
Comments on “An Exponential

Time/Space Speedup For Resolution”

Jakob Nordström

Royal Institute of Technology (KTH)

SE-100 44 Stockholm, Sweden

jakobn@kth.se

September 28, 2007

Abstract

We present a greatly simplified proof of the length-space trade-off result for resolution in
Hertel and Pitassi (2007), and point out two important ingredients needed for our proof to work.
Our key trick is to look at formulas of the type F = G∧H , where G and H are over disjoint sets
of variables and have very different length-space properties with respect to resolution. This trick
is not present in the proof of Hertel and Pitassi, and thus their techniques can likely be used to
prove results not obtainable by our methods.

In these notes, we present a simplification of the length-space trade-off result for resolution in [4, 5].
The simplified proof is given in Section 1. In Section 2, we highlight the two building blocks in our
construction. Definitions, notation and some known facts are given in Appendix A for reference.

In a separate paper [6], we elaborate on our ideas in somewhat more detail, and prove a couple of
other trade-off results for resolution of a similar flavour.

1 A Simplified Proof of the Length-Space Trade-off

Using the notation of Appendix A, the length-variable space trade-off theorem of Hertel and Pitassi
can be expressed as follows.

Theorem 1.1 ([4]). There is a family of CNF formulas {Fn}
∞
n=1 of size Θ

(

n3
)

such that:

• The minimal variable space of refuting Fn in resolution is VarSp(Fn ` 0) = Θ(n).

• Any resolution refutation π : Fn ` 0 in minimal variable space has length exp(Ω(n)).

• Adding just 3 extra units of storage, it is possible to obtain a resolution refutation π′ in variable
space VarSp(π′) = VarSp(Fn ` 0) + 3 = Θ(n) and length L(π′) = O(n3), i.e., linear in the
formula size.

Our simplified proof follows. We note that the CNF formulas used by Hertel and Pitassi, as well
as those in our proof, have clauses of width Θ(n).

Proof of Theorem 1.1. Let Gn be CNF formulas as in Theorem A.2 having size Θ(n), refutation
length L(Gn ` 0) = exp(Ω(n)) and refutation clause space Sp(Gn ` 0) = Θ(n). Let us define
g(n) = VarSp(Gn ` 0) to be the refutation variable space. We know that Ω(n) = g(n) = O

(

n2
)

.
Let Hm be the formulas

Hm = y1 ∧ ... ∧ ym ∧ (y1 ∨ ... ∨ ym) . (1)

It is not hard to see that L(Hm ` 0) = 2m + 1 and VarSp(Hm ` 0) = 2m (the first derivation step
must download the wide clause and some unit clause, and then resolve).

1

Electronic Colloquium on Computational Complexity, Comment 1 on Report No. 46 (2007)

ISSN 1433-8092




Now define
Fn = Gn ∧ Hbg(n)/2c+1 (2)

where Gn and Hbg(n)/2c+1 have disjoint sets of variables. By Observation A.3, any resolution refuta-
tion of Fn refutes either Gn or Hbg(n)/2c+1. We have

VarSp
(

Hbg(n)/2c+1 ` 0
)

= 2 · (bg(n)/2c + 1) > g(n) = VarSp(Gn ` 0) , (3)

so a resolution refutation in minimal variable space must refute Gn in length exp(Ω(n)). However,
allowing at most two more literals in memory, the resolution refutation can disprove the formula
Hbg(n)/2c+1 instead in length linear in the (total) formula size.

Thus, we have a formula family {Fn}
∞
n=1 of size Ω(n) = S (Fn) = O

(

n2
)

refutable in length and
variable space both linear in the formula size, but where any minimum variable space refutation must
have length exp(Ω(n)). Adjusting the indices as needed, we get a formula family with a trade-off of
the form stated in Theorem 1.1 (or actually slightly stronger).

2 Two Key Ingredients in the Proof

Our proof of Theorem 1.1 comes very easily; in fact almost too easily. What is it that makes this
possible? We want to make explicit two important points.

Firstly, the formula family {Fn}
∞
n=1 used in the proof is clearly “redundant” in the sense that each

formula Fn is the conjunction of two formulas Gn and Hm which are themselves already unsatisfiable.
Formally, we say that a formula F is minimally unsatisfiable if F is unsatisfiable, but removing any
clause C ∈ F , the remaining subformula F \ {C} is satisfiable. We note that if we would add the
requirement in Theorem 1.1 that the formulas under consideration should be minimally unsatisfiable,
our proof idea would fail completely.

Secondly, an important reason why our proof gives sharp results is that we are allowed to use CNF
formulas of growing width. It is precisely because of this that we can easily construct the formulas
Hm that are hard with respect to variable space but easy with respect to length. If we would have to
restrict ourselves to k-CNF formulas for k fixed, it becomes much more difficult to find such examples.
Although there are formulas that could be plugged in to give a slightly weaker trade-off, we are not
aware of any family of k-CNF formulas that can provably give the very sharp result in Theorem 1.1.

We refer to [6] for a more detailed discussion of these issues.

Acknowledgements

We are most grateful to Philipp Hertel and Toniann Pitassi for patiently answering several technical
questions about Theorem 1.1. Also, we want to thank Jan Kraj́ıček, Johan H̊astad, Per Austrin and
Mikael Goldmann for useful discussions and insightful comments.

A Definitions, Notation and Some Useful Facts

A literal is either a propositional logic variable x or its negation x. A clause C = a1 ∨ . . . ∨ ak is
a set of literals. The width W(C) of a clause C is the number of literals appearing in it. A clause
containing at most k literals is called a k-clause. A CNF formula F = C1 ∧ . . . ∧ Cm is a set of
clauses. A k-CNF formula is a CNF formula consisting of k-clauses. We let Vars(C) denote the set
of variables in a clause C, and extend this notation to formulas by taking unions over clauses. Also,
the width W(F ) of a CNF formula F is the width of its largest clause. We define the size S (F ) of a
CNF formula F to be the numbers of literals in it, counted with repetitions.

As in [4], we use the “configuration-style” definition of resolution. We employ the standard
notation [n] = {1, 2, . . . , n}.

Definition A.1 (Resolution [1]). A clause configuration C is a set of clauses. A sequence of clause
configurations {C0, . . . , Cτ} is a resolution derivation from a CNF formula F if C0 = ∅ and for all
t ∈ [τ ], Ct is obtained from Ct−1 by one of the following rules:

Axiom Download Ct = Ct−1 ∪{C} for a clause C ∈ F (an axiom).

2



Erasure Ct = Ct−1 \ {C} for some clause C ∈ Ct−1.

Inference Ct = Ct−1 ∪{C ∨ D} for a clause C ∨ D inferred by the resolution rule from clauses
C ∨ x, D ∨ x ∈ Ct−1.

A resolution derivation π : F ` A of a clause A from a CNF formula F is a derivation {C0, . . . , Cτ}
such that A ∈ Cτ . A resolution refutation of F is a derivation π : F ` 0 of the empty clause 0 (the
clause with no literals) from F .

In these notes, we are interested in the following complexity measures:

• The length L(π) of a derivation π is the number of distinct clauses in π.

• The clause space Sp
(

π
)

of a resolution derivation π is the maximal number of clauses in any
clause configuration Ct ∈ π.

• The variable space VarSp
(

π
)

of a resolution derivation π is the maximal number of literals,
counted with repetitions, in any clause configuration Ct ∈ π.

The length of refuting F is L(F ` 0) = minπ:F`0

{

L(π)
}

, where the minimum is taken over all
resolution refutations of F . The clause space Sp(F ` 0) and variable space VarSp(F ` 0) of refuting
F is defined wholly analogously.

We will need the fact that there are polynomial-size k-CNF formulas that are very hard with
respect to length and clause space.

Theorem A.2 ([2, 3]). There are arbitrarily large unsatisfiable 3-CNF formulas Fn with Θ(n) clauses
and Θ(n) variables for which it holds that L(Fn ` 0) = exp(Θ(n)) and Sp(Fn ` 0) = Θ(n).

Clearly, for these formulas Fn it also holds that Ω(n) = VarSp(Fn ` 0) = O
(

n2
)

. We note in
passing that the exact variable space complexity was mentioned as an open problem in [1], and to
the best of our knowledge this problem is still unsolved.

We will also need the following easy observation.

Observation A.3. Suppose that F = G ∧ H where G and H are unsatisfiable CNF formulas over
disjoint sets of variables. Then any resolution refutation π : F ` 0 must contain a refutation of either
G or H.

Proof. By induction, we can never resolve a clause derived from G with a clause derived from H ,
since the sets of variables of the two clauses are disjoint.

References

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space com-
plexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.

[2] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. The efficiency of resolution and
Davis-Putnam procedures. SIAM Journal on Computing, 31(4):1048–1075, 2002.

[3] Eli Ben-Sasson and Nicola Galesi. Space complexity of random formulae in resolution. Random
Structures and Algorithms, 23(1):92–109, August 2003.

[4] Philipp Hertel and Toniann Pitassi. An Exponential Time/Space Speedup For Resolution. Tech-
nical Report TR07-046, Electronic Colloquium on Computational Complexity (ECCC), May 2007.

[5] Philipp Hertel and Toniann Pitassi. Exponential time/space speedups for resolution and the
PSPACE-completeness of black-white pebbling. In Proceedings 48th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’07), October 2007. To appear.

[6] Jakob Nordström. A Simplified Way of Proving Trade-off Results for Resolution. Technical
report, Royal Institute of Technology (KTH), Stockholm, Sweden, September 2007. Available at
http://www.csc.kth.se/~jakobn/publications/.

3

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



