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Abstract

The complexity of the Black-White Pebbling Game has renthere open problem for 30 years. It
was devised to capture the power of non-deterministic spacaded computation. Since then it has
been continuously studied and applied to problems in dévarsas of computer science including VLSI
design and more recently propositional proof complexityl 983, determining its complexity was rated
as “An Open Problem of the Month” in David JohnsoNB-Completeness Column. In this paper we
show that the Black-White Pebbling Game is PSPACE-complete
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1 Introduction

The Black-White Pebbling Game was introduced by Cook andi$®tl976 [3] in the context of deter-
mining lower bounds for space bounded Turing Machines. Trbblem recevied considerable attention
throughout the next decade due to its numerous applicatimhsding VLSI design, compilers, and alge-
braic complexity. In 1983 determining its complexity waserhas “An Open Problem of the Month” in
David Johnson’s\NP-Completeness Column [9]. An excellent survey of pebbling results from this pekrio
can be found in Pippenger [15]. Recently, there has beeruegersce of interest in pebbling games due to
their links with propositional proof complexity [1, 2, 4, 53]. In this paper we prove that the Black-White
Pebbling Game is PSPACE-complete.

The Black-White Pebbling Game was preceded by the Black IrgbBame, which has also been
widely studied [15]. Lets = (V,E) be a directed acyclic graph with one distinguished outputens.
In the Black Pebbling Game, a player tries to place a pebblevanile minimizing the number of pebbles
placed simultaneously apn. The game is split up into distinct steps, each of which takeplayer from one
pebbling configuration to the next. Initially, the graph tains no pebbles and each subsequent configuration
follows from the previous by one of the following rules:

¢ At any point a black pebble can be placed on any source node
e At any point a black pebble can be removed from any node

e For any nodey, if all of v's predecessors have pebbles on them, then a black pebbbe ¢gdaced on
v, or a black pebble can be slid from a predecesgorv.

The Black Pebbling Game models deterministic space-baliodenputation. Each node models a result
and the placement of a black pebble on a node representstidrenddstic computation of the result from
previously computed results. A sequence of moves made bpldyer is called gebbling strategy. If a
strategy manages to peblsasing no more thak pebbles, then that strategy is callek-pebbling strategy.

The Black-White Pebbling Game is a more powerful extensioth® Black Pebbling Game in which
white pebbles, which behave in a dual manner to the origilaakipebbles, can also be used. As before, the
player attempts to place a black pebblesavhile minimizing the number of pebbles placed simultangous
ong atany time. The Black-White Pebbling Game extends the BRatibling Game with the addition of
the following rules:

e At any point a white pebble can be placed on any nade
e At any point a white pebble can be removed from any source mode

e For any noder with a white pebble on it, the pebble can be slid to an emptyewessou if all of
V's other predecessors are pebbled, or the white pebble ceentmed if all ofv's predecessors are
pebbled.

e The game ends whescontains a black pebble and every other node is empty.

As before, the placement of each black pebble is meant to Inleelelerivation of a deterministically-
computed result, while the placement of each white pebbiaeant to model a non-deterministic guess,
whose verification requires all of its antecedents to bevddri Since the game ends when there is only a
single black pebble on the target, the game cannot comphtileall of these guesses have been verified and
thereby discharged. Clearly every black pebbling strategyblack-white pebbling strategy.

In 1978, Lingas showed that a generalization of the BlackRedp Game, played on monotone circuits
instead of DAGs, is PSPACE-complete [12]. This was a somewstagorising result since the PSPACE-
complete games of the time involved two players and it waardiew the alternation between them led to



each game’s high complexity. Lingas’'s Generalized Blackbireg Game, on the other hand, is a single
player game with no obvious alternation. Its complexityregdrom the necessity to repebble some nodes
many times in order to achieve the minimum pebbling numbesdéone graphs. Lingas’s ingenious reduc-
tion exploited exactly this phenomenon to force any optistigtegy on his circuits to necessarily verify the
truth of a quantified boolean formula (QBF).

In 1980, Gilbert, Lengauer, and Tarjan elaborated on thé& sgucture of Lingas’s construction to
prove that the Black Pebbling Game on DAGs is PSPACE-comf#t The main difficulty in moving from
monotone circulits to the more restricted class of DAGs istkeation of an OR widget using only the global
bound on the number of permissable pebbles and nodes whittkeaBND gates. Though their exposition
does not focus on it, this is a significant technical hurdlemwbaxtending Lingas’s ideas to DAGs.

Both reductions were devised to force any optimal black [edlstrategies to verify a QBF. By their
nature, black pebbling strategies are very inductive amdardy pebble graphs in one direction. As a
result, large portions of a graph remain unpebbled whilg@ss is being made linearly from the source
nodes toward them. In contrast, white pebbles allow a muatterichoice of strategies since they can be
placed anywhere on the graph regardless of where pebbles plaged before, thereby breaking up the
straight inductive pattern obvious in all pure black sigas. Although the black pebbling number of a
graph is never more than a square of the black-white pebblimgber [7], the addition of white pebbles
lowers the pebbling number of many graphs [11], [16], [10hfdttunately, the constructions used for the
previous PSPACE-completeness results are both examptegbfgraphs. As a result, neither can be used
to differentiate between true and false QBFs in the presehadite pebbles.

In this paper, we finally resolve Johnson’s open problem bilimg on the construction of [6] to prove
the PSPACE-completeness of the Black-White Pebbling G&mmee white pebbles can be used so unpre-
dictably, we create graphs on which the use of even a singite whbble on anything other than a source
node (where black and white pebbles are almost indistihgbig) leads to a sub-optimal pebbling. When
applied to the right family of QBFs, our reduction also pd®g an infinite family of graphs which require
exponential time to minimally black-white pebble, but cangebbled in linear time if we use just one peb-
ble more than the minimum. This results in a time/space tfhdesult similar to that proved in [6] for pure
black pebbling.

2 Definitions and Proof Overview

Formally, the Black-White Pebbling Game takes as input a DA®vith a special target nodsand an
integerk and asks whether there ikaebbling strategy fosin ¢ . We prove the following theorem.

Theorem 1. The Black-White Pebbling Game is PSPACE-complete.

Itis not hard to see that black-white pebbling is in PSPACEe®6(s ,k), we can easily guess a sequence
of configurations that pebbles with at mostk pebbles. Then by Savitch’s theorem, this implies that black
white pebbling is in (deterministic) PSPACE.

The next two sections will be devoted to showing that the BM#hite Pebbling Game is PSPACE-hard.
To prove this, we will reduce from QSAT. Given a QBF we will create a graplg with the property that
Y is QSAT if and only ifg has a #1+ 3 black-white pebbling strategy.

Following the conventions of [14] and [6], we classify pebblacements agecessary or unnecessary.
The first placement of a black pebble on the target vertex égessary. A placement of a black or white
pebble on any other nodeis necessary if and only if the pebble remainsvamtil a necessary placement
occurs on a successor vf(this can occur concurrently if we are sliding a black pehlgiefromv to the
successor). We call a pebbling strategy which contains neegssary placemeritsigal. Clearly, removing
all unnecessary placements frork-pebbling strategy for a graph results in a frugak-pebbling strategy
for . We can therefore limit ourselves to considering just ftygegbblings. The notion of frugality is
central to proving one of our most important lemmas, Lemma 7.
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Our construction is similar at a high-level to [6], whereytloeeate a graph from a QBF with the property
that the formula is QSAT if and only if the graph has a smallepblack pebbling strategy. The general
idea behind their reduction is to have the black pebblingesmond to the exponential-time procedure that
verifies that is QSAT.

The construction of [6] is broken up into two main subgrapiBnear chain of clause widgets followed
by a linear chain of quantifier widgets. In all strategiesahtachieve the construction’s minimum pebbling
number, pebbles must be placed on certain special nodesdyp @akich corresponds to the lexicographically
first truth assignment in th@SAT model for. Since this assignment satisfigs 3CNF the player is able
to successfully pebble through the clause widgets withgoeeding the minimum pebbling number. The
player can then begin to make progress up to the first univguemtifier widget, say widget In order
to pebble through this widget without exceeding the pelgbliomber, the player must leave a pebble on a
“progress node” in widgdtand then repebble the special nodes for the innermastables, thereby placing
pebbles in a way which corresponds to the lexicographicalyond truth assignment in tlISAT model.
The player can then pebble up through the clause widgets,agiadl this time use the pebble which was
previously placed on the progress node to pebble throughewidonly to have his/her progress arrested
at the next universal widget, at which point the process memstat. Minimally black pebbling the graph
corresponding to a true QBF withuniversal quantifier widgets therefore requirégite.

Unfortunately, the graphs used in all earlier constructiane easy to pebble once white pebbles are
allowed, regardless of whether or not the formula is QSATusTtine main obstacle in proving hardness of
black-white pebbling is to determine how to modify the comstion so that white pebbles will be rendered
useless. We exploit an important observation to do this.9lf91 Meyer auf der Heide [7] proved a strong
duality between black and white pebbles. Namely, he proliatddn any graply , for any pure black-
pebbling strategy there is a pure whidégebbling strategy and vice versa. In order to prove thignhde
a modification to the rules of the game. Pure black stratesjib$egin with an empty graph and end with
a single black pebble on the target node, but pure white pepbtrategies now begin with a single pebble
on the target node, and end with a completely empty graph pkdigf amounts to showing that running a
pure blackk-pebbling strategy backward yields a pure whitpebbling strategy, and vice versa. This has
some implications for the original Black-White Pebblingrig in which every strategy must end with a
single black pebble on the target node. Namely, if you tryde as close to a pure white strategy as you
can to black pebble the target node of some DAGnNd if the maximum pebbling numbkris reached in
any pure black strategy af at some time when there is no black pebble on the target noele the black-
white strategy will necessarily need to use 1 pebbles, one black pebble on the target nodekandite
pebbles which are simulating some optimal black pebblimgwerse. By similar reasoning, if one can build
a graph which requires the player to use the maximum numbpelgibles in every configuration of every
optimal pure black strategy, then using a white pebble irpsttpof a black pebbling of any intermediate
node should also exceed the maximum. Our construction igrexs to enforce this while maintaining the
original properties found in the construction of [6].

However, we run into troubles in the case of the existegtiallantified variables. The problem stems
from the fact that for an existential quantifier widget, wenii@ be able to pebble up to that widget in either
of two different ways—one corresponding to the variablendeet to true, and the other way corresponding
to the variable being set to false. Thus, there is an impléR in this argument. This difficulty was also
overcome in [6], in the more limited context of black pebylirif we were constructing monotone circuits
rather than graphs (which are special cases of monotongtsiwith only AND gates), then things become
much easier, even when allowing the use of white pebblesg sire can use an explicit OR gate to allow
for either of these two types of pebblings. This was accashplil in [8] which uses OR gates as a building
block in order to prove an exponential time/space speedepréim for Resolution. However, when OR
gates are not allowed, we have to somehow simulate thiséih@R using only AND gates. Any way of
doing this will necessarily involve two different pebblggand it is quite subtle to see how to accomplish
this while still prohibiting white pebbles from being usatfe manage to accomplish this with another new



idea that lets us simulate this implicit OR using only ANDegat

3 The Reduction

To show that the Black-White Pebbling Game is PSPACE-haed:aduce from QSAT. In our presentation,
a QBFY = QnXxnQn_1X%n_1--- QX1 F, whereF is a 3CNF containingn clauses over the quantified variables
Xn, - --,%1. We have inverted the numbering of the variables simply asnaemience in the proof. Given a
QBF Y, we produce a graph whose target nodecan be black-white pebbled using at most43 pebbles

if and only if Y is QSAT. Our construction is designed to penalize any usehifewpebbles, so that the
optimal strategy is all black.

The graph which we construct is composedaf mwidgets, one for each quantified variable and one
for each clause in F. As in [6], the quantifier widget @i, contains four vertices which represent the
variablex;, we call these nodes, X, X, X. The location of pebbles on these four nodes correspondeto t
truth value assigned tg by the current truth assignment which is being tested by éidbling. If pebbles
are onx; andx, then the variable; is set to true. If pebbles are ofiandx; or if pebbles are ox andx,
then the variable; is set to false. Our construction will never allow an assigntrto place pebbles on both
X andx;.

The construction of the quantifier widgets relies on a subefidve call ani-slide. Ani-slide is designed
to severely restrict the player’s pebbling strategies. Anepmle of a 4-slide is shown in Figure 1. Once the
bottom nodes of anslide are all black-pebbled, arslide strategy, where the bottom pebbles are slid up
to the top nodes in the appropriate order, is the only waydokspebble the top nodes without using more
thani pebbles.

DerINITION 3.1: Ani-slide is a pair of setgV,U) together with a set of edges that satisfy the following
propertiesV is a set of nodesv!,\2,---,vi andU is a set of nodesu!, 12, ---,u'. The edges are as follows.
(1) V! is the predecessor of all nodessuch thak > j; (2) ul is the predecessor of all noddssuch that
k> j; (3) ul is the predecessor of all nodéssuch thak < j; (4) ul has at leasit— j + 1 predecessors from
outside ofV orU.

Globally the construction is very much like the constructio [6]. There are a number of nodes used to
encode a truth assignment, which are predecessors to noteshi clause widgets and quantifier widgets.
The clause widgets are connected linearly and can only belgeblvithin the space bound oh4- 3 if the
truth assignment encoded by the current pebbling configuraatisfied. The quantifier widgets are also
connected to each other linearly and follow the last clausig®t. They slow the advance of the pebbling
towards. In order to advance through them, it will be necessary telbfe the clause widgets numerous
times, once for each truth assignment required to show|ti@aQSAT. Only once the final quantifier widget
is pebbled is it possible to pebble the target ned&/e now describe the individual widgets and how they
are connected. These descriptions are somewhat terseeameant to be read in accompaniment to Figures
1, 3,4, 2,and 5.

The universal widget is depicted in Figure 3. For every <i < n, if widget i is a universal wid-
get, it is composed of 4 groups of nodds;, X, di, %, X,yi}, Gi_1 = {g" ;,...,g" 7'}, {&,b}, andG, =
{gt,....g"3}. These are connected as follows.has 4+ 3 source nodeg}, throughpfi+* as predeces-
sors,X has 4+ 2 source nodesy, throughpg 2 as predecessors; has 4+ 1 source nodeg] through

pﬁf“ as predecessors, ardhas 4 source nodesp)%_ through p%i as predecessors. The sole predecessor of
X is X and the sole predecessorfis X. For every pair of nodegij andgf of G, if j <kthen gij is a
predecessor @. Similarly, for every pair of nodeg ; andgf ; of Gi_1, if j < ktheng , is a predecessor

of g}‘_l. The subgraph{g?,... 7gi‘“*1}, Gi_1) forms an 4— 1 slide. The nodé; is a successor of every node

in Gi_1, and the node; is a successor of every node@_1 U {b;i}. Finally, X is a predecessor of every node

in{g',...,g%}, X is a predecessor &f, d; is a predecessor of both nodes{ln, a;}, X is also a predecessor
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of both nodes in(bi, &}, x is a predecessor of every node{ig',. .. ,gi‘”“}, a; is a predecessor of every
node in{g?,...,g" "2}, andy; is a predecessor of every nodefig!,...,g" +3}.

The existential widget is depicted in Figure 4. For eviedy<i <n, if widgeti is an existential widget,
itis composed of 4 groups of nodess, X, di, xi, X, yi}, Gi1={g} 1,.. ., g 1 L R ={r},..., i T UH =
{ht,....h" U e}, andGi = {g},...,g" "3}. X has 4+ 3 source nodep;. throughpi'+3 as predecessors,
Vi has 4+ 2 source node;sy through p§“+2 as predecessots has 4+ 1 source nodepdl through p4I+1
predecessors, anlhas 4 source node;s»)Q throughp>q as predecessorg| also hag; andx as predecessors.
The sole predecessor xfis x| and the only two predecessorsxfirex| andy;. For every pair of nodegiJ
anddf of G;, if j < ktheng/ is a predecessor @f. The same is true for every pair of nodesHn R;, and
Gi_;. Every nodeg, e{d',....q '“} has 4+ 1— j source nodes as predecessors. Adsis a predecessor
of every node in{g?,...,d; di1 }, X is a predecessor of every node{ig, . . ,gi“i+2}, andx; is a predecessor
of every node in{g,...,g '*3} Also, g is the successor of every nodeHi, d; is a predecessor of every
node in{h!,...,h"*1}, x is a predecessor of every node{in},...,h*"} and ({h',... K" "1} R) forms a
4i — 1 slide. Finally,y; is a predecessor of every nodeRnand(R;,Gj_1) forms a 4 — 1 slide.

For alli, 1 <i < n, G is part of both widget and widget + 1. Gy is special in that it connects the string
of quantifier widgets to the string of clause widgets and s&cdbed belowGy, is special because every node
in Gy, is a predecessor of the target nal&Ve now describe thm clause widgets.

For each claus€;, there is a corresponding node This node always has four predecessors, one of
which is the previous clause node;. The other thredl, 12, andl3, correspond to the literals which occur
Ci. For example, if the first literal in thé" clause i¢j, then the nodezj'from guantifier widgef is one of the
predecessors @f. z; has a special source noggas a predecessor, since it has no previous clause. Finally,
we add edges from, to all three nodes ofsg. There are also three source nodgsbg, andcy which are
connected tdSg. ap andbyg are predecessors g§ andco is a predecessor @f. Figure 1 shows both an
example of a clause widget as well the connection betvzgesind Go. This completes the construction.
Figure 5 shows the outline of an entire circuit for an exantif.

4 Proof of PSPACE Completeness

Theorem 2. The quantified Boolean formuli = QnxnQn_1Xn_1... Q1X1F is QSAT if and only if vertex
sin the graphs constructed as above can be pebbled with-8 pebbles.

DEeFINITION 4.1: Letthe set of all truth assignments over variabyes, ... ,x, be denoted by;. Thus each
aj in A is a partial assignment that sets the outermost variables ofQnx, ... Qix1F. For any assignment
to a;, defineBg, to be the pebbling configuration gf consisting of black pebbles on the following nodes:
For each universally quantified variabteof g, j > i+ 1, if ai(xj) = 0, theny; € By, x’ € By, dj € By,
and (x;,X]) € By,. Otherwise, ifai(xj) = 1, theny;j € Bq;, Xj € By, aj € By, and(x,, J) € By,. For each
eX|stent|aIIy quantified variablg of g, j > i+ 1, if a; (xJ) =0, theny; € By, x € By, dj € By, and
(Xj,Xj) € Bq,. Otherwise, ifoi(xj) = 1, theny; € By, Xj € By, dj € By, and(xj, ) e By

DEFINITION 4.2 Black clamping interval) Letty <t; <ty <teq. Let Sbe a set of nodes. We say that
S€ [ta, tp] if all nodes fromSmust be black pebbled during every configuration from tigt@rough timety,.
We say thatu, V) € [ta,tp] if eitheru or vis black pebbled during every configuration from titgéo timety,.

Lemma 3: If Y is QSAT, then the target nodmf ¢ can be pebbled withr+ 3 pebbles.
Lemma 3 follows from the following more general lemma byisett = n.

Lemma 4: For alli, a; € A;, suppose the graph is initially in configurationBy,. If Y is QSAT, then we
can black pebbl&; at some time¢ > 1 using 41+ 3 pebbles, while keepinBy, clamped (i.e.By, € [1,t].)



Proof: The proof is by induction om from 0 ton. The base case is whér= 0. Letag be any as-
signment inAg. Suppose thapX, - -- Qix1F 4, IS QSAT. Then some literal in every clause must be set to
true. This implies that for eact), 1< j < m, at least one ofjl, IJ?, or IJ3 are black pebbled iBy,. We can
therefore black pebbl&g as follows. Start by putting a black pebble @n Then since at most two af’s
other predecessors are unpebbled, we have enough freepébblack pebble the rest ofs predecessors.
We know we can black pebble them because if sgfieunpebbled, ther' must be black pebbled iBy;.

We can therefore black pebble all Bfs predecessors. We can then slide the pebble fpto z and lift

the other (at most 2) pebbles which we just put down. Qnde black pebbled, we can then black pebble
2 the same way, all the way #,. Oncez, is black pebbled we can use the remaining two black pebbles
to black pebbleag andbg, and then slide the pebble from to ¢g. We can then slide the black pebble from
ap to g3, from by to g3, and fromcy to g3. Note that this strategy uses only black pebbles. For theciind

step there are two cases depending on whe@hér a universal or an existential quantifier.

Case 1:Qj is a universal quantifier. In this case, bafifiy, (%) andW[q x5 are QSAT. We begin in
configurationBg, with 4i + 3 free pebbles. Black pebbjg followed byx, thend;, and thenx”. Then move
the pebble fromx to x;. At this point we have 4- 1 pebbles free and can apply the induction hypothesis
to black pebbles; ;. Then slide the black pebble fromto b;, then the black pebble frodh to a.. Remove
all pebbles from widget except for the ones oa, X/, andy;. Then slide the black pebble from to x;
and black pebble again. Now apply the induction hypothesis to simultanepbiick pebbles;_; again.
Next, use thé-slide strategy to slide all d&;_1's pebbles up t@! to gi‘“*l. Then slidexs black pebble to
g¥, and thenx’s black pebble t@j"**. Next slide the black pebble from to g*+2 Finally, slide the black
pebble fromy; to g¥+3,

Case 2: Q is an existential quantifier. In this case, eithiglly,u(x) OF W[ uix) IS QSAT. As in the
universal case, we begin By, with 4i + 3 free pebbles. Black pebbig followed byy;, di, and thenx’.

If W[gupxy is QSAT, move the black pebble frorto x. Then apply the induction hypothesis to black
pebbleG;_1. Then use thé-slide strategy to move all of the pebbles fr@n 1 to R.. The slide the black
pebble fromy; to x. Then use théslide strategy to move all of the pebbles fr&to {hi, ... ,hi‘“‘l}. After
that, slide the pebble from to hf” and then slide the pebble frodyto hi‘““. Then slide the pebble from
hi4i+1 to &. At this point remove all the pebbles off of the widget so thalty X, X, anda; remain. Use these
4i free pebbles to pebble the source node predecessg}saqﬁ then slide one tg' itself. Use the pebbles
left over on the source nodes to subsequently pebble g‘aahtil gi4i is pebbled. At this point slide the
pebble froma; to g1, slide the pebble fromx To g¥+2, and finish by sliding the pebble fromto g¥+2.

If W[ouix) is QSAT, move the black pebble frorto x;. Then apply the induction hypothesis to black
pebbleG;_;. Then use thé-slide strategy to move all of the pebbles fr@n ; to Ri. Then use thé-slide
strategy to move all of the pebbles frdjto {h!,... 7hi‘“*1}. After that, slide the pebble from to hi4i and
then slide the pebble from to h**. Then slide the pebble frof'*! to &. At this point remove all the
pebbles off of the widget so that onyy, X/, anda remain. Use theiebbles that are free to repebilend
then pick the pebble up frory and pick up the 4— 1 pebbles that remain of) Source node predecessors.
Slide the pebble from to x;. At this pointx/, x;, anda; are all pebbled and we can finish by black pebbling
G as we did in the positive cased

Lemma 5: Let be a QBF, and let be the corresponding graph.dhas a 4+ 3 black-white pebbling
strategy ing , thenys is QSAT, and any A+ 3 black-white pebbling strategy requir@%2) steps, wheré
is the number of universal quantifiersyn

We first note that has 4+ 3 predecessor$;,. And each of these nodes has indegree-8. So no
node ofG,, could ever contain a white pebble whideontains a black pebble, because there would not be
enough free pebbles to discharge it. Therefore, in ordeebbles, G, must first be simultaneously black
pebbled. Lemma 5 therefore follows from the following moemgral theorem.
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Lemma 6: For all a; € A, if there exists time¢’, t” such thatBy, C [t,t”], then black pebblinds; at
t” from By, using no more thanrH- 3 pebbles, requires thatis QSAT and require(2%) units of time
betweert’ andt”, wherek is the number of universal quantifiers among ithener most quantifiers.

The following lemma will be used repeatedly. In particulaimplies that for anyi-slide (V,U ), in order
to pebbleV using no more thanpebbleslJ must first be black pebbled at some earlier time.

Lemma 7: If a nodev hask predecessors and there aret43 — k other nodes irt’,t”] andv is not white
pebbled at”, thenv can be black pebbled at most once and can never be white pdidti@eernt’ andt”.

Proof: If vis white pebbled, then its white pebble can only be disclthogee it has contributed toward
placing a black pebble beyond it. The existence of this éxtaek pebble means that there are at nkostl
free pebbles to pebble all & k predecessors. So the space bound must be exceeded toghsitteawhite
pebble. The same argument forbids a second black pebbling.

Proof: [of Lemma 6] The proof is by induction omfrom 0 ton. The base case is whér= 0. Letag
be any assignment ify and suppose there exist timgsandt” such thaB,, C [t',t”]. We will show that
simultaneously black pebblingg att” without ever exceedingrid+ 3 pebbles requires thatis QSAT.

In order to black pebblg; or discharge a white pebble from we must either black pebblg_; or
discharge a white pebble from_;. In order to black pebble any node®a, we must pebbley,. Inductively,
this means that at some point for every singleit was necessary to either black pebble it or discharge a
white pebble from it. But every; (exceptz) has 4 predecessors, 17, 1%, zj_1. Therefore, in order to
pebblez; at least ondz}‘ must be black pebbled By,. But in this casegg must satisfy clausg¢ of F. Since
everyz; must either be black pebbled or dischargeg must satisfy every clause &. ThereforeF [, is
QSAT.

Induction Sep: We now prove the induction step in which we will show that if ean simultaneously
black pebbleG; = {g? - - gi‘“+3} using no more thani4 3 pebbles without moving any pebblesBg , then
W[q is QSAT and the pebbling must take tir2"), wherek is the number of universally quantified vari-
ables among the inner mastariables of.

Case 1:Q; is a universal quantifier. We will show that in order to bladbpleG; we must necessarily
pass through a number of all-black configurations, inclgditack pebblingG;_; twice, once with black
pebbles ond, di, and eitherx or X/ (the false configuration), and once with black pebbles{om, and
eitherx; or X (the true configuration).

We appeal to Lemma 7 to conclude that sigckas 4+ 3 source nodes as predecessors, our first action
within widgeti must be to black pebblg and it must stay in place until its last succesg,‘&fS is pebbled
for the final time at;s, soy; € [t1,t15— 1].

Now thaty; is clamped, we can again appeal to Lemma 7 to conclude thaid®inG; U {a;,b;, X } can
be white pebbled and each can only be black pebbled once &etywandt;s ;. Sincex; has 4+ 2 source
nodes as predecessors, our second action within widgest be to black pebble and it must stay in place
until its successox; is pebbled for the last time. Then a pebble must remair omtil all of its successors
are pebbled for the last time, because we can never repéisiledrge oncex is empty. Let7 be the time
thata is pebbled and It be the timegi3i is pebbled. Thew € [t2,t7 — 1] and(x, X)) € [t7,ti2— 1].

Our argument now divides into two sections. In order to stemdously black pebbl&; we must black
pebblegf“”, which requires that bota; and {g},...,g"} be pebbled. In the first part of the argument
we prove that in order to black peblkdg P[4, 51 must be QSAT and tha®(2X) units of time must pass
betweenty andt;, wherek is the number of universally quantified variables among tieeti mosti — 1
variables ofp. In the second part of the argument, we arguedhat . ,gi4i must also be simultaneously black
pebbled in order to black pebt@'*e’ and that pebbling them without exceeding our bound neegssithat
Wlaugx) is QSAT and that(2%) units of time pass between timgsandt;4 — 1. This will allow us to



conclude that black pebbling; requires thatp[, is QSAT and require@(z"') time, wherek' = k+ 1 is the
number of universally quantified variables among the innestinvariables of.

Sincea; can only be black pebbled once and is needed to pebble eaehoh @, & € [t7,t14—1]. In
order to black pebblg; at timet; we must pebbldy at some timdg, beforet;. Again, we know thab;
can only be black pebbled oncetinto ty4, sob; € Jtg,t7 — 1]. Also, d; is a predecessor of bo#y andb;
and must be pebbled at timgs— 1 andt; — 1. Sincex is in [tz,t7], by Lemma 7 we can conclude thét
cannot be white pebbled and can only be black pebbled ontésiinterval. Also, since it has in-degrei 4
di must be black pebbled &, immediately aftet, as in Lemma 3, sd; € [t3,t7; — 1]. The same argument
can be made to argue th@§,X) € [ts,ts — 1], wheret, is afterts. In order to black pebble; or b, we
must first pebble5;_; at some timés beforets. This whole time the nodes, d;, and(X;,x/) are clamped.
We can therefore apply Lemma 7 to conclude Bat; must be black pebbled at some titgebetweert,
andts . We can now apply the induction hypothesis to conclude teatkdpebblingG;_; requiresy[q,ux)
to be QSAT and black pebblinG;_; from B[ts] requires timeQ(2%), wherek is the number of universally
guantified variables among the inner most1 variables of).

We now proceed with the second phase of the argument. We Kraave&ach node is; cannot be white
pebbled and can only be black pebbled once. So when we bldirtke@”*?’ at timetsys, all the rest ofG;
must already be black pebbled. Consigﬁﬁz. In order to black pebble it at timg, beforet;s, we must
first black pebbleg*! at timet;3 beforet;4. In order to black pebblg**?! at timet;3 we must first black
pebbleg¥ at timet;, and in order to pebble that, we must pebgle. .. ,gi‘“‘1 at timet;;. But we must also
pebblexX. Note thatd must be empty at; sincey; is clamped andy; has 4 + 2 other predecessors, none
of which isX. Also, X must be empty again Hys — 1, sincegi4i+1 has 4+ 3 predecessors, none of which
is X. We can therefore apply Lemma 7 to conclude that betvig@mdt;3, X cannot be white pebbled
and can only be black pebbled once in that interval. We masetbre repebble at some timeg aftert;
whena; and(x, X)) are clamped ang € [t,t1» — 1]. Sincex{is a predecessor of every nodegh...,g" 2,
these nodes can only be black pebbled at some timevith g being pebbled first ato, aftertg. Every
node ofG;_; is a predecessor @f. Since the three nodds(, a;, (x,X)} are clamped during the interval
[t7,t11] we can apply Lemma 7 to conclude ti@t 1 must be black pebbled &t betweertg andt;o. Since
{X,a,(x,X)} is the true assignment for variabtewe can apply our induction hypothesis to conclude that
W[ auqxy Must be QSAT and black pebblirg ; from BJt7] requires timeQ(2¥), wherek is the number of
universally quantified variables among the inner mest variables of}.

Thus we have shown that any 4 3 pebbling must black pebblg;_; twice betweerty andt;s, once
implying thaty| q,u(x%) is QSAT, and once implying thafi[ ¢y, is QSAT. Each time requireQ(2) time,
wherek is the number of universally quantified variables among tinei mosi — 1 variables ofp. There-
fore, black pebblings; requires timeQ(2<t1), and implies that [, is QSAT.

Case 2:Q; is an existential quantifier. We will show that in order todig@ebbleG;, we must necessarily
pass through a number of all-black partial configurations|uiding simultaneously black pebblir@_1,
either with black pebbles ox, di, and eitherx or X (the false configuration), or with black pebbles>dn —
di, and either; or X (the true configuration).

By Lemma 7, no node iiG; U {X } can be white pebbled betwe&nandt;s, and each can be black
pebbled at most once. Based on which nodeG;dre predecessors to others, we can concludegﬂfa?t
must be black pebbled last, at tife, g*+2 must be black pebbled before that at timgandg" 2 € [t14, t15),
andg"*! must be pebbled before that at titagandg** € [t13,t15], g* must be pebbled before that at time
t1p andg; € [tiz,ts]. Also, (X, %) € [tz,t15— 1].

Now considery;. It has degreei4-2, and it must be black pebbled at titagand can never be repebbled
again. Thus it must remain black pebbled until it is usedHierlast time.

Clearly, bothx € Bt;> — 1] anda € BJt;o — 1]. Lett;; be the last timey; is pebbled. At this timeg
must be pebbled black. We can see this becgﬂéé cannot get its black pebble frog} through tog?

since these can only be pebbled once. All of these must beiileml/hergi‘“*l gets its black pebble, so it



cannot get a black pebble from eithgror X since both of these are needed to supgﬂir"t2 and could not
be repebbled with so many black pebbles clampE(Hijrgi‘”“’s 4i + 39 predecessor ig;, So it must receive
its black pebble via a slide move from Soa; must be black during the interviiy, to — 1.

At this point our proof splits into two cases, either a blaeblple is onx” att;; or not. One of these
cases will imply thatp[q, ;x is QSAT and the other one will imply thap[q %) is QSAT.

Suppose there is no black pebblexpatt;;. Then there are two subcases to consider. Subcase (i): there
is no pebble at all ox, or subcase (ii) there is a white pebblexjmtt;;. First we consider subcase (i): there
is no pebble at all ox. Then we must repebblé¢ at some time* betweert;; andt;,_1. We will first argue
that two nodesy andy; must be clamped during the intervl,t11]. First, because] is black pebbled at
t;, and is a predecessor xjf and can never be pebbled again (because its indegrée- 3)4it follows that
X € [t1,t* —1]. Secondly, sincg; is a predecessor af (and by the above reasoning gets black pebbled only
once aty), it follows thaty; € [t2,t* — 1]. Thus both andy; are clamped during the intervg, t14].

Now we will argue that each node &f; must be black pebbled, and can only be pebbled once. Let
ti0 be the time whem"*1 is pebbled; lety be the time whem* is pebbled; letg be the time whem~?
is pebbled, and let; be the time wherinil is pebbled, where; < tg < tg < t19. By Lemma 7 and because
x andy; are clamped, and all nodes k) have indegreei4+ 1, it follows that each can only be pebbled
once and must be pebbled black. Thtd € [tio,ti1 — 1], h¥+2 € [to,t11 — 1], KL € [tg,t11 — 1], and
hll S [t7,t11— 1]

Next we will argue that during the intervig, t;0— 1], the three noded;, X' andy; are all black clamped.
(We already know that/ andy; are black clamped during this interval.) Becadsbas indegreei4+ 1, by
Lemma 7, again we know thak must be black pebbled at tintg and can only be black pebbled once.
Thus,d; is black and clamped during the interyl t;0 — 1].

Now again we can apply Lemma 7 R. Because now we know that 3 nodes are clamped during this
interval, and because all nodesRnhave degreei4it follows that they can only be pebbled once between
t3 andt;p— 1 and are black. Ldg be the timeril is pebbledts < t7.

Finally, we want to show thatx, X)) € [t3 + 1,tg — 1] and furthermore the pebbled node is black. First,
X must be pebbled at time — 1 because it is a predecessornpf Furthermore we will argue that it must
be black pebbled. At timg — 1, X must be unpebbled because in order to pebplat timet;, there must
be 4 + 3 pebbles already on thi¥ widget, not including< (the 4 + 1 predecessors f plus the clamped
nodesx andy;.) Similarly, X must unpebbled a. Now if X; were pebbled white rather than blackat 1,
it would have to be discharged Iy, but this cannot happen since it would have to be dischaigedigh
the unpebbled, which would exceed our allowable space. Thus we have arthatd; must be pebbled
black att; — 1, and further remains black untj— 1 since it is a predecessor of bfi,..., h*.

Now to black pebble; by tz — 1, X' must be pebbled earlier, say at titets < t4 < t7 — 1. Itis left to
argue thats = t3+ 1. When we black pebbl€ at timets, we have already argued that there are three nodes
already clampedy], yi andd;,. Becauses has indegreeidit follows that it must be black pebbled next, and
can only be pebbled once. Th(s,X) € [t3+ 1,tg — 1].

Now in order to black pebble! at ts, every node ofG;_; must be pebbled d — 1. Again we can
apply Lemma 7. Since there are 4 nodes clamped, and the defgeeeh node irG; is 4i — 1, it follows
by our lemma that every node & can only be pebbled once betwdgmndtg and must be black pebbled.
Now finally we can apply the induction hypothesis to concltit since every node (X, X)), X, di,yi} is
clamped whileG; is being black pebbledy|, x; is QSAT.

The other subcase (ii) is an analogous argument to subgdsat fior the dual case of a white pebble
being discharged from a node (rather than the node being pkabled.)

Suppose, on the other hand, that there is a black pebbl¢ ant;;. We will now show that only
Bq, U {X,di,yi} can be pebbled when we pebbefor the last time beforé;; at some time4. Suppose for
the sake of contradiction that there is a pebble on some atiimz att,.

Sincey; is a predecessor @f and can only be pebblediaty; € [tz,t4 — 1]. Sod; must be empty & — 1
becaused has 4+ 2 predecessors which must be on the graph, along zyitht, — 1, which fills up the



space bound.

In order to pebbley by t;; we must therefore pebbld at some time betweety andt;;. Suppose;
is white pebbled. This pebble must be discharged; by 1 becausey has 4+ 1 predecessors and both
(X,%) andx are clamped until;1, sod;’s pebble is needed. By frugality there must be a pebbtd, iat the
time d; is discharged. So at this time there must be pebbles on a ridde one of(x;,x), andx and we
must exceed the space bound. Suppose on the other harti ihatack pebbled betwedn andt;;. This
takes 4+ 1 pebbles and there must be pebble$xn), X and by frugalityZ, whereZ is betweerz anda;.
So we can never pebbté betweert, andt;;. We therefore know that whexj is pebbled for the last time
beforet;1, there can be no pebble an

By the argument which we just finished, any nodezpf, can only be pebbled aftey. We now show
thatG;_; must be simultaneously black pebbled in order to black pedbl

We know that both( € [ts,t11] and (X, X) € [ta,t11]. Therefore by Lemma 7, any node kf can only
be pebbled once ift4,t11] and must be black. Call the tirr‘ré‘i+1 is pebbledt;q, the timehi4i is pebbled
tg, the timehi‘”‘l is pebbledg, and the timehi1 is pebbled;. Sox; must pebbled at some tintgbeforet;
andx; € [ts,t7 —1]. Suppose it is white pebbled. Then it must be dischargedrégfpbecause its pebble
is needed to pebblq‘““. Note thaty, must be empty at; — 1 since our space bound is reachednbi
predecessors and the clamping(rf X)) andxX. So whenx is discharged, there can be no pebbleypn
Therefore, to discharge, y; must be pebbled again afterand before;;, which is impossible due to its
high indegree. Suppose, on the other handxhistblack pebbled a. This means thay; € [ta,ts — 1]. So
there are at least 3 pebbles clamped ftgmumntil t; — 1. Butd; must be pebbled befote— 1. Sod; must be
pebbled beforg,, at some times aftert,, andd; € [tz tio— 1].

Thus{(x,%),X,d;, (yi,%)} C [ta,t7 — 1], so by Lemma 7 any node & can only be pebbled black and
pebbled once during this interval. Litbe the timeri1 is pebbled. The nodeS;_1 U {(x,X),X,di,Vi}
must all be pebbled & — 1. So{(x,X),X,d;,Vi} € [ta,ts — 1]. S0G;j_1 must only be pebbled black and
once during this interval, so we can apply the induction ligesis for the true assignment to conclude that
Wlauix) ISQSAT. O

Corollary 8: There exists an infinite family of graphs such that any mihisgace black-white pebbling
of these graphs requires exponential-time, but they caefoged in linear time with the use of 1 additional
pebble.

Proof: Letg be the DAG corresponding to the formula= Vx,Vxn_1... VX1 (X1 VX1V X2) A (X2 V X2 \V
X3) A ...\ (X VXV X1). This formula is clearlyQSAT, since its 3CNF part is a tautology. Also, singe
hasn universally quantified variables, by Lemma 5, the minimat43 pebbling strategy requires timé 2
to execute. But using just 1 additional pebble we can pelti@éarget node in linear time as follows.

For everyi from nto 1, pebbley;, followed byx/, and thend;, and finallyx]. We have now placedr4
pebbles on the graph. Then use the remaining 4 pebbles ttepgbdugh the clause widgets in the obvious
way. Oncezy, is reached, pebbl&,. We must now pebble up through theuniversal quantifier widgets
in a similar way to the proof Lemma 4 except that we will use exira pebble so that we will not have to
repebble each twice. At the start we have pebble§ian, y;, X, di, andX, as well as the 4 pebbles in every
widget above widget, for a total of 41+ 3 pebbles. Place the extra pebblexpand slide it up tdy. Then
slide the pebble frond; to g and lift the pebble fronf;. We now have pebbles d&_1, X/, &, X andy;. At
this point we can slide the pebble frahto x; and continue to pebbl&; without exceeding i4+ 3 pebbles
again. We can follow this procedure for evérfyom 1 ton, and then slide a pebble fro@y, up tos. Clearly,
each clause widget and each quantifier widget must only blelgelonce, so the whole procedure requires
linear time inthe size of . O
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5 Figures
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Figure 1: A clause widget for clausg = (I VI v I?) (left). The connection of, to Go (center). And a
4-slide ({v*,v?,v3,v*}, {ut, 12, u3,u*}) (right).

The nodey; hasj source nodes as predecessorg.
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A ={al,---,aM,if k< j, then

alis a predecessor af .

The nodey; is a predecessor of ajlnodes inA;.

The nodey; is a successor of ajlnodes inA;.

There is aj-slide fromA; up toB;.

Figure 2: Legend explaining the components of Figures 3 and 4
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Figure 3: A universal widget.
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Figure 4: An existential widget.
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