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Abstract. We study the complexity of the following algorithmic prob-
lem: Given a Boolean function f and a finite set of Boolean functions B,
decide if there is a circuit with basis B that computes f . We show that if
both f and all functions in B are given by their truth-table, the problem
is in quasipolynomial-size AC0, and thus cannot be hard for AC0(2) or
any superclass like NC1, L, or NL. This answers an open question by
Bergman and Slutzki (SIAM J. Comput., 2000). Furthermore we show
that, if the input functions are not given by their truth-table but in a suc-
cinct way, i.e., by circuits (over any complete basis), the above problem
becomes complete for the class coNP.

1 Introduction

Emil Post in his dissertation [Pos21] studied the completeness of the
propositional part of Russel and Whitehead’s Principia Mathematica and,
more generally, he became interested in the question which logical func-
tions can be expressed by means of other basic functions. For a set of
Boolean functions B he defined the closure of B, denoted by [B], as the set
of functions that can be obtained from functions in B by general compo-
sition (his term was “superposition”). Remarkably he was able to identify
all classes of functions that are closed in this sense [Pos20, Pos41]—these
classes are nowadays known as clones.

In modern terms, borrowing from Boolean circuit theory, the closure
of a set B consists exactly of those functions computable by Boolean
circuits whose gates evaluate functions from B; here one speaks of B as
the basis of the circuit. Hence, Post asked, given a basis (i.e., a set of
Boolean functions) B and a Boolean function f , if f can be computed by
circuits with basis B (that is: if f ∈ [B]).

Though this is certainly a very fundamental question which, from a
mathematical standpoint, is completely solved by the contributions of
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Emil Post, it has not received much attention from an algorithmic and
computational complexity point of view until recently. It is clearly de-
cidable, but given a function f of arity n and a basis B, if we simply
generate all functions in [B] of arity n and check if f is one of them
(see [Pip97]), we may have to generate up to 22n

functions; hence if f is
given by its truth-table (of size 2n), this naive approach yields only an
exponential-time algorithm. Bergman and Slutzki [BS00], making use of
results from universal algebra and Post’s list of clones [Pos41] improved
this considerably and presented an NL-algorithm. They asked if the prob-
lem is actually complete for NL.

In this short note, we give an algorithm which is only a slight modifi-
cation of the algorithm by Bergman and Slutzki [BS00] and show that the
problem, given a function f and a basis B by their truth-tables, to decide
if f ∈ [B], is in quasipolynomial-size AC0. This answers the mentioned
open question in [BS00] negatively: The problem cannot be hard for NL,
in fact not even hard for L or NC1.

From a more practical point of view, one might object that usually
Boolean functions are not given by their truth-table but in some high-
level description language, and the complexity of the problem above for
truth-tables is not very relevant. One possibility for a more succinct de-
scription of Boolean functions is of course to use general circuits (i.e., over
any complete basis) as representation of the functions they compute. This
approach was already followed in a paper by Böhler and Schnoor [BS07].
They looked at the list of clones from [Pos41], and studied for each of
them the membership problem, i.e., for each fixed clone B we have a
membership problem MEM(B): Given f , decide if f ∈ B. Since this is a
different computational problem for each individual clone, we will speak
of the non-uniform membership problem, in contrast to the uniform mem-

bership problem studied by Bergman and Slutzki [BS00] where both f and
B are part of the input. When using the input representation of [BS00] by
truth-tables we will see that for all except 8 clones the non-uniform mem-
bership problem is in AC0, while for the remaining 8 it is in qAC0. Böhler
and Schnoor [BS07] showed that, if the input function is represented by
a Boolen circuit, the non-uniform clone membership problem is tractable
only for a very small number of degenerated clones, and coNP-complete
in all other cases. For our study of the uniform membership problem, the
coNP lower bound of course remains valid. A contribution of this paper
is a matching upper bound: The uniform clone membership for circuit
representation is coNP-complete.
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When moving from the Boolean to a larger (finite) universe, the num-
ber of clones becomes uncountable [Pip97]. As a consequence, an approach
as above, relying on a the inclusion structure among clones as identified by
Post for the Boolean case, no longer works. Bergman, Juedes, and Slutzki
[BJS99] showed that the uniform membership problem is complete for
EXPTIME, if the input functions are given by their function table. Here
we note that, if the input functions are given in a succinct representa-
tion, the uniform membership problem over arbitrary finite domains is
complete for double exponential time.

In Sect. 2 we recall some notions and results from universal algebra
that lead us in principle to an algorithm to check if a function f can be
computed by circuits over basis B. The algorithm will mainly consist of
a number (linear in the arity of f) of calls to a subroutine to check if a
Boolean relation is a so called invariant of a Boolean function. In Sect. 3
we turn to a complexity examination of this algorithm, and we will see
that the complexity is determined by the complexity of the mentioned
check of invariants of Boolean functions.

2 Some Basics and Algorithms from Universal Algebra

Let B be a set of Boolean functions. The closure of B under superposition

(or short: the closure of B), denoted by [B], is the smallest set of Boolean
functions that satisfies:

– B ⊆ [B].
– Every function Ink is in [B], where Ink(x1, . . . , xn) = xk, the n-ary pro-

jection to the k-th coordinate, 1 ≤ k ≤ n.

– If g1, . . . , gm : {0, 1}n → {0, 1}, f : {0, 1}m → {0, 1} are in [B], then
the function h : {0, 1}n → {0, 1} is in [B], where h(x1, . . . , xn) =
f(g1(x1, . . . , xn), . . . , gm(x1, . . . , xn)).

In terms of Boolean circuits, the closure of B is exactly the class
of Boolean functions that can be computed with circuits over basis B

[PK79, Pip97, Vol99].
A set B of Boolean functions is closed, if B = [B]. Emil Post identified

all closed classes of Boolean functions, gave for each of them a finite basis,
and characterized their inclusion structure [Pos41], see Fig. 1. Closed
classes of functions are nowadays mostly referred to as clones [Coh65].
Clones denoted with a bold circle in the figure denote the famous 5 Post’s
classes, i. e., the dual atoms (maximal pre-complete classes) of the lattice.
To show that a basis is complete in the sense that it can compute all
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Boolean functions, it suffices to show that it is not included in one of
these classes.

We will not give a full description of all classes of Post’s lattice, as the
inclusion diagram became known; important here is only that the lattice
consists only of a finite number of clones plus 8 countably infinite chains
of clones, the S-classes. A gentle introduction of the lattice and some
central results can be found in [Pip97]; for a concise introduction the
reader may consult [PK79, Sze86]. Relations to complexity questions are
surveyed in [BCRV03, BCRV04]. In the sequel we will restrict ourselves to
the description of a Galois connection between this lattice and a lattice of
Boolean relations, since this will be of central importance for our results.

For this, let R be a Boolean relation of arity n and let f be a Boolean
function of arity m. We say that R is closed under f (or f preserves R, or
f is a polymorphism of R, or R is an invariant of f), in symbols: f ≈ R,
if for all x1, . . . , xm ∈ R, where xi = (xi[1], xi[2], . . . , xi[n]), we have

(
f
(
x1[1], · · · , xm[1]

)
, f

(
x1[2], · · · , xm[2]

)
, . . . , f

(
x1[n], · · · , xm[n]

))
∈ R.

Let us denote the set of all polymorphisms of R by Pol(R), and for
a set Γ of Boolean relations, we define Pol(Γ ) to be the set of Boolean
functions that are polymorphisms of every relation in Γ . Conversely, for
a set B of Boolean functions, let Inv(B), denote the set of all Boolean
relations that are invariants of every function in B.

Also on the side of Boolean relations a closure operator has been
studied. Let Γ be a set of Boolean relations. The closure of Γ , denoted
by 〈Γ 〉, is the smallest set of Boolean relations satisfying:

– Γ ⊆ 〈Γ 〉.

– The binary equality relation, {(0, 0), (1, 1)} is in 〈Γ 〉.

– If R is defined by R(x1, . . . , xn) ⇐⇒ ∃xn+1 . . . ∃xmF , where F is a
conjunction F = C1∧· · ·∧Cp with clauses that are obtained by apply-
ing a relation in 〈Γ 〉 to a vector of variables taken from {x1, . . . , xm},
then R ∈ 〈Γ 〉. We say that R is obtained from relations in Γ by
positive primitive definition.

Sets of relations closed in this sense are called relational clones or
co-clones. It is known that the pair Pol-Inv defines a Galois connection
between the lattice of clones and the lattice of co-clones. In particular the
following holds (see [Pip97, PK79, Sze86]):
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Fig. 1. Graph of all Boolean clones.
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Proposition 2.1. For every set B of Boolean functions and every set Γ

of Boolean relations,

Pol(Inv(B)) = [B],

Inv(Pol(Γ )) = 〈Γ 〉.

In other words, the clones and relational clones are exactly the fixed points

of the operators Pol ◦ Inv and Inv ◦ Pol, resp.

In particular, this implies that every clone can be characterized by a
set of invariants. For this, let B be a clone and Γ0 be a basis of Inv(B).
Then, f ∈ B iff f ≈ R for every R ∈ Γ0. Thus, given f and B,

f ∈ [B] iff f ≈ R whenever B ≈ R (1)

(in the sense that g ≈ R for every g ∈ B), and in fact, it is sufficient
to restrict ourselves to relations R that appear in some basis of a co-
clone, say from the list of basises given in [BRSV05]. In the sequel of this
paper we fix the list of basises from that paper, and if we refer to a basis
of some co-clone we mean precisely the basis given in that paper. Our
results, however, are independent of which basis we use.

This does not immediately lead to an algorithm to decide if f ∈ [B].
The reason is that, first there are infinitely many clones (and hence co-
clones), and second some co-clones have only infinite basises. We show
how to deal with these problems.

Looking at the lattice of clones, we see that it is finite except for
eight infinite chains. Let us say that the classes Sm

x and Sm
xy are of type

m, the classes Sx and Sxy are of type ∞ (x ∈ {0, 1}, y ∈ {0, 1, 2}), and
all remaining classes are of type 0. It is known [BRSV05] that for every
clone B of finite type, Inv(B) has a finite basis. A basis for Inv(Sm

1 )
is NANDm = {0, 1}m \ {(1, 1, . . . , 1)}, a basis for Inv(Sm

0 ) is ORm =
{0, 1}m \ {(0, 0, . . . , 0)}, a basis for Inv(S1) is

{
NANDm

∣∣ m ≥ 2
}
, a

basis for Inv(S0) is
{

ORm
∣∣ m ≥ 2

}
. For the remaining classes Sm

xy and
Sxy of positive type, a basis is obtained by adding to the basises just given
a set of at most 3 fixed (i.e., independent of m, but depending on x, y)
functions.

Looking at the inclusions among clones of positive types and their
invariants, it is clear that if a function preserves NANDn then it preserves
NANDn−1. More important, but again easy to check, is that for every
function f : {0, 1}n → {0, 1},

if f ≈ NANDn then f ≈ NANDm for all m ≥ n. (2)
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Thus we observe that in order to check clone membership according
to equation (1) above, only finitely many invariants have to be checked,
namely those that appear in the basis of a co-clone related to a clone of
type at most the arity of the given function.

The following theorem thus yields an algorithm for membership in
Boolean clones.

Theorem 2.2. Let f : {0, 1}n → {0, 1} and B be a set of Boolean func-

tions. Then f ∈ [B] if for every clone B̂ of type at most n, f ∈ Pol(Γ )
whenever B ⊆ Pol(Γ ), where Γ is the basis of B̂.

3 Complexity Results

We want to study the computational complexity of the following decision
problem, the uniform clone membership problem:

Problem: GEN

Input: a Boolean function f , a finite set B of Boolean func-
tions

Question: Is f ∈ [B]?

By our remarks in the preceding section, [B] consists of exactly those
functions that can be computed by Boolean circuits with gates in which
functions from B are evaluated. The problem GEN, thus, is exactly the
computability problem for circuits discussed in the introduction.

Since we want to make use of the algorithm given in Theorem 2.2, we
have to determine the complexity of checking invariants. Thus, for every
fixed relation R, we have to study the problem

Problem: Pol(R)

Input: a Boolean function f

Question: Is f ≈ R?

When studying the problems above, an important point to clarify is
in what way the input functions f and the elements of B are given. We
first consider the case that all Boolean functions are given by their-truth
table, i.e., an n-ary function is given as a string of length N = 2n.

Lemma 3.1. If the input is given in truth-table representation, Pol(R) ∈
AC0 for every fixed relation R.
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Proof. Let f be n-ary and R be k-ary. By definition, f ≈ R iff

∧

a1,...,an∈{0,1}k

(( ∧

1≤i≤n

ai ∈ R
)

=⇒ f (k)(a1, . . . , an) ∈ R
)
. (3)

Here, f (k) denotes the component-wise application of f to vectors of
length k, i. e., if ai = (ai[1], ai[2], . . . , ai[k]) for 1 ≤ i ≤ n, then f (k)(a1, . . . ,

an) =
(
f(a1[1], . . . , an[1]), . . . , f(a1[k], . . . , an[k])

)
. Observe that the un-

bounded fan-in AND’s have a number of input-wires that is polynomial
in the input length N , hence we conclude that Pol(R) ∈ AC0. �

The above lemma handles the invariant tests for all clones of type 0.
For clones of positive type, the following problem is the cornerstone:

Problem: Pol-NAND

Input: a Boolean function f , a number m

Question: Is m at most the arity of f and f ≈ NANDm?

Lemma 3.2. If the input is given in truth-table representation, then

Pol-NAND ∈ qAC0.

Proof. We use the circuit given in (3) above, with m = k and R =
NANDm. Observe that this time, the top AND-gate ranges over 2n·k =
2(log N)2 values, which is quasipolynomial in the input length. Hence, Pol-
NAND is in quasipolynomial-size AC0. �

Theorem 3.3. If the input is given in truth-table representation, GEN ∈
qAC0.

Proof. We follow the algorithm given in Theorem 2.2. Thus, our circuit
consists essentially of a constant number of subcircuits for Pol(R) for
some relations R plus a linear number of subcircuits for Pol-NAND. By
the just given lemmas, this yields a qAC0-circuit. �

Our algorithm is only a simple modification of an algorithm given by
Bergman and Slutzki in [BS00].Their algorithm showed that for truth-
table representation, GEN ∈ NL, and they asked if the problem is actually
complete for NL. Theorem 3.3 answers their question negatively: Since
the parity function cannot be computed by quasipolynomial-size AC0 cir-
cuits [Yao85] (cf. also [H̊as88, Weg87]), parity does not reduce to GEN
under any reduction under which qAC0 is closed such as plt-reductions
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[Vol98] or qAC0-Turing-reductions (or any stricter reducibility, e. g., FO-
reductions [Imm99], uniform projections [CMTV98] or quantifier-free pro-
jections [Imm99]). Hence, GEN cannot be hard under any of these re-
ductions for a class that contains parity such as AC0(2) or any of its
superclasses like NC1, L, NL, . . . .

Coming back to the non-uniform membership problems studied by
Böhler and Schnoor [BS07], i.e., problems of the form

Problem: MEM(B)

Input: a Boolean function f

Question: Is f ∈ B?

for each fixed clone B, we conclude from the above:

Corollary 3.4. Let B be a Boolean clone, and consider truth-table rep-

resentations of Boolean functions.

1. If B is of finite type, then MEM(B) ∈ AC0.

2. If B is of infinite type, then MEM(B) ∈ qAC0.

Next, we consider the case that the input functions are not given by
their truth-table but in a succinct way, i. e., by a Boolean circuit over basis
{∧,∨,¬} or any other complete basis. As mentioned in the introduction,
Böhler and Schnoor [BS07], studying this kind of input representation,
identified a few tractable cases of the non-uniform memberhip problems
and showed that all other cases are coNP-complete. The lower bound for
the non-uniform problem of course immediately translates to the uniform
problem; however, since the algorithms given in [BS07] do not rely on the
Galois connection described in Sect. 2 above but make use of particular
properties of the individual clones, no upper bound for the uniform mem-
bership problem GEN can be obtained from that paper. Translating the
methods we used above for truth-table representation to the context of
succinct input description, we obtain an upper bound that matches the
coNP lower bound.

Theorem 3.5. If the input is given in circuit representation, GEN is

coNP-complete.

Proof. As in Theorem 3.3, the algorithm follows Theorem 2.2. For circuit
representation, both Pol(R) and Pol-NAND are in coNP, since the AND’s
in (3) range over a number of values exponential in the input size. Thus
we immediately obtain that GEN ∈ coNP. Hardness follows from [BS07],
where it is shown that the membership problem for, say, N2 is already
coNP-hard. �
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Finally let us very briefly turn to the case of functions over an ar-
bitrary finite (not necessarily Boolean) domain. The whole machinery
of Post’s lattice breaks down in this case—in fact, the lattice of clones
already over a 3-element universe is uncountable [Pip97]. Bergman et
al. [BJS99] show that for arbitrary finite domains, the problem GEN is
complete for the class EXPTIME, if the input is given in truth-table rep-
resentation. Also here in the case of functions over non-Boolean domains,
succinct representation by Boolean circuits makes a lot of sense; we as-
sume that elements of a universe of size s are encoded in the usual way
by sequences of dlog se bits.

Theorem 3.6. If the input is given in circuit representation, the problem

GEN for functions over arbitrary finite domain is complete for the class

EXP2TIME = DTIME(22n
O(1)

).

Proof. A careful reading of the completeness proof given in [BJS99] shows
that, if the input is given by function tables, GEN over arbitrary finite
domains is complete for the class EXPTIME under polylogarithmic-time
bit-reductions ≤plt . A general translational result by Veith [Vei98] states
that, if a problem A is complete under ≤plt for a complexity class C, the
succinct version of A is complete for the class BLeafP(C) of all languages
that can be accepted by nondeterministic polynomial-time machines with
leaf languages from C. Our claim follows since BLeafP(EXPTIME) =
EXP2TIME [HLS+93]. �
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supérieures, NATO Advanced Study Institute. Les Presses de l’Université
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