Electronic Colloguium on Computational Complexity, Report No. 46 (2007)

An Exponential Time/Space Speedup For Resolution

Philipp Hertet Toniann Pitas3i
Department of Computer Science Department of Computer Science
University of Toronto University of Toronto
Toronto, ON CANADA Toronto, ON CANADA
philipp@s.toronto. edu toni @s.toronto. edu

April 20, 2007

Abstract

Satisfiability algorithms have become one of the most pratsind successful approaches for solving
a variety of real-world problems, including hardware vesfion, experimental design, planning and
diagnosis problems. The main reason for the success is doighty optimized algorithms for SAT
based on resolution. The most successful of theskisse learninga DPLL scheme based on caching
intermediate clauses that are “learned” throughout th&tbaak search procedure. The main bottleneck
to this approach is space, and thus there has been a trensantount of research aimed at identifying
good heuristics for deciding what information to cache. étafirst suggested a formal approach to this
issue, and Ben-Sasson [3] posed the question of whetherithatime/space tradeoff for resolution.

Our main result is an optimal time/space tradeoff for resoflu Namely, we present an infinite
family of propositional formulas whose minimal space psoalf have exponential time, but if just three
extra units of storage are allowed, then the formulas candneeg in linear time.

We also prove another related theorem. Given an unsatsffabiulaF and an integek, the
resolution space problem is to determin& ihas a resolution proof which can be verified using sgace
We prove that this problem is PSPACE complete.

*Funded by NSERC
TFunded by NSERC

ISSN 1433-8092

1 Introduction

The satisfiability problem (SAT) has become a viable and spdead approach for solving real-world prob-
lems. SAT procedures are now a standard tool for solvinglenod in hardware verification, circuit di-
agnosis, experimental design, planning and diagnosidgarah Surprisingly, the best SAT algorithms are
highly optimized variants of DPLL which is nothing more thatacktrack search for a tree-like resolution
refutation. The most successful variaciause learningemploys a very clever type of caching scheme. It
underlies all state-of-the art complete algorithms fowisg) SAT. Moreover, clause learning seems capable
of solving notoriously hard generalizations of SAT as wialtjuding QSAT [11].

The basic idea behind clause learning is very simple: whildgoming the backtrack search, store
intermediate clauses that are learned along the way, im tygitentially prune the remaining search space.
This idea was first suggested in 1973 by Stephen Cook, whoedfto it as “Method I” [5]. However it
took many years to develop this idea to actually make it worke main issue stems from the fact that
in reality there is only a finite amount of space available erEffore, all clauses simply cannot be stored,
and the difficulty is in obtaining a highly selective and d#itt, yet effective caching scheme. This has
inspired a great deal of research into methods and hesrigiaccaching schemes, resulting in state-of-the
art algorithms for SAT. [1].

Underlying most of this empirical work is an assumption ttegre is asmooth nearly linear tradeoff
between time and space. For examplgyspacealgorithms have been developed for SAT and #SAT where
a given implementation can use as much space as is curremtilglde [6]. They used empirical results on
certain distributions of inputs to suggest that for mosgemof parameters, the tradeoff between runtime
and space is nearly linear. In this paper we present thealegsults that run counter to this belief. That is,
we demonstrate a family of examples where the runtime (afsgdearning algorithms) is linear, but jumps
to exponential if the space utilization drops by a constambuant.

As discussed above, while time/space issues for resolbged satisfiability algorithms has been of
central importance for many years, it was only in the lateeti@s when the formal study of space as a
complexity measure for propositional proof systems wasaiieid. In 1999, Esteban and Toran [7] proposed
a definition of space complexity for resolution, callelduse spacethat measures the number of clauses
that need to be kept simultaneously in memory in order tofywéhie resolution refutation. This model is
similar to a Turing machine computation with a special reat{ input tape from which the axioms can be
downloaded from working memory whenever they are needatieeased from working memory as many
times as necessary. This model captures resolution-basedl§orithms, such as clause learning.

Alekhnovich et al. [2] address the question of how to measlueememory content for more general
propositional proof systems. While the most obvious ch@cbit space,” [2] introduce the related notion
of variable spacewhich counts the number of variable occurrences that mosilt&neously be kept in
memory. They argue that variable space and bit space arewitlogarithmic factor of one another, but
variable space makes the model substantially cleaner. Whugew variable space as the right space mea-
sure to study: it applies to a variety of proof systems, amwas in a natural and clean way the space
utilization of a broad range of complete algorithms for SAT.

In 2001, Ben-Sasson [4] was the first to study formal timedspeadeoffs for resolutiort He asked if
there are formulas that have optimal proofs with respechyoome of the parameters, but where optimizing
one parameter must cost an increase in the other parametepraded that this is the case for tree-like
resolution. That is, he showed that there are formulas taat linear tree-like resolution proof size, and
that also have constant-sized clause space, but on thehatheéy he showed that it is not possible to achieve
both (linear size and constant clause space) simultangousl

However, for general resolution the problem remained ofamr. main result is an answer to this ques-

Lin the algorithms literature, this tradeoff is viewed asweeispace tradeoff, whereas from a proof complexity poiniaf, the
tradeoff would be more accurately called a size/spacedfdgize and time are equated because the runtime of a teselased
SAT algorithm is tightly connected to the size of the undeadyresolution proof.

tion, showing that in a very strong sense it is not possibleptimize both size and space simultaneously.
We exhibit formulas that require exponential size to refiutestricted to a minimal variable space resolution
implementation, but with just three more units of space pileef size drops to linear! In light of our earlier
discussion, this result is surprising, as it runs countehéobelief is that there is a smooth almost linear
tradeoff between space and time.

We also prove a related theorem. Given a CNF fornfylthe resolution space problem is to determine
the minimal-space resolution proof 6f We prove that the resolution space problem is PSPACE cdejple
affirming that memory management for resolution-based 3gdrahms is a complex issue. The complexity
of resolution space is known to be related to the compleXitylack-white pebbling games in the following
sense [8, 3]. Given a monotone circyit a pebbling formula caRel(g) be associated with . Intuitively,
the associated formula asserts that all of the source gsrtice "true”; the sink vertex is "false”, and the
intermediate gates are consistent with the values of thddren. Ben-Sasson proved that from a resolution
proof of Pel(¢), one can extract a black-white pebbling strategysfomwhere the pebbling space is related
to the resolution space. Unfortunately the converse isrnoetit general.

In our work, we construct special formulgsthat allow us to prove a converse relationship. Using this
construction we show that the complexity of resolution gpigcessentially equivalent to the complexity of
black-white pebbling of monotone circuits, which we show both PSPACE-complete. In a related paper
[10], the complexity of the classical black-white pebblipgpblem fordirected acyclic graphgdags) is
resolved. We note that this result for dags subsumes the €SRAmMpleteness of black-white pebbling
of monotone circuits. However, in order to obtain the reoluspace results we need to use a simpler
construction that seems possible only for monotone cscuit

2 Overview of Main Results

Essentially all complete algorithms for satisfiabilityedsin practice, are resolution-based. CgtandC,

be arbitrary clauses not involving the varialleThen the resolution rule allows the derivation of the ctaus
(C1VCy) from (C1V x) and (Cz vV —X) by resolving away. A resolution proof of a CNF formuld is a
sequence of clauses, such that each clause is either a @laosé, or follows from two previous clauses
by the resolution rule, and such that the final clause is thatenlause. Theizeof a resolution derivation
is the total number of clauses in the proof.

A general implementation of a SAT algorithm based on regmiytroceeds by deriving clauses in some
way, until eventually either the empty clause is derivedwhich case we repotinsatisfiable or the al-
gorithm finds a satisfying assignment. Thus timee of a resolution-based implementation for SAT is at
least the size of the underlying resolution proof producBde space, intuitively, should be the size of the
intermediate clauses that are stored in memory during theeps of looking for a resolution proof. In order
to formally define space we give the followimgnfiguration-styledefinition of a resolution proof from [4].

DerINITION 2.1 (Configuration-style resolution proof) A configuratioris a set of clauses. If is a CNF
formula, then the sequence of configurations ¢ [0], ¢ [1], ..., ¢ [K] is aRES proof of C from F if ¢ [0] =0,

C € c[K], and for each < k, ¢ [i+ 1] is obtained fronr [i] by one of the following rules: (1) deleting one or
more clauses from the current configuration; (2) add thelvesbof two clauses of [i]; (3) download an
axiom (clause) off. If 0 € C[K], thenttis a proof off.

DEFINITION 2.2: Thevariable spaceof a proofrtis the maximum size of any configurati@in 1t The

variable spaceof an unsatisfiable CNF formuld is the minimum space over all proofs éf Unless
specified otherwise, space in this paper will refer to vdeiapace. Given a CNF formulfaand a number
k, the resolution space problem asks whether there is a gpaselution proof off.

Our first theorem settles the complexity of the resoluticacgproblem. Our second theorem, which is quite
surprising, shows that allowing even 3 extra units of steregn have drastic consequences for resolution-
based SAT algorithms.

Theorem 1. The resolution space problemRSPACEcomplete.

2

Theorem 2 (Time/Space Tradeoff) There exist CNF formulas such that any minimal space protifesfe
formulas requires exponential size, but that can be refutédear size, with 3 more units of space.

Both of these results are fundamentally tied to generalitack-white pebbling:

DeFINITION 2.3 (Pebbling games on monotone circuits) letbe an unbounded-fanin monotone circuit
over AND/OR gates, with one distinguished output gateA generalized black-white pebbling strategy
for ¢ is a sequence of pebbling moves. Initially the graph costampebbles. At any point a black pebble
can be removed from, or a white pebble can be placed on, arg. tadther, black pebbles can always be
place on and white pebbles can always be removed from soadesnThe goal is to end with a single black
pebble ors and no other pebbles on the graph. The rules for pebbling ANRDiodes are as follows.

1) For any AND-nodey, if all of v's predecessors have pebbles on them, then a black pebblgecan
placed onv, or a black pebble can be slid from a predecesstrrv. For any AND-nodev with a white
pebble on it, the pebble can be slid to a predecessball other predecessors are pebbled, or the white
pebble can be removed if all predecessors are pebbled.

2) For any OR-node, if at least 1 of a/'s predecessors is pebbled, theoan be black pebbled, or a
black pebble can be slid from a predeceastw v. For any OR-node& with a white pebble on it, the white
pebble can be slid fromto any predecessarof v, or the white pebble can be removediifs pebbled.

Giveng with target nodesand a numbek, the generalized black-white pebbling problem asks whiethe
there is a pebbling strategy fewhich uses at most pebbles. In order to prove Theorem 1, we will start
by proving that generalized black-white pebbling is PSPAGEplete, and see how to modify the proof in
order to obtain a proof of Theorem 1.

In order to prove the PSPACE completeness of generalizettdwaite pebbling, we reduce from QSAT.
Start with a QBF formulap. From, we create a graph with the property thaty is QSAT if and only if
¢ has a 8+ 1 black-white pebbling strategy. Our construction is samib [9], where they create a graph
from a QBF formula with the property that the formula is QSA&nd only if the graph has a small all-black
pebbling strategy. The general idea is to give a small blatibling of the graph whenever the formula is
QSAT, where the pebbling corresponds to the natural (exp@ig¢ime but small space) procedure that
verifies that is QSAT.

Unfortunately, the graphs used in all earlier constructiare easy to pebble with white pebbles even if
the original formula is not QSAT. Thus, we need to alter thapds in order to impose extra structure soas
to prohibit white pebbles from being useful. The idea willtbearefully add extra edges and widgets to the
graph so that there will never be any extra “slack’—that islanost all times, the number of black pebbles
on the graph is at full capacity in order to carry out the upggemd, thereby rendering white pebbles useless
if we do not want to exceed our capacity. This will allow us tguee in the lower bound, that no pebbling
strategy using only 13+ 1 pebbles can do anything other than the upper bound stragegg with white
pebbles available. Our argument is based on local indegogeegiies of the graph.

Our reduction and proof will possess two crucial propert{@$ First, the optimal black-white pebbling
strategy forg will be equal to the optimal black pebbling strategy for That is, our graph; will have
the important property that white pebbles will not help at &) Secondly, ifiy is QSAT, then any optimal
strategy using 8+ 1 pebbles will require exponential time in the number of ersal quantifiers. But if we
let the strategy use just 3 more pebbles, then the graphn be pebbled in linear time, whether or gois
QSAT. This result forms the building block for our more corogted results for resolution.

With the above ideas in mind, we will now try to prove the PSEBA@mpleteness of resolution (The-
orem 1). Once again we will reduce from QSAT. Start with a QBFrfulay, and create the graph as
above. Now fromg , we define an associated “pebbling formulB&l s), defined below.

DEFINITION 2.4: (Pebbling formulas)[3] Let be a monotone circuifel(¢) is a set of clauses, with one
variablev; for each vertex in; , and containing the following (Horn) clauses: (1) For eaghrse vertex
v, we have the clausgv); (2) For each AND vertex with predecessorsy,...,uU;, we have the clauses

3

(mu1 V- V... VU VV); (3) Finally for each OR vertex and each predecessoof v, we have the clause
(-uVvv). By aresolution proof oPelfg), we mean a resolution derivation of the clagsgfrom Pelyg).

As mentioned earlier, [3] showed that from a resolution pafdPel(g), we can extract a black-white
pebbling strategy fog , where the pebbling space is related to resolution spackriunately, the converse
does not hold because of the white pebbles; it is not hardetdhse from gpure black pebbling strategy for
G , we do obtain a corresponding space-preserving resolptimof. Now intuitively, since white pebbles do
not help for our graphs , by special property (1) of our reduction, the conversetiaaiahip should for our
special graphs, even with the addition of white pebbles.

This is the high-level idea behind the argument. HowevegniScant technical difficulties arise when
carrying out the proof. The problem comes from the fact thairder to mimic the black pebbling strategy,
the axioms need to be downloaded, and this download usesspace (in the resolution simulation) than
was needed in the pebbling. This “slack space” causes diféistin proving the lower bound, since we need
to argue that the lower bound still holds even with this esteatk space. This is tricky because it is exactly
slack space that allows white pebbles to sneak in and gaenéatye over all-black pebbling strategies.

To solve this problem, we further modify to obtaingres. ¢Rres is similar tog but has even more
structure which serves to “fill up” the slack space. Even whik modification, our argument is substantially
more complicated than before. We again argue that at eaph thie only way for the resolution proof
to proceed is to follow the pebbling strategy—however nowwileneed to use a global graph-theoretic
argument, whereas before we essentially argued locallyntin theorem thus shows that the QBF formula
Y is QSAT if and only ifPelg res) has a spacerbt 3 resolution derivation. Moreover, the above two special
properties continue to hold in this context. In particutarr reduction satisfies (2"): Ip is QSAT, then any
space 6+ 3 resolution proof oPel(¢ res) requires exponential size. However, with-66 space, for any
Y, the associated formuRel(g res) has a linear-space proof.

Once equipped with Theorem 1 and special property (2'), toefpof Theorem 2 is easy. Start with
any totally universally quantified QBF formulp= Vx; ... VX,F, which is QSAT, and corresponding graph
G res- Sincey is QSAT, by the properties of our reductidPel ¢ gres) has a resolution proof of space6 3
which requires exponential size, but there are linear siaefp using &+ 6 space.

3 TheReductions

QSAT to Circuit g . To show that the generalized black-white pebbling game BAZE-complete, we
reduce from QSAT. Given a QB®, we produce a monotone circujt whose target nods can be black-
white pebbled using at mosh3- 1 pebbles if and only iy is QSAT. Our monotone circuit is composed of
three types of widgets: universal widgets, existentialgeis, and clause widgets. The construction of the
qguantifier widgets relies on a subwidget we cali-alide, which is designed to severely restrict the player's
pebbling strategies. Once the bottom nodes dgfslite are all black-pebbled, asslide strategy, where the
bottom pebbles are slid up to the top nodes in the appropider, is the only (frugal) way to black-pebble
the top nodes without using more thipebbles. An example of a 4-slide is given in Figure 1.

DerINITION 3.1: Ani-dide is a pair of setgV,U) together with a set of edges that satisfy the following
propertiesV is a set of nodesv!,\2,---.vi andU is a set of nodesu!,12,---,u'. The edges are as follows.
(1) V! is the predecessor of all nodessuch thatk > j; (2) ul is the predecessor of all nodessuch that
k> j; (3)ul is the predecessor of all nodéssuch thak < j; (4) ul has at least— j + 1 predecessors from
outside ofV orU.

We can now describe our reduction which, givea= Qnx, ... Q1X1F with m clauses oven variables,
outputsg . As in [9], each universally quantified variable is assaatvith a universal widget and each
existentially quantified variable is associated with ars&xitial widget. Each clause gfis also associated
with a clause widget. These descriptions are meant to bewéhdhe accompaniment of Figures 1, 2, 3,
and 4.

The universal widget is depicted in Figure 3. For eviety<i < n, if widgeti is a universal widget, it is
composed of 4 groups of nodés;, %, di, %, X}, Giz = {gl;,...,¢" 12}, {a, b}, andG; = {gt,..., g1}
These are connected as followshas 3+ 1 source nodeygz throughyf’q“rl as predecessorg, has 3 source
nodesyclji through di‘ as predecessors, ardhas 3— 1 source nodeﬁ}g throughy)%_‘*1 as predecessors. The

sole predecessor &fis X and the sole predecessonfs X. The subgrapli{g?, ... ,gi?’i‘z}, Gi_1) forms an
3i — 2 slide. The nodé; is a successor of every node@)_1, and the node; is a successor of every node
in Gi_1U{bi}. Finally, X is a predecessor of every node{igﬂ,...,gf’i_l}, X; is a predecessor @f, d; is a
predecessor of both nodes{h;,a;}, X is also a predecessor of both nodeqln &}, X is a predecessor
of every node in{@',...,g"}, anda is a predecessor of every node{g!,...,g>*1}. There will be a
correspondence between pebbles being place¢l dn andx; and an assignment of False to variakleand
a correspondence between pebbles being placed an andx and an assignment of True to variakje

The existential widget is depicted in Figure 4. For event <i < n, if widget i is an existential
widget, it is composed of 4 groups of nodgs;, X, di,x, X}, Gi_1 = {g" 1,...,8>,°}, {fi,&,c}, and
Gi = {g}...,g7"*}. As in the universal widget has 3+ 1 source nodeg; throughys+! as prede-
cessorsgd, has 3 source nodeyéi throughygf as predecessors, ardhas 3— 1 source nodey}g through
y)%_i_l as predecessors. The sole predecessay isfx and the sole predecessorfis X. The subgraph
({at,---,8 2 {g" 4,--.,6773}) forms a 3— 3 slide. The node is a successor to every nodeGn 1,
as isfi. Also, ¢ is an OR-node which is the only successogadnd fi. And every node i{g?, ... ,g?i‘z}
is a successor af. Finally, X is a predecessor &, X; is a predecessor df as well as every node in
{g,... ,g?ifl}, d; is a predecessor of every node{ig},...,g*}, X is a predecessor df, andx; is a prede-
cessor ofg as well as every node i@;. There will be a correspondence between pebbles beingdtate
X, di, andx and an assignment of False to variakleand a correspondence between pebbles being placed
onx;, di, andx and an assignment of True to varialge

For everyi,i > 1, G; is common to widgetsandi + 1. Also, every member db,, is a predecessor of the
target nodes. Each clause widget contains 8 nodes. Consider the clauggetfor claus€;. It contains an
OR-nodez; which has 7 predecesso j,bc, abce {0,1}2 - {000}, each with indegree 7. The superscript
abcindicates one of the "true” settings to the literals undedythe clause. Recall that for each variable
x; of F, there is a group of four associated nodrs:x{, x;, andx, which are used to encode whether
is true or false. The three groups of nodes correspondinbetovdriables irC; will be inputs to thep‘]-"'c’c
nodes. Figure 1 shows an example of widget for a clduse x, V x3). The " predecessor of eaqd;fbc is

zj_1. Nodez is a special source node and is a predecessor of @&hFinally, the last clause widget is
connected to the quantifier widgets via the only nod&gfg3, which is the same node as.

Construction of gres. The graphgres is constructed almost exactly like except for the following
changes. For every 1< i <n, X has 6+ 1 source nodeg;. throughy$+! as predecessord, has 6— 1
source nodey%i throughygii_l as predecessors, ardchas 6— 3 source nodey;/% throughy)%i‘:” as predeces-
sors. There is also a target noglehich has all 8+ 1 nodes ofG, as predecessors.

We also add newslack nodes, each of which is an OR-node, as predecessors to awepgtnode in the
graph. Forali, 1 <i <n, every nodev of G;U{x,X,di } has 3n—i) additional OR-nodes as predecessors,
O(v; X)), O(v,Xj), andO(v, d;) for eachi < j < n. O(v,x;) hasx; andx| as its sole predecesso(Vv, x) has
Xj andx] as its sole predecessors, @l d;) hasd; anda; as its sole predecessors if widdes universal,
and hagl; as its sole predecessor if widggeis existential. For all, 1 <i <n, if widgeti is universal, every
nodev of {bj, &} also has &h—i) addition OR-nodes as predecess@®$y, X;), O(v,X;), andO(v,d;) for
eachi < j < n, which are set up the same way as those3prFor alli, 1 <i < n, if widget i is existential,
every nodev of {g, fi} also has & —i) addition OR-nodes as predecess@§y,X;), O(v,x;), andO(v, d;)
for eachi < j < n, which are set up the same way as thoseZor

Finally, for everyj, 1< j <m, and evenyabce {0,1}° — {000}, p?bc has 31— 6 additional OR-nodes
as predecessors. For each variablehich does not appear in claugewe include the node®(p?bc, X)

and O(p?bc,ij. And for everyi, 1 <i < n, we include the node')(p‘]?‘bc, d;). Each of these is set up with
predecessors in the same way as the other OR-nodes whiclusedescribed.

4 Upper Bounds
Lemma 3: If is QSAT, then the target nodf ¢ can be pebbled withr8+ 1 pebbles.

DEFINITION 4.1: Letthe set of all truth assignments over varialfles, . . ., X, be denoted by. Thus each
a; in A is a partial assignment that sets the outermest variables ofQpx, ... Qix1F. For any assignment
to a;, defineBy, to be the pebbling configuration gf consisting of black pebbles on the following nodes:
For each universally quantified variablg j > i+ 1if aj(xj) =0, thenx’j € By;, dj € By, and(ij,)?’j) € By,.
Otherwise, ifai(xj) = 1, thenx] € By, aj € By, and(x;,xj) € By,. The pebbling configurations for any
existentially quantified variablg;, j > i+ 1 are defined almost identically except thatijf{x;) = 1, then

X; € By;, dj € By, and(xj,X) € By,

DEFINITION 4.2 Black clamping interval)Let to <t; <ty <teng. Let Sbe a set of nodes. We say that
S€ [ta, tp] if all nodes fromSmust be black pebbled during every configuration from tigt@rough timety,.
We say thatu, V) € [ta, 1] if eitheru or vis black pebbled during every configuration from titaéo timety,.

Lemma 3 follows from the following more general lemma byisett = n.

Lemma 4: For alli, a; € A;, suppose the graph is initially in configurationBy,. If Y is QSAT, then we
can black pebbl&; at some timé > 1 using 31+ 1 pebbles, while keepinBy, clamped (i.e.By; € [1,t].)

Proof: The proof is by induction o from 0 ton. The base case is whén= 0. Letag be any
assignment ify. Suppose thanX, - - Q1X1F [, iS QSAT. Then clearlyF [4,= 1, so some literal in every
clause must be set to true. This implies that for egchh < j <m, all the predecessors except; of some
pj-"bc are all black pebbled i€,,. We can therefore black pebbl&, as follows. Place a black pebble on
the source nodg,. This pebbles the final unpebbled predecessor of spﬁ‘?fe We can therefore slide the
black pebble frong, to p"i‘bc and then taz;. This allows us to pebblg, in the same way. Inductively, it is
clear that we can slide the black pebble all the wagntovhich isgl. Note that this strategy uses only black
pebbles. We now prove the induction step in which we will stibat if Y|4, is QSAT, then we can black
pebbleG; = {gil---g?i“} using no more thani3- 1 pebbles without moving any pebblesBg,.

Case 1. Q is a universal quantifier. In this case, balfiy, (%} andW[qusx) are QSAT. We begin in
configurationBg, with 3i + 1 free pebbles. Black pebbi, followed byd;, and therx’”. Then move the
pebble fromx to x;. At this point we have 3- 2 pebbles free and can apply the induction hypothesis to
black pebbleG;_;. Then slide the black pebble froto by, then the black pebble frodh to ;. Remove all
pebbles from widgeit except for the ones oa andx. Then slide the black pebble frorito x; and black
pebblex again. Now apply the induction hypothesis to simultangobtdck pebbleG;_; again. Next, use
thei-slide strategy to slide all dB;_;’s pebbles up ta' to g 2. Then slidexs black pebble ta®?, and
thenx;’s black pebble t@¥. Finally, slide the black pebble from to g*+2.

Case 2. Qi is an existential quantifier. In this case, eithiglly,) O W[guixy i QSAT. As in the
universal case, we begin By, with 3i + 1 free pebbles. Black pebbi, followed byd;, and therx/. If
Wauix} IS QSAT, move the black pebble froxito x. Then apply the induction hypothesis to black pebble
Gi_1. Next, slide the black pebble frogf‘jl2 to g and then tasi. Then move the black pebble frorito
X If W[guix) 1S not QSAT andpfq,uqx%) is, move the black pebble from) to x. Then apply the induction
hypothesis to black pebbig;_;. Next, slide the black pebble frogﬁ'ijl2 to fi and then ta;. Then move the
black pebble fronx to x;. In either case there are now black pebblegib@ to gi3i_‘l3, G, X, di, andx;. Use
thei-slide strategy to slide all the black pebblesgin, throughg® ;2 to gt throughg® 3. Then slide the
black pebble front; to g¥~2, followed by the black pebble from {0 g® 2, and then the black pebble from
d to g¥. Finish by sliding the black pebble fromtog® 1. O

Lemma 5: There is a black pebbling strategy for which pebbless in time O(|s |) and uses B+ 4
pebbles, regardless of whethpis QSAT.

Proof: Begin by pebbling«, d;, X from i = n down toi, thereby assigning “double” false to every
variable. This usesrBspace. We can now pebb&, using only 4 more pebbles. Begin by pebbling the
source nodgy. Then place a pebble on the positive node of one of the lg¢enatlause 1. If this literal is
Xj, then we now have black pebbles xijr,l dj, Xj, andxjr. Do this to each literal of the clause. This uses 3
pebbles so we haven3- 4 pebbles on the circuit, equaling the space bound. But ane@a pebblepi11 by
sliding the pebble fronz, to it. Then slide the pebble frompi! to . Pick up the three extra black pebbles
which were placed on the positive literals’ nodes. At thispthere are 8+ 1 pebbles on the circuit,3
to assign double false to each variable and a black pebhie. dDontinue this process inductively untih3
pebbles assign double false to each variable and one pabines, = g3.

We must now pebble through each quantifier widget. We canlegbiobugh each existential widget as
in Lemma 3. We require an extra pebble for the universal wgjge avoid black pebbling;_1 a second
time. To do so, put the extra pebble rrright after pebblingG;_; to have black pebbles d@;_;, di, X,
and bothx” andx;. Now pebbleb; anda; sliding pebbles fronx; to by and thend; to a;. Remove the extra
pebble fromb;. At this point, the maximum number of pebbles used in the efidg 3+ 2 right beforea;
was pebbled, and there are black pebbles on every noBe gfX, a, andx. Slide the pebble from to x;
and continue as in Lemma 3. Since we only have to pebble eaokelwidget and each quantifier widget
once, the whole process takd$n+ m) time and uses no more than-3 4 pebbles. O

Finally, we prove the pebbling strategies given above;faan be mimicked in resolution, to give small
space resolution derivations fBel(¢g res).

Lemma 6. Thek-pebblet-time black pebbling strategies of Lemmas 3 & 5 for the targetes of ¢ ' im-
ply the existence of spadet d resolution derivations gbpu(Gp) in Pel{ s res) which take time polynomial
in t, whered is the maximum size of any axiom 8&l(¢ res).

Proof: We will derive the positive unit clauses for each variable 6fn the same order as the nodes of
¢ are black pebbled, and remove positive unit clauses fromanemhen the corresponding black pebbles
are removed. Simulating the slide move requires a littienditbn. Suppose a black pebble is slid from node
utovin widgeti. In this case we want to deriau(v) and removepu(u) from memory. We first download
ax(v). This is where we encounter the maximum space. We then eesiodvpositive unit clauses ofs
predecessors withx(v) and then remov@u(u). Note that whenever a node is first black pebbled, all of its
assignment variables are clamped. This means that thétiveasnit clauses are in our current resolution
configuration. So we can follow the removalmi(u) by downloading, for eaclp > i, the appropriate axiom
for each variabled(v,x;), O(v,dj), O(v,X;) and resolve each with the corresponding positive unit elaus
and then resolve the result wigx(v). This will yield pu(v), and we will once again be in a state in which
the resolution configuration corresponds to the black pedldonfiguration. O

5 Lower Bounds

In this section we will prove the following theorem, whichos¥s that generalized black-white pebbling is
PSPACE complete. We present this result first since it is mpand forms the basis for the analogous
result for resolution (Theorem 10). The proof of Theorem dlfvs.
Theorem 7: Let be a QBF, and let be the corresponding monotone circuitglhas a 8+ 1 pebbling,
theny is QSAT, and any pebbling strategy using-81 pebbles require®(2) steps, wheré is the number
of universal quantifiers i.

The above theorem follows from the following more generabtiem.

Theorem 8: For all a; € A, if there exists time$', t” such thatBy, C [t',t"], then black pebblings; at
t” from By, using no more thanrg+ 1 pebbles, requires thatis QSAT and require(2) units of time
betweert’ andt”, wherek is the number of universal quantifiers among ithener most quantifiers.

7

The following lemma will be used repeatedly. In particulimplies that for anyi-slide (V,U), in order
to pebbleV using no more thanpebbleslJ must first be black pebbled at some earlier time.

Lemma 9: If a nodev hask predecessors and there aret31 — k other nodes irt’,t"] andv is not white
pebbled at”, thenv can be black pebbled at most once and can never be white pdidti@eernt’ andt”.

Proof: If vis white pebbled, then its white pebble can only be discithoypee it has contributed toward
placing a black pebble beyond it. The existence of this éxtaek pebble means that there are at nkostl
free pebbles to pebble all & k predecessors. So the space bound must be exceeded toghsitteawhite
pebble. The same argument forbids a second black pebbliAg.

Proof: [of Theorem 8] The proof is by induction on from 0 ton. The base case is whénr= 0.
Let ap be any assignment iAp and suppose there exist timgsandt” such thatBg, C [t',t"]. We will
show that simultaneously black pebblifgg att” without ever exceedingr3+ 1 pebbles requires thdt is
QSAT.Suppose for sake of contradiction that, is not QSAT. In order to black pebb(&y using 1 pebble,
we can clearly never use a white pebble, since by frugalitywllehave to place a black beyond it while it
is still on the circuit, which will require at least 2 pebhl&@herefore, it is clear that the black pebble®@s
must be slid up fronzy,. Also, it is clear that the black pebble must be sliddrom somepa?®. Since By,
does not include,_1, the black pebble must have been used to pebhle. Inductively, we can see that
the black must slide through each clause widget, and must tiat been placed on the circuit zt But
if F[q, is Nnot QSAT then there is some clause nagsuch that some predecessor of ep?'?f, other than
zj_1, is unpebbled by,,. Then pebbling; will require two pebbles, one ar_; and one on the unpebbled
predecessor of son‘pg"bc. Since we only have 1 pebble at our disposal, this is imptessitor the inductive
step, there are two cases. Either ieuantifier is universal or existential.

Case 1. Q; is a universal quantifier.We will show that in order to bladbpleG; we must necessarily
pass through a number of all-black configurations, inclgditack pebblingG;_; twice, once with black
pebbles on, di, and eitherx or X (the false configuration), and once with black pebblesdom, and
eitherx; orx;,_;., ; (the true configuration). We prove this by pointing out 14 aripnt partial configurations
Bo to B13, which occur at times to t13 respectively, wher8 is By, andBi3 hasG; black pebbled.

We appeal to Lemma 9 to conclude that no nod&itv {a;,b;, X} can be white pebbled and each can
only be black pebbled once betwegrandt;s. Sincex| has 3+ 1 source nodes as predecessors, our first
action within widgeti must be to black pebbbg and it must stay in place until its successpis pebbled
for the last time. Then a pebble must remainxpnintil all of its successors are pebbled for the last time,
because we can never repebble/dischargmcex is empty. Lets be the time tha; is pebbled and ldf 1
be the timeg¥ is pebbled. Thew € [ty,ts — 1] and(x;, X)) € [ts,t11 — 1].

Our argument now divides into two sections. In order to stemdously black pebbl&; we must black
pebbleg?‘“, which requires that both; and {g},...,g”} be pebbled. In the first part of the argument
we prove that in order to black pebldg Y[q,ui%3 must be QSAT and tha®(2) units of time must pass
betweenty andtg, wherek is the number of universally quantified variables among timeeti mosti — 1
variables of}. In the second part of the argument, we arguegdhat . , gi3i must also be simultaneously black
pebbled in order to black pebb(b,?;*i+l and that pebbling them without exceeding our bound neegssithat
Wlau{x} is QSAT and tha(2") units of time pass between timgsandt;z — 1. This will allow us to
conclude that black pebbling; requires thatp[, is QSAT and require@(z"') time, wherek’ = k+ 1 is the
number of universally quantified variables among the innestinvariables of.

Sincea can only be black pebbled once and is needed to pebble eaehofi@, & € [ts,t13— 1]. In
order to black pebblg; at timetg we must pebbldy at some timds, beforets. Again, we know thab;
can only be black pebbled oncetinto ti3, sob; € [ts,ts — 1]. Also, d; is a predecessor of both andb;
and must be pebbled at timgs— 1 andtg — 1. Sincex is in [t1,tg], by Lemma 9 we can conclude thét
cannot be white pebbled and can only be black pebbled ontésiimterval. Also, since it has in-degreg 3
di must be black pebbled &t immediately aftet; as in Lemma 3, sd; € [t,ts — 1]. The same argument

can be made to argue th@§,X) € [t3,t5 — 1], wherets is aftert,. In order to black pebble; or b, we
must first pebbleG;_; at some time, beforets. This whole time the nodes, d;, and(x;,X) are clamped.
We can therefore apply Lemma 9 to conclude fBat; must be black pebbled at some tieetweert;
andts . We can now apply the induction hypothesis to conclude tleakipebblingG;_; requires[q,ux}
to be QSAT and black pebblinG;_; from Bjts] requires timeQ(2%), wherek is the number of universally
guantified variables among the inner most1 variables of).

We now proceed with the second phase of the argument. We Kraiveach node i5; cannot be white
pebbled and can only be black pebbled once. So when we bld{rtitqg?i“ at timety 3, all the rest ofG;
must already be black pebbled. Consigﬁr In order to black pebble it at tinte, beforet;3, we must first
black pebbleg® ; at timetys. In order to black pebblg® , at timet;; we must first black pebblg!, ..., g% 2.

But we must also pebblg. Note that must be empty a sincea; has 3+ 1 predecessors, none of which
is . Also, X' must be empty again dy, — 1, sinceg® has 3+ 1 predecessors, none of whichds We can
therefore apply Lemma 9 to conclude that betwgeandt;3, X cannot be white pebbled and can only be
black pebbled once. We must therefore repelple some time; afterts whena; and(x;,x) are clamped
andx € [t7,t11— 1]. SincexX is a predecessor of every nodegh...,g¥ 2, these nodes can only be black
pebbled at some tintgy, with g! being pebbled first a, aftert;. Every node of5;_; is a predecessor gf.
Since the three nod€s(, &, (xi,X)} C [te, t10] we can apply Lemma 9 to conclude tl@&t 1 must be black
pebbled atg betweert; andty. Since{X,a;, (x,X)} is the true assignment for variablewe can apply our
induction hypothesis to conclude thafq,u¢x; must be QSAT and black pebblirg _; from Bit7] requires
time X, wherek is the number of universally quantified variables amongniner most — 1 variables ofp.

Thus we have shown that any 3 1 pebbling must black pebblg;_; twice betweerty andt;s, once
implying thaty[,u(%} is QSAT, and once implying thalt[¢y is QSAT. Each time require@(2X) time,
wherek is the number of universally quantified variables among tineii mosi — 1 variables ofp. There-
fore, black pebblings; requires timeQ(2¢+1), and implies thaty[, is QSAT.

Case 2: Q is an existential quantifier. We prove this by pointing ouirhportant partial configurations
Blto] to B[t11], which occur at timeg, to t11 respectively, wher8]to] is By, andBt11] hasG; black pebbled.

By Lemma 9, no node i; can be white pebbled betwegnandt;1, and each can be black pebbled at
most once. Based on which nodesGyfare predecessors to others, we can concludegfﬁd‘tmust be black
pebbled last, at timg 3, g¥ must be black pebbled before that at titng g?i_l must be pebbled before that
at timeto, g¥ 2 must be pebbled before that at tigge andg® 3 must be black pebbled at some time
beforets. In order to do thisg! must be black pebbled at some titgebeforet;. And since each can only
be pebbled once, they are all clamped throtigh

We now argue that; must be black pebbled &t — 1. All of gi?’i“’s 3i other predecessors are clamped
until tyq, sogi3i+1 must receive its black pebble by sliding it from its singleeatpredecessoy. Furthermore,
we can apply Lemma 9 to show thats predecessory, cannot be white pebbled and can only be black
pebbled once betwedp andt;;. Sincex has 3+ 1 source nodes as predecessors, our first action within
widgeti must be to black pebblg and it must stay in place until all of its successors are mEbldr the
last time. Then a pebble must remainxgruntil all of its successors are pebbled for the last timeabee
we can never repebble/dischargencex is empty. Sqx,X) € [t1,t11— 1].

Once we know that at least one nodexpandXx is pebbled throughout the time period, we can use a
similar argument to show thak € [t,,t10 — 1], wheret, comes aftet;, and then, once at least two nodes
are clampedx;, X)) € [ts3,to — 1], wheretz comes aftet,. Also, by Lemma 9, neitheg nor f; can be white
pebbled betweety andt;1 and each can be black pebbled at most once bettyesardt; ;.

We now consideg? to gf’i‘z, which require that the OR-nodz is pebbled. We know that must be
black pebbled becaus;géi‘2 has in-degreei3+ 1, and all of its other predecessors are clamped. Therefore,
it must have received its black pebble by sliding it framSoc; must hold a black pebble at some titge
beforetg. We can also prove th& occurs befords. We know this becausrg;1L must be black pebbled &
and atts — 1 all 3+ 1 of gi's predecessors must be black pebbled. This means thatshefrae widget,
including f; andg must be empty. But we already know that they can only be blatibled once between

to andty; and that had to have occurred at some tipédbeforets. This means that we cannot repebble
afterg! is pebbled, because it requires eitbeor f; to be pebbled. Therefore, € [ts, ts — 1].

At t4 eitherg or f; is black pebbled. 1§ is black pebbled &k, thenG;_1 U {x;,d;, X} must be pebbled
at timet, — 1. If f; is black pebbled iy, thenG;_; U {x,di, X } must be pebbled at timg — 1. We now
want to prove that in either cas@;_; must be simultaneously black pebbledtat 1. To do this, note
that widgeti always contains at least 4 pebbles fropuntil t1;. This means that aftas we cannot black
pebble or discharge a white pebble from any n@≤ since they all have in-degreé 32. This means
thatg! ; to 9?1‘13 must all be infty — 1,tg] since they are needed again to black pelgpleThis means that
the only one of eitheg or f;’s 3i + 1 predecessors which is unclampedsat 1 is g?‘:lz. Therefore either
g or fi must have received its black pebble frcg;ﬂf via a slide move. The rest @;_; must also be
black becausg! ; to g® 7 form a 3 — 3-slide withg to g®~2 when 31+ 1 (3i — 3) nodes are unclamped
betweents andts. So by Lemma 9 and the fact that they can never be repebblecéet, andt;;, gt ,
to 9?1*13 must be simultaneously black pebbledat 1. Therefore, ifg is black pebbled at;, then we can
apply the induction hypothesis to conclude thet, ¢y} is QSAT and that simultaneously black pebbling
G;_1 from Blts] required time ¥, wherek is the number of universally quantified variables among tinei
mosti — 1 variables ofF. And if f; is black pebbled at, then we can apply the induction hypothesis to
conclude thatp[qusx1 is QSAT and simultaneously black pebbli@g ; from B[ts] required time b where
k is the number of universally quantified variables amongiineii mosi — 1 variables of-. In either case,
W[q; is QSAT and simultaneously black pebbliGg_; from Blts] requires time ¥, wherek is the number of
universally quantified variables among the inner niastriables ofy. O

Theorem 10: Let Y be a QBF, and let resbe the associated graph. Therpif(s) can be derived from
Pel{gre9 using no more thanré+ 3 space, thenp is QSAT, and any B+ 3 space proof requireQ(2¥)
steps, wherd is the number of universally quantified variableslin

The rest of this section is devoted to the proof of the abogerm. We begin with some definitions.

DEeFINITION 5.1: We partition some of the nodes and their associatedhlas into three setassignment
nodes and variablegntry point nodes and variables, amdternal nodes and variables. We refer to the
nodes inUL,{x,X,%,X,a,d} as assignment nodes, and the associated variables aseasigrariables.
We refer to the nodes ifigi} UUIL,{X,X,di} as entry point nodes, and the associated variables as entry
point variables. For universal widgets, we refetf,(Gi U {a,bi}) as internal nodes, and the associated
variables are internal variables. And for existential veitig we refer tdJ! ;(GjU{e, fi}) as internal nodes.
The target nodsis also an internal node af.

Each entry point nodehas a dualdual(v), wheredual(gy) = g3, and for each, 1 <i <n, dual(X) =x;,
anddual(x) = x. If widgeti is universal, themlual(d;) = & and if it is existential thewlual(d;) = d;. The
initial clause ofPel(s) containingx positively is callecax(x), and the positive unit clause feis pu(x). We
refer to the set of clauses containingositively aspogx). For any set of variableX, pu(X) = {pu(x) | x €
X}.

DEFINITION 5.2: A clamping interval [t;,t] is the set of clauses which must be in memory at all times
betweert; andty inclusive. LetC,C; be two clauses. We say th@li,Cy) € [tj,t] if eitherCy orCyis in
memory during every configuration from tinhethrough timety inclusive. We say thapogx) € [t;, ti] if for
each configuration [t'], t; <t’ <ty, some clause giogx) isin ¢ [t']. We say thatn assignment variable x

is clamped from configuratiorc [tj] to configuratiorc [ty] if either pogx) € [t;,t] or pogdual(x)) € [t;, t].

We say that a node€s assignment variables are clamped within an interval, if for every one of’s slack
nodesO(v, z), the assignment variabieis clamped in that interval.

DEFINITION 5.3: We say that a nodeis downstream of another nodg if there is a path frony to z. We
say that a nodeis downstream of another noglén a path p if there a subpath g from nodey to nodez

10

We say that a nodgis upstream of another node if zis downstream of and we say that is upstream of
zin a pathp if zis downstream oy in p.

DEFINITION 5.4: Letp be a path from nodgto nodez. We say that a clauséblocks p at nodeb, if b € p,

b #£ y and the variable associated withappears positively i€ and no variable associated with any node
on the subpath gb from y to b appears negatively i@. If the current resolution configuration contains a
clause which blockp at some node, then we say tipais blocked. Otherwise we say thatis unblocked.
For a given pattp from nodey to some node, for any nodeb € p,b # y we use the notatiop(b) to refer

to the set of all clauses derivable frdPel(¢) which containb positively and no node betwegrandb in p
negatively. Intuitively, these are all the derivable cligvhich can block atb. A blocking set 3 between

a set of nodeS and a nodein ¢ is a minimal set of clauses in the current resolution confition which
blocks every path from any member $fo z. Note that according to the definition of an unblocked p&th,
is not a blocking set betweehandz

We first point out a few useful facts aboBel(g). First, Pel(¢) is Horn and for every variablg,
the only initial clause which containspositively isax(x). Therefore, in order for memory to contain any
clause containing positively, ax(x) must first be downloaded. Also, sin€el(s) is Horn, every clause
can contain at most one positive literal. Also, since alPel(s)’s initial clauses contain a positive literal,
it is impossible to derive a purely negative clause.

Lemma 11: If there exists an unblocked paghfrom nodey to z in configurationc [t], then in order to
derive some claus€ in p(z) at timet; > t;, some clause fronpogy) must be in configuratiom [t;] for
somety, t1 <ty <ts.

Proof: The proof is by strong induction on the length of the subpéthfoomyto z

For the base case, suppose there exists an unblocked paitly fooz at timet; and we want to derive
p(2) whenzis the immediate successor wf Either some clause frorpogz) is already in memory, or
not. If it is, we know that it must containy because is unblocked. Otherwise, we must downloaxiz)
which also containswy in order to derivep(z). In both cases, we must resolve awayin order to deriveC.
Therefore, we must have a clause frepogy) in memory.

Now suppose that the statement is true for all ndesich are up to distande— 1 away fromy along
p; we want to prove that the statement holds for na@éhich is distanceé away fromy alongp. Consider
the last actionz [t¢] in the derivation of some claus&in p(z). This action must be a resolution on some
nodeb which appears beforein p (because otherwise an earlier clause would bg(#).) Assume tha€
is derived at actiom [t;] from clause<C; andC,, whereC; containsz and—b, andC, containsh. Because
C does not contain any literals of nodes upstream iof p, C, also does not contain any literals of nodes
upstream ob in p. ThereforeC; is in p(b). Because;, blocksp, it must have been derived at some tite
betweert; andt; Thus by the inductive hypothesis, some clause fpmgy) must be in some configuration
¢ [t2], wheret; <t <tz < tf, completing the proof. O

Lemma 12: For every entry point variablg if ax(y)’'s assignment variables are clamped, then in order to
derive any unit clause frorax(y) without using more thanré+ 3 space, there must be some point between
downloadingax(y) and using it for the first time, when the resolution configaracontains only clamped
assignment variables ak(y) and at most one negative literal a(y).

Proof: The entry point variablg is eitherg} or y is one ofX, d;, or X for somei € [1,n].

e Case 1. The entry point variableis g(l). Sincegé is the OR-nodez, it has 7 axioms (1 for each
predecessopi™), each of which has the following form:

11

n
ax(gg) = (\/ (O(gd, %)) V O(gg,d;) v O(g, X)) V. p%“) -
j=1

Thereforelax(gf)| = (3n) + 1+ 1. Note that the size of the current clamping iis 3

e Case 2: The entry point variabjgs x. The initial clauseax(x) has the following form:

n 6i+1
ax(x) = (V (O(x,xj) vVOX,dj) VO, X)) vV \/ yf) =X
J j=1

j=i+1

Thereforelax(x{)| = (3n—3i) + (61 + 1) + 1 = 3n+ 3i + 2. Note that the size of the current clamping
is 3n—3i.

e Case 3: The entry point variabjes d;. The initial clauseax(d;) has the following form:

ax(d) = (\”/ (O(diaxj)Vo(di,dj)Vo(di,ij))VO(di,Xi)VGi\/ly?i> — d

j:H—l j:l
Therefore|ax(dj)| = (3n—3i) + 1+ (6i —1) + 1 = 3n+ 3i + 1. Note that the size of the current
clamping is & — 3i + 1.

e Case 4: The entry point variabjgs X. The initial clauseax(X) has the following form:

n 6i—3
ax(x) = (V (O(X,x)) VO(X,dj) VO(X, X)) VO(X,x) VO(X,d) v \/ yf) =X

j=i+1 =1

Thereforelax(x)| = (3n—3i) + 2+ (6i — 3) + 1 = 3n+ 3i. Note that the size of the current clamping
is 3n—3i+2.

So in all cases, wheax(y) is downloaded our space usage is at least @ and we have at most one
unit of space left to use. In order to resolve anything awamnfax(y) without exceeding our space limit,
this space must be filled with some negative literahxiy).

|

Corollary 13: Lety be any entry point node and let andz be any pair of internal nodes such that
configurationc [t;] satisfies:

1. there is an unblocked path froprio z, and fromz to z;
2. no clause fronpogz) is in ¢ [t1]; and
3. all of the assignment variables af(y) are clamped.

Also suppose that the next action|t; + 1], is a download ofx(z). Then in order to derive@u(z;), while
keeping all assignment variablesax(y) clamped (without exceedinghé- 3 space), some clause fogy)
must be inc [ti].

12

Proof: Assumepu(z;) is derived at actiom [t], t; > t;. Since there is an unblocked path frgnto
2, andz, to z; and there is no clause froppg) in ¢ [t1], then there is an unblocked path frgnto z; in
c [ta]. Sincepu(z;) € p(z1), by Lemma 11, some clause rogy) must be in configuration [t,], for some
to, t1 <ty < t;. If t; =t then we are done. Otherwise, we must derive some clausgpogy) at timety,
t; <t < ts. Thereforeax(y) must be downloaded at some timet; < t3 < t,. Now by Lemma 12, at
configurationc [ts], the positive literak; cannot appear in memory. This is a contradiction because wst m
still have a clause fronpogz;) in memory untilpu(z;) is derived. O

DerINITION 5.5: For each entry point nodewe usey(v) to refer tov's position in an ordering which is
defined as followsy(g3) = 0 and for eachi € [1,n]: y(X) = 3i — 2, y(di) = 3i — 1, andy(X) = 3i

Informally, the following lemma states that if there is arblotked path frony; (an entry point node in
widget j) to z, but all nodes below; are blocked, then we must have a blocking set of siz@8e for each
blocked entry point node below.

Lemma 14: Lety; be an entry point node of widgg¢twhich hasb other entry points of widgejt after it in
y, and letz be any internal node such that the current configuratifthsatisfies the following conditions:

1. there is an unblocked pathfrom y; to z, and
2. for every entry point nodesuch that/(v) < y(y;) there is no unblocked path frouto z.

Then for at least B— b nodesv which are either not reachable froynor are immediate successorsygf
some clause fronpoqv) must be in memory at [t].

Proof: The proof hinges on the observation that blocking every fratim any entry point node
such thaty(v) < y(y;) to z but not blockingp requires a blocking set of size at leagt-3b. Furthermore,
the nodes which comprise the blocking set must occur doeastrof any suchr and upstream of the first
internal node op. If widget | is a universal widget, then we can break the proof into theees, each with
two subcases. Eithgr isxj andb = 2,y; isdj andb= 1, ory; is x; andb = 0. In each of these cases either
p leavesy; and traverses up through the left side of widger it traverses up through the right side of the
widget. We will see that each of these six cases is either $siple, or requires the current configuration
to hold some clause frorpogv) for at least 3 — b nodesv which are either not downstream wf or are
immediate successors wf.

Casel: (yjisx]andb=2):

Right Side: In this casep leavesx] via xj. We now show that ip leavesx] via xj and thenbj, then
there can be no unblocked paths from entry point nodes inetifg 1 which join p at some unblocked
node ofb; because this would form an unblocked path from them f®here must therefore be a blocking
sets between any entry point in widgét— 1 andz which does not bloclp. Any such blocking set must
separate any lower entry points from any nodgokl/e argue that this set must have sije-2. A potential
blocking set would be all of the predecessordpfiot in {dj, X, xj }. Either all ofbj’s predecessors that are
not in {d; ,x’j ,Xj} are ins or at least one is not. If they are, then we are done becawssetinas sizej3- 2.
Otherwise, there is some predecessof bj not in {dj, x;,X; } that is not ins which is furthest upstream.

Either widgetj — 1 is universal or existential. Suppose it is universal. Ttiennodev is eitherg?j_*l2

or g?j__f’. Every other member dBj_; is an immediate successor xf ;. If v is one of these, we could
reachz from igfl by crossing the edge frovqfl to v, then tob;, and from there we could use the nodes
of p downstream ofv to reachz. Sincev is one ofg?’:l2 or g?‘:lg‘ then 3 must include every node of

{g}_l,...,g?i]4} since each of these nodes is an immediate successor of gnpeirit node of widget

13

j—1. Also, eitherg:j”j__l3 or aj_1 must be inz, and eithelg]?’j__l2 orxj_1 must be inz. Sos has the required
size of 3 — 2. _
Suppose it is existential. Then the nodeust beg?‘_]z since every other node @j_; is an immediate

successor ofli_;. Thereforez must include every node c{fgjl_l,...,g?izg}. Also, it is clear that either

g?jjlz must be ins or xj_1 must be. S has the required size of 3- 2.

Left Side: In this casep Ieavesx’j_via some (furthest upstream) nodef {g},...,g‘?jfl}. Let g'j1 be the
furthest upstream predecessowdhat is not inz (or vitself if there is none). Se must have size at least
l;—1. Butg} ;,...g7 ;" are all predecessors gf. If widget j — 1 is universal, then by the same argument

as used for the_ right side must include every node c{g'jil, . .,g?jjl“} and eithelg?jjl3 oraj_; must bein
3, and eithelg?”__l2 orxj_1 mustbe ins. Sosz has the required size of| 3- 2. If widget j — 1 is existential,
then by the same argument as used for the right siaeust include every node ({fg'jl_l,...,g?’_f} and
eitherg?‘:l2 orxj_1 must be inz . Sos has the required size of 3- 2.

Case2: (yjisdjandb=1):

Right Side: In this casep leavesd; via {bj,a;}.

We now show that ifp leavesd; via {bj,a;} there can be no unblocked paths frafnwhich join p
at some unblocked node ¢bj,a;} because this would form an unblocked path freito z. There must
therefore be a blocking set betweerb(’j_ (or any entry point in lower widgets) armwhich does not block
p. Any such blocking set must separate any lower entry poiots finy node op. Note thatp must pass
througha;. All 3j— 1 nodes ofG;_; U{b;} are predecessors af. Either all of these nodes are i or
at least one is not. If they are all in, thens has the size required. Widg¢t- 1 is either universal or

existential. If it is universal, then every node {gjl_l,...,g?fl“} is an immediate successor of an entry

point node of widgef — 1, so each must be in. Therefore onI;g?j:f’, g?jjlz, or bj might not be ins . As
we pointed out for the right side of case 1, eitb?_r‘f’ oraj_i must be inz , and eithelg]?"__l2 or Xj_1 must
be ins. If widget j — 1 is existential, then every node {@}71,...,9‘?1__13} is an immediate successor of

dj_1 so they must all be i, and it is also easy to see that eitlg%flz or Xj—1 must also be irs. So in
either case the size of is at least 3 — 2. Finally, eitherb; or x; must also be i, so it has the required
size of 3 — 1.

Left Side: This case is impossible sindgs only successors are on the right side of the widget.
Case3: (yjisx]andb=0):

Right Side: In this casep leavesx] via {bj,a;}.
This case is impossible since bdthanda; are immediate successors of the entry point rijdeo any
unblocked path fronx'j to zwould also be an unblocked path frainto z.

Left Side: In this casep leavesx; via x.
We now show that ip leaves viaj and then some node(s) Gfj, then there must be a blocking sebf
size at least Bto ensure that there are no unblocked paths fxpm dj to z. Observe thap cannot use any

node ofgj1 throughg?j_1 because each of those nodes is an immediate successordferefore,p must
leavex; via g‘?’. But gj1 throughg‘?’*l are all predecessors gf’ and as we noted, they are all successors of

14

>Zﬁ. They must all therefore be in. Therefore,z must have size at leasf 3 1. Sincea; is an immediate
successor of the entry point nodg a; must also be included i, increasing its size to the desiregl 3

Suppose, on the other hand that widget an existential widget. Then the proof breaks into thresesa
eithery; isxj andb = 2,y; is dj andb = 1, ory; is x; andb = 0.

Casel: (yjisx]andb=2):

In this casep must include some node of {g},...,g:j”i‘l}. We can ignore any afi's predecessors in
{Xj,dj,x;}. Let g'jl be u's furthest upstream predecessor notsinor u itself if there is none). Then
contains at leadt — 1 members, namely all (g‘*jl’s predecessors iG;j. But g'j1 also hagj as a predecessor
as well as each node i[rg'jl_l, ... ,g?’ff}. Either widgetj — 1 is a universal widget or an existential widget.

Suppose widgef — 1 is universal. The noddji_1 to g?j__l“ must all be ins since each is an immediate
successor of;_;. Also eitherg?j:f’ or Xj—1 must be inz . This brings the size of to at least 3 - 3. We
now turn our attention tg'jl’s other predecessax;. If ¢, g, fj, g?j__lz, anda;j_; are all not inz then there
is an unblocked path fror;_; to z, crossing fromd;_; to aj_3, then tog?j_f, and then taej, ¢j, g'jl_l, and
then tou at which point we can use the nodemflownstream ofi to reachz.

Suppose widget — 1 is existential. The noddji1 to g?jjlg must all be inz since each is an immediate
successor oflj_;. This brings the size of to at least $—3. We now turn our attention tg'jl’s other
predecessog;. If ¢j, g, fj, g?j__lz, andx;_z are all not inz then there is an unblocked path froqll to z,

crossing fromx’jf1 to Xj_1, then tog?j_f, and then tagj, cj, g'jl_l, and then tas at which point we can use

the node op downstream ofi to reachz.

Case2: (yjisdjandb=1):
This case is just like case 1, except that we must also bloglati fromx’j'to z by includingx;.

Case3: (yjisx| andb=0):
This case is very easy since every node that is an immediatessor ok; or x] is also an immediate
3i+1 Also, every predecessor gf”rl

successor ofl; except forg; is an immediate successor @f. So in
order to block any paths froml to z without blockingp, p must useg?’*l Bitlg 3j predecessors
must be inz .

and all ofgj
In all cases which can occur, for at leagt-3b nodesv which are either not downstream yf or are
successors ofj, some clause frorpogv) must be in memory at[t]. O

Letz be an internal node in widgeét Informally, the following lemma states that when we dovado
ax(z) (with z’s assignment variables clamped), then in order to deriwgesioing fromax(z), we must start
in the “full” configuration.

Lemma 15: Let z be any internal node of widgétand letz be any internal node such that configuration
c [t1] satisfies:

1. no clause fronpogz) is in ¢ [t];
2. all of the assignment variables @f(z) are clamped; and
3. there is an unblocked path fragnto z

Also suppose that the next actiont; + 1], is a download o&x(z). Then in order to derivpu(z) at some
time t, aftert; (without exceeding B+ 3 space), there must b& & 3 — |ax(z)| — X positive unit clauses
in memory att;, whereX is the number of assignment variableszgffor nodes which are upstream nf
including every entry point such that there is an unblocked path freno z.

15

Proof:

Either there is an unblocked path from some entry point nodg or not. Suppose not-so all paths
from entry point nodes tag are blocked. Then there must be some blocking set which atesaall entry
point nodes upstream @f from z. We will show that every such blocking set has size at leashg- 3 —
|ax(z)| — X. If all entry point nodes ta; are blocked, then no entry point node can be a predecesgpr of
Therefore, if widget is a universal widget, then the only possibilities fareg® andgi3i+1 and ifi is an
existential widget, then the only possibility faris g*+2.

Suppose widget is a universal widget. Case Z)is g¥. The nodeg® has &+ 3 — |ax(z)| — X —

1 predecessors i which are successors @, so they must all be included in. It also hasx as a
predecessor, which in turn is a successoxof So thereforex; must be ins. So|s|=3i =6n+3—
lax(z)| — X. Case 2) is g®*1. This is very much like the previous case, except ¢iat' also hasy as a
predecessor, and it is a successox 050 it must also be iz . So|z | =3i+1=6n+3—|ax(z)| — X.

Suppose on the other hand that widgit an existential widget. Thez is g¥ . The nodeg®*! has
6n+ 3 — |ax(z)| — X — 1 predecessors i6; which are successors df, so they must all be included in
3. It also has as a predecessor, which in turn is a successo¢.o80 thereforex; must be ins. So
|| =3i+1=6n+3—|ax(z)| — X.

Suppose, on the other hand that there is an unblocked pathsipme entry point node ®. Lety; be
the earliest entry point node inwhich has an unblocked path zp Supposey; is in widget |, j <i and
widget j containsb other entry points aftey; in y. Then clearly, for every entry point nodesuch that
y(v) < y(y;) there is no unblocked path frowto z.

Suppose that; hasa other entry points of widget after itiny, 0<a< 2. Thenz has i—3i+a
clamped assignment variables (iX6.= 3n— 3i + @), and has B+ 1 — a internal nodes as predecessors in
widgeti. At the moment wheax(z) is downloaded there is therefore at most-3 — a available space in
memory before we exceed§- 3.

We can apply Lemma 14 to conclude that the current configuratiust hold a set of j3—- b clauses
whose positive variables are associated with nodes thagiter not downstream of; or are successors
of yj. (We will see later that this set must be composed of exagtly B positive unit clauses for those
nodes.) We therefore have at mos#3L — a— 3j + b space left when we downloak(z). Note that there
are exactly B— a— 3j + b entry points upstream df such thaty(v) > y(y;). We will show that for each
of these entry points, either some clause frpogVv) or pogdual(v)) must be in the current configuration.
This will leave us with at most 1 space left, which we will showst be used bpu(y;). During the proof
we will only count each clause (except fax(z)) as using 1 space, and we will still reach our maximum of
6n+ 3. We will therefore conclude that each clause (excepafdr;)) must be a positive unit clause, which
will complete the proof.

During this process we follow from z down toy;. We show that given our space bound, it is impossible
to keep entry points along the way from connectingptand thereby forming unblocked pathszZo The
pathp must pass through each widdet > k > j. There are two cases depending on whether wikijet
universal or an existential widget.

Suppose widgek is a universal widget. Thep can either pass through widdés right side or straight
up. Suppos@ traverses the right side of widgkt Thenp must includeay, which has bottdy andx, as
predecessors. No clause frgrogay) can be in memory sincg is unblocked, therefore by Corollary 13 a
clause ofpoqdy) and a clause opogx,) must be. Alsoa hasby as a predecessor, which in turn hass
a predecessor, so a clause of eithegby) or pogxx) must be in memory, or else by Corollary 13 a clause
of pogx,) must be. So in all cases at least three units of space arerusedgetk.

Suppose traverses straight up the widdetThenp must include some node gﬁ throughgﬁ"‘z. Every
node ofg throughgﬁ“*2 hasxy as a predecessor. So either some clause fiogx) is in 3 or we can
create a new unblocked path froghto z by crossing an edge from to the node whiclp uses inGy. We
can then apply Corollary 13 to conclude that some clause fog,) must be clamped until aftex(z)
is downloaded. So either some clause frpo¥x,) is in memory, or some clause fropogx,) is. Also,

16

sincex, is a predecessor of every nodegbthroughgﬁk‘z, by Corollary 13, some clause fropogx,) must

also be in memory. Finally, sinca is also a predecessor of every nodeginthrough gﬁk*Z anddg is a
predecessor ddy, it is not hard to see that either some clause fioogax) or some clause fronpogdy)
must also be in memory. So in all cases, if widgas universal ang traverses its left side, then at least
three units of space are used in widget

Suppose, on the other hand, that widges an existential widget. Thp must include some node
of gﬁ throughgﬁkfz. Each one of these nodes has dg, andx as immediate predecessors. So we can
therefore apply Corollary 13 to conclude that some claus® fpogdy) must be clamped until aftexx(z)
is downloaded. Also, if there is no clausepdqx,) in memory, then we can apply Corollary 13 to conclude
that some clause frompogx,) must be clamped until afterx(z) is downloaded. The same is true fqr —

Since we only havel3+1— 3j+b— 1 space free, the only way we can block all the paths fdpto the
node of{g&, ... ,gﬁ"‘z} used byp is either to have some clause frqmogax) in memory which would use
1 extra space. If no clause fropogqay) is in memory, there must be an unblocked path fidyto z. We
can then apply Corollary 13 to conclude that some clause fsjogdx) must be clamped until aftexx(z)
is downloaded. So either some clause frpogdy) is in memory, or some clause fropogay) is. Finally,
every node ol{gﬁ, ... ,gﬁk‘z} hasx, as a predecessor. So we can create a new unblocked pathiftors —
by crossing an edge fromj to the node whictp uses inGx. We can now apply Corollary 13 to conclude

that some clause frompogx,) must be clamped until aftexx(z) is downloaded. O

Lemma 16: Letzbe aninternal node of and lett’ andt” be times such that variabidoes not appear in
any clause of [t'] and all ofZs assignment variables are clamped during the intgti@!]. Then in order

to derive pu(z) at some timey, t' < t, <t” without exceeding 8+ 3 space pu(y) must be in memory, for
all internal predecessoysof z at timet;, t’ < t; < t, whenax(z) is downloaded.

Proof: Atthe moment wheiax(z) is downloaded, suppose for the sake of contradiction thattfleast
one internal predecesspof z, pu(y) is not in memory. By Lemma 15 we must use63 space aax(2)’s
download and all the clauses in memory at that time are egtki@j, clamped assignment variableszpbr
unit clauses not involving, so there can be no clause pdgy) in memory. We must therefore download
ax(y) to resolve away the negative literalyfrom ax(z). When we downloadx(y), if one ofy’'s assignment
variables is not clamped, then it will have to be downloadesbenetime when memory still holds a positive
clause for a node which is downstreamyofBy Lemma 12 this would exceed & 3 space. We therefore
know that all ofy’s assignment variables are clamped wie(y) is downloaded. We can therefore apply
Lemma 15 to conclude that after we've downloadedly), 6n+ 3 units of memory must be filled with the
union of 1)ax(y), 2) ax(y)’s clamped assignment variables, 3) positive unit claudgsiware upstream of
y. But at this point we must still have a clause in memory whiels @erived fronax(z) and has size at least
2 since it must at least contaymegatively and positively. So we exceedngt 3 space. All ofZs internal
predecessors must therefore be in memory wié¢p) is downloaded. O

Lemma 17: If an internal nodez of widgeti hask predecessors and there aret31 — k units of space
clamped int’,t"], thenax(z) can be downloaded at most once betwgemdt”.

Proof: ByLemma 15ax(z) cannot be downloaded while a clause frppgz) is in memory. Therefore,
in order to downloadx(z) for a second time, every clause pbgz) must be removed from memory. By
frugality, a clauseC of pogz) can only be removed from memory if a sub-clauseCagxists in memory
or afterC has been resolved with a clause pdqv) for somev downstream of. This means that once
all clauses frompogz) have been removed from memory, a clause containing a poditéral of a node
downstream of must be in memory. This means that there are at leasti3- k+ 1 units of space clamped
after the first timeax(z) has been downloaded, so trying to download it again wouldexthe space bound.
O

17

DEFINITION 5.6: For any assignmemt; € A;, we definecy; as the resolution configuration &fels)

consisting of the following clauses for eaghj < n—i: If ai(x;) = 0, thenpu(x;) € cq;, pu(d;) € cq;, and
either pu(xj) € cq, Or pu(Xj) € cq,. Otherwise, ifai(x;) = 1, thenpu(X)) € cq;, PU(@j) € cq;, and either
PU(X| € cq;) OF PU(Xj) € Cq;-

To prove Theorem 10, we first observe that by Lemma 16 theateivof pu(s) requires the derivation
of pu(Gy). Therefore, Theorem 10 follows from the following theoremieni = n.

Theorem 18: For everyi, 0<i < n, for everyq; € A, if there exist times' andt” such thatcq, C [t',t"],
then derivingpu(G;) att” from Cy, at timet’, using no more thanré+ 3 space, requires that[q, is QSAT
and requires that there a(2¥) units of time between’ andt”, wherek is the number of universally
guantified variables among the inner mogariables ofF.

Proof: Now that we have proven the above Lemmas, the proof of our thaorem is very similar
to the proof of Theorem 7, and proceeds by induction.diWe will essentially argue that the only 6 3
space refutation must follow the upper bound, and hencemijily that the formula is QSAT.

The basis is when= 0. In this case ¢, has size 8 and we must show that derivingu(g3) without
exceeding 6+ 3 space requires at lea{1) time. We show that the derivation requir@$m) time, where
mis the number of clauses s

We first prove thapu(z;_1) must be in memory when we download(z;), for each 1< j < m. With
co; clamped in memory, we havan3- 3 units of space to use to deripe(zm) = pu(gg). But eachax(p}*?)
has size exactlyr8+ 2. This means that there is one unit of space left over. If $higce is not filled
with pu(zj_1), then the negative literal af_; cannot be resolved away until one of the 7 axiomg;of
is downloaded. But since it is impossible to derive an elgtireegative clause, the clauskcontaining
the negative literal oz;_1 must be accompanied by a positive literal as well, so it maselsize at least
2. Note that at this point we cannot download anc{(pﬁzl) because we would exceed our space bound.
But if we download any of the axions @f_; and resolve them witle, the resolvent will still have size 2,
now containing the negative literal of sorpﬁzl, and some clause of size 2 containip}ij’f1 will remain in
memory untilax(pj-‘!zl) is downloaded. We must therefore exceed the space bound.

Now suppose for the sake of contradiction tR&kn---Q1x1F [q, iS Nnot QSAT, which means thaty
falsifiesF. In that case, there must be some claGgef F which is falsified byap. In order to derive
pu(zym) we must derivepu(zy,_1), which in turn requirepu(zy,_2), etc. Therefore, at some point we must
derive pu(z) and pu(z.1) must be in memory when we download the axiongpivhich we will use to
derive pu(z). But sinceCy is falsified byao, for eachp’”, cq, will be missing the positive unit clause of
some entry point node. In order to remove its negative lifeom ax(p,’*), the axiom for that entry point
will have to be downloaded and used. Clearly, by Lemma 12dhiot be done within the space bound

given the size of the clamped set of clausgs

Induction Step: We will show that in order to derivpu(G;) without removing any clauses fromy, we
must necessarily pass through a number of resolution caafigns, each of which can have at most one
non-unit clause. This will necessarily involve deriving_, twice, the first time whew;_; = a; U {x} and
the second whea;_; = a; U {x}.

We first observe that by Lemma 15, for every internal variatibe widgeti, no variable upstream af
which is not an assignment variable Dfcan be in memory at the time whem(z) is downloaded without
exceeding the space bound of-6 3. We will use this observation numerous times in our proof.

Case 1: Q is a universal quantifier, 9B; is part of a universal widget.

We will show that in order to derivu(G;) we must necessarily pass through a number of partial
configurations, including derivingu(G;_1) twice, once whilepu(x/), pu(d;), and eitherpu(x) or pu(x)

18

(the false configuration) are in memory, and once whilkx), pu(a;), and eitherpu(x;) or pu(x,_,) (the
true configuration) are in memory. We prove this by pointing &2 important partial configurationsto]
to ¢ [t11], which occur at timeg to t11 respectively, where [to] is cq, andc [t11] containspu(G;).

In order to derivepu(G;) at timet;;, we must download the axiom of each membeGot {&;, bi,x },
sincecq; does not contain any of their positive literals. In fact,antains no positive literal for any node
in any widgetj, j <i. Therefore, we will need to download the axiom of any posititeral we need from
this region of the circuit. Also, by Lemma 17, the axioms of ande inG; U {a;,b;,x } can be downloaded
at most once betwedp andty ;.

Let t;0 be the timeax(g®*?) is downloaded. Clearlyt;o < t11 and poggd*?) € [tio,t11]. Also, by
Lemma 16,pu({d?},..., 6% }) U{a} € c[tio]. Lettg be the timeax(g¥) is downloaded. Clearlyy < t;o and
pogg’) € [to,t11]. Also, by Lemma 16 and Corollary 18u({g!,...,g@ 1} U{a;, (%,X)}) € c[to]. Lettg
be the timeax(g®~?) is downloaded. Clearlyig < tg and pogg®~1) € [tg,t11]. Also, by Lemma 16 and
Corollary 13,pu({gt,-..,g3 2} U{a;, (x,X),X}) € c [tg]. Letts be the timeax(g') is downloaded. Clearly,
t; < tg andpoggl) € Jt7,t11]. Also, by Lemma 16 and Corollary 18u(G; 1 U {&;, (%, X),X}) € c [t7].

Our argument now breaks into two parts. In the first part, wesither what steps are necessary to derive
pu(a) by t7. In the second part, we consider what steps are necessagyive gu(G;_1) and pu(x) by
tz. We will see thatpu(Gi_1) will have to be derived twice. Once in order to derpe(a), and then again
immediately before;.

Letts be the timeax(a) is downloaded. Clearlys < tg andpoga;) € [ts,t11]. Also, by Lemma 16 and
Corollary 13,pu(Gi_1 U {bi,x,di}) € c[ts]. Letts be the timeax(b;) is downloaded. Clearly; < ts and
pogbi) € [ts,ts]. Also, by Lemma 16 and Corollary 18u(Gi_1 U {X,X,di}) € ¢ [ta].

Let t; be the timeax(x) is downloaded. By Lemma 12, must occur when no other positive literal
of any widgetj, j <i is in memory. Furthermore, some clausepaf{x) must stay in memory until its
successox; is downloaded for the last time. Them(x;) must stay in memory until all of its successors are
downloaded for the last time, because we can never deu(®) once every occurrence &f is removed
from memory. Therefor@ogx) € [t1,ts] and pog (X, X)) € [ts, t].

By Lemma 17,ax(d;) can only be downloaded once betwegemandt;; since there is always at least 1
unit of memory used betweepandt;;. Letty, to > t; be the timeax(d;) is downloaded. By Lemma 1%,
must occur when no other positive literal of any widgej < i is in memory, except fox;,X). Therefore
poqdi) € [ta,ts5].

By Lemma 17,ax(X) can only be downloaded once betwegmndts since there are always at least 2
unit of memory used betweep andts. Clearly,ax(X) must be downloaded within this time frame since it
is required to derivgu(b;) by ts. Therefore, lets, ts > t3 > t, be the timeax(X) is downloaded within this
interval. By Lemma 12tz must occur when no other positive literal of any widgef < i is in memory,
except for(x;,) and(d;,a). Furthermore, some clausepdgX) must stay in memory until its successbr
is downloaded for the last time. Ther(x;) must stay in memory until all of its successors are downldade
for the last time, because we cannot denugx;) duringt; to ts once every occurrence @f is removed
from memory. Therefor@od(x,X)) € [t3,ta].

So (x,X),di,x are clamped from a time when no other positive literals of amyget j, j <i are
in memory, until at least;. But atts, pu(Gj_1) must also be derived. Soq,X),d;,x must be clamped
throughout the derivation gbu(G;i_1). We can therefore apply the induction hypothesis to corechinct
deriving pu(G;_1) requires thatp[q,uex) is QSAT and require€(2) resolution configurations to occur
betweent; andt,, wherek is the number of universally quantified variables among timeeti mosti — 1
variables ofi.

We now proceed with the second half of the argument in whicinwestigate the necessities of deriving
pU(Gi—1) and pu(x) by ty.

Clearly,t; > ts sincepu(a;) must necessarily be in memory whax(g!) is downloaded at;. But atts,
no occurrence of the positive literal gfcan be in memory since its inclusiontgivould exceed our space
bound. We must therefore downloa®(x) again at some timg, afterts and pogX) € [ts,ts]. By Lemma

19

12, atts only pu(a;) and pu((x,x;)) can be in memory among all the variables associated with asget

J, j <i. In particular, no space can be devoted to any literal of aaennG;_; at this time. Since we must
derive pu(Gj_1) by ty, this necessitates thpt((G;_1) must be derived a second time at some point between
ts andt;. SincepogX), poga), and pog(X,x;)) are all clamped throughout this time, we can apply the
induction hypothesis to conclude that derivipg(Gi—1) requires thatp[, (%} is QSAT and requireQ(24)
resolution configurations to occur betwegrandt;, wherek is the number of universally quantified vari-
ables among the inner mast 1 variables of}.

Case 2. Q; is an existential quantifier, $8; is part of an existential widget.

We will show that in order to deriveu(G;), we must necessarily pass through a number of configura-
tions, including derivingpu(Gi_1), either withpu(x/), pu(di), and eithempu(X) or pu(x) (the false config-
uration) in memory, or withpu(x/), pu(d;), and eitherpu(x;) or pu(x) (the true configuration) in memory.
We prove this by pointing out 12 important partial configioas ¢ [to] to ¢ [t11], which occur at times to
t11 respectively, where [to] is cq; @andc [ti1] containspu(G;). occurring in the partial configuration must
stay in place during a certain interval.

In order to derivepu(G;) at timet;;, we must download the axiom of each membeGot {&;, bi, X },
sincecq; does not contain any of their positive literals. In fact,aontains no positive literal for any node
in any widgetj, j <i. Therefore, we will need to download the axiom of any posititeral we need from
this region of the circuit. Also, by Lemma 17, the axioms oy ande inG; U {e, fi,x } can be downloaded
at most once betwedp andty ;.

Let t;o be the timeax(gZ*?) is downloaded. Clearlyt;o < t11 and poggi*?) € [tio,t11]. Also, by
Lemma 16,pu({g?,-..,g%) U{(x,X)} € c [tio]. Letty be the timeax(g¥) is downloaded. Clearlyy < t1o
andpog(g®) € [to,t11]. Also, by Lemma 16 and Corollary 18u({g",...,g® 1} u{d:, (x,X)}) € c[to]. Let
tg be the timeax(g®~?) is downloaded. Clearlys < to and pogg®) € [ts,t11]. Also, by Lemma 16 and
Corollary 13,pu({gl, .., g% 2} U {di, (%, %), (%,%)}) € c [te].

Let t; be the timeax(x) is downloaded. By Lemma 12, must occur when no other positive literal
of any widgetj, j <iis in memory. Furthermore, some clausepai{x) must stay in memory until its
successox, is downloaded for the last time. The(x) must stay in memory until all of its successors are
downloaded for the last time, because we can never der(®) once every occurrence &f is removed
from memory. Therefor@og(xi,X)) € [t1,t10]-

By Lemma 17ax(d;) can only be downloaded once betwegemandt;; since there is always at least 1
unit of memory used betweepandt;;. Letty, to > t; be the timeax(d;) is downloaded. By Lemma 1%,
must occur when no other positive literal of any widgef < i is in memory, except fofx;,x). Therefore
pos(di) S [tz,tg].

By Lemma 17,ax(X) can only be downloaded once betwdgmndt;; since there are always at least
2 units of memory used betwegnandt;;. By Lemma 123 must occur when no other positive literal of
any widgetj, j <iis in memory, except fofx;,x) andd;. Furthermore, some clause pbgX) must stay
in memory until its successof is downloaded for the last time. Theuu(x;) must stay in memory until all
of its successors are downloaded for the last time, becaesmmnot deriveou(x;) again during; to ty if
every occurrence of is removed from memory. Therefo(®,X) € [t3,ts].

Lett; be the timeax(g¥ 2) is downloaded. Clearly; < tg and pogg®?) € [t7,t11]. Also, by Lemma
16 and Corollary 13pu({g,...,g® 3} u{di, (x,X), (X, X)}) € c [t7]. This leaves exactly one unit of space
left in memory att;. We will show that this memory must either be filled wipli(c;) or one ofpu(e) or
pu(f;). If all three of those clauses are not in memoryydhen it is easy to see that there must be unblocked
paths at that time from at least two of the three entry poifitgidgeti — 1 to gi3i*2, since we can use at most
one unit of space to block any paths from the entry points djeii — 1 to gf’i‘z. By Corollary 13, clauses
containing their variables positively must occur in mematy,. Since we have at most 1 space fre¢;at
this exceeds our space bound.

20

If pu(ci) € ¢ [t7], letts be the last time before such that [ts] does not contaipu(c;). In order to derive
pu(ci) at timetg, either the axion{g V ¢;) or the axiom(f; v ¢i) must have been downloaded at some time
ts beforets.

Supposée V ¢;) was downloaded at tintg. Thenax(e) must be downloaded at some timéeforets.
By Lemma 17 ax(g) can be downloaded at most once betwieandt;; and by an argument very similar
to the proof of Lemma 1®u({g! ;,...,¢3 72} U{X,d;, (%,%)}) C ¢ [ta]. SoX, di, (x,X) are clamped from
a time when no other positive literals of any widgetj < i are in memory, until at leadt. But atty,
pu(Gi—1) must also be derived. S¢,d;, (x;,X) must be clamped throughout the derivationpe{G;_1).
We can therefore apply the induction hypothesis to conctbeederivingpu(G;_1) requires thath| o, ux}
is QSAT and require€(2¥) resolution configurations to occur betwegrandt,, wherek is the number of
universally quantified variables among the inner mest variables of}.

Suppose on the other hand th{ditV ¢;) was downloaded at time. Thenax(f;) must be downloaded
at some time, beforets. By Lemma 17 ax(f;) can be downloaded at most once betwgeandt;; and
by an argument very similar to the proof of Lemma A& {g® ,,...,g> 72} U{(X,X),d;,X}) C c[ts]. So
(%i,X),di,x are clamped from a time when no other positive literals of widget j, j <i are in memory,
until at leasty. But atts, pu(Gj_1) must also be derived. S@&;,x),d;,x must be clamped throughout the
derivation ofpu(Gi_1). We can therefore apply the induction hypothesis to corcthdt derivingpu(Gi_1)
requires thatp[q, 5 is QSAT and require€2(2) resolution configurations to occur betwegrandt,,
wherek is the number of universally quantified variables among imeri mosi — 1 variables of}.

If pu(c) ¢ c[t7], butpu(e) is, then the argument is very similar to the argument aboverM& Vv ¢;) is
downloaded ats. If pu(f;) is, then the argument is very similar to the one wkgnv ¢;) is downloaded at
ts.

O

6 Putting it all together

Theorem 1. The resolution space problemRSPACEcomplete.

Proof: Every unsatisfiable formula has a spaa@solution proof, and thus there is a nondeterministic
PSPACEalgorithm guessing a spaceproof. By Savitch’s theorem, this implies a determinist&@HACE
algorithm. To showPSPACEhardness, from a QBF formulp, we construct the associated CNF formula
Pel{gres). By Theorem 3 and 6, ifp is QSAT, then there is a resolution derivation @fi(Gp) from
Pel(s res) which uses i+ 3 space. Conversely, by Theorem 10, if there is a resolutenvation of
pu(Gy) from Pel(g res) using 61+ 3 space, ther is QSAT. O

Theorem 2: There exist CNF formulas which have linear size resolutimofs that can be verified in space
k+ 3, but whose smallest resolution proofs that can be verifieghacek have exponential size.

Proof: Lety =Vx\Wx,_1-..VX:F be any totally universally quantified QBF which is QSAT, aed |
6 res be the graph obtained frogn Sincey is QSAT, by Theorem 10, there exists a spage-@ resolution
proof of Pel(g res), and any spacerBt 3 derivation ofPel(¢ res) requiresQ(2") steps. By Lemmas 5 &
6, there exists a space & 6 derivation ofPel(g res) which only requireD(|Pel(g res)|) steps. O

7 Open Problems

We have shown that resolution space complexity is PSPACBEien However, can the space be well-
approximated? To what extent do our results hold for otheofpsystems such as the Polynomial Calculus
and Cutting Planes systems?

21

8 Figures

ut

Figure 1: A clause widget for clausg = (x1 VX2V x3) in g . (All edges are directed from lower nodes
toward higher nodes.) And a 4-slidév*,v2,v3,v*}, {ut,u2, u3,u*}).

Y
5:2 The nodev; hasj source nodes as predecessors|

i
source
nodes

A For every pair of nodea! andak in
1 i ={al,---,a", if k< j, then
a 4l dl A={af,---,am <]
akis a predecessor af .

A Q—HH

ali — 6]_i The nodey; is a predecessor of ajlnodes inA;

:L"’."\ —

%

/) -
el

The nodey; is a successor of ajlnodes inA;.

j-Slide
(Bi»A)

There is aj-slide fromA; up toB;.

Figure 2: Legend explaining the components of Figures 3 and 4

22

G

3i —2-Slide

(gt .67 *1Gi)

Gi_1

gt , Allwithindegree 3—2 g2

3i-1 3i 3i+1
source source source
nodes nodes nodes

Figure 3: A universal widget.

23

G O—0—C—Q

gi 3i-3 3i-2
d ! ! gi3|

a | | 3i —3-Slide

A (G788 S sl W (PPN e v)
. N\

/|

3i-2

Gi1

gt, Allwithindegree 3—2 iy

3i—-1 3 3i+1
source source source
nodes nodes nodes

Figure 4: An existential widget.

Acknowledgements

We would like to thank Alex Hertel and Alasdair Urquhart folany very useful conversations, and in
particular for suggesting the time/space tradeoff proldaah its connection to pebbling.

References

[1]

[2]

[3]

[4]

[5]

Special Volume on the SAT 2007 Competitions and Evatweti volume 2, 2006. See also
www.satcompetition.org.

M. Alekhnovich, E. Ben-Sasson, A.A. Razborov, and A. dégson. Space Complexity in Proposi-
tional Calculus.SIAM Journal of Computingv/ol. 31, No. 4:1184 — 1211, 2001. Preliminary version:
Proceedings of the 32nd Annual ACM Symposium on Theory of @ating, 2000, pp. 358-367.

E. Ben-Sasson. Size Space Tradeoffs For ResoluRorceedings of the 34th ACM Symposium on the
Theory of Computingpages 457 — 464, 2002.

Eli Ben-Sasson and Avi Wigderson. Short Proofs Are NarroResolution Made SimpleJournal
of the Association for Computing Machined8:149-169, 2001. Preliminary version: Proceedings of
the 31st Annual ACM Symposium on Theory of Computing, 1999,517-526.

Stephen Cook. Logic and Mechanical Proof Procedures/319 ectures notes from CSC2409S,
Lecture 4, January 17.

[6] A. Darwiche and D. Allen. Optimal time-space tradeoffarobabilistic inference. liEuropean Work-

shop on Probabilistic Graphical Model2002. available at www.cs.ucla.eelldrwiche.

[7] J. Esteban and J. Toran. Space Bounds for Resolutiiormation and Computatiqril71:84 — 97,

2001.

[8] J. Esteban and J. Toran. A Combinatorial Charactednatf Treelike Resolution Spaced:lectronic

Colloquium on Computational Complexig4, 2003.

[9] J. R. Gilbert, T. Lengauer, and R. E. Tarjan. The Pebbingblem is Complete in Polynomial Space.

[10]
[11]

SIAM Journal of Computingvol. 9, Issue 3:513 — 524, 1980.
P. Hertel and T. Pitassi. Black White Pebbling is PSPARnplete. InNSubmitted2007.

H. Samulowitz and F. Bacchus. Using sat in gbf:@onstraint Programming’, pages 578-592, 2005.

ECCC ISSN 1433-809
25 http://eccc.hpi-web.de/

