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Abstract

The complexity of the Black-White Pebbling Game has remained an open problem for 30 years. It
was devised to capture the power of non-deterministic spacebounded computation. Since then it has
been continuously studied and applied to problems in diverse areas of computer science including VLSI
design and more recently propositional proof complexity. In 1983, determining its complexity was rated
as “An Open Problem of the Month” in David Johnson’sNP-Completeness Column. In this paper we
show that the Black-White Pebbling Game is PSPACE-complete.
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1 Introduction

DEFINITION 1.1: Black Pebbling Rules

1. A black pebble can be placed on any source nodev.

2. A black pebble can be removed from any nodev.

3. For any nodev, if all of v’s predecessors have pebbles on them, then a black pebble canbe placed on
v, or a black pebble can be slid from a predecessoru to v.

The Black-White Pebbling Game was introduced by Cook and Sethi in 1976 [3] in the context of de-
termining lower bounds for space bounded Turing Machines. The problem recevied considerable attention
throughout the next decade due to its numerous applicationsincluding VLSI design, compilers, and alge-
braic complexity. In 1983 determining its complexity was rated as “An Open Problem of the Month” in
David Johnson’sNP-Completeness Column [9]. An excellent survey of pebbling results from this period
can be found in Pippenger [15]. Recently, there has been a resurgence of interest in pebbling games due to
their links with propositional proof complexity [1, 2, 4, 5,13]. In this paper we prove that the Black-White
Pebbling Game is PSPACE-complete.

The Black-White Pebbling Game was preceded by the Black Pebbling Game, which has also been
widely studied [15]. LetG = (V,E) be a directed acyclic graph with one distinguished output node, s.
In the Black Pebbling Game, a player tries to place a pebble ons while minimizing the number of pebbles
placed simultaneously onG . The game is split up into distinct steps, each of which takesthe player from one
pebbling configuration to the next. Initially, the graph contains no pebbles and each subsequent configuration
follows from the previous by one of the following rules:

• At any point a black pebble can be placed on any source nodev.

• At any point a black pebble can be removed from any nodev.

• For any nodev, if all of v’s predecessors have pebbles on them, then a black pebble canbe placed on
v, or a black pebble can be slid from a predecessoru to v.

The Black Pebbling Game models deterministic space-bounded computation. Each node models a result
and the placement of a black pebble on a node represents the deterministic computation of the result from
previously computed results. A sequence of moves made by theplayer is called apebbling strategy. If a
strategy manages to pebbles using no more thank pebbles, then that strategy is called ak-pebbling strategy.

The Black-White Pebbling Game is a more powerful extension of the Black Pebbling Game in which
white pebbles, which behave in a dual manner to the original black pebbles, can also be used. As before, the
player attempts to place a black pebble ons while minimizing the number of pebbles placed simultaneously
onG at any time. The Black-White Pebbling Game extends the BlackPebbling Game with the addition of
the following rules:

• At any point a white pebble can be placed on any nodev.

• At any point a white pebble can be removed from any source nodev.

• For any nodev with a white pebble on it, the pebble can be slid to an empty predecessoru if all of
v’s other predecessors are pebbled, or the white pebble can beremoved if all ofv’s predecessors are
pebbled.

• The game ends whens contains a black pebble and every other node is empty.
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As before, the placement of each black pebble is meant to model the derivation of a deterministically-
computed result, while the placement of each white pebble ismeant to model a non-deterministic guess,
whose verification requires all of its antecedents to be derived. Since the game ends when there is only a
single black pebble on the target, the game cannot complete until all of these guesses have been verified and
thereby discharged. Clearly every black pebbling strategyis a black-white pebbling strategy.

In 1978, Lingas showed that a generalization of the Black Pebbling Game, played on monotone circuits
instead of DAGs, is PSPACE-complete [12]. This was a somewhat surprising result since the PSPACE-
complete games of the time involved two players and it was clear how the alternation between them led to
each game’s high complexity. Lingas’s Generalized Black Pebbling Game, on the other hand, is a single
player game with no obvious alternation. Its complexity stems from the necessity to repebble some nodes
many times in order to achieve the minimum pebbling number for some graphs. Lingas’s ingenious reduc-
tion exploited exactly this phenomenon to force any optimalstrategy on his circuits to necessarily verify the
truth of a quantified boolean formula (QBF).

In 1980, Gilbert, Lengauer, and Tarjan elaborated on the basic structure of Lingas’s construction to
prove that the Black Pebbling Game on DAGs is PSPACE-complete [6]. The main difficulty in moving from
monotone circuits to the more restricted class of DAGs is thecreation of an OR widget using only the global
bound on the number of permissable pebbles and nodes which act like AND gates. Though their exposition
does not focus on it, this is a significant technical hurdle when extending Lingas’s ideas to DAGs.

Both reductions were devised to force any optimal black pebbling strategies to verify a QBF. By their
nature, black pebbling strategies are very inductive and can only pebble graphs in one direction. As a
result, large portions of a graph remain unpebbled while progress is being made linearly from the source
nodes toward them. In contrast, white pebbles allow a much richer choice of strategies since they can be
placed anywhere on the graph regardless of where pebbles were placed before, thereby breaking up the
straight inductive pattern obvious in all pure black strategies. Although the black pebbling number of a
graph is never more than a square of the black-white pebblingnumber [7], the addition of white pebbles
lowers the pebbling number of many graphs [11], [16], [10]. Unfortunately, the constructions used for the
previous PSPACE-completeness results are both examples ofsuch graphs. As a result, neither can be used
to differentiate between true and false QBFs in the presenceof white pebbles.

In this paper, we finally resolve Johnson’s open problem by building on the construction of [6] to prove
the PSPACE-completeness of the Black-White Pebbling Game.Since white pebbles can be used so unpre-
dictably, we create graphs on which the use of even a single white pebble on anything other than a source
node (where black and white pebbles are almost indistinguishable) leads to a sub-optimal pebbling. When
applied to the right family of QBFs, our reduction also provides an infinite family of graphs which require
exponential time to minimally black-white pebble, but can be pebbled in linear time if we use just one peb-
ble more than the minimum. This results in a time/space tradeoff result similar to that proved in [6] for pure
black pebbling.

2 Definitions and Proof Overview

Formally, the Black-White Pebbling Game takes as input a DAGG with a special target nodes and an
integerk and asks whether there is ak-pebbling strategy fors in G . We prove the following theorem.

Theorem 1: The Black-White Pebbling Game is PSPACE-complete.

It is not hard to see that black-white pebbling is in PSPACE. Given(G ,k), we can easily guess a sequence
of configurations that pebblesG with at mostk pebbles. Then by Savitch’s theorem, this implies that black-
white pebbling is in (deterministic) PSPACE.

The next two sections will be devoted to showing that the Black-White Pebbling Game is PSPACE-hard.
To prove this, we will reduce from QSAT. Given a QBFψ, we will create a graphG with the property that
ψ is QSAT if and only ifG has a 4n+3 black-white pebbling strategy.
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Following the conventions of [14] and [6], we classify pebble placements asnecessary or unnecessary.
The first placement of a black pebble on the target vertex is necessary. A placement of a black or white
pebble on any other nodev is necessary if and only if the pebble remains onv until a necessary placement
occurs on a successor ofv (this can occur concurrently if we are sliding a black pebbleup from v to the
successor). We call a pebbling strategy which contains no unnecessary placementsfrugal. Clearly, removing
all unnecessary placements from ak-pebbling strategy for a graphG results in a frugalk-pebbling strategy
for G . We can therefore limit ourselves to considering just frugal pebblings. The notion of frugality is
central to proving one of our most important lemmas, Lemma 7.

Our construction is similar at a high-level to [6], where they create a graph from a QBF with the property
that the formula is QSAT if and only if the graph has a small pure black pebbling strategy. The general
idea behind their reduction is to have the black pebbling correspond to the exponential-time procedure that
verifies thatψ is QSAT.

The construction of [6] is broken up into two main subgraphs:a linear chain of clause widgets followed
by a linear chain of quantifier widgets. In all strategies which achieve the construction’s minimum pebbling
number, pebbles must be placed on certain special nodes in a way which corresponds to the lexicographically
first truth assignment in theQSAT model forψ. Since this assignment satisfiesψ’s 3CNF the player is able
to successfully pebble through the clause widgets without exceeding the minimum pebbling number. The
player can then begin to make progress up to the first universal quantifier widget, say widgeti. In order
to pebble through this widget without exceeding the pebbling number, the player must leave a pebble on a
“progress node” in widgeti and then repebble the special nodes for the innermosti variables, thereby placing
pebbles in a way which corresponds to the lexicographicallysecond truth assignment in theQSAT model.
The player can then pebble up through the clause widgets again, and this time use the pebble which was
previously placed on the progress node to pebble through widget i, only to have his/her progress arrested
at the next universal widget, at which point the process mustrepeat. Minimally black pebbling the graph
corresponding to a true QBF withk universal quantifier widgets therefore requires 2k time.

Unfortunately, the graphs used in all earlier constructions are easy to pebble once white pebbles are
allowed, regardless of whether or not the formula is QSAT. Thus the main obstacle in proving hardness of
black-white pebbling is to determine how to modify the construction so that white pebbles will be rendered
useless. We exploit an important observation to do this. In 1979, Meyer auf der Heide [7] proved a strong
duality between black and white pebbles. Namely, he proved that on any graphG , for any pure blackk-
pebbling strategy there is a pure whitek-pebbling strategy and vice versa. In order to prove this, hemade
a modification to the rules of the game. Pure black strategiesstill begin with an empty graph and end with
a single black pebble on the target node, but pure white pebbling strategies now begin with a single pebble
on the target node, and end with a completely empty graph. Hisproof amounts to showing that running a
pure blackk-pebbling strategy backward yields a pure whitek-pebbling strategy, and vice versa. This has
some implications for the original Black-White Pebbling Game, in which every strategy must end with a
single black pebble on the target node. Namely, if you try to use as close to a pure white strategy as you
can to black pebble the target node of some DAGG and if the maximum pebbling numberk is reached in
any pure black strategy ofG at some time when there is no black pebble on the target node, then the black-
white strategy will necessarily need to usek + 1 pebbles, one black pebble on the target node andk white
pebbles which are simulating some optimal black pebbling inreverse. By similar reasoning, if one can build
a graph which requires the player to use the maximum number ofpebbles in every configuration of every
optimal pure black strategy, then using a white pebble in support of a black pebbling of any intermediate
node should also exceed the maximum. Our construction is designed to enforce this while maintaining the
original properties found in the construction of [6].

However, we run into troubles in the case of the existentially quantified variables. The problem stems
from the fact that for an existential quantifier widget, we want to be able to pebble up to that widget in either
of two different ways–one corresponding to the variable being set to true, and the other way corresponding
to the variable being set to false. Thus, there is an implicitOR in this argument. This difficulty was also
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overcome in [6], in the more limited context of black pebbling. If we were constructing monotone circuits
rather than graphs (which are special cases of monotone circuits with only AND gates), then things become
much easier, even when allowing the use of white pebbles, since we can use an explicit OR gate to allow
for either of these two types of pebblings. This was accomplished in [8] which uses OR gates as a building
block in order to prove an exponential time/space speedup theorem for Resolution. However, when OR
gates are not allowed, we have to somehow simulate this implicit OR using only AND gates. Any way of
doing this will necessarily involve two different pebblings, and it is quite subtle to see how to accomplish
this while still prohibiting white pebbles from being used.We manage to accomplish this with another new
idea that lets us simulate this implicit OR using only AND gates.

3 The Reduction

To show that the Black-White Pebbling Game is PSPACE-hard, we reduce from QSAT. In our presentation,
a QBFψ = QnxnQn−1xn−1 · · ·Q1x1F , whereF is a 3CNF containingm clauses over then quantified variables
xn, . . . ,x1. We have inverted the numbering of the variables simply as a convenience in the proof. Given a
QBFψ, we produce a graphG whose target nodes can be black-white pebbled using at most 4n+3 pebbles
if and only if ψ is QSAT. Our construction is designed to penalize any use of white pebbles, so that the
optimal strategy is all black.

The graph which we construct is composed ofn + m widgets, one for each quantified variable and one
for each clause in F. As in [6], the quantifier widget forQixi contains four vertices which represent the
variablexi, we call these nodesxi, x′i, x̄i, x̄′i. The location of pebbles on these four nodes corresponds to the
truth value assigned toxi by the current truth assignment which is being tested by the pebbling. If pebbles
are onxi and x̄′i, then the variablexi is set to true. If pebbles are onx′i and x̄i or if pebbles are onx′i and x̄′i,
then the variablexi is set to false. Our construction will never allow an assignment to place pebbles on both
xi andx̄i.

The construction of the quantifier widgets relies on a subwidget we call ani-slide. Ani-slide is designed
to severely restrict the player’s pebbling strategies. A example of a 4-slide is shown in Figure 1. Once the
bottom nodes of ani-slide are all black-pebbled, ani-slide strategy, where the bottom pebbles are slid up
to the top nodes in the appropriate order, is the only way to black-pebble the top nodes without using more
thani pebbles.

DEFINITION 3.1: An i-slide is a pair of sets(V,U) together with a set of edges that satisfy the following
properties.V is a set ofi nodesv1,v2, · · · ,vi andU is a set ofi nodesu1,u2, · · · ,ui. The edges are as follows.
(1) v j is the predecessor of all nodesvk such thatk > j; (2) u j is the predecessor of all nodesuk such that
k > j; (3) u j is the predecessor of all nodesvk such thatk ≤ j; (4) u j has at leasti− j +1 predecessors from
outside ofV or U .

Globally the construction is very much like the construction in [6]. There are a number of nodes used to
encode a truth assignment, which are predecessors to nodes in both clause widgets and quantifier widgets.
The clause widgets are connected linearly and can only be pebbled within the space bound of 4n+3 if the
truth assignment encoded by the current pebbling configuration satisfiesF . The quantifier widgets are also
connected to each other linearly and follow the last clause widget. They slow the advance of the pebbling
towards. In order to advance through them, it will be necessary to repebble the clause widgets numerous
times, once for each truth assignment required to show thatψ is QSAT. Only once the final quantifier widget
is pebbled is it possible to pebble the target nodes. We now describe the individual widgets and how they
are connected. These descriptions are somewhat terse and are meant to be read in accompaniment to Figures
1, 3, 4, 2, and 5.

The universal widget is depicted in Figure 3. For everyi, 1 ≤ i ≤ n, if widget i is a universal wid-
get, it is composed of 4 groups of nodes,{x̄i, x̄′i,di,xi,x′i,yi}, Gi−1 = {g1

i−1, . . . ,g
4i−1
i−1 }, {ai,bi}, andGi =
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{g1
i , . . . ,g

4i+3
i }. These are connected as follows.yi has 4i + 3 source nodesp1

xi
throughp4i+3

xi
as predeces-

sors,x′i has 4i + 2 source nodesp1
xi

through p4i+2
xi

as predecessors,di has 4i + 1 source nodesp1
di

through

p4i+1
di

as predecessors, and ¯x′i has 4i source nodesp1
x̄i

throughp4i
x̄i

as predecessors. The sole predecessor of

xi is x′i and the sole predecessor of ¯xi is x̄′i. For every pair of nodesg j
i andgk

i of Gi, if j < k theng j
i is a

predecessor ofgk
i . Similarly, for every pair of nodesg j

i−1 andgk
i−1 of Gi−1, if j < k theng j

i−1 is a predecessor
of gk

i−1. The subgraph({g1
i , . . . ,g

4i−1
i },Gi−1) forms an 4i−1 slide. The nodebi is a successor of every node

in Gi−1, and the nodeai is a successor of every node inGi−1∪{bi}. Finally, x̄′i is a predecessor of every node
in {g1

i , . . . ,g
4i
i }, x̄i is a predecessor ofbi, di is a predecessor of both nodes in{bi,ai}, x′i is also a predecessor

of both nodes in{bi,ai}, xi is a predecessor of every node in{g1
i , . . . ,g

4i+1
i }, ai is a predecessor of every

node in{g1
i , . . . ,g

4i+2
i }, andyi is a predecessor of every node in{g1

i , . . . ,g
4i+3
i }.

The existential widget is depicted in Figure 4. For everyi, 1≤ i ≤ n, if widget i is an existential widget,
it is composed of 4 groups of nodes,{x̄i, x̄′i,di,xi,x′i,yi}, Gi−1 = {g1

i−1, . . . ,g
4i−1
i−1 }, Ri = {r1

i , . . . ,r
4i+1
i }∪Hi =

{h1
i , . . . ,h

4i+1
i }∪{ai}, andGi = {g1

i , . . . ,g
4i+3
i }. x′i has 4i+3 source nodesp1

xi
throughp4i+3

xi
as predecessors,

yi has 4i+2 source nodesp1
yi

throughp4i+2
yi

as predecessorsdi has 4i+1 source nodesp1
di

throughp4i+1
di

as
predecessors, and ¯x′i has 4i source nodesp1

x̄i
throughp4i

x̄i
as predecessors. ¯x′i also hasyi andx′i as predecessors.

The sole predecessor ofxi is x′i and the only two predecessors of ¯xi arex̄′i andyi. For every pair of nodesg j
i

andgk
i of Gi, if j < k theng j

i is a predecessor ofgk
i . The same is true for every pair of nodes inHi, Ri, and

Gi−1. Every nodeg j
i ∈ {g1

i , . . . ,g
4i+1
i } has 4i+1− j source nodes as predecessors. Also,ai is a predecessor

of every node in{g1
i , . . . ,g

4i+1
i }, x̄′i is a predecessor of every node in{g1

i , . . . ,g
4i+2
i }, andxi is a predecessor

of every node in{g1
i , . . . ,g

4i+3
i }. Also, ai is the successor of every node inHi, di is a predecessor of every

node in{h1
i , . . . ,h

4i+1
i }, x̄i is a predecessor of every node in{h1

i , . . . ,h
4i
i } and({h1

i , . . . ,h
4i−1
i },Ri) forms a

4i−1 slide. Finally,yi is a predecessor of every node inRi and(Ri,Gi−1) forms a 4i−1 slide.
For all i, 1< i < n, Gi is part of both widgeti and widgeti+1. G0 is special in that it connects the string

of quantifier widgets to the string of clause widgets and is described below.Gn is special because every node
in Gn is a predecessor of the target nodes. We now describe them clause widgets.

For each clauseCi, there is a corresponding nodezi. This node always has four predecessors, one of
which is the previous clause nodezi−1. The other three,l1

i , l2
i , andl3

i , correspond to the literals which occur
Ci. For example, if the first literal in theith clause is ¯x j, then the node ¯x j from quantifier widgetj is one of the
predecessors ofzi. z1 has a special source nodez0 as a predecessor, since it has no previous clause. Finally,
we add edges fromzm to all three nodes ofG0. There are also three source nodesa0, b0, andc0 which are
connected toG0. a0 andb0 are predecessors ofg1

0 andc0 is a predecessor ofg2
0. Figure 1 shows both an

example of a clause widget as well the connection betweenzm andG0. This completes the construction.
Figure 5 shows the outline of an entire circuit for an exampleQBF.

4 Proof of PSPACE Completeness

Theorem 2: The quantified Boolean formulaψ = QnxnQn−1xn−1 . . .Q1x1F is QSAT if and only if vertex
s in the graphG constructed as above can be pebbled with 4n+3 pebbles.

DEFINITION 4.1: Let the set of all truth assignments over variablesxi+1, . . . ,xn be denoted byAi. Thus each
αi in Ai is a partial assignment that sets the outermostn− i variables ofQnxn . . .Q1x1F. For any assignment
to αi, defineBαi to be the pebbling configuration ofG consisting of black pebbles on the following nodes:
For each universally quantified variablex j of ψ, j ≥ i + 1, if αi(x j) = 0, theny j ∈ Bαi , x′j ∈ Bαi, d j ∈ Bαi,
and(x̄ j, x̄′j) ∈ Bαi . Otherwise, ifαi(x j) = 1, theny j ∈ Bαi , x̄′j ∈ Bαi , a j ∈ Bαi and(x j,x′j) ∈ Bαi. For each
existentially quantified variablex j of ψ, j ≥ i + 1, if αi(x j) = 0, theny j ∈ Bαi , x′j ∈ Bαi , d j ∈ Bαi , and
(x̄ j, x̄′j) ∈ Bαi . Otherwise, ifαi(x j) = 1, theny j ∈ Bαi, x̄′j ∈ Bαi , d j ∈ Bαi and(x j,x′j) ∈ Bαi .

DEFINITION 4.2 (Black clamping interval) Let t0 ≤ t j ≤ tk ≤ tend . Let S be a set of nodes. We say that
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S ∈ [ta, tb] if all nodes fromS must be black pebbled during every configuration from timeta through timetb.
We say that(u,v) ∈ [ta, tb] if either u or v is black pebbled during every configuration from timeta to timetb.

Lemma 3: If ψ is QSAT, then the target nodes of G can be pebbled with 4n+3 pebbles.

Lemma 3 follows from the following more general lemma by setting i = n.

Lemma 4: For all i, αi ∈ Ai, suppose the graphG is initially in configurationBαi . If ψ is QSAT, then we
can black pebbleGi at some timet > 1 using 4n+3 pebbles, while keepingBαi clamped (i.e.,Bαi ∈ [1, t].)

Proof: The proof is by induction oni from 0 to n. The base case is wheni = 0. Let α0 be any as-
signment inA0. Suppose thatQnxn · · ·Q1x1Fdα0 is QSAT. Then some literal in every clause must be set to
true. This implies that for eachz j, 1≤ j ≤ m, at least one ofl1

j , l2
j , or l3

j are black pebbled inBα0. We can
therefore black pebbleG0 as follows. Start by putting a black pebble onz0. Then since at most two ofz1’s
other predecessors are unpebbled, we have enough free pebbles to black pebble the rest ofz1’s predecessors.
We know we can black pebble them because if somelk

1 is unpebbled, thenlk
1
′
must be black pebbled inBαi.

We can therefore black pebble all ofz1’s predecessors. We can then slide the pebble fromz0 to z1 and lift
the other (at most 2) pebbles which we just put down. Oncez1 is black pebbled, we can then black pebble
z2 the same way, all the way tozm. Oncezm is black pebbled we can use the remaining two black pebbles
to black pebblea0 andb0, and then slide the pebble fromzm to c0. We can then slide the black pebble from
a0 to g1

0, from b0 to g2
0, and fromc0 to g3

0. Note that this strategy uses only black pebbles. For the inductive
step there are two cases depending on whetherQi is a universal or an existential quantifier.

Case 1: Qi is a universal quantifier. In this case, bothψdαi∪{xi} andψdαi∪{x̄i} are QSAT. We begin in
configurationBαi with 4i+3 free pebbles. Black pebbleyi, followed byx′i, thendi, and then ¯xi

′. Then move
the pebble from ¯xi

′ to x̄i. At this point we have 4i−1 pebbles free and can apply the induction hypothesis
to black pebbleGi−1. Then slide the black pebble from ¯xi to bi, then the black pebble fromdi to ai. Remove
all pebbles from widgeti except for the ones onai, x′i, andyi. Then slide the black pebble fromx′i to xi

and black pebble ¯x′i again. Now apply the induction hypothesis to simultaneously black pebbleGi−1 again.
Next, use thei-slide strategy to slide all ofGi−1’s pebbles up tog1

i to g4i−1
i . Then slide ¯x′i’s black pebble to

g4i
i , and thenxi’s black pebble tog4i+1

i . Next slide the black pebble fromai to g4i+2
i Finally, slide the black

pebble fromyi to g4i+3
i .

Case 2: Qi is an existential quantifier. In this case, eitherψdαi∪{xi} or ψdαi∪{x̄i} is QSAT. As in the
universal case, we begin inBαi with 4i+3 free pebbles. Black pebblex′i, followed byyi, di, and then ¯xi

′.
If ψdαi∪{xi} is QSAT, move the black pebble fromx′i to xi. Then apply the induction hypothesis to black

pebbleGi−1. Then use thei-slide strategy to move all of the pebbles fromGi−1 to Ri. The slide the black
pebble fromyi to x̄i. Then use thei-slide strategy to move all of the pebbles fromRi to {h1

i , . . . ,h
4i−1
i }. After

that, slide the pebble from ¯xi to h4i
i and then slide the pebble fromdi to h4i+1

i . Then slide the pebble from
h4i+1

i to ai. At this point remove all the pebbles off of the widget so thatonly x̄′i, xi, andai remain. Use these
4i free pebbles to pebble the source node predecessors ofg1

i and then slide one tog1
i itself. Use the pebbles

left over on the source nodes to subsequently pebble eachg j
i until g4i

i is pebbled. At this point slide the
pebble fromai to g4i+1

i , slide the pebble from ¯x′i to g4i+2
i , and finish by sliding the pebble fromxi to g4i+1

i .
If ψdαi∪{x̄i} is QSAT, move the black pebble from ¯x′i to x̄i. Then apply the induction hypothesis to black

pebbleGi−1. Then use thei-slide strategy to move all of the pebbles fromGi−1 to Ri. Then use thei-slide
strategy to move all of the pebbles fromRi to {h1

i , . . . ,h
4i−1
i }. After that, slide the pebble from ¯xi to h4i

i and
then slide the pebble fromdi to h4i+1

i . Then slide the pebble fromh4i+1
i to ai. At this point remove all the

pebbles off of the widget so that onlyyi, x′i, andai remain. Use the 4i pebbles that are free to repebble ¯x′i and
then pick the pebble up fromyi and pick up the 4i−1 pebbles that remain on ¯x′i source node predecessors.
Slide the pebble fromx′i to xi. At this pointx̄′i, xi, andai are all pebbled and we can finish by black pebbling
Gi as we did in the positive case.2

6



Lemma 5: Let ψ be a QBF, and letG be the corresponding graph. Ifs has a 4n+3 black-white pebbling
strategy inG , thenψ is QSAT, and any 4n+3 black-white pebbling strategy requiresΩ(2k) steps, wherek
is the number of universal quantifiers inψ.

We first note thats has 4n + 3 predecessors,Gn. And each of these nodes has indegree 4n + 3. So no
node ofGn could ever contain a white pebble whiles contains a black pebble, because there would not be
enough free pebbles to discharge it. Therefore, in order to pebbles, Gn must first be simultaneously black
pebbled. Lemma 5 therefore follows from the following more general theorem.

Lemma 6: For all αi ∈ Ai, if there exists timest ′, t ′′ such thatBαi ⊆ [t ′, t ′′], then black pebblingGi at
t ′′ from Bαi using no more than 4n + 3 pebbles, requires thatψ is QSAT and requiresΩ(2k) units of time
betweent ′ andt ′′, wherek is the number of universal quantifiers among thei inner most quantifiers.

The following lemma will be used repeatedly. In particular,it implies that for anyi-slide(V,U), in order
to pebbleV using no more thani pebbles,U must first be black pebbled at some earlier time.

Lemma 7: If a nodev hask predecessors and there are 4n+3− k other nodes in[t ′, t ′′] andv is not white
pebbled att ′′, thenv can be black pebbled at most once and can never be white pebbled betweent ′ andt ′′.

Proof: If v is white pebbled, then its white pebble can only be discharged once it has contributed toward
placing a black pebble beyond it. The existence of this extrablack pebble means that there are at mostk−1
free pebbles to pebble all ofv’s k predecessors. So the space bound must be exceeded to discharge the white
pebble. The same argument forbids a second black pebbling.2

Proof: [of Lemma 6] The proof is by induction oni from 0 ton. The base case is wheni = 0. Letα0

be any assignment inA0 and suppose there exist timest ′ andt ′′ such thatBα0 ⊆ [t ′, t ′′]. We will show that
simultaneously black pebblingG0 at t ′′ without ever exceeding 4n+3 pebbles requires thatψ is QSAT.

In order to black pebblez j or discharge a white pebble fromz j we must either black pebblez j−1 or
discharge a white pebble fromz j−1. In order to black pebble any node inG0, we must pebblezm. Inductively,
this means that at some point for every singlez j, it was necessary to either black pebble it or discharge a
white pebble from it. But everyz j (exceptz0) has 4 predecessors,l1

j , l2
j , l3

j , z j−1. Therefore, in order to

pebblez j at least onelk
j must be black pebbled inBα0. But in this case,α0 must satisfy clausej of F. Since

everyz j must either be black pebbled or discharged,α0 must satisfy every clause ofF. ThereforeFdα0 is
QSAT .

Induction Step: We now prove the induction step in which we will show that if wecan simultaneously
black pebbleGi = {g1

i · · ·g
4i+3
i } using no more than 4i+3 pebbles without moving any pebbles inBαi, then

ψdαi is QSAT and the pebbling must take timeΩ(2k), wherek is the number of universally quantified vari-
ables among the inner mosti variables ofψ.

Case 1:Qi is a universal quantifier. We will show that in order to black pebbleGi we must necessarily
pass through a number of all-black configurations, including black pebblingGi−1 twice, once with black
pebbles onx′i, di, and either ¯xi or x̄′i (the false configuration), and once with black pebbles on ¯x′i, ai, and
eitherxi or x′i (the true configuration).

We appeal to Lemma 7 to conclude that sinceyi has 4i+3 source nodes as predecessors, our first action
within widget i must be to black pebbleyi and it must stay in place until its last successorg4i+3

i is pebbled
for the final time att15, soyi ∈ [t1, t15−1].

Now thatyi is clamped, we can again appeal to Lemma 7 to conclude that no node inGi∪{ai,bi,x′i} can
be white pebbled and each can only be black pebbled once between t1 andt15−1. Sincex′i has 4i+2 source
nodes as predecessors, our second action within widgeti must be to black pebblex′i and it must stay in place
until its successorxi is pebbled for the last time. Then a pebble must remain onxi until all of its successors

7



are pebbled for the last time, because we can never repebble/dischargexi oncex′i is empty. Lett7 be the time
thatai is pebbled and lett12 be the timeg3i

i is pebbled. Thenx′i ∈ [t2, t7−1] and(xi,x′i) ∈ [t7, t12−1].
Our argument now divides into two sections. In order to simultaneously black pebbleGi we must black

pebbleg4i+3
i , which requires that bothai and {g1

i , . . . ,g
4i
i } be pebbled. In the first part of the argument

we prove that in order to black pebbleai, ψdαi∪{x̄i} must be QSAT and thatΩ(2k) units of time must pass
betweent0 and t7, wherek is the number of universally quantified variables among the inner mosti− 1
variables ofψ. In the second part of the argument, we argue thatg1

i , . . . ,g
4i
i must also be simultaneously black

pebbled in order to black pebbleg4i+3
i and that pebbling them without exceeding our bound necessitates that

ψdαi∪{xi} is QSAT and thatΩ(2k) units of time pass between timest7 and t14− 1. This will allow us to
conclude that black pebblingGi requires thatψdαi is QSAT and requiresΩ(2k′) time, wherek′ = k+1 is the
number of universally quantified variables among the inner mosti variables ofψ.

Sinceai can only be black pebbled once and is needed to pebble each node of Gi, ai ∈ [t7, t14−1]. In
order to black pebbleai at timet7 we must pebblebi at some timet6, beforet7. Again, we know thatbi

can only be black pebbled once int1 to t14, sobi ∈ [t6, t7 − 1]. Also, di is a predecessor of bothai andbi

and must be pebbled at timest6−1 andt7−1. Sincex′i is in [t2, t7], by Lemma 7 we can conclude thatdi

cannot be white pebbled and can only be black pebbled once in this interval. Also, since it has in-degree 4i,
di must be black pebbled att3, immediately aftert2 as in Lemma 3, sodi ∈ [t3, t7−1]. The same argument
can be made to argue that(x̄i, x̄′i) ∈ [t4, t6 − 1], wheret4 is after t3. In order to black pebbleai or bi, we
must first pebbleGi−1 at some timet5 beforet6. This whole time the nodesx′i, di, and(x̄i, x̄′i) are clamped.
We can therefore apply Lemma 7 to conclude thatGi−1 must be black pebbled at some timet5 betweent4
andt6 . We can now apply the induction hypothesis to conclude that black pebblingGi−1 requiresψdαi∪{x̄i}

to be QSAT and black pebblingGi−1 from B[t4] requires timeΩ(2k), wherek is the number of universally
quantified variables among the inner mosti−1 variables ofψ.

We now proceed with the second phase of the argument. We know that each node inGi cannot be white
pebbled and can only be black pebbled once. So when we black pebble g4i+3

i at timet15, all the rest ofGi

must already be black pebbled. Considerg4i+2
i . In order to black pebble it at timet14 beforet15, we must

first black pebbleg4i+1
i at timet13 beforet14. In order to black pebbleg4i+1

i at timet13 we must first black
pebbleg4i

i at timet12 and in order to pebble that, we must pebbleg1
i , . . . ,g

4i−1
i at timet11. But we must also

pebble ¯x′i. Note that ¯x′i must be empty att7 sinceyi is clamped andai has 4i + 2 other predecessors, none
of which is x̄′i. Also, x̄′i must be empty again byt13−1, sinceg4i+1

i has 4i + 3 predecessors, none of which
is x̄′i. We can therefore apply Lemma 7 to conclude that betweent7 and t13, x̄′i cannot be white pebbled
and can only be black pebbled once in that interval. We must therefore repebble ¯x′i at some timet8 after t7
whenai and(xi,x′i) are clamped and ¯x′i ∈ [t8, t12−1]. Since ¯x′i is a predecessor of every node ing1

i , . . . ,g
4i−1
i ,

these nodes can only be black pebbled at some timet11, with g1
i being pebbled first att10, after t8. Every

node ofGi−1 is a predecessor ofg1
i . Since the three nodes{x̄′i,ai,(xi,x′i)} are clamped during the interval

[t7, t11] we can apply Lemma 7 to conclude thatGi−1 must be black pebbled att9 betweent8 andt10. Since
{x̄′i,ai,(xi,x′i)} is the true assignment for variablexi we can apply our induction hypothesis to conclude that
ψdαi∪{xi} must be QSAT and black pebblingGi−1 from B[t7] requires timeΩ(2k), wherek is the number of
universally quantified variables among the inner mosti−1 variables ofψ.

Thus we have shown that any 4n + 3 pebbling must black pebbleGi−1 twice betweent0 andt15, once
implying thatψdαi∪{x̄i} is QSAT, and once implying thatψdαi∪{xi} is QSAT. Each time requiresΩ(2k) time,
wherek is the number of universally quantified variables among the inner mosti−1 variables ofψ. There-
fore, black pebblingGi requires timeΩ(2k+1), and implies thatψdαi is QSAT.

Case 2:Qi is an existential quantifier. We will show that in order to black pebbleGi, we must necessarily
pass through a number of all-black partial configurations, including simultaneously black pebblingGi−1,
either with black pebbles onx′i, di, and either ¯xi or x̄′i (the false configuration), or with black pebbles on ¯x′i,
di, and eitherxi or x′i (the true configuration).

By Lemma 7, no node inGi ∪{x′i} can be white pebbled betweent0 and t15, and each can be black
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pebbled at most once. Based on which nodes ofGi are predecessors to others, we can conclude thatg4i+3
i

must be black pebbled last, at timet15, g4i+2
i must be black pebbled before that at timet14 andg4i+2

i ∈ [t14, t15],
andg4i+1

i must be pebbled before that at timet13 andg4i+1
i ∈ [t13, t15], g1

i must be pebbled before that at time
t12 andg1

i ∈ [t12, t15]. Also, (xi,x′i) ∈ [t1, t15−1].
Now consideryi. It has degree 4i+2, and it must be black pebbled at timet2, and can never be repebbled

again. Thus it must remain black pebbled until it is used for the last time.
Clearly, both ¯x′i ∈ B[t12− 1] andai ∈ B[t12− 1]. Let t11 be the last timeai is pebbled. At this time,ai

must be pebbled black. We can see this becauseg4i+1
i cannot get its black pebble fromg1

i through tog4i
i

since these can only be pebbled once. All of these must be in place wheng4i+1
i gets its black pebble, so it

cannot get a black pebble from eitherxi or x̄′i since both of these are needed to supportg4i+2
i and could not

be repebbled with so many black pebbles clamped inGi. g4i+1
i ’s 4i+3rd predecessor isai, so it must receive

its black pebble via a slide move fromai. Soai must be black during the interval[t11, t12−1].
At this point our proof splits into two cases, either a black pebble is on ¯x′i at t11 or not. One of these

cases will imply thatψdαi∪{xi} is QSAT and the other one will imply thatψdαi∪{x̄i} is QSAT .
Suppose there is no black pebble on ¯x′i at t11. Then there are two subcases to consider. Subcase (i): there

is no pebble at all on ¯x′i or subcase (ii) there is a white pebble on ¯x′i at t11. First we consider subcase (i): there
is no pebble at all on ¯x′i. Then we must repebble ¯x′i at some timet∗ betweent11 andt12−1. We will first argue
that two nodes,x′i andyi must be clamped during the interval[t2, t11]. First, becausex′i is black pebbled at
t1, and is a predecessor of ¯x′i, and can never be pebbled again (because its indegree is 4i+3), it follows that
x′i ∈ [t1, t∗−1]. Secondly, sinceyi is a predecessor of ¯x′i (and by the above reasoning gets black pebbled only
once att2), it follows thatyi ∈ [t2, t∗−1]. Thus bothx′i andyi are clamped during the interval[t2, t11].

Now we will argue that each node ofHi must be black pebbled, and can only be pebbled once. Let
t10 be the time whenh4i+1

i is pebbled; lett9 be the time whenh4i
i is pebbled; lett8 be the time whenh4i−1

i
is pebbled, and lett7 be the time whenh1

i is pebbled, wheret7 < t8 < t9 < t10. By Lemma 7 and because
x′i andyi are clamped, and all nodes inHi have indegree 4i + 1, it follows that each can only be pebbled
once and must be pebbled black. Thus,h4i+3

i ∈ [t10, t11− 1], h4i+2
i ∈ [t9, t11− 1], h4i+1

i ∈ [t8, t11− 1], and
h1

i ∈ [t7, t11−1].
Next we will argue that during the interval[t3, t10−1], the three nodesdi, x′i andyi are all black clamped.

(We already know thatx′i andyi are black clamped during this interval.) Becausedi has indegree 4i+1, by
Lemma 7, again we know thatdi must be black pebbled at timet3 and can only be black pebbled once.
Thus,di is black and clamped during the interval[t3, t10−1].

Now again we can apply Lemma 7 toRi. Because now we know that 3 nodes are clamped during this
interval, and because all nodes inRi have degree 4i, it follows that they can only be pebbled once between
t3 andt10−1 and are black. Lett6 be the timer1

i is pebbled,t6 < t7.
Finally, we want to show that(x̄i, x̄′i) ∈ [t3 + 1, t9−1] and furthermore the pebbled node is black. First,

x̄i must be pebbled at timet7−1 because it is a predecessor ofh1
i . Furthermore we will argue that it must

be black pebbled. At timet7−1, x̄′i must be unpebbled because in order to pebbleh1
i at timet7, there must

be 4i+3 pebbles already on thisith widget, not including ¯x′i (the 4i+1 predecessors ofh1
i plus the clamped

nodesx′i andyi.) Similarly, x̄′i must unpebbled att9. Now if x̄i were pebbled white rather than black att7−1,
it would have to be discharged byt9; but this cannot happen since it would have to be discharged through
the unpebbled ¯x′i, which would exceed our allowable space. Thus we have arguedthat x̄i must be pebbled
black att7−1, and further remains black untilt9−1 since it is a predecessor of allh1

i , . . . ,h
4i
i .

Now to black pebble ¯xi by t7−1, x̄′i must be pebbled earlier, say at timet4, t3 < t4 < t7−1. It is left to
argue thatt4 = t3+1. When we black pebble ¯x′i at timet4, we have already argued that there are three nodes
already clamped,x′i, yi anddi. Because ¯x′i has indegree 4i, it follows that it must be black pebbled next, and
can only be pebbled once. Thus(x̄i, x̄′i) ∈ [t3 +1, t9−1].

Now in order to black pebbler1
i at t6, every node ofGi−1 must be pebbled att6 − 1. Again we can

apply Lemma 7. Since there are 4 nodes clamped, and the degreeof each node inGi is 4i−1, it follows
by our lemma that every node inGi can only be pebbled once betweent4 andt9 and must be black pebbled.
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Now finally we can apply the induction hypothesis to concludethat since every node in{(x̄i, x̄′i),x
′
i,di,yi} is

clamped whileGi is being black pebbled,ψdαi∪{x̄i} is QSAT .
The other subcase (ii) is an analogous argument to subcase (i) but for the dual case of a white pebble

being discharged from a node (rather than the node being black pebbled.)
Suppose, on the other hand, that there is a black pebble on ¯x′i at t11. We will now show that only

Bαi ∪{x′i,di,yi} can be pebbled when we pebble ¯x′i for the last time beforet11 at some timet4. Suppose for
the sake of contradiction that there is a pebble on some othernodez at t4.

Sinceyi is a predecessor of ¯x′i and can only be pebbled att2, yi ∈ [t2, t4−1]. Sodi must be empty att4−1
because ¯x′i has 4i + 2 predecessors which must be on the graph, along withz, at t4 − 1, which fills up the
space bound.

In order to pebbleai by t11 we must therefore pebbledi at some time betweent4 and t11. Supposedi

is white pebbled. This pebble must be discharged byt11− 1 becauseai has 4i + 1 predecessors and both
(x′i,xi) andx̄′i are clamped untilt11, sodi’s pebble is needed. By frugality there must be a pebble inHi at the
time di is discharged. So at this time there must be pebbles on a node of Hi, one of(xi,x′i), and ¯xi and we
must exceed the space bound. Suppose on the other hand thatdi is black pebbled betweent4 andt11. This
takes 4i+1 pebbles and there must be pebbles on(xi,x′i), x̄′i and by frugalityz′, wherez′ is betweenz andai.
So we can never pebbledi betweent4 andt11. We therefore know that when ¯x′i is pebbled for the last time
beforet11, there can be no pebble onz.

By the argument which we just finished, any node ofGi−1 can only be pebbled aftert4. We now show
thatGi−1 must be simultaneously black pebbled in order to black pebble ai.

We know that both ¯x′i ∈ [t4, t11] and(x′i,xi) ∈ [t4, t11]. Therefore by Lemma 7, any node inHi can only
be pebbled once in[t4, t11] and must be black. Call the timeh4i+1

i is pebbledt10, the timeh4i
i is pebbled

t9, the timeh4i−1
i is pebbledt8, and the timeh1

i is pebbledt7. So x̄i must pebbled at some timet6 beforet7
and x̄i ∈ [t6, t7−1]. Suppose it is white pebbled. Then it must be discharged before t10 because its pebble
is needed to pebbleh4i+1

i . Note thatyi must be empty att7 − 1 since our space bound is reached byh1
i ’s

predecessors and the clamping of(xi,x′i) and x̄′i. So when ¯xi is discharged, there can be no pebble onyi.
Therefore, to discharge ¯xi, yi must be pebbled again aftert7 and beforet11, which is impossible due to its
high indegree. Suppose, on the other hand that ¯xi is black pebbled att6. This means thatyi ∈ [t2, t6−1]. So
there are at least 3 pebbles clamped fromt4 until t7−1. Butdi must be pebbled beforet7−1. Sodi must be
pebbled beforet4, at some timet3 aftert2, anddi ∈ [t3, t10−1].

Thus{(xi,x′i), x̄
′
i,di,(yi, x̄i)} ⊆ [t4, t7−1], so by Lemma 7 any node ofRi can only be pebbled black and

pebbled once during this interval. Lett5 be the timer1
i is pebbled. The nodesGi−1 ∪ {(xi,x′i), x̄

′
i,di,yi}

must all be pebbled att5− 1. So{(xi,x′i), x̄
′
i,di,yi} ∈ [t4, t5− 1]. SoGi−1 must only be pebbled black and

once during this interval, so we can apply the induction hypothesis for the true assignment to conclude that
ψdαi∪{xi} is QSAT . 2

Corollary 8: There exists an infinite family of graphs such that any minimal space black-white pebbling
of these graphs requires exponential-time, but they can be refuted in linear time with the use of 1 additional
pebble.

Proof: Let G be the DAG corresponding to the formulaψ = ∀xn∀xn−1 . . .∀x1(x1∨ x̄1∨ x2)∧ (x2∨ x̄2∨
x3)∧ . . .∧ (xn ∨ x̄n ∨ x1). This formula is clearlyQSAT , since its 3CNF part is a tautology. Also, sinceψ
hasn universally quantified variables, by Lemma 5, the minimal 4n + 3 pebbling strategy requires time 2n

to execute. But using just 1 additional pebble we can pebble the target node in linear time as follows.
For everyi from n to 1, pebbleyi, followed byx′i, and thendi, and finally ¯x′i. We have now placed 4n

pebbles on the graph. Then use the remaining 4 pebbles to pebble through the clause widgets in the obvious
way. Oncezm is reached, pebbleG0. We must now pebble up through then universal quantifier widgets
in a similar way to the proof Lemma 4 except that we will use ourextra pebble so that we will not have to
repebble each twice. At the start we have pebbles onGi−1, yi, x′i, di, and ¯x′i, as well as the 4 pebbles in every
widget above widgeti, for a total of 4n+3 pebbles. Place the extra pebble on ¯xi and slide it up tobi. Then
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slide the pebble fromdi to ai and lift the pebble frombi. We now have pebbles onGi−1, x̄′i, ai, x′i andyi. At
this point we can slide the pebble fromx′i to xi and continue to pebbleGi without exceeding 4i+3 pebbles
again. We can follow this procedure for everyi from 1 ton, and then slide a pebble fromGn up tos. Clearly,
each clause widget and each quantifier widget must only be pebbled once, so the whole procedure requires
linear time in the size ofG . 2
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