path is uniformly distributed over all edges
touching y.

We show that the probability that x is in A and that y is in B is at least (2%)3 > 6 ·10−6. Then the union
bound implies that with positive probability, the random length-2 path connects A and B while avoiding E ,
thereby completing the proof of Claim 4.9.

What is the actual distribution on (x, y)? The point x is chosen uniformly, and y can be chosen by holding
each bit of x steady with probability 1/3 and re-randomizing it with probability 2/3. Thus the distribution
on (x, y) is that of a “(1/3)-correlated pair”, in the notation of [MOR+06]. We now use the following
instantiation of the isoperimetric inequality in [MOR+06, Corollary 3.5] to lower-bound the probability that
x ∈ A and y ∈ B:
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Theorem 4.10 Let A, B ⊆ {0, 1}c
be sets of fractional size σ. Let x, y ∈ {0, 1}c

be a ρ-correlated pair.
Then

Pr[x ∈ A, y ∈ B] ≥ σ2/(1−ρ).

Applying this result in our situation, where σ = 2%, ρ = 1/3, and 2/(1 − ρ) = 3, yields the lower bound of
(2%)3 > 6 · 10−6 as claimed. 2

Connecting giant components: We now want to show that there is a length-2 path between the giant
components in every two successive sections. The proof of this is extremely similar to the one we used
to establish the existence of the giant components; we now let A and B be the giant components in the
successive sections. The only thing we need to do differently is observe that every point in A has at most
a 3 · 10−6 fraction of its edges that have displacement +1 in the ith direction not in E . We now pick our
random length-2 walks by choosing x uniformly at random from A’s section, picking a uniformly random
edge from x that has displacement +1 in the ith direction, and then walking along a uniformly random edge
into B’s section.

The proof of Theorem 4.6 is complete. 2

4.2 Proof of Theorem 4.7

In this section we prove Theorem 4.7, but first, let us note that it is essentially tight.

Tightness of Theorem 4.7: Suppose we mark all points in (Zd
m)∞ whose coordinates sum, modulo m,

to a number in the range [d/2 − C
√

d, d/2 + C
√

d], for some large constant C. This clearly marks only a
(1/m) · O(

√
d) fraction of the points. But now in each tube, if we consider the sections whose base point x

has coordinate-sum 0 mod m, they all will have an extremely large fraction of their points marked. (Indeed,
we can make the fraction more than 95% by taking C = 1.).

To prove Theorem 4.7, assume that we have a set of marked points that satisfies the hypothesis of the
theorem. We now choose exactly one section per tube with at least a 95% fraction of marked points; call
these marked sections. (There may now be unmarked sections with more than a 95% fraction of their points
marked.) Write S for this collection of marked sections. The idea behind the proof is to show that these
sections cannot overlap too much.

Definition 4.11 Given a collection S of marked sections in (Zd
m)∞, define the degree of a point x ∈ Z

d
m,

denoted deg(x), to be the number of marked sections in which it participates, #{S ∈ S : x ∈ S}.

The bulk of our work will go into proving the following:

Lemma 4.12 Let S be a collection of marked sections, exactly one section per tube of (Zd
m)∞, and let 4/m ≤

τ ≤ 1. Then the number of points in Z
d
m with degree at least τd2d−1 is at most poly(1/τ)·exp(−Ω(τ2d))·md−1.

Let us see why Lemma 4.12 implies Theorem 4.7:

Proof: (of Theorem 4.7) Let S be a collection of exactly one section per tube, and assume that for every
section S ∈ S at least a 95% fraction of its 2d−1 points are marked. Since each marked point has degree at
least 1, we conclude that

∑

x∈(Zd
m)∞

deg(x) ≥ |S| · 95% · 2d−1 = 95% · d · (2m)d−1.

Now apply Lemma 4.12 with τ = C
√

(log d)/d, where C is chosen large enough so that poly(1/τ) ·
exp(−Ω(τ2d)) < 1/d2 (note that indeed τ ≥ 4/m, by our assumption on m). We conclude that the number
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of points with degree at least D = τd2d−1 = O(
√

d log d)2d−1 is at most (1/d2)md−1. Since the maximum
possible degree is d2d−1, these points contribute at most (1/d)(2m)d−1 to

∑

x deg(x). Thus

∑

x : deg(x)≤D

deg(x) ≥ (95% · d − 1/d) · (2m)d−1

= Ω(d) · (2m)d−1,

which implies that the number of points x with nonzero degree is at least (1/D)Ω(d)·(2m)d−1 = Ω(
√

d/ log d)md−1,
as claimed. 2

The remainder of this section is devoted to the proof of Lemma 4.12.

Assume S is a collection of sections consisting of exactly one section per tube of (Zd
m)∞, and let V denote

the set of points in Z
d
m that have degree at least τd2d−1 with respect to S. Our goal is to upper-bound the

cardinality of V .

We begin with some definitions:

Definition 4.13 The section distribution, denoted Dsection, is the distribution on sections gotten by first
drawing x uniformly from V and then choosing a uniformly randomly section containing x. We define
similarly the cube distribution Dcube and the tube distribution Dtube.

Remark 4.14 Let T be drawn from Dtube and let x be a uniformly random point in V ∩ T (which is a
nonempty set). Then the distribution on (x, T ) is the same as if we had drawn x uniformly from V and let
T be a random tube containing x. This uses the fact that each point in V is contained in the same number
of tubes.

Definition 4.15 The V-density of a section S is |V ∩ S|/|S| = |V ∩ S|/2d−1. We define analogously the
V-density of cubes and tubes.

Definition 4.16 The relative section density sequence of a tube T is the circular sequence (p0, . . . , pm−1)
in which pi = |V ∩ Ti|/|V ∩ T |, where Ti denotes the ith section of T . The maximum relative section density
of T , denoted ρ(T ), is maxi pi.

The first step in proving Lemma 4.12 is showing that a typical tube T from Dtube has its V points
somewhat concentrated on one section — i.e., has large ρ(T ). The intuitive reason for this is that if T has
its V points spread evenly throughout its sections, then most of them will not be in T ’s marked section,
contradicting the idea that the points of V have high degree. Formally:

Proposition 4.17 ET←Dtube
[P (T )] ≥ ρ.

Proof: Pick T according to Dtube and then pick x to be a random point from V ∩ T . Say the pair (x, T ) is
“successful” if x is in T ’s marked section from S. Conditioned on T , the probability of a successful draw is
at most ρ(T ); hence the overall probability of a successful draw is at most ET←Dtube

[ρ(T )].
On the other hand, by Remark 4.14 we can view T as being a uniformly random tube containing x. But

by definition of x ∈ V , the probability a random tube through x has x in its marked section is at least ρ.
Hence the overall probability of a successful draw must be at least ρ. This completes the proof. 2

Next, we show that if a tube’s maximum relative section density is large, then it must have two successive
sections in which the first section has a much large V-density than the second.

Definition 4.18 Given two densities p, q ∈ [0, 1], define their imbalance to be

imb(p, q) = 1 − min{p, q}
max{p, q} .

WE have 0 ≤ imb(p, q) ≤ 1, with imb(p, q) = 1 if p = q and imb(p, q) = 0 if one of p or q is zero and the
other is nonzero. We leave imb(0, 0) undefined.
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Proposition 4.19 Let (p0, . . . , pm−1) be a circular sequence of numbers in [0, 1] summing to 1. Let ρ =
maxi pi and assume m ≥ 2/ρ. Suppose we pick 0 ≤ J < m with probability pJ . Then E[imb(pJ , pJ+1)

2] ≥
Ω(ρ2).3

Proof: Assume without loss of generality that p0 = ρ. Let k be as small as possible such that pk ≤ ρ/2;
such a k must exist and be at most 2/ρ, since m ≥ 2/ρ and the pi’s sum to 1. If there is some 0 ≤ i < k
such that imb(pi, pi+1) ≥ 0.1 then we are certainly done (with the better bound of Ω(ρ)). Otherwise each
ratio pi/pi+1 is in the range [0.9, 1/0.9] which means that imb(pi, pi+1) = Θ(| log(pi/pi+1)|). Now

k−1
∑

i=0

imb(pi, pi+1)
2 = Θ(1) ·

k−1
∑

i=0

log2(pi/pi+1)

≥ Θ(1/(k − 1))

(

k−1
∑

i=0

log(pi/pi+1)

)2

(Cauchy-Schwarz)

= Θ(1/k) log2(p0/pk) ≥ Ω(1/k) = Ω(ρ).

Since each 0 ≤ i < k is chosen to be J with probability pi > ρ/2, the proof is complete. 2

Combining Propositions 4.17 and 4.19 lets us conclude that the distribution of V points in a typical cube
from the cube distribution is very lopsided.

Definition 4.20 Given a cube C, its total squared imbalance is tsi(C) =
∑d

i=1 imb(pi, 1 − pi)
2, where

pi = |V ∩ Ci|/|V ∩ C| and Ci is either of the two direction-i sections comprising C.

Proposition 4.21 EC←Dcube
[tsi(C)] ≥ Ω(τ2d).

Proof: Let x be a random point in V and T a random tube containing x. Let (p0, . . . , pm−1) be T ’s circular
sequence of relative edge densities and let ρ = ρ(T ) = maxi pi. Let I denote the index of x’s section of T .
By linearity of expectation, the fact that a random tube is equally likely to be in each of the d directions,
and the fact that imb(·, ·) is scale-invariant (i.e., it only depends on the ratio of its arguments), it suffices
for us to show that E[imb(pI , pI+1)

2] ≥ Ω(τ2).
By Proposition 4.19,

E[imb(pI , pI+1)
2 | ρ] ≥

{

Ω(ρ2) if ρ ≥ 2/m,

0 else

= Ω(1) · (ρ · 1[ρ≥2/m])
2.

Now take expectation over ρ and use Cauchy-Schwarz to get

E[imb(pI , pI+1)
2] ≥

≥ Ω(1) ·E[ρ · 1[ρ≥2/m]]
2

= Ω(1) · (E[ρ] − E[ρ · 1[ρ<2/m]])
2

≥ Ω(1) · (τ − 2/m)2 (Proposition 4.17)

≥ Ω(1) · (τ − τ/2)2 (since τ ≥ 4/m).

Thus E[imb(pI , pI+1)
2] ≥ Ω(τ2), as needed. 2

We now prove that a cube with high tsi contains very few points from V . This follows from an argument
of Fourier analysis of Boolean functions that may be of independent interest. First, we need a lemma of
Talagrand [Tal96, Prop 2.2]:

3Note that by definition of I we need not worry about imb(0, 0) here.
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Lemma 4.22 (Talagrand) Let f : {0, 1}d → {0, 1} satisfy E[f ] = µ. Then

d
∑

i=1

f̂({i})2 ≤ O(µ2 log(e/µ)).

We use this to prove:

Theorem 4.23 Let C be a d-dimensional discrete cube having tsi(C) with respect to a set of points V. Then
|V ∩ C|/|C| ≤ exp(−Ω(tsi(C))).

Proof: Let f : {0, 1}d → {0, 1} denote the indicator function of V ∩ C. We need to prove that E[f ] ≤
exp(−Ω(tsi(C))). Writing pi as in the definition of tsi, we have by definition

|f̂({i})| = |piµ − (1 − pi)µ| = µ · max{pi, 1 − pi} · imb(pi, 1 − pi) = Θ(1) · µ · imb(pi, 1 − pi).

Hence
∑d

i=1 f̂({i})2 = Θ(1) ·µ2 · tsi(C). Combining this with Talagrand’s lemma and rearranging yields the
theorem. 2

Combining this Theorem with Proposition 4.21 implies that a typical cube drawn from Dcube has few V
points in it. Let us draw this conclusion for sections as well, and then strengthen it:

Proposition 4.24 If S is a random section drawn from Dsection then with probability at least 1 − τ2/8, the
V-density of S is at most O(1/τ4) · exp(−Ω(τ2d)).

Proof: By Proposition 4.21, E[tsi(C)] ≥ Ω(τ2d) when C is drawn from Dcube; since tsi is always at most d
we conclude that a random C has tsi(C) ≥ Ω(τ2d) with probability at least Ω(τ2). In this case, Theorem 4.23
implies that C has V-density at most exp(−Ω(τ2d)). So we have that with probability Ω(τ2) a random C
from Dcube has V-density at most exp(−Ω(τ2d)).

This implies that a random section from Dsection has V-density at most 2 exp(−Ω(τ2d)) with probability
Ω(τ2). But in Dsection, sections are chosen with probability proportional to their V-density (because every
point is contained in the same number of sections). Thus, by a simple probabilistic argument, it follows that
the average V-density inside a uniformly chosen section, which is equal to the overall density of V in (Zd

m)∞,
is at most (1/Ω(τ2)) · 2 exp(−Ω(τ2d)). The desired conclusion now follow from Markov’s inequality. 2

We now know that a random section S almost surely has low V-density. But by Proposition 4.17 a
random section S has a decent chance of having most of the V points of its entire tube. This gains us a
factor of m:

Proposition 4.25 If T is a random tube drawn from Dtube then with probability at least τ2/8, the V-density
of T is at most (1/m) · O(1/τ5) · exp(−Ω(τ2d)).

Proof: Proposition 4.17 tells us that if x is chosen randomly from V and T is a random tube through x,
then the expected value of ρ(T ) is at least τ ; hence by Markov’s inequality it is at least τ/2 with probability
at least τ/2. Furthermore, conditioned on ρ(T ) ≥ τ/2, it’s clear that x is in T ’s section of maximum relative
density with probability at least that maximum. Thus we conclude that with probability at least τ2/4 over
the choice of (x, T ) we have both of the follwoing: (i) x is in T ’s section of maximum relative density; and,
(ii) this section accounts for at least a τ/2 fraction of all of T ’s absolute V-density.

But Proposition 4.24 tells us the probability that x’s section has V-density more than O(1/τ4)·exp(−Ω(τ2d))
is at most τ2/8. Hence with probability at least τ2/4 − τ2/8 = τ2/8 over the choice of (x, T ) we have that
T ’s section of maximum relative density has V-density O(1/τ4) · exp(−Ω(τ2d)) and yet accounts for at least
a τ/2 fraction of its overall V-density. Since T has m sections, the proposition follows. 2

We may now complete the proof of Lemma 4.12. Using Proposition 4.25 and the same argument used
in the second part of Proposition 4.24’s proof, we conclude that the expected V-density of a random tube
drawn from Dtube is at most (1/m) · O(1/τ7) · exp(−Ω(τ2d)). This certainly implies that if a tube is
chosen uniformly at random from among all dmd−1 of (Zd

m)∞’s tubes, its expected V-density is at most
(1/m) · O(1/τ7) · exp(−Ω(τ2d)). But this completes the proof of Lemma 4.12 because choosing a uniformly
random tube and then a uniformly random point from it yields a uniformly random point in (Zd

m)∞.
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A The permutohedron

Given that the Voronoi cell of the lattice A∗2 (i.e., the regular hexagon) solves the Choe Problem for Flat
Tori in R

2, and that the Voronoi cell of the lattice A∗3 (i.e., the truncated octahedron) is very close to the
conjectured solution in R

3 (and is conjectured [Bez06] to be the exact solution if the cell is restricted to be
convex), it is natural to wonder if the Voronoi cell of the lattice A∗d is a good solution in d dimensions. For
a definition of the lattice A∗d, see, e.g., Conway and Sloane [CS98]; for our purposes, it suffices to know that
its Voronoi cell is the permutohedron (see [CS98, p. 474]).

The d-dimensional permutohedron, Pd, is best realized as the convex hull of the (d + 1)! points in R
d+1

gotten by permuting the coordinates of the vector
(

−d

2
,−d − 2

2
,−d − 4

2
, · · · ,

d − 2

2
,
d

2

)

.

This is really a d-dimensional polytope since all the points described lie in the hyperplane
∑d+1

i=1 xi = 0. As

examples, we have that P1 is a line segment of length
√

2 and that P2 is the regular hexagon of side length√
2. It is also convenient to define P0 to be the point with “0-dimensional volume” 1. Conway and Sloane

show that the d-dimensional volume of Pd is

Vd = (d + 1)d−1/2;

they also show that the typical face of Pd is a prism congruent to Pr × Ps for numbers r, s ∈ N satisfying
r + s = d − 1, and that Pd has precisely

(

d+1
r+1

)

faces of this type.

Using this information, we can estimate the surface area of Pd; we are not aware of any previous literature
making this calculation. Writing D = d + 1, R = r + 1, S = D − R, we get that

vold−1(∂Pd) =

D−1
∑

R=1

(

D

R

)

RR−3/2SS−3/2. (6)

Since the summands are symmetric in R and S we can concentrate on the case R ≤ D/2. For “small” R,
R ≤ D1/3, we will use

(

D

R

)

=
DR

R!
· (1 ± O(D−1/3)), (7)

which follows from elementary considerations; for “large” R, D1/3 ≤ R ≤ D/2, we will use

(

D

R

)

=
DD+1/2

√
2πRR+1/2SS+1/2

· (1 ± O(D−1/3)), (8)

which follows from Stirling’s Formula. Substituting (7) into (6) the small-R summands are estimated as

DR

R!
RR−3/2(D − R)D−R−3/2 = Vd · RR−3/2

R!
·
(

1 − R

D

)D−R−3/2

= Vd · RR−3/2

R!
e−R

up to a factor of 1 ± O(D−1/3). Substituting (8) into (6) the large-R summands are estimated as

Vd · 1√
2πR2

· D2

(D − R)2
= Vd · 1√

2πR2
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up to a factor of 1 ± O(D−1/3). We therefore conclude

vold−1(∂Pd) =



2
∑

1≤R≤d/2

TR



 · Vd · (1 ± O(d−1/3)),

where

TR =

{

RR−3/2

R! e−R if R ≤ d1/3,
1√

2πR2
else.

Note that the former quantity approaches the latter as R → ∞, by Stirling’s Formula. Indeed it is easy to
see that the tail of the sum past R = d1/3 is negligible compared to our error term, and in fact we could just
as well sum the first definition of TR over all R ∈ N. In other words, we have shown the following:

Theorem A.1 Let K =
∑∞

R=1
RR−3/2

R! e−R ≈ .6186. Then the surface area of the d-dimensional permutohe-

dron Pd with volume Vd is equal to 2K · Vd · (1 ± O(d−1/3)).

Suppose we now scale Pd by a factor of α in each dimension so that its volume becomes 1. Then its surface
area decreases by a factor of α/V d, making it 2K ·α · (1±O(d−1/3)). Since the appropriate α is d−O(log d),
we conclude:

Corollary A.2 When the d-dimensional permutohedron (which tiles R
d by the lattice A∗d) is scaled to have

volume 1, its surface area is 2K · d − O(d2/3), where K ≈ .6186 is the constant from Theorem A.1.

Since the d-dimensional unit cube has surface area 2d, we see that the permutohedron foam is a better
solution to the Choe Problem for Flat Tori, but only by a constant factor of K.
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