Electronic Collogquium on Computational Complexity, Report No. 47 (2007)

A (De)constructive Approach to Program Checking

Shafi Goldwasser * Dan Gutfreund f
MIT and Weizmann Institute SEAS, Harvard University,
shafi@theory.csail.mit.edu danny@eecs.harvard.edu

Alexander Healy ¥ Tali Kaufman Guy N. Rothblum $
SEAS, Harvard University, CSAIL, MIT, CSAIL, MIT,
ahealy@fas.harvard.edu kaufmant@mit.edu rothblum@csail .mit.edu

Abstract

Program checking, program self-correcting and program self-testing were pioneered by [Blum
and Kannan] and [Blum, Luby and Rubinfeld] in the mid eighties as a new way to gain confidence
in software, by considering program correctness on an input by input basis rather than full program
verification. Work in the field of program checking focused on designing, for specific functions,
checkers, testers and correctors that are more efficient than the best program known for the function.
These were designed utilizing specific algebraic, combinatorial or completeness properties of the
function at hand.

In this work we introduce a novel composition methodology for improving the efficiency of pro-
gram checkers. We use this approach to design a variety of program checkers that are provably
more efficient, in terms of circuit depth, than the optimal program for computing the function being
checked. Extensions of this methodology for the cases of program testers and correctors are also
presented. In particular, we show:

e Foralli > 1, every language in RNC' (that is NC'-hard under NC°-reductions) has a program
checker in RNC'—1.
In contrast to most previous work on program checking, these checkers are for a wide class
of functions characterized only by its complexity, rather than by algebraic or combinatorial
properties. This characterization immediately yields new and efficient checkers for languages
such as graph connectivity, perfect matching and bounded-degree graph isomorphism.

e Constant-depth checkers, testers and correctors for the problems of matrix multiplication, in-
version, determinant and rank. Except for matrix multiplication, all previous program check-
ers, testers and correctors for these problems run in nearly logarithmic depth. Moreover, they
all use the library notion of [Blum-Luby-Rubinfeld], in which checkers have access to a library
of programs for various matrix functions, rather than only having access to a program for the
function being checked.

Important ingredients in these results are new and very efficient checkers for complete languages
in low complexity classes (e.g. NC!). These constructions are based on techniques that were
developed in the field of cryptography.

*Research supported by NSF grant CNS-0430450, NSF grant CFF-0635297 and a Cymerman-Jakubskind award.
fResearch supported by ONR grant N00014-04-1-0478 and NSF grant CNS-0430336.

iResearch supported by NSF grant CCR-0205423 and a Sandia Fellowship.

$Research supported by NSF grant CNS-0430450 and NSF grant CFF-0635297.

ISSN 1433-8092

Contents

1

Introduction 1
1.1 Techniques and Tools o e 2
1.2 New Checkers, Testers & Correctors i ittt 3
1.3 Other Contributions and Comments 5
1.4 Related Work and Extensions L e 7
Definitions and Preliminaries 8
2.1 Complexity classes e e e e e 8
2.2 Program Checkers, Testers and Correctors 8
Composing Checkers, Testers, and Correctors 9
3.1 Composing Program Checkers 10
3.2 EXtensions. L L e e e e e e e e e e 12
3.3 Composing Program Testers and Correctors 12
Checkers for Complete Languages 17
4.1 Randomized images 17
4.2 From randomized self-images to program checkers.00, 18
4.3 Checkers, testers and correctors for complete languages 18
Checkers for a Whole Complexity Class 20
Program Libraries Revisited 22
6.1 Outline L e e e 22
6.2 Matrix Multiplication L e 24
6.3 Matrix Inversion Lo e e e e e e 27
6.4 Matrix Determinant L Lo 29
6.5 Matrix Rank L e 35
Acknowledgements 38

1 Introduction

One of the main challenges in software engineering is verifying the correctness of software. In the
eighties Blum and Kannan [BK95] proposed the methodology of program “result checking”, which
focuses on correctness of the code per input rather than full program verification. The methodology
associates every function to be computed with a new piece of code called the checker. Then, given any
possibly buggy program for the function and any input, the checker “checks” whether the program on
this input computes the function correctly.

The work of Blum, Luby, and Rubinfeld [BLR93] further introduced the notion of function testers
and correctors. A tester determines whether a given program for a function is correct on random inputs
(with relatively high probability). A corrector of a function is given an input and a program that is
guaranteed to compute the function correctly on random inputs (but may be buggy on some inputs),
and computes (with high probability) the correct output for the given input.

The focus of the rich body of work in the result checking field has been the design of efficient checkers
(and tester/correcters) for many specific functions, by exploiting either their algebraic or combinatorial
properties. Most notably, these functions include arithmetic operations, matrix operations, and certain
graph and group operations. By and large, these are function families which possess random and
downwards self-reducibility properties.

This body of work has also found applications beyond the field of program checking. Indeed,
several techniques from the early results on correctors and testers (in particular for the the integer
multiplication function [BLR93] and for the matrix permanent function by Lipton [Lip91]) were pivotal
in showing the expressive power of IP and PCP proof systems, and the notion of testers in and of itself
has evolved into the successful field of property testing.

Since a correct algorithm for a given function is also trivially a checker for the function, [BK95]
required, in order to avoid triviality, that checkers have the little-oh time property: the running time of
the checker must be little-oh of the running time of the most efficient known program that computes
the function. An analogue little-oh parallel time property was considered by Rubinfeld [Rub96]: a
checker’s parallel running time should be little-oh of the parallel running time of the most efficient
known program that computes the function.! (Throughout, the standard complexity measure of oracle
algorithms is used, where the complexity of the algorithm is measured without the complexity of the
oracle’s computations.)

An even more ambitious goal than constructing checkers that beat the best known algorithm for the
function, is to construct checkers that beat any algorithm for the function (or alternatively the optimal
algorithm). Currently no checkers are known to be more efficient (in terms of running time) than the
optimal programs for the functions being checked (since we do not know how to prove any super-linear
lower bounds for these functions). The work of [Rub96] does exhibit constant-depth AC? checkers for
functions that have a super-constant lower bound on their circuit depth, thus provably separating the
complexity of checking and computing in terms of circuit depth.

This Paper This work demonstrates new checkers, testers and correctors that are all provably more
efficient than the optimal program in terms of circuit depth for the functions at hand. These are
designed using a new composition methodology for improving the circuit depth of checkers, testers and
correctors.?2 Our general approach yields checkers (and testers and correctors) for a wide complexity
class comprising functions such as graph connectivity, perfect matching, and bounded-degree graph
isomorphism. It also yields new checkers, testers and correctors for various matrix operations, improving
on the complexity of previous results (e.g from log n depth to NC?) . Finally, we believe that the method
by which these results are obtained sheds light on several issues in the field of program checking, as
discussed throughout the paper.

!More precisely if a program can be computed by p(n) processors in depth d(n), [Rub96] requires the checker to run
either in depth o(d(n)) or in depth O(d(n)) with o(p(n)) processors.
2This approach may, in principal, also be useful to improve other complexity measures.

1.1 Techniques and Tools

Checker Composition and Delegating Computation. The guiding principle of this work is to
design checkers that work as little as possible. We observe that a checker has access to a potentially
powerful resource: the (allegedly correct) program it is checking, which can often compute a complex
function. Our goal is thus to delegate computations from the checker to the program being checked, all
the while verifying that the results returned by the delegated computations are correct.

To realize this goal, we propose a composition methodology for improving the complexity of checkers.
The crux of the idea is to start with a checker C for the function at hand — this C may be a previously
designed checker, or even just a correct program for the function (which trivially gives a checker) —
and then to decompose this checker into sub-computations. The work of these sub-computations is
in turn replaced by calls to P, the potentially faulty program being checked, on appropriate inputs.
This is done by applying a reduction that maps sub-computations to instances of the function that P
allegedly computes. In other words, we delegate the computations of these sub-tasks to P by reducing
them to the function that P claims it can solve. The correctness of these delegated sub-computations
performed by P is finally verified by checkers for the sub-computations.> When the checkers for the
sub-computations are more efficient than the sub-computations themselves, this results in a new checker
with improved efficiency.

We formally capture this approach in a checker composition theorem. We denote the language
being checked by Leyternal, and consider the case where the checker’s sub-computations are of some
la’nguage Linternal-

Theorem 1.1 (Checker Composition Theorem, Informal). Let Lipternar and Legternar be two
languages that satisfy the following conditions:

1. There ezists an efficient* reduction from Lipternai t0 Legternal-

2. Legternal has an efficient checker of depth deyterna that has oracle access to Lipternar (note that
by definition it also has oracle access to a program that allegedly computes Legternal-)

3. Linternal has an efficient checker of depth dinternal-

Then there exists an efficient checker for Legternal, of depth O(dezternal * dinternai)-

The improvement comes from the fact that the depth of the resulting checker does not depend
on the depth of circuits for Ljyerna; (only on the depth, dinternar, of its checker which may be much
smaller).

Note that while the Composition Theorem as stated here only explicitly considers checking languages
(i.e. Boolean functions), it also holds (and is used in this work) for checkers of non-Boolean functions.
A formal statement of this theorem and its proof, as well as extensions and an analogous composition
theorem for program correctors and testers, are provided in Section 3.

The composition methodology provides a simple way to design checkers that is very similar to
the top-down approach of algorithm design: break down the solution of a complex problem into the
solution of smaller (and easier) sub-problems, and then combine these solutions, all the while ensuring
errors are kept under control. This approach enables us to construct checkers for functions that do not
necessarily have the type of self-reducibility or completeness properties exploited in previous works of
[BK95, BLR93, Lip91, Sha90, BFL90].

It is illuminating to compare Theorem 1.1, in this regard, to the theorem of Beigel that is cited
in [BK95]. Beigel’s Theorem states that a checker for a decision problem 7 can be used to design
a checker for decision problem 7, if 71 and 7o are “computationally equivalent” (reducible to each

3More precisely, we can consider the composed program, P’, that applies the reduction and then applies P on the
result of the reduction. Thus, P’ can be viewed as a program that allegedly computes the sub-computation, and we can
then check P’ with a checker for this sub-computation.

“Throughout, efficient means poly-time (or poly-size when talking about circuits). In addition, we require the reduction
to have constant-depth. See Section 3 for the exact statement.

other). Thus, Beigel’s Theorem does not allow one to use a checker for an easy problem to construct
a checker for a harder problem, and it does not enable the top-down approach to checker design that
we get from Theorem 1.1 and use throughout this work.

Main Building Blocks: Checkers for Complete Languages. In order to apply our methodology
in a general manner (rather than only working on checkers for specific problems), we look for sub-
computations (as described above), that on the one hand capture many functionalities, and are thus
helpful in the design of checkers, and on the other hand are themselves not very complex, so we can
delegate them to programs for many functions that we might want to check. Furthermore, and just as
importantly, these functions must have very efficient checkers, testers and correctors, so that we gain
in efficiency when replacing the task of computing these functions with the task of checking them. We
find such functions in the form of complete languages for low complexity classes such as NC!. For
example, we build an NC° checker®, and an AC? tester and corrector for the NC'-complete problem
given by Barrington [Bar89]. The efficiency of the checkers for this language (as well as other useful
languages such as Parity) are based on techniques that were developed in the field of cryptography by
Babai [Bab87], Kilian [Kil88], Feige, Kilian and Naor [FKN94] and Ishai and Kushilevitz [IK02].

Theorem 1.2. The Parity function has an NC° checker. Furthermore, the complezity classes NC?,
®-L and mody-L all have complete languages (under NC° reductions) that have NC° checkers.

For definitions of these complexity classes, as well as proofs and full statements of results, see
Section 4.

The Composition Theorem enables us to use these checkers for languages complete for weak classes
(such as NC1) to construct efficient checkers for languages in higher complexity classes. We emphasize
that unlike other properties of functions (or languages), the existence of checkers for complete languages
did not previously seem to imply or be related to the existence of checkers for non-complete languages
(although, by Beigel’s Theorem, it does imply checkers for other languages that are complete). Indeed,
(likely for this reason) past work was more concerned with checkers for useful and practical functions,
and less with checkers for complete languages. This is in contrast to many other areas of complexity
theory, where demonstrating properties of complete languages has direct implications for an entire
complexity class.

1.2 New Checkers, Testers & Correctors

Checkers for Complexity Classes. We begin by using the Composition Theorem to build checkers
that are provably more efficient than the functions they check (in terms of circuit depth) for entire
complexity classes, and not just specific functions with special algebraic or combinatorial properties.

Theorem 1.3. For every i > 1, every language in RNC' that is NC'-hard under NC°-reductions has
a checker in RNC'~'. Every language in RNC" that is NC*-hard under AC® reductions has a tester
and corrector (and checker) that are in RAC'!.

For the definitions of the classes involved see Section 2.1. The proof of the theorem appears in
Section 5.

The requirement of being NC!-hard under NC° reductions turns out to not be very restrictive.
Barrington’s [Bar89] characterization of NC! as languages that have small width branching programs
allows one to capture NC! computations by many graph theoretic and algebraic functions. Examples of
natural functions and languages that satisfy the theorem requirements and for which no provably better
checkers were previously known include graph connectivity (in its many variants), deciding whether a

5An NC° checker is a constant depth fan-in 2 checker with oracle gates to the program. Naturally, these oracle gates
have unbounded fan-in (as the checker runs the program on growing inputs). Previous work did not present checkers in
this low complexity class.

50ne such example is interactive proofs, where exhibiting an interactive proof for a complete language immediately
implies interactive proofs for the entire, and thus research on interactive proofs focused on treating hard (non-polynomial
time) complete languages and whole complexity classes.

given graph has a prefect matching and bounded-degree graph isomorphism’. Other examples include
computing the determinant of a matrix, matrix exponentiation, and more. Theorem 1.3 gives provably
better checkers for all these functions (see below).

We would like to highlight the difference between this result and previously known results on
checking complete languages. While previous works mentioned above (together with Beigel’s Theo-
rem) give non-trivial checkers for languages complete in the classes P, P#*F PSPACE and EXP
[Rub96, LFKN92, Sha90, BFL90], Theorem 1.3 shows the existence of a provably better checker for
all languages (in RNC) that are hard for NC' (and not necessarily complete). For example, consider
graph connectivity. We do not know of an NC? algorithm for this language (if it has one then L = NL),
nor is it suspected to be NC?-complete. Still, by virtue of its NC-hardness, Theorem 1.3 shows it
has a provably better checker.

We now explain why languages satisfying the requirements of Theorem 1.3 have checkers that are
provably more efficient (in terms of circuit depth) than their optimal program. Consider a language L
that satisfies the theorem conditions, and let i > 1 be such that L is in RNC' but not in RNC'~! (i
is well defined, as RNC? is strictly contained in RNC?, and L is NC!-hard) — by the theorem, this
language has a checker in RNC—1.

Finally, we note that the proof of the theorem is constructive: it shows how to transform any
program in RNC' for a language into a checker in RNC'~! (or a tester/corrector in RAC'~1). Thus
even if we currently do not know the best algorithm for the language, the theorem (or rather the proof)
still yields an explicit checker that satisfies the little-oh parallel time property with respect to the best
algorithm that is currently known. In the future, any algorithmic improvement on the language (placing
it in a lower RNC class), will immediately give rise to an even better checker (placing it in an even
lower RNC class). We emphasize again that although the checker above is derived from a specific
program for the function, it can be used as a checker for every program that allegedly computes the
function (as it should by the program checker definition).

Constant Depth Checkers for Matrix Problems. [BLR93] consider the problem of testing and
correcting matrix functions such as multiplication, inverse, determinant and rank. They suggested
a non-standard model in which the checker/tester/corrector can access (with unit cost) not only the
program to be checked, but also a library of (possibly faulty) programs that allegedly compute other
related functions. Within this extended model, they show how to test and correct (and thus check)
programs for the above matrix functions. For example, their determinant checker has access both to a
program that allegedly computes matrix determinant as well programs that allegedly compute matrix
multiplication and inversion.

We present standard checkers, testers and correctors for matrix multiplication, inversion, rank
and determinant, removing altogether the need for the matrix library introduced in [BLR93]. These
checkers/testers/correctors can be implemented in AC? (and for some ranges of parameters even in
N(CY). Except for the matrix multiplication function, they are the first checkers that are provably more
efficient than the optimal program for computing these functions in terms of circuit depth.® Previously
known checkers/testers/correctors for matrix problems both relied on a program library and had high
parallel complexity. Furthermore, we note that the checkers we build for matrix multiplication and
matrix inversion are optimal up to constant factors in every parameter: depth (or parallel time), size
(or number of processors) and number of times they call their program. A summary comparing these
results to past work is given in Table 1.

Theorem 1.4. Matriz multiplication, inversion, determinant and rank have all probabilistic AC®
checkers, testers and correctors.” Ower a field of cardinality 2° for a constant s, matriz multiplica-

"Note that [BK95] gave a checker for (unbounded degree) graph isomorphism, but this checker is not known to be
provably more efficient than computing the language, especially for the efficiently solvable case of bounded degree graphs.

8[BLR93, Rub96] give an AC? tester and corrector for matrix multiplication that make O(logn) program oracle calls.
These are somewhat non-standard in that the corrector needs the given program to work well on each input length, from
the length of its input and down, simultaneously. The tester may reject a program even if it is good on all input lengths
but one, and in particular even if it is perfectly correct on the input length being tested.

9For rank the result holds only over fields that are of size polynomial in the input length.

‘ Depth ‘ Time ‘ Program Calls ‘ Previously Known
Multiplication over GF(2°),s = 0(1) | NC° | O(n?) o(1) AC®, O(logn) program calls [BLR93, Rub96]
Multiplication over any finite field AC? O(TLZ) 0(1) AC®, O(log n) program calls [BLR93, Rub96]
Inversion over GF(2%),s = O(1) NCO© O(nz) 0(1) Library only, poly depth [BLR93]
Inversion over any finite field ACO O(n2) 0(1) Library only, poly depth [BLR93]
Determinant over any finite field AC® | poly(n) poly(n) Library only, poly depth [BLR93]
Rank over poly(n) size fields AC? | poly(n) poly(n) Library only, poly depth [BLR93]

Table 1: Complexity of Testers/Correctors (with constant error) for n x n Matrix Operations.

tion and inversion have probabilistic NC° checkers, testers and correctors that perform a constant
number of calls to the program oracle .

The checkers (and tester/correctors) for the various matrix operations are constructed by starting
from high-depth checkers inspired by (though sometimes quite different from) the library checkers of
[BLR93]. We then apply the composition theorem (along with other algebraic ideas) to improve their
circuit depth. Often the theorem is applied more than once, gradually improving the checker until it
reaches constant depth. See Section 6 for the full constructions and proofs.

In fact, the composition theorem is exactly tailored to the problem of removing the need for program
libraries when building checkers, testers and correctors. Simply use the program for the function being
checked to compute other functions in the library, and use testers/correctors for these functions to
check the correctness of these computations and correct them (if necessary). The only requirement
is that a tester/corrector for a library function f only calls other programs for library functions that
reduce to f.

1.3 Other Contributions and Comments

The Little-Oh property and Independence of Errors. Blum and Kannan [BK95], followed by
Blum and Wasserman [WB97], argue that since the little-oh time requirement gives assurance that the
checker is different than the program itself, then “heuristically it must be doing something essentially
different from what P (the program) does and so if buggy may reasonably be expected to make different
errors” ([WB97], page 8), which intuitively will decrease the likelihood of “correlated errors” and a bug
going undetected. Interestingly, the proof of Theorem 1.3 suggests that the above intuition is not
sound, at least as far as the little-oh parallel time property is concerned. The idea used in the proof of
Theorem 1.3 is to come up with an efficient checker by starting with a correct program for the function.
This checker has the little-oh parallel time property with respect to any program (and not just the
best known one), yet its description is based on the best algorithm for the function being checked. In
fact, if one has bugs in the implementation of the particular correct algorithm from which the checker
is derived, then these bugs are likely to also show up in the checker!

Provably Beating the Best Program without Knowing A Lower Bound for the Function.
The works of [BK95] and [Rub96] focus on designing checkers that are more efficient than the best
known program for the function, rather than the optimal program for the function.'® As stated above,
the first examples of checking that is provably easier than computing are from [Rub96|, which exhibits

10T see the significance of this distinction, consider the matrix multiplication function. The best known algorithm for
it runs in time roughly n>-7 (for n x n matrices) [CW87]. While we do have a O(n?) time checker for this function [Fre79],
and while this checker satisfies the little-oh time property, it is not known to run in little-oh time of all algorithms for
matrix multiplication. It is possible that one day an O(n?) matrix multiplication algorithm will be found, and Freivalds’
checker (and all other known checkers for matrix multiplication) will cease to satisfy the little-oh property.

constant-depth (AC?) checkers for functions (such as parity) that have a nearly logarithmic circuit
depth lower bound (see [FSS84]). The separation between checking and computing in [Rub96] is due
to known lower bounds on the parallel complexity of the function in question.

In fact, the folklore belief has been that proving the existence of a checker that is more efficient than
any program for the function requires presenting an explicit checker that beats a specific and known
lower bound for the function. This can be “hand waived” as follows: to prove that a checker is faster
than all programs for a function, we must both know a lower bound on the complexity of computing
the function, and then design a checker that beats that lower bound (as in [Rub96]).

Theorem 1.3 shows that this “hand waiving” argument is misleading. It shows the existence of
checkers that are more efficient (in circuit depth) than any program for their function, without proving
that they beat any specific known lower bound. This is because it uses the code of the optimal program
(without necessarily knowing what it is) to construct a more efficient checker. The complexity of these
checkers varies with the complexity of the optimal program.

On Using a Correct Program to Construct Checkers of Correctness The idea used in the
proof of Theorem 1.3 is to come up with an efficient checker by starting with a correct program for the
function. At first, this may seem strange: if we assume we have a correct program, what do we need a
checker for? The answer is that the checker will check all programs for this function, including programs
which may have more desirable features than the correct one we used for the design of the checker. In
fact, we argue that this idea of starting with a correct program for the function as a way to design
checkers is in itself interesting. In practice, testing software for correctness is often done by comparing
on well-chosen test cases to an existing correct (although possibly very slow) program. What we show
here is that the approach of starting with a correct program is beneficial also for designing efficient
checkers. Moreover, it provides a first approach for the design of a checker for a function without “nice”
structural properties (i.e., for which all that is known is some program defining it).

On the Overhead of Running Checkers. We have focused on the complexity of checking vs.
computing, where checker oracle calls have unit cost. In practice, however, each oracle call is replaced
by a call to the program being checked. While running a checker on top of the program is beneficial for
reliability, one must consider the additional overhead of the extra program calls that result. Therefore,
it is important to note that all our NC® and AC? checkers make only O(1) calls to the program on
any computation path. Thus, the total depth (or parallel time), of running them (including program
calls), is O(D(n)) where D(n) is the circuit depth of the program.

Delegating Computation: Further Applications. The key idea of this work is to delegate the
checker’s work to the program being checked. More generally, one can hope to apply the idea of
delegating computation to an untrusted component in other settings. Indeed, following this paradigm
(which originated in the present work),|GGH"07] presents new interactive proof systems where very
efficient (NC?) verifiers delegate their work to the provers, as well as new error correcting codes, where
much of the decoder’s work is delegated to the encoder (and embedded in the codeword itself). This
once again illustrates the fruitful interplay between program checking and other areas in complexity
theory. For a comparison between this work and [GGH™07], see the section below on related work.

Function Restricted Provers in an IP system. One can view program checking as an interactive
proof setting where the prover is analogous to the program and the checker is analogous to a verifier
(see the formalization in [BK95]). The prover in the program checking setting is fixed in advance
and restricted to computing only the language being proved, as opposed to being computationally
unbounded and dynamic (with behavior that depends on the history of communication) in the usual
proof verification setting. These two settings present different challenges: the restrictions on the
prover in the checking model makes it harder to achieve the completeness condition over the standard
interactive proofs setting, and easier to achieve soundness.

An even more challenging proof verification setting is that of interactive proofs where the honest
prover can only answer queries to the language being proven, but the dishonest prover is computation-
ally unbounded and dynamic. We note that using the methodology and tools from this work, together
with hiding protocols inspired by the subsequent work [GGH'07], we can show such interactive proofs
for all the functions considered in this paper. For example, we can get such proof systems with NC°
verifiers for matrix multiplication and inversion. We can also show that any N C!-hard function in NC'
has such a proof system with an NC'~! verifier. Furthermore, these protocols have a nice cryptographic
property: the verifier can keep its input completely hidden from the prover!

1.4 Related Work and Extensions

As discussed above, our work benefits from a long line of beautiful results on program checking,

interactive proofs and cryptography. It is instructive to compare our work in detail to the more recent
works [AIK04] and [GGH™T07)].

[AIKO04]. Some of our techniques are inspired by the breakthrough work of Appelbaum, Ishai and
Kushilevitz [ATK04] on improving the efficiency of cryptographic primitives. The work of [ATK04] can
also be viewed as improving the efficiency of players participating in a protocol by pushing computation
from one of the participants to another (e.g., improving the efficiency of encryption at the expense of
adding to the complexity of decryption). The main difference between this approach and ours is that
they consider protocols or objects where the goal of one party is to reveal the results (and only the
results) of its computation to another. In their settings, there is no threat that this second party will
run these computations in a faulty manner. The issue they deal with, instead, is privacy, namely how
to delegate computation of a known function without revealing anything about one’s input beyond the
function’s output. In our case, on the other hand, the goal is to reliably delegate computation to an
untrusted party that may introduce faults into the computation. While we use the same strong random
self-reducability properties of complete languages that [AIKO04] used to guarantee privacy, we use them
in a different way to both test and correct programs computing these languages (see Section 4).

[GGH'07]. Subsequently to this work, the methodology and tools developed here for delegating
computation have been used to (1) improve the efficiency of verifiers in an interactive proof and (2)
improve the efficiency of decoding algorithms for error correcting codes [GGH'07]. The settings of pro-
gram checking, interactive proofs, and error correcting codes, each present a different set of challenges
for the delegation paradigm, as we discuss below.

In the program checking domain, in contrast to the standard interactive proof setting, one needs
to address the additional challenge of efficient proof verification by delegation to a restricted prover:
the (honest) prover can only answer queries to the language being proven (as opposed to being compu-
tationally unbounded in the interactive proof setting). The fact that the (honest) prover is restricted
to answering queries about the language being proved necessitates careful design of protocols that
typically use very specific properties of the functions being proved (checked). In fact, it is not at all
well understood which languages have such proof systems. In contrast, in the setting of interactive
proofs [GGH™07] one must deal with the challenge that the (dishonest) prover may change its answers
according to the messages exchanged in the interaction.

The results of [GGHT07] on constructing efficient error-correcting codes are related to program
correctors. Again, in the error-correcting code setting one can design decoders that delegate work to an
encoder that can perform arbitrary (efficient) computations, whereas in the program correction setting
one must deal with the difficulty of having a restricted encoder that can only compute membership in
a specific language.

The surprising power of NC° Our work in this paper and [GGHT07] gives further evidence,
beyond the breakthrough in [AIK04], that the seemingly weak class NC? can, in various settings, be

surprisingly powerful. On the one hand, NCP? circuits can hide information ([AIK04]), and on the other
they can also detect faulty data and recover from errors (the current work and [GGHT07]).

2 Definitions and Preliminaries

2.1 Complexity classes

For a positive integer 7 > 0, AC' circuits are Boolean circuits (with AND, OR and NOT gates) of
size poly(n), depth O(log’n), and unbounded fan-in AND and OR gates (where n is the length of
the input). NC' circuits are boolean circuits of size poly(n) and depth O(log’n) where the fan-in of
AND and OR gates is 2. The complexity class AC' is the class of languages or functions computable
by AC' circuits. We denote by AC the class Uien AC*. The complexity classes NC' and NC are
defined similarly (see [Vol99] for a more detailed treatment). RNC', RAC', RNC and RAC are the
(one-sided) randomized analogs of the above classes. Note that circuits in any of these classes may
output more than one bit. All the circuit families we consider in this work are log-space uniform. In
particular, computations in NC' correspond to algorithms with parallel computing time O(log’(n)) in
the CREW PRAM model. Finally, we extensively use oracle circuits: circuits that have (unit cost)
access to an oracle computing some function. Naturally, we do not bound the fan-in of oracle gates
(even for NC circuits).

2.2 Program Checkers, Testers and Correctors

In this section we define program checkers, testers and correctors.
When considering distributions over instances of functions, it is convenient to consider separately
distributions on instances of the same description length. We define:

Definition 2.1 (Distribution on instances). A distribution D over instances from {0,1}*, is an
ensemble of probability distributions D = {Dy, }nen, such that Dy, is a distribution over {0,1}™.

Definition 2.2 (Average-case error). Let f a be function over {0,1}*, P a program, and D a
distribution over instances from {0,1}*. We define the function errypp : N — (0,1), to be

erry,pn(n) = Precp,[P(z) # f(z)]
We say that P is 6-good for f with respect to D if errypp(n) < 4§ for every n € N.

Definition 2.3 (Program checkers). A program checker for a function f with error parameter
0 <4 <1, is a probabilistic algorithm C, that has an oracle access to a program P that supposedly
computes f, and the following holds for every instance x:

1. (Completeness) If P computes f correctly (on every input), then Pr[CT (z) = f(x)] = 1.

2. (Soundness) For every P, Pr[C¥(z) € {f(z), L}] > 1 — 0, where L is a special symbol (not in
the image of f).

If we do not specify ¢ then its default value is 1/6.

Definition 2.4 (Tester). Let 0 < &1 < g2 < 1. An (e1,e2)-tester for f with respect to D, is a
probabilistic algorithm T that has an oracle access to a program P. A tester T with error 6 > 0 should
have the following properties.

1. If errypp < €1, T output accept with probability at least 1 — 6.
2. If errypp > €2, TP output reject with probability at least 1 — 4.

The default value of 6 is 1/6.

Definition 2.5 (Corrector). A corrector for a function f is a probabilistic algorithm Cor, that has
oracle access to a program P. We say that,

1. P is correctable by Cor with error § (for some 0 < § < 1) if for every z € {0,1}*, Pr[Corf(z) =
f(x)] >1—06 (where the probability is over the randomness of Cor).

2. Cor is e-corrector with respect to D and with error ¢ (for some 0 < ¢,0 < 1), if for every P for
which erry pp < €, P is correctable with error 0.

The default value of ¢ is 1/6.

Note that in all the definitions above, the error parameter § can be reduced to be an arbitrarily
small constant without increasing the depth of the checker/tester/corrector by more than a constant
factor, assuming that we start with a J that is bounded away from 1/2 by a constant. Typically, the
desired distance parameters €1, 9 from Definition 2.4 and e from Definition 2.5 are constants that are
bounded away from 0 and 1.

Definition 2.6 (Tester-Corrector Pair). A tester-corrector pair for f with threshold 6 > 0, is a
pair of probabilistic algorithms (T, Cor), such that there are constants 0 <e; <ea <1,0<e <1 and
a distribution D, such that T is an (e1,e2)-tester for f with respect to D, Cor is an e-corrector for f
with respect to D, and there is a promise that if the tester T accepts a program P with probability at
least 1 — & then P is correctable by Cor. The default value of ¢ is 1/3.

Remark 2.7. Note that the requirement in Definition 2.6 is that there exist some ensemble of distribu-
tions for which T is a tester and Cor is a corrector. This ensemble may be very unnatural or even not
efficiently sampleable (although typically it will be). The mere existence of such an ensemble ensures
that whenever T' “thinks” that a program is good enough for the corrector to correct, this is indeed the
case. Thus if our goal is ultimately to detect (with the tester) which programs are correctable and then
correct them (using the corrector), we can construct testers and correctors that work properly with very
peculiar distributions. The point is that once the tester decides that a program is correctable, then the
corrector works properly on every input, regardless of the distribution with respect to which the tester
come to this conclusion.

Remark 2.8. Also note that we set the default value of & in Definition 2.6 to be 1/3 while in Definition
2.4 it is 1/6. This gives robustness to the notion of tester-corrector pair: programs that are very close
to the function should be accepted by the tester with very high probability, however even programs that
are accepted with a decent probability (but not as high as really good programs) are correctable. Ie. the
corrector s able to correct programs that the tester thinks are good but not with very high confidence.
This robustness property is both natural and essential for proving useful program checking results such
as constructing a program checker from a tester-corrector pair and proving the composition theorem for
testers and correctors. Typically this property holds for natural testers and correctors.

3 Composing Checkers, Testers, and Correctors

In this section we present the Composition Theorems for program checkers, testers and correctors,
which serve as the primary tools we use to improve the efficiency of these objects. The principle behind
the Composition Theorems is simple: if the checker contains some functionality that can be accessed
through the (potentially faulty) program’s interface, and moreover this functionality is itself checkable
(by a “more efficient” checker), then computing the functionality is delegated from the checker to the
program. Every computation of the given functionality is replaced with a call to the program (via some
reduction), and the program’s answers are run through the simpler checker for this functionality. The
same principle holds also for program testers and correctors (though the analysis is more involved).

3.1 Composing Program Checkers

We now restate more formally and prove Theorem 1.1. In the statement below, unless we state
otherwise, the circuits involved are of bounded fan-in. So when we talk for example about a reduction
computable in depth d, we mean that there exists a family of circuits (one for each input length) of
depth d and bounded fan-in AND and OR gates, that computes the reduction. We will later discuss
some extensions of this theorem.

Theorem 3.1 (Composition Theorem for Program Checkers). Let Linternai and Legternar be
two languages that satisfy the following conditions:

1. Hardness of the external language for the internal language:

There ezists an efficient constant-depth (Turing) reduction from Linternai 10 Legternal-

2. The internal language “helps” to check the external language:

Legternal has an efficient checker of depth degternai with access to oracle Lipternai (note that by
definition it also has oracle access to a program that allegedly computes Legternail-)

3. Checkability of the internal language:

Linternal has an efficient checker of depth dipternal-

Then there exists an efficient checker for Legternal, Of depth O(desternal * dinternal); With a single
polynomial fan-in AND gate at the top.

Proof. We construct a checker C for Leyternai, starting from the checker Ceernal that uses oracle gates to
Linternal, Whose existence is guaranteed by Condition 2 of the theorem. We assume Ceyternal has success
probability at least % (otherwise we amplify its success probability). Let Peyternas be the program that
C (and Cexternal) checks. Our goal is to replace every oracle call that Cexternal makes to Lipterna With a
(probabilistic) circuit B, of depth O(d;nternal), that computes the language Linterna; using oracle calls
t0 Pegternai- We base B on the program checker for L;,ternq (guaranteed by Condition 3). This checker
expects to have oracle access to a program that allegedly computes Ljuternar (and not Legternar)- To
that end we define the program Pj,ierna as follows: on instance z of Ljuterng Tun the reduction from
Linternat 10 Legternar given in Condition 1 to produce a instances z1,...,74 of Legireng- Then run
Peyirenal O T1, ..., %4, and return its answers to complete the computation of the reduction.
Specifically, the circuit B is constructed as follows.

The circuit B: On input z (an instance of Lipternai), B runs Cinternal, the checker for Ljnterna; given
in Condition 3, with oracle access t0 Pjnternal- 1-€. on every query y that Cinternal makes to the program
it checks, B runs the reduction from L;,ternai t0 Legternal, and then runs Py iernar on the outputs of
the reduction. The output of the reduction is then returned to Cinternal as the answer to the query y.
In this way B obtains the output of Ciyternal Which gives a prediction regarding the membership of z
in Linternai- B then runs Pipiernas on z and compares its output with the answer of Ci,ternal- If these
two answers agree, then B’s answer is the same as them, otherwise B outputs L. The total depth of
B is indeed O(dipternar) (since the reduction from Lipternar 10 Legternar can be computed in constant
depth).
The key properties of this construction are the following completeness and soundness.

e Completeness:

If P.yternar computes Legternar correctly (on every input), then so does Pipterna;- In this case both
Cinternal and Pjterna Will agree on the correct answer (on every input) with probability 1, and B
will be correct on every input.

e Soundness:

10

— If Pinternai(®) = Linternai(x) then B cannot output 1 — Lipternqi(2). This is because it only
gives a prediction regarding the membership of z if both Pjjterna; and Cinternal agree on it
(otherwise it returns).

— If Piternal(%) # Linternai (), the only event that will cause B to output 1 — Ljnternai () is if
Cinternal outputs 1 — Lipsernqi(x). But this happens with probability at most 1/6 by the fact
that Cinternal 18 a checker with this soundness (which we assume w.l.o.g.).

Given the construction of this circuit B, the checker C runs as follows (checking a program Peyiernqi):

1. Run the checker Ceyternal, replacing every oracle call to Ljpiernq With a computation of the circuit
B.

2. If any of B’s runs returned the symbol L, then output L. This step is implemented using an
AND gate of polynomial fan-in.

3. Otherwise, output the same answer as Cexternal-

Thus C is of total depth O(degternar - dinternat), With a single polynomial fan-in AND gate. We
now prove that C is indeed a program checker for the language Lezterna (given the completeness and
soundness properties of the circuit B).

Claim 3.2 (Completeness). If Pyiernq computes Legternar correctly (on every input), then for every
z, Pr[C(z) = Legterna(z)] = 1.

Proof. When P, ierna computes Legiernar cOrrectly, then by the completeness property of B, it perfectly
simulates the oracle for L;pternq and then by the fact that Cexiernal is itself a program checker (with
oracle calls to Ljpternal), we conclude that C correctly outputs Legternai (%) on its input z. O

Claim 3.3 (Soundness). If P, icrna does not compute Legternar correctly, then for every z, Pr[C(z) =
1-— Lewternal(‘x)] < 1/3

Proof. We say that a program or a checker that attempts to decide a language L makes an error on an
instance z if it declares that x is in L when it is not or vice versa. If the program outputs any other
symbol (e.g. 1) we do not consider this as an error.

We know that for every x, the probability that Cexternal makes an error, is bounded by 1/6 when
it is given oracle access to Linternar- C simulates Cexternal by replacing Lipternar With B. We want to
bound the probability that B causes Ceyternal to make an error that it would not have made had he

given access t0 Linternal-

Fix random coins 7 for Cexternal 0n which it does not make an error (when given oracle access to
Linternar). Look at the execution of Ceyternal With these random coins. If during the execution, for
every query y that Cexternal makes t0 Linternai, it holds that Piternai(y) = Linternai(y), then by the first
soundness property of B, replacing L;nternar With B never causes Cexiernal t0 make an error; At the very
most it causes it to replace a correct answer with L.

Otherwise, let y be the first query that Cexternal makes for which Piternai(y) # Linternai(y)- By the
second soundness property of B, with probability at least 5/6, B on input y, will output L, and thus
will cause C' to output L, i.e. C will not make an error.

We conclude, by the union bound over the errors of Ceyternal and the errors of B, that C' makes an
error with probability at most 1/3. O

O

11

3.2 Extensions

We now present some useful extensions of the Composition Theorem for program checkers. In some
of our applications, the checker for Leyternq has access to additional oracles (beyond the program it
checks and the oracle to Ljnternqr). We point out that the theorem holds even with these additional
oracle gates. More formally,

Lemma 3.4. Let Liyternal 0nd Legternat be two languages satisfying the conditions of Theorem 8.1.
Let G be the set of gates used by the program checkers involved and the reduction. Then the program
checker in the conclusion of the theorem has the same properties and it uses gates from the set G.

This lemma allows us to iterate the Composition Theorem, by gradually removing oracles, or
alternatively replacing one oracle with another. This will prove itself to be a very useful tool.
The additional unbounded fan-in AND gate at the top of the checker from Theorem 3.1, prevents

us from using this lemma to construct checkers in NC°. We now show how it can be removed.

Lemma 3.5. Let Lijpiernar 014 Legternar be two languages satisfying the conditions of Theorem 3.1, and
furthermore, suppose there is a constant-depth reduction from the Parity function'' to Legterna. Then
there exists an efficient checker for Legternai, 0f depth O(desternal * dinternal) (without the unbounded
fan-in AND gate at the top).

Proof. By the proof of Theorem 3.1, all we need to show is how to remove the unbounded fan-in AND
gate. We do that by first replacing it with a constant number of unbounded fan-in Parity gates, and
then use the Composition Theorem with Parity as the internal function.

Consider the following randomized reduction from AND to Parity: on n bits input to the AND func-
tion, (b; ...by), generate n uniformly random bits (r1,...,7,), and compute Parity(ri-(1—b1),...,7p"
(1 —by,)) (where all operations are over GF(2)). If the AND of the bits is 1 then this Parity is 0 with
probability 1. On the other hand, if the AND is 0 then the parity is a uniformly random bit. If
we repeat this a constant number of times, we can compute AND with an arbitrarily small constant
probability of error by using a constant number of Parity gates (and further notice that this reduction
can be done in constant depth).

So we have replaced the AND gate with a constant number of Parity gates without increasing the
depth of the checker C. Next, we want to remove these Parity gates, and we do that by applying
Theorem 3.1 on Legterna as the external language and Parity as the internal language. Condition 1 is
given by the hypothesis of this lemma, Condition 2 holds by our construction, and Condition 3 is given
by Lemma 4.9, where a constant depth (i.e. NC?) checker for the Parity function is presented. Note
that here we composed only a constant number of oracle gates, and thus there is no need for another
AND gate of large fan-in. O

On Checking Functions versus Languages: Our Composition Theorem for checkers (as well
as the ones for testers and correctors, see below) only considered checking languages (i.e. boolean
functions). In many cases, and also within this work, we check, test and correct non-boolean functions.
We note that the Composition Theorems hold also for checkers, testers and correctors of non-boolean
functions.

3.3 Composing Program Testers and Correctors

In this section we state and prove our composition theorem for testers and correctors. We begin
by considering reductions between language and their influence on the average success probability of
programs computing these languages.

Definition 3.6 ((¢1, 2)-reduction). Let Ly and Ly be two languages, and let D1 and Do be ensembles
of distributions on instances of L1 and Lo (respectively).

""Recall that the Parity function from {0,1}* to {0,1} is defined as Parity(bs,...,bn) = 3.1, b; with addition over
GF(2).

12

We say that a reduction R is an (e1,€2)-reduction from (Li,D1) to (Lo, Ds) if, when it is given
oracle access to an €9-good program Py for Lo with respect to Do, RT? is an e1-good program for L
with respect to D1.

Theorem 3.7. Composition Theorem for Testers/Correctors
Let Lipternar and Legternar be two languages. Suppose that there exist parameters (which may depend
on the input length n) 0 < a1, a9, a,€1,€2,¢, 0 < 1, such that the following conditions hold:

1. Hardness of the external language for the internal language:

There exists a distribution ensemble D and an efficient constant-depth («, 3)-reduction R from
Linternal With the uniform distribution'? to Legterna With the distribution D.

2. The internal language “helps” to test/correct the external language:

Legternal has an efficient (1, e2)-tester and e-corrector, both have depth at most degterna, and use
oracle gates to Lipternal-

3. Testability and Correctability of the internal language:

Linternai has an efficient (a1, as)-tester and a-corrector, both have at most depth diterna; and
they form a tester-corrector pair (with default threshold 1/3).

Then Legierna has a (% - min(ey, 8), % + 2)-tester and (% - min(e, ())-corrector with respect to the
distribution D' generated by sampling with probability % from D and % from the uniform distribution.
The tester and corrector can be implemented by depth O(desternal * dinternal) circuits. Finally, if the
tester and corrector for Legternar i condition 2 are a tester-corrector pair with threshold &, then the
new tester and corrector for Legiernar form a pair with threshold Lo,

The fan-in of the composed tester and corrector depends (logarithmically) on the number of oracle
calls that the external tester and corrector (in Condition 2) make to Lipternai- Thus, if the number of
these oracle calls is constant, then the composed tester and corrector are of bounded fan-in.'3

Proof. The proof follows ideas similar to the ones introduced in the proof of Theorem 3.1, but the anal-
ysis is different. To avoid separate notation for testers and correctors we make (w.l.o.g) the simplifying
assumption that @« = a1 and € = ¢;.

We construct a tester T and corrector Cor for Legternq- Our starting point is (again) the tester
and corrector for Legiernar, whose existence is guaranteed by Condition 2 of the Theorem. Let P.pirenal
be the program to be tested and corrected. Our goal is to replace every oracle call to Ljpierna with a
circuit B that computes the language Lj,terna using oracle calls to Pogternat, has depth O(dipternar), and
has the property that if P.yterna 18 “good enough” on the distribution D' (from the proof statement),
then (lslimultaneously) all of B’s activations by T and Cor give the correct answers with probability at
least 13-

The Circuit B. Let Corexernal and Texternal be the corrector and tester for Legternqg (Condition 2),
and Corinternal and Tinternal be the corrector and tester for Lj,terna (Condition 3). Let p(n) < poly(n)
be a bound on the number of oracle calls Corexternal and Texternal make to Linternai-

B simulates Corinternal O(log(p(n))) times in parallel, and outputs the majority of these simulations’
answers. Note that B cannot directly activate Corinternal because it requires access to a program that
allegedly computes Ljyternai, Whereas B only has access t0 Peyterna; (that allegedly computes Legternal)-
Thus B simulates runs of Corexternal using the reduction R from Liyternal 10 Legternal, Whose existence
is guaranteed by Condition 1 of the theorem. During the simulation of Corinternal, Whenever it makes
a call to its program (i.e. queries an instance of Ljpternar), B runs R on that instance with Peyiernai

12For simplicity we assume in all there conditions of the theorem that the reduction, testers and correctors are with
respect to the uniform distribution. However, the proof can easily be carried through to general distributions (and indeed
the theorem is used later with distributions other than uniform).

13We use this fact to get testers and correctors in NC°.

13

as its oracle, and answers as R does. Thus the total depth of B is indeed O(dinternar), and it uses
majority gates of fan-in O(log(p(n))) = O(logn) (we note that actually B only needs to compute
approzimate majority, see [ABO84]). In the case that the external tester and corrector make only a
constant number of L;,ternar Oracle calls, these majorities are only on a constant number of items and
thus can be replaced by NC? circuits.

Next we argue that B computes Ljyterna correctly with high probability.

Claim 3.8. If P.yiernal 8 (% min(eq, 3))-good for Legternar with respect to the distribution D' then for
every z € {0,1}",
1

=12 pm)

Proof. B runs Coripternal Which corrects programs that are aj-good for Ljpiernar With respect to the
uniform distribution. B uses a “program” for L;pternqs that is obtained by running the reduction R
using Peyternal as its oracle . Since Ppyternalr 1S (% -min(eq, B))-good for Leyterna With respect to the
distribution D', it is also 8-good for Leyterna; With respect to the distribution D (by the construction
of D'). We know that when R is run with a S-good program for Legterna; as its oracle , it gives an
a1-good program for Ljuterner With respect to the uniform distribution.

By the fact that Coripternal corrects programs that are aj-good with respect to the uniform distri-
bution, on every instance of L;piernal, €very execution of Corinternal by B gives a correct answer with
probability at least %. By taking the majority of O(log(p(n))) executions of Corinternal, the probability
that B errs is at most

PI‘[B(:E) 7£ Linternal(x)]

1
12-p(n) -
p(n 0

The Corrector Cor. The corrector Cor runs the “old” corrector C'orexternal, replacing every oracle
call to Linternar with a call to the circuit B. Thus Cor has depth O(degternal * dinternar) and the only
gates of unbounded fan-in are the majority gates used by B, which have fan-in O(log(p(n))).

Claim 3.9. Cor is a (% - min(eq, B))-corrector for Legterna with respect to the distribution D'.

Proof. Let P.gterna be (% - min(e1, 3))-good with respect to the distribution D’. By the construction
of D', it follows that Peyierna; is €-good with respect to the uniform distribution (recall that € = €1).
This means that Corexernal computes every instance of Leyierna correctly with probability at least %
when given oracle access t0 Linterna and Peogternat- When Cor simulates Corexgernal, it replaces calls
to Linternat Dy an execution of B. By Claim 3.8, B gives a correct answer with probability at least

1— ﬁ(n) on every execution. Since Cor runs B at most p(n) times, by union bound, B is correct on
all the executions with probability at least % We conclude that for every instance of Legternal, Cor
computes it correctly with probability at least % U

The Tester T. Let P.yterna be the program to be tested. The tester 7" runs as follows:

1. Repeat the following ¢ times (c is a constant that will be determined later): Run the internal
tester Tinternal, replacing each oracle call to its program, by executing the reduction R on the
Linterna; instance, and using Peyternqs as the oracle for the reduction.

If Tinternal Tejects in more than a %-fra,ction of the ¢ executions, reject immediately, otherwise
proceed to the next step.

2. Run the external tester Teyernal, replacing every one of its oracle calls to Lj,ternq: Dy running the
circuit B. Output whatever answer this simulation of Teyternal gives.

T has depth O(dezternal * dinternat) @and the only gates of unbounded fan-in are the majority gates
used by B, which have fan-in O(log(p(n))). Next we prove that T'is a (3 - min(ey, 3), 5 + 2)-tester
for Legternar with respect to the distribution D’ (this is established in Claims 3.10 and 3.12 below)
and that together with C'or it forms a tester-corrector pair, assuming the original tester and corrector

formed a pair (this is established in Claim 3.13).

14

Claim 3.10. T accepts programs that are (%-min(sl, B))-good w.r.t. the distribution D', with probability
at least 2.
3

Proof. Assume Peyiornal 18 (% -min(eq, §))-good w.r.t. the distribution D’, thus it is also S-good w.r.t.
the distribution D. It follows that when P, ternqr is used as the oracle of the reduction R, we get a
a1-good program for Ljpiernai- S0 in the first step, in each execution, Tinternal rejects with probability
at most %. By the Chernoff bound, if we take ¢ to be a large enough constant, with probability at least
%, not more than i fraction of the ¢ executions will reject and we will proceed to the next step.

From the construction of D', it follows that Peyirena is also e1-good with respect to the uniform
distribution on Legternqe instances. Texternal 1S an (€1,€2)-tester with success probability %, and thus
when B gives correct answers in all its executions, Teyiernal accepts with probability at least %, even
if we replace its Li,terna Oracle with B. By Claim 3.8 and the union bound, the probability that B
indeed gives the correct answer in all its executions (in the second step) is at least %

We conclude (by taking a union bound over the error probabilities) that 7" accepts Pegterna; With

probability at least %
O

Claim 3.11. Let P’ be a program (supposedly computing Lipterna) obtained by running the reduction R
on instances of Linternai and taking P.yierna to be the oracle for the reduction. If P' is not correctable
by CoTinternal, then T rejects in its first step with probability at least %

Proof. Tinternal and CoOTinternal are a tester-corrector pair with threshold 1/3 (the default value). So if
P’ is not correctable by Corinternal it must hold that Tintermal rejects P’ in each one of its executions (in
the first step of T) with probability at least 1/3. By Chernoff bound, if we take c to be a large enough

constant, the probability that more than 1/4 of the executions reject is at least %
O

Claim 3.12. T rejects programs that are not (% + %)-good w.r.t. the distribution D', with probability
at least 2.
3

Proof. First, if the internal corrector Coripternal, when it is run with the program (where answers are
computed via the reduction R), does not give a correct answer (on every input) with high probability
(say more than 5/6), then the program is rejected (in the first step) with probability at least 15 (see
Claim 3.11).

If Corinternal does compute Linternar correctly with high probability, then with probability % all
of B’s executions in the second step give correct answers. Now observe that a program that is not
(% + £)-good w.r.t the distribution D', is also not eo-good w.r.t. the uniform distribution on Legternal
inputs. When B always gives correct answers, Texternal Will reject with probability at least %. Taking a
Union Bound over all error probabilities, we conclude that a program that is not (% + %)-good w.r.t.
D' is rejected with probability at least %

O

Claim 3.13. If Texternal and Corexternal form a tester-corrector pair with threshold § (for some 0 < § <
1/2), then T and Cor form a pair with threshold §' = %.

Proof. If T accepts a program Ppyierng With probability at least 1 — ¢’ > 1/12 then in particular it
passes the first step with this probability. This implies by Claim 3.11 that the program P (for L;pternai)
obtained by running the reduction R with P, ernq as its oracle , is correctable by Corinternal-

If the above program P is correctable by Corigternal, then with probability at least % all of B’s
executions in the second step give correct answers. Condition on the event that all the calls to B give
correct answers. (Which means that the behavior of Teyernal with oracle to B is identical to its behavior
with oracle to Ljyternar-) The probability that T rejects in this conditional space is at most %’F = 4.
By the fact that Texternal and Corexternal form a tester-corrector pair with threshold § (when they are
given oracle access t0 Lipternar) it follows that Pegiernq is correctable by Corexemal when the latter is

15

given oracle access t0 Linternal- By replacing oracle calls to Lijpterna; With calls to B we increase the

error probability of Coreyxtemal by at most %
O

O

We now present a useful claim for quantifying the parameters of reductions between language-
distribution pairs.

Claim 3.14. Let Ly and Ls be two languages such that there ezxists a non-adaptive (Turing) reduction
R from Ly to Lo that makes at most q queries to Lo. Then for any €1 and distribution D1, there exists
a distribution Do such that R is an (1, Z—;)—reduction from (L1,D1) to (Lo, D).

Proof. The distribution Dy is obtained by picking a random L; instance using D;, computing R’s ¢
(non-adaptive) queries (these are Ly instances), and outputting one of them uniformly at random.

Consider each of the g distributions on the ¢ queries that R makes when run on a random sample
from D;. Any program P that is Z—;—good for Lo with respect to D5 is also 6i—good on each of these
distributions. Now if we run the reduction R on a random instance sampled by D, P answers each of
R’s queries correctly with probability at least 1 — %1. Taking a Union Bound, the probability that P
makes an error on at least one of the g queries made by the reduction R is at most €;. We conclude
that if P is Z—%-good for Ly with respect to Do, then R using P as its oracle is €1-good for L; w.r.t. D;.

O
Remark 3.15. The above claim implies that whenever the languages of the composition theorem have
a reduction that only makes a constant number of oracle calls, the B parameter in the composition
theorem is constant, and so are the composed tester and corrector’s distance parameters.

In most cases where we use the Composition Theorem this will be the case. In fact, whenever we
refer to using the Tester/Corrector Composition Theorem in this work we implicitly refer to using it
with such reductions, using Claim 3.14. The only exceptions occur in Section 6, where we use the
composition theorem with languages between which there do not appear to be reductions that only make
a constant number of queries. In these cases we construct amplified reductions for the specific pairs of
languages at hand (see Claims 6.6,6.11).

Remark 3.16. When using Theorem 3.7 we often apply it recursively. Namely, we compose some
external language with an internal one, and then use the external language with its new tester/corrector,
as an internal language to be composed with a tester/corrector of an even more complezx language (which
now plays the role of the external language). We therefore want to point out what happens to the
parameters of the testers/correctors after the composition, in order to make sure we can then use the
new testers/correctors in the next application of the theorem.

When all the parameters involved in the statement of Theorem 3.7 are constants (i.e. the €’s, the
a’s and (), and the distance parameters of the original testers/correctors (i.e. the ¢’s and the a’s)
are bounded away from 0 and 1, then the distance parameters of the composed tester/corrector are all
constants that are bounded away from 0 and 1.

Also, we choose the threshold for the tester-corrector pair of the internal language to be the default
value 1/3. We would like to point out that any threshold that is bounded away (from above) from 1/}
by a constant will do. Also note that if the threshold for the original tester-corrector pair of the external
language is § then the threshold for the new pair is (1 — A) - § with A = 1/12. We want to point out
that X can be set to be an arbitrarily small constant.

We conclude that if we apply Theorem 3.7 recursively a constant number of times (each time us-
ing the external language from the previous round as an internal language), then we end up with
testers/correctors that have distance parameters that are bounded away by constants from 0 and 1, as-
suming that the testers/correctors along the way have such distance parameters and that the reductions
along the way use a constant number of queries.

16

4 Checkers for Complete Languages

In this section we show several languages that are complete for certain complexity classes, and have very
efficient checkers, testers, and correctors. In particular we prove Theorem 1.2. We start by identifying
properties that allow us to construct efficient checkers, testers and correctors for functions that satisfy
them.

4.1 Randomized images

The first property says that we can easily generate a random instance together with the evaluation of
the function on it.

Definition 4.1 (Solved instance generator). Let f: {0,1}* — {0,1}* be a function. We say that
a randomized algorithm G is a solved instance generator for f if, given 1", it generates a pair (z,y),
where x is a uniformly random element of {0,1}" and y = f(x).

The second property is a reduction from one function to another that says, roughly, that we can
evaluate the first function on every instance by querying the second function in a random location.

Definition 4.2 (Random instance reduction). Let f: {0,1}* — {0,1}* and g : {0,1}* — {0,1}*
be two functions. We say that a pair of algorithms (R, E) is a random instance reduction from f to g
if R is a randomized algorithm that given x € {0,1}", generates a pair (z',7), where ' is a uniformly
random element of {0,1}™™ and 7 € {0,1}* and it holds that E(g(z'),7) = f(x).

If m(n) = n we say that the random instance reduction is length-preserving. If f and g are the
same function, we say that it is a random instance self-reduction.'* We call R the Randomizer and E
the Evaluator.

The objects that we will be interested in are pairs of functions that have the above two properties.

Definition 4.3 (Randomized image). Let f : {0,1}* — {0,1}* and g : {0,1}* — {0,1}* be two
functions. We say that g is a randomized image of f, if there is a random instance reduction from f
to g, and g has a solved instance generator.

We say that it is length-preserving if the random instance reduction is length-preserving, and that it
is a randomized self-image if f = g. Finally, we say that the randomized image can be implemented in
some complexity class C, if the algorithms G, R and E (from Definitions 4.1 and 4.2) can be implemented
in this class.

One important family of functions that have randomized self-image are word problems over finite
groups.

Definition 4.4. Let (G,®) be a group. We define the word problem of G to be the function Lg : G* —
G, where Lg(a1,...,ap) = a1 @ a2 ® -+ O ay.

Claim 4.5. Let (G,®) be a finite group. Then Lg has a length-preserving randomized self-image that
can be implemented by NCO circuits given that they can sample random elements from G.

Proof. Our constructions are based on a randomization technique of Babai [Bab87] and Kilian [Kil88].
Details follow.

Solved instance generator: Given 1" and a random string a = (a1, ...,a,) €g G", define z € G"
to be (al,al_1 ® az,agl © as,--- ,a;il ® ay,), and y to be a,. Since ay,...,a, are independently and
uniformly distributed, so are a1, al_1 ® ag, a2_1 ®as,... ,agil ® ayp. Clearly, Lg(z) = a1 © al_l Qay®

a, loag:--- ar_bil ® ay, = a,. Finally, note that every element in z is a function of two elements in a,
therefore the procedure can be implemented by an NC? circuit over the alphabet G.

“Random instance self-reductions are a special form of what is called in the literature random self-reductions. The
word instance in our terminology, should emphasize the fact that the reduction is from one instance to another (random)
instance. General random self-reductions can make many self-queries to the function in order to compute its value on a
given instance.

17

Random instance self-reduction: R, Given z € G™ and a random string a = (a1,...,a,) €R
G", defines y € G™ to be (z1 ® al,afl Ox2® ag,ag1 O©x30 a::,,...,a;il ® z, ©ay), and T to be
a,!. Define E(o,7) = 0 ® 7. Since ai,...,a, are independently and uniformly distributed, so are
T10a1,0] OO aza;' @r3@as,...,a, 1 @z, @ ay,. Clearly, E(f(y),a,') =71 0a1 @a;' @220
as ® a2_1 ®z3@az- --agil OTp0a,0a,' =21 0220 - ®xy = Lg(z). Finally, note that every
element in gy is a function of one element in z and two elements in a, therefore R can be implemented
by an NC° circuit over the alphabet G (E is over a finite domain so it is clearly in NC?). O

Corollary 4.6. The Parity function: Parity(z1,...,zn) = > i, z; where z; € {0,1} and the sum is
over GF(2) has a length-preserving randomized self-image that can be implemented by NC circuits.

Barrington [Bar89] showed that Lg, is complete for the class NC! under NC° reductions (S5 is the
symmetric group over five elements). We conclude (by using the fact that a randomized ACP circuit
can sample uniformly from the group S5, with a small probability of failure),

Corollary 4.7. There is an NC'-complete function under NC° reductions that has a length-preserving
randomized self-image that can be implemented by AC® circuits.

4.2 From randomized self-images to program checkers

Next we prove that functions with efficient randomized self-images also have efficient checkers, testers
and correctors.

Theorem 4.8. Let f be a function with a solved instance generator that can be computed by bounded
fan-in circuits of depth d, and a random instance self-reduction where the randomizer and evaluator
can both be computed by bounded fan-in circuits of depth d.

Then f has a (%, %)—tester—corrector pair and a program checker, where all of them can be imple-
mented by bounded fan-in circuits of depth d + O(1).

Proof. The tester runs the solved instance generator to generate a solved pair (x,y), where z is uni-
formly distributed and f(z) = y. It then runs the program P on z and accepts if and only if P(z) = y.

The corrector receives an input z and runs the randomizer to generate a pair (y,7) where y is
uniformly distributed. It then runs P on y, and uses the evaluator on input (P(y), 7). If P(y) = f(y)
then this recovers f(z). The distance parameters and soundness of the tester and corrector can be
amplified by repeating the above procedures O(1) times in parallel.

The program checker runs the tester O(1) times in parallel and also runs the corrector O(1) times
in parallel on its input. If the tester rejects in even one of its runs it outputs BUG, otherwise it outputs
the majority answer of the corrector’s answers.

The correctness and soundness of the tester, corrector and checker follow directly from the properties

of solved instance generator and random instance self-reduction.
O

As with the Composition Theorems, if the solved instance generator or the random instance self-
reduction require additional gates (beyond bounded fan-in AND, OR and NOT gates) then the Theorem
still holds with checkers, testers, and correctors that use these gates.

4.3 Checkers, testers and correctors for complete languages

We now apply Theorem 4.8 to obtain extremely efficient checkers, testers and correctors for complete
languages.

Lemma 4.9. The Parity function has a (%, %)—tester, %—corrector and a program checker all imple-
mentable in NCP.

Proof. The proof is immediate from Theorem 4.8, as the parity language has an NC? solved instance
generator and random instance self-reduction (see Corollary 4.6). O

18

Note that the parity function is a linear function, and in fact the results of [BLR93] give an NC°
tester and corrector for the parity function. Our tester and corrector make fewer calls to the program
being checked: they each only make a single query (as opposed to 3 and 2 respectively in the tester
and corrector of [BLR93]).

Next we prove the following lemma:

Lemma 4.10. There is an NC!-complete language under NC° reductions that has an NC° program
checker and an AC® (%, %)—tester and %—com‘ector pair.
Proof. [sketch] By applying Corollary 4.7 and Theorem 4.8 (with AC? gates), we obtain a checker,
tester and corrector that are implementable in AC? for the NC'-complete language Lg,. They con-
tain unbounded fan-in AND gates which are used to sample uniform elements in S5, the rest of the
computations can be done with bounded fan-in gates.

In order to obtain checkers in NC?, we use the Composition Theorem for checkers (Theorem 3.1).
We replace the AND and OR gates with Parity gates as it is done in the proof of Lemma 3.5. We then
use the Composition Theorem to remove the Parity gates (again, we refer the reader to the proof of

Lemma 3.5).
U

We now show checkers, testers and correctors for languages that are complete for classes higher
than N L (nondeterministic log-space). We start with the definitions of these classes and the complete
languages for them.

Definition 4.11. The class ®L contains all the languages that are decidable by a nondeterministic
log-space Turing machine with the acceptance criteria that the number of accepting paths is even.

Definition 4.12. The class modiL (for an integer k > 1) contains all the languages that are decid-
able by a nondeterministic log-space Turing machine with the acceptance criteria that the number of
accepting paths is zero modulo k.

Definition 4.13. The language ®-connectivity is the language of tuples (G,s,t), such that G is a
directed graph containing the vertices s and t, and the number of paths from s to t is even.

Definition 4.14. The language mod -connectivity (for an integer k > 1) is the language of tuples
(G, s,t), such that G is a directed graph containing the vertices s and t, and the number of paths from
s to t is zero modulo k.

Theorem 4.15. @L and modiL are complete for @-connectivity and mod g-connectivity respectively
under NC° reductions.

We proceed with presenting checkers, testers and correctors for these languages.

Corollary 4.16. ®-connectivity has an NC® program checker, and an AC° (%,%)—tester and %—
corrector pair.

Proof. [Sketch] Using techniques from [IK02] it can be shown that @-connectivity has a solved instance
generator and random instance self-reduction in NC°[@]. This immediately gives a checker, tester and
corrector in NC°[@] (by Theorem 4.8); i.e. they are in NC° with unbounded fan-in parity oracle gates.
We will use the Composition Theorems to “collapse” the checker to NC° and the tester and corrector
to AC?. Taking the @-connectivity language to be the “external” language, and the parity language
as the “internal” language, the three conditions of the Composition Theorems (Theorems 3.1 and 3.7)
hold:

1. Hardness of the external language for the internal language:

Clearly given an oracle to the @-connectivity language, one can compute parities of vectors. The
simple Karp reduction is in NC%(e.g. using the @ L-machine for computing the parity language).

19

2. The internal language helps to check/test/correct the external language:

This is simply because is was shown above how to construct a checker, tester and corrector for
@-connectivity that are in NCO[@].

3. Check/test/correct-ability of the internal language:
By Lemma 4.9.

By the Composition Theorems (Theorems 3.1 and 3.7) we get a tester and a corrector for @-
connectivity in AC?, and a program checker in NC° (note that for this we use the fact that @-

connectivity is hard for Parity under NC° reductions, as required by Lemma 3.5).
O

Corollary 4.17. Let k be a prime. Then mod j-connectivity has an NC° program checker, and an
ACO (%, %)—tester and %—corrector pair.

Proof. [sketch] Using techniques from [IK02] it can be shown that mod g-connectivity has a solved
instance generator and random instance self-reduction in AC? with oracle gates for multiplication over
GF[k] and for addition of n numbers over GF[k]. By Theorem 4.8 this gives a checker, tester, and
corrector for mod j-connectivity that are in AC? with oracle gates for multiplication over GF[k] and
for addition of n numbers over GF'[k]. Note that the checker, tester and corrector also need to generate
(almost) random field elements, but this can be done in ACP.

We obtain a checker, tester, and corrector in AC? using the Composition Theorems (Theorems
3.1 and 3.7). We first note that both multiplication over GF'[k] and addition of n numbers over
GF[k] are reducible (under NC? reductions) to mod g-connectivity . These two functions are them-
selves both checkable in AC?: a checker/tester/corrector for multiplication was given by [BLR93], the
checker /tester/corrector for adding n numbers mod g is similar to the one for Parity given in Lemma
4.9. All these checkers/testers/correctors need to be able to add two numbers over GF[k] and to gen-
erate random field elements, both of these can be done in AC®. This gives an AC? checker,tester, and
corrector for mod g-connectivity .

To further obtain a program checker in NC°, we use the checker Composition Theorem (Theorem
3.1). This uses the fact that both AND and Parity are reducible to mod g-connectivity under NC°

reductions.
O

5 Checkers for a Whole Complexity Class

In this section we use the Composition Theorems to prove Theorem 1.3. We start with a more general
theorem that uses the composition methodology to obtain checkers whose depth is related to the depth
of the circuits that compute the language being checked. As with the Composition Theorems, all the
circuits involved here contain only bounded fan-in gates, unless stated otherwise.

Theorem 5.1. Let L be a language computable by circuits of depth d, and let deoapse > 0 be some
integer (that could be a function of the input length n). If there exists a language Linterna such that:

1. (L is “harder” than Literna) There is a constant depth reduction from Ligterna to L.

2. (Linternal is complete for depth deoapse computations) There is a constant depth reduction from
any language computable by circuits of depth dcoiapse 10 Linternai-

3. (Linternar s checkable) Linternar has a constant-depth checker/tester-corrector.

Then L has a depth O(d/dcoliapse) checker with a single unbounded fan-in AND gate at the top, and
depth O(d/dcoitapse) tester-corrector with (possibly many) unbounded fan-in gates.

Proof. The proof follows from Theorems 3.1 (for programs checkers) and 3.7 (for program testers and
correctors). Details follow.

20

Program Checkers: Take L to be the “external” language, and L;nterna; t0 be the “internal” lan-
guage. We show that the three conditions of Theorem 3.1 are satisfied:

e Hardness of the external language for the internal language:

This condition is immediately satisfied by Condition 1 of the theorem. Note that the depth of
this reduction is indeed constant.

e The internal language “helps” to check the external language:

To see this, observe that a trivial program checker for any language is the circuit that correctly
computes that language (and ignores the program oracle). Starting with such a circuit C for
L, we can use oracle gates for L;,ternal, together with the fact that L;pternqs is hard for depth
deollapse Circuits, to construct an efficient depth O(d/dcoiapse) checker for L that uses oracle gates
to Linternai- This checker divides the circuit C into O(d/dcoiiapse) layers, each of depth deoiapse-
It then “collapses” each such layer to constant depth with an oracle call to Ljpterng (this can
be done using the constant-depth reduction from any depth-dcoepse computation to Linternal
guaranteed by Condition 2 of the theorem).

The depth of this new checker is O(d/dcojapse)- In the terms of Theorem 3.1, this is the value

de:cternal -

e Checkability of the internal language:

This condition is immediately satisfied by Condition 3 of the theorem. The depth of the checker
for the internal language is constant, and thus in the terms of Theorem 3.1 dnterna = O(1).

Now we apply Theorem 3.1, and we conclude that L has a depth O(degternai-dinternat) = O(d/dcoliapse)
checker with a single unbounded fan-in AND gate at the top.

Testers and Checkers: Using a similar observation, that a circuit computing a language also gives
a trivial tester and corrector for that language, we conclude (similarly) by Theorem 3.7 that L has
a tester and corrector of depth O(d/dcojiapse). The distance parameters of the tester and corrector
are affected by success probability of the reduction from depth deigpse Circuits to Lipterna (or by its
number of queries, see Claim 3.14). We note that if the number of queries made by this reduction is

constant, then so are the composed tester and corrector’s distance parameters.
O

We can now prove Theorem 1.3.

Proof of Theorem 1.3. Let L be the language that is in RNC', and is NC'-hard under N C°reductions.
We take the NC!-complete language from Lemma 4.10 to be the internal language. Since this language
is hard for circuits of bounded fan-in and logarithmic depth (the Karp reduction makes only a single
query), and because it has a constant depth (AC?) tester and corrector (by Lemma 4.10), we conclude
(by Theorem 5.1) that L has a tester and corrector of depth O(log'~!(n)), that uses unbounded fan-in
gates. In other words, L has a tester and corrector in RAC—1.

Note that since L (the external language here) is NC'-hard under NC° reductions, there are NC?°
reductions from the Parity function as well as the AND function to L. Also, the internal language has
an NC° program checker by Lemma 4.10. By using the Composition Theorem for program checkers
(Theorem 3.1), and an argument similar to the one given in the proof of Lemma 3.5, we conclude that

L has a checker in RNC'~! (without the additional unbounded fan-in AND gate).
O

21

6 Program Libraries Revisited

In this section we revisit the checkable program library introduced by [BLR93], in light of the Composi-
tion Theorems. We present constant depth (AC? and NC?) checkers, testers and correctors for matrix
multiplication, inversion, determinant and rank. These are checker/tester/correctors in the standard
sense, i.e. they do not use a program library.

6.1 Outline

In this subsection we give an overview of some of the constructions and the ideas that are used in the
checkers, testers and correctors for the matrix functions. In subsequent subsections we give the full
details.

A Checker for Matrix Multiplication. Below we present a constant-depth checker for matrix
multiplication (over GF(2)). The starting point for our checker is Freivalds’ checker for this function
[Fre79] (which appears in Figure 1, Section 6.2). Its input is two n X n matrices A, B, and a confidence
parameter §, and it is given access to a program P that allegedly computes matrix multiplication. The
checker first runs P on input (A, B). It then chooses a random vector 7 in {0,1}", and verifies that:
A x (B x7) = P(A,B) x 7. If not, the checker outputs L. This test is repeated O(log(1/53)) times,
and the checker accepts only if all tests pass. A simple analysis shows that if A x B = P(A, B), the
checker outputs A x B with probability 1, otherwise it outputs L with probability at least 1 — .

The advantage of this checker over the trivial checker that computes the multiplication of A and
B is that it runs in time O(n? - log(1/3)), better than any known algorithm for matrix multiplication
(for, say, constant (). We note however, that its parallel complexity is high: it multiplies matrices
with vectors, which requires logarithmic depth. That is, each such operation (over GF(2)) consists
of computing (in parallel) n inner products, which in turn boil down to computing n parities of n-bit
vectors, and each such parity requires logarithmic depth [FSS84].

We now want to construct a constant depth checker based on Freivalds’ checker. However, we
immediately run into trouble because as we said above, we cannot compute parities of n-bit vectors.
To bypass this obstacle we will use the Composition Theorem. Specifically, we take L;,terna to be
Parity, and Legterna; to be matrix multiplication. We now observe that the conditions of Theorem 3.1
hold:

1. There is a constant depth reduction from Parity to Matrix multiplication: let ¥ be the vector of
bits whose parity we wish to compute; construct a matrix whose first row is ¥ and multiply it by
the all-ones matrix; the top-left item in the result is the parity of .

2. There is a constant depth checker for matrix multiplication that uses an oracle to Parity.
3. Parity has a constant depth checker (Theorem 1.2).

By applying Theorem 3.1, we conclude that matrix multiplication has a constant-depth checker.

A Checker for Matrix Inversion. Below we present a constant-depth checker for matrix inversion
(which is the function that, given a matrix, finds its inverse or says that it does not exist).

At first glance, constructing a constant-depth checker for matrix inversion seems challenging. In-
deed, we do not know how to verify that a given inverse is correct or to apply any form of random
self-reduction on this function without using matrix multiplication (random self-reduction is a common
tool in designing checkers), and computing matrix multiplication is too costly (i.e., not constant-depth).
The composition approach provides a way around this: first we construct a non-efficient checker that
does use matrix multiplication, and then we use the Composition Theorem to eliminate the need for
matrix multiplication.

We now sketch the construction of an AC? checker for matrix inversion (over GF(2)). The checker
is given access to a potentially faulty program P for matrix inversion, and an arbitrary n X n matrix

22

M to invert (or to output “not invertible” in case M is singular). In addition we give the checker
access to a matrix multiplication oracle. The checker proceeds in two stages: first it tests the (faulty)
inversion program P to make sure that it correctly inverts random matrices with high probability. It
then transforms the instance M into a random instance M’ (that is invertible if and only if M is) and
from (M')~! deduces M.

Testing. In the testing phase, the checker repeats the following several times in parallel:

1. Generate a random matrix A and ask P to invert A.
2. If P returned a matrix P(A), verify that P(4) x A =1.
3. If P(A) x A # I, output L.

Throughout, the checker keeps track of the fraction of queries that resulted in P(A) returning a
matrix (rather than “not invertible”). This fraction should be close to the (constant) fraction of n x n
matrices that are in fact invertible; if it is not, then the checker should declare that P is buggy. The
point is that the program P can never trick the checker into believing that a non-invertible matrix is
invertible, since the checker always verifies P’s response by multiplying P(A) and A. (Here one can
already see how matrix multiplication is useful for us: it allows us to check the answers of the program,
and force it to have only one-sided errors.) The program must provide correct inverses for a fraction of
matrices that is very close to the expected fraction of invertible matrices! This mean that, with high
probability, any program that passes the test correctly inverts most invertible matrices.

Random self-reduction. With this in mind, we continue to the second stage. The checker multiplies
the instance M by a random matrix R, and asks P to invert the matrix M x R. With constant
probability, R is invertible, and thus if M is invertible then M X R is a random invertible matrix;
therefore, P will return (M x R)™!' = R™! x M~! with high probability, and then the checker can
multiply this on the left by R and obtain M~!. (Here the reader can observe the second use we get
from matrix multiplication: it gives a random self-reduction between invertible matrices). The checker
verifies that I = M x (R x P(M x R)) and if so outputs the (always correct) inverse R x P(M x R). If,
however, M is not invertible, then P can never return a correct inverse of M. By repeating the above
O(1) times (in parallel), the checker can be assured that it either has a correct inverse of M or that M
is not invertible.

Removwing the Multiplication Oracle. Up to this point, we have constructed a checker for matrix
inversion that uses matrix multiplication as a sub-routine. Multiplication is the only non-AC? “sub-
computation” performed by this checker, so we would like to remove it to obtain an AC° checker.
Above, we saw that matrix multiplication has an AC? checker, so we could remove the multiplication
oracle, provided that multiplication is reducible to inversion (Condition 2 of the Composition Theorem).
Indeed, this is the case by the following identity (for matrices A, B):

-1
I, A O I, —A AxB
0 I, B = 0 I, —-B
0 0 I, 0 O I,

Thus, by applying the Composition Theorem we obtain an AC? checker for matrix inversion.

Checkers for Determinant and Rank. In addition to matrix multiplication and inversion, we
present checkers, testers and correctors for the matrix determinant and rank functions. These checkers
are significantly more involved, and require several new ideas, which we outline below. Full details and
proofs appear in Sections 6.4 and 6.5.

Amplified Reductions. A significant obstacle comes up when constructing the determinant and rank
testers/correctors. The problem is that we want these testers and correctors to delegate internal
sub-computations of matrix inversion to the program they check, using a reduction from inversion to
determinant or rank. However, these reductions involve a polynomial number of oracle calls. Even if

23

we are given a program for determinant (or rank) that works well on all but a small constant fraction
of matrices, when we plug this program into the reduction that uses it polynomially many times, the
result may have errors with very high (1 - 1/poly) probability. To overcome this problem, we present
amplified reductions from matrix inversion to determinant and rank, these reductions show that a
program that computes determinant or rank correctly on all but a small constant fraction of matrices
can be used to compute matrix inversions correctly on every matrix with high probability. See Claims
6.6 and 6.11 for details.

Different Testers and Correctors. The library testers and correctors of [BLR93] use a procedure of
Randall [Ran93] for generating random invertible matrices of known determinant. This procedure
is recursive (and thus highly sequential), and also is more complex than other components of the
testers/correctors. Since we want constant-depth testers and correctors, we cannot rely on this proce-
dure. Instead, when building the initial tester/correctors (even before applying composition), we use
different ideas from those of [BLR93]. The most significant example is our tester for the determinant
function. The tester of [BLR93] simply checks that the program is correct on random matrices with
known determinant (using [Ran93]). Our tester, on the other hand, first checks that the program is
close to computing some homomorphism from the group of invertible n X n matrices over the finite field
F' to the multiplicative group of F' (this uses the homomorphism test of [BLR93, BOCLRO04]). In the
second stage, the tester verifies that the program is close to computing the one homomorphism that
we care about, namely the determinant. This is achieved by exploiting the fact that the determinant
is the only non-constant homomorphism that is multi-linear in the entries of the matrix.

Repeated Composition. Finally, we point out that the constructions for determinant and rank exploit,
more than any other construction, the top-down approach that the Composition Theorem enables.
In both cases we start with checkers that use two oracles: one for matrix multiplication and one for
inversion. The Composition Theorem is then applied several times, gradually removing the oracles (or
replacing them by weaker ones), until we get standard and efficient (in terms of circuit depth) testers
and correctors (i.e. ones that do not use oracles to other functions).

Detailed constructions. In the following subsections we present the detailed constructions of testers
and correctors for the matrix functions. Throughout we work over finite fields F' = GF (k). In some
cases we restrict k to be a power of 2 or of polynomial size (in the input length of the checker).

For readability, we do not state the exact parameters of the testers/correctors that we obtain (i.e.
the distance parameters ¢,¢; and g2 from Definitions 2.4 and 2.5). However we note that since in all
our constructions we apply Theorem 3.7 recursively at most a constant number of times, and we only
use testers/correctors in which the distance parameters are constants that are bounded away from 0
and 1, then so are the distance parameters of the final testers/correctors that we obtain. See Remark
3.16 in Section 3 for more details on the parameters in Theorem 3.7.15

6.2 Matrix Multiplication

We begin by using the Composition Theorem to simplify the tester and corrector for matrix multipli-
cation of [BLR93]. Similar techniques can be used (directly) to simplify Freivalds’ well known checker
for matrix multiplication (see [Fre79]).

Lemma 6.1. The matriz multiplication function over any field whose size is a constant power of 2 has
an optimal tester and corrector (i.e. these run in linear-time, are in NC°, and make O(1) program
oracle calls).

Over other (finite) fields, matriz multiplication has a tester and corrector that run in linear time,
are in AC®, and for constant-size fields they make only O(1) program oracle calls.

1510 the case of matrix multiplication and inversion, Remark 3.16 directly applies. However for matrix determinant
and rank it is more tricky to achieve constant distance parameters. The reason is that the reductions that are used in
these constructions use a non-constant number of calls (see the statement of Theorem 3.7 for how the query complexity
of the reduction influences the distance parameters). However, we can overcome this by using a technique to amplify the
success probability of the reduction. We refer the reader to the relevant constructions to see how this is achieved.

24

Proof. We examine matrix multiplication over a field F', and assume F’s size is a constant power of 2
so we can add, multiply, and sample random members of F using an NC° circuit (if F is of a different
size, we get a tester and corrector in AC? instead of NC?). Recall the tester and corrector for matrix
multiplication presented by [BLR93]. At the heart of their constructions is Freivalds’ checker for matrix
multiplication [Fre79]. It takes as input three n x n matrices A, B and C, and a confidence parameter
8. If A x B = C the checker accepts with probability 1, otherwise it rejects with probability at least
1 — . The specification of the checker is presented in Figure 1.

FREIVALDS_CHECKER(n, 4, B, (3)
1. C « P(A,B)
2. repeat O(log(1/3)) times:

(a) Pick a random column vector 7 € {0,1}"
(b) If A x (B x7) # C x 7, then output L.

3. Output C.

Figure 1: Freivalds’ Checker

The advantage of this checker over the trivial checker that computes the multiplication of A and B is
that it runs in time O(n?-log(1/0)), better than any known algorithm for matrix multiplication. Note,
however, that its parallel time complezity is high, as it needs to compute multiplications of matrices
over F with {0, 1}-vectors. This involves computing long sums over the field (e.g. Parity in the case of
GF(2)), and thus requires depth that is nearly logarithmic in n. The tester and corrector for matrix
multiplication given by [BLR93] (shown in Figures 2 and 3), are based on Frievalds’ checker, and thus
they are not in constant depth. We transform them to be of constant depth (while maintaining their
running time and number of program oracle calls) by using the Composition Theorem (Theorem 3.7).

MATRIX MULTIPLICATION CORRECTOR(A,B,[3)

1. repeat O(log(1/0)) times in parallel:

(a) A1, By < random n X n matrices
(b) Ag — A— A
(c) Bo < B—B;
(d) C + P(A1,By) + P(A1,Bs) + P(As, By) + P(Ag, By)

If Freivalds_-Checker(A, B, C, g) accepts, then output C

2. If Freivalds_Checker never accepted, then output L

Figure 2: Matrix Multiplication Corrector

Our Matrix Multiplication Corrector and Tester: To apply Theorem 3.7, we take matrix
multiplication to be the external function, and matriz-row-sums to be the internal function. The
matriz-row-sums function receives a matrix and returns the (column) vector whose i-th entry is the
sum (over F') of the i-th row of the matrix. We show that the conditions of the theorem hold:

1. A reduction from the internal function to the external function:

25

MATRIX MULTIPLICATION TESTER((3)
1. Repeat O(log(1/3)) times in parallel:

(a) Generate two random matrices A and B
(b) C «+ P(A,B)

(¢) If Freivalds_Checker(A, B, C, g) accepts, then the answer from this step is 0.
Otherwise the answer is 1

1

ig> then accept. Otherwise, reject.

2. If the fraction of steps answering 0 is at least

Figure 3: Matrix Multiplication Tester

The NC? reduction from computing the sums of the rows of an n x n matrix to multiplication
of n X n matrices is simple: given a matrix A, multiply it with the all-1 n x n matrix, output the
first column of the result.

. The internal function “helps” to test/correct the external function:

An oracle that computes matriz-row-sums can be used to compute matrix-vector multiplications
in NC°:

n
a1 ... Gip v1 D i AL
. a1 ... Qop
Axv= ’ ’ X =
n
anl .- Gpp vy, D oieq Gn - U

This final vector can be computed (in NC°) by computing matriz-row-sums on the matrix whose
(4,7)-th entry is a; j - v; (where all a; j-s are field elements, and v;-s are in {0,1}).

Given this NC° procedure to compute matrix-vector multiplications results in an NC? tester
and corrector for matrix multiplication (using an oracle to matriz-row-sums).

. Testability and Correctability of the internal function:

The tester and corrector for the matriz-row-sums function are generalizations of the tester and
corrector for computing products over finite groups given by Claim 4.5 and Theorem 4.8 (both
appear in Section 4). The tester and corrector work with the additive group over F', and apply
on each matrix row (independently) the randomization technique given in the proof of Claim 4.5.
This randomization technique is then used, as in the proof of Theorem 4.8, to test and correct
the program that allegedly computes the matriz-row-sums function.

We can now use the Composition Theorem to construct a standard constant-depth tester and

corrector for matrix multiplication (i.e., one that only uses a program oracle that allegedly computes
matrix multiplication). Moreover, since (for a constant () the tester and corrector that we start
with (before applying the composition), as well as all reductions and the matriz-row-sums tester and
corrector, all run in linear time and NC? (and only make a constant number of oracle calls), we conclude
that the composed tester and corrector are optimal: they only make a constant number of calls to the
program they check, run in linear time, and are in NC? (for F of size a constant power of 2).

For other finite fields, addition, multiplication by 0 or 1, and generating (almost) random field

elements are all in AC?, and so are the composed tester and corrector (they still run in linear time and
make only a constant number of program oracle calls though).

O

26

6.3 Matrix Inversion

A tester and corrector for the function that computes whether a matrix is invertible or not were given
by [BLR93]. Their tester and corrector used the concept of a Library to get access to a matrix-
multiplication oracle . We present a standard tester and corrector (that do not use a library) for the
matrix inversion function.

Lemma 6.2. The matriz inversion function over any field whose size is a constant power of 2 has an
optimal tester and corrector (i.e. these run in linear-time, are in NC°, and make O(1) program oracle

calls).
Over other (finite) fields, matriz inversion has a tester and corrector that run in linear time, are
in AC®, and for constant-size fields they make only O(1) program oracle calls.

Proof. We examine matrix inversion over a field F', and assume F’s size is a constant power of 2
(similarly to the case of matrix multiplication, for fields different size we get a tester and corrector
in AC? instead of NC?). We begin by presenting the corrector (Figure 4) and tester (Figure 5) as
if they have access to a (correct) matrix multiplication oracle , we will later remove this oracle using
the Tester/Corrector Composition Theorem. Note that we analyze the behavior of this tester and
corrector on the uniform distribution over invertible matrices with entries in the field F.'6 We use P
to denote the matrix inversion program being checked, and Mult to denote the (always correct) matrix
multiplication oracle .

MATRIX INVERSION CORRECTOR(A,()

1. repeat O(log(1/f)) times in parallel:

(a) Generate a random matrix R
(b) R' < Mult(A,R)
(c) Use P to try to invert R': R}, < P(R').
If P cannot invert, proceed to the next loop iteration

A' « Mult(R, R})

Inv
If I,, = Mult(A, A’") (where I,, is the identity matrix of dimension n), then output
AI

—_
o
SN N

2. Output that A is not invertible.

Figure 4: Matrix Inversion Corrector

Corrector Analysis: We begin by noting that when A is not invertible, this corrector always outputs
1 (it outputs L unless it actually finds A’s inverse), thus we restrict our attention to the program’s
behavior for invertible As. With some constant probability the random matrix R will be invertible
(this probability grows with the size of the field F, but even for GF(2) it is at least 1/4). In loop
iterations when R is invertible, computing the inverse of A X R using P is actually inverting a totally
random invertible matrix. If this inversion succeeds, the corrector always outputs the inverse of A.
Thus if P is %-close to being correct (for a random invertible matrix), then in each loop iteration the
probability that both R is invertible (probability at least 1/4) and P succeeds (probability at least 1—g)
is greater than 0.1. The probability that in at least one of the O(log(1/3)) loop iterations this constant
probability event occurs at least once is at least 1 — 3. Note that this corrector is constant-depth (using
matrix multiplication oracles).

16Recall that we are allowed to choose any distribution over the instances of the function, as long of course that we
prove the tester-corrector pair to be correct with respect to this distribution. See Remark 2.7.

27

MATRIX INVERSION TESTER(()

1. Let 7 be the probability that a random matrix over F' is invertible (can be hard-wired
into the tester)

2. repeat O(log(1/63)) times in parallel:

(a) Generate a random matrix A

(b) Compute Ary, + P(A)

(c) If I, = Mult(A, Arny) then the answer from this step is 0, otherwise the answer
is1

3. Let 1) be the fraction of 0-answers in the loop. If |y — | < 7%, then accept. Otherwise
reject.

Figure 5: Matrix Inversion Tester

Tester Analysis: Let v be the probability that a random matrix over F' is invertible (can be hard-
wired into the tester, v is at least 1/4). Note that the errors of the program can only be “one-sided”,
in the sense that in any iteration of the tester, if the random matrix A is not invertible, then the
answer from that iteration is always 1. Thus the probability that the answer from any iteration is 1
is at least 1 — «y. If the program is at least %—close to being correct (on the invertible matrices), then

the probability that the answer from the iteration is 0 is at least 3;—27, and the probability that the
fraction of O(log(1/f)) independent iterations that give 0 answers is s-distant from v is at most 3
(by a Chernoff Bound). If the program is at least 3-far from being correct (on a random invertible

matrix), then the probability that the answer from the iteration is 0 is at most 7—5;1, and the probability
that the fraction of O(log(1/3)) independent iterations that give 0 answers is {5-distant from ~ is at
least 1 — 8 (again by a Chernoff Bound). Note that this tester is constant depth (again, with matrix
multiplication oracle gates).

Tester-Corrector Pair: The tester and corrector are a tester-corrector pair because the tester ac-
cepts %—good programs w.h.p., and rejects programs that are not %—good w.h.p. The corrector corrects
using any program that is at least %—good.

The Final Tester and Corrector: We have presented a constant depth tester and corrector using
oracle gates to the matrix multiplication function. We note that for a constant 8 and F whose size is
a constant power of 2 the tester and corrector are in NC°. We now want to use these, together with
the Composition Theorem (Theorem 3.7), to construct a constant-depth tester and corrector in the
standard sense (i.e. without oracle gates to the matrix multiplication function). To do this, we need
to show that the conditions of the Composition Theorem hold when the external function is matrix
inversion, and the internal function is matrix multiplication. Condition 2 (the “internal” language
helps check the “external” function) is satisfied by the construction of a tester and corrector above.
Condition 3 (testability and correctability of the internal language) is satisfied by the constant-depth
(NC? for the proper 3 and field size) tester and corrector for matrix multiplication given in Section
6.2.

To show Condition 1 (hardness of the external language for the internal language), we need a
reduction from the internal language to the external language. To see this reduction, observe that

28

when computing the matrix multiplication A x B, it suffices to examine the block matrix:

I, A 0
M=| o0 1, B
0 0 I,
And observe that:
I, —A AxB
M*'=| o0 1, -B
0 0 I,

Now the upper-right block of M~! is the multiplication of A and B. Thus to multiply two n x n
matrices, it suffices to compute a single inversion of a 3n X 3n matrix. Alternatively, this can be done
with 27 non-adaptive inversions of n X n matrices by breaking A and B to 3 x 3 block matrices, where
each block is of dimension n/3, and then applying the reduction to the blocks.

Now using the Composition Theorem, we can remove the matrix multiplication oracle gates. The
resulting tester and corrector are a tester-corrector pair, and do not require using a library. Moreover,
since (for a constant 3) the checker and corrector that we start with (before applying the composition),
as well as all reductions and the matrix multiplication tester and corrector, all run in linear time and
NC° (and only make a constant number of oracle calls), we conclude that the composed tester and
corrector are optimal: they only make a constant number of calls to the program they check, run in
linear time, and are in NC° (for F of size a constant power of 2).

Similarly to the case of matrix multiplication, for other fields the composed tester and corrector

run in AC?, linear time, and make only O(1) program oracle calls.
O

Finally, we note that the Composition Theorem also gives a (standard) tester and corrector for the
(boolean) function that checks whether a matrix is invertible or not over polynomial-size fields. The
tester and corrector run in AC?, but require polynomial time and make polynomially many oracle calls.
The details ar omitted from this version.

6.4 Matrix Determinant

A tester and corrector for matrix determinant were given by [BLR93]. They used a library with matrix-
multiplication and matrix-inversion functions. In this section we construct a standard constant-depth
tester and corrector for matrix determinant, i.e. ones that do not use a program library (we do note,
however, that the number of parallel calls to the program being checked is larger than in the library
tester and corrector of [BLR93]). Our corrector is based on the construction of [BLR93], however our
tester is different. Unlike [BLR93], we avoid the use of Randall’s [Ran93] (sequential) procedure for
generating random invertible matrices with known determinant.

In this section and in the next, we use a procedure that generates (w.h.p.) a random invertible
matrix over a finite field F', given an oracle Inv that correctly inverts any invertible matrix (and returns
1 for non-invertible matrices). A description of such a procedure appears in Figure 6.

Claim 6.3. The procedure in Figure 6 outputs L with probability at most 8. Furthermore, conditioned
on the event that it does not output L, its output is uniformly distributed over invertible matrices with
entries in the field F. If B is a constant and the size of F' is a constant power of 2, the procedure can
be implemented in NC°, otherwise it can be implemented in ACP.

Proof. A random matrix is invertible with (at least) constant probability bounded away from 0. By
running the loop in the procedure for O(log(1/4)) iterations, with probability at least 8 one of the
iterations will generate an invertible matrix. Whenever this event occurs, the procedure outputs the
first invertible matrix it generated, which is indeed a random invertible matrix. U

29

RANDOM-INVERTIBLE(n, (3)

1. For ¢ going from 1 to O(log(1/63)) do the following in parallel:
(a) Choose a random n X n matrix A; with entries in F.

(b) Let A; ' < Inv(4;).

2. If for every 1, Ai_1 =1, output L. Otherwise, output A4; for the minimal 7 for which it
is not L.

Figure 6: Generating a random invertible matrix

We now turn to the problem of testing and correcting programs for matrix determinant.
Lemma 6.4. The matriz determinant function over a finite field F has an AC® tester and corrector.

Proof. The corrector (Figure 7) and tester (Figure 8) are presented as if they have access to a (correct)
oracle for matrix multiplication and matrix inversion. The oracles will later be removed using the
Tester/Corrector Composition Theorem (Theorem 3.7). We denote by P the matrix determinant
program being checked, and by Mult and Inv the (always correct) matrix multiplication and inversion
oracles (respectively). The behavior of the oracle tester and oracle corrector is analyzed with respect
to the uniform distribution over invertible matrices with entries in the field F.

MATRIX DETERMINANT CORRECTOR(A,[)

1. If 1= Inv(A) then output 0 and exit.

2. Otherwise, repeat O(log(1/3)) times in parallel:

(a) Generate a random invertible matrix R using Random — Invertible(n, %) (see
Figure 6). If it fails the answer from this iteration is 0.

(b) R« Mult(A,R).

(c) dr < P(R).

(d) If dg = 0 skip this iteration.
(e) dr < P(R').

(f)

The answer from this iteration is dg: /dg.

e
f

And output the majority among the answers for all iterations.

Figure 7: Matrix Determinant Corrector

Corrector Analysis: We begin by observing that the corrector always outputs 0 on non-invertible
matrices (by using its oracle Inv to the inversion function). It remains to analyze its behavior on
invertible matrices. Assume P is a %—good program for matrix determinant w.r.t the uniform distri-
bution on invertible matrices. By Claim 6.3, the probability that Random — Invertible fails in any
iteration is at most %. When this doesn’t happen, R is a random invertible matrix. The corrector
multiplies A and R to get the matrix R, which is again a uniformly random invertible matrix. The
probability that P errs on a uniformly random matrix such as R or R’ is at most %. By taking a union

bound over the events that Random — Invertible returns 1, and the determinants of R or R’ are not

30

computed correctly, we conclude that the correct determinant of A is computed in each loop iteration
with probability at least %. After computing the approximate majority of all loop iterations answers,
the total error probability of the corrector is at most 3 (by a Chernoff bound).

MATRIX DETERMINANT TESTER(n, [3)

1. Repeat O(log(1//)) times in parallel:

(a) Run twice Random — Invertible(n, t55) to generate two matrices Ry and Ry. If

either execution outputs L, then the answer from this iteration is 0.

(b) If P(Ry) - P(R2) # P(Mult(R; - Ry)) then the answer from this iteration is 0,
otherwise the answer is 1.

If the fraction of 0-answers (out of the iterations that we didn’t skip) is at least % then
reject.

2. Otherwise, repeat O(log(1/8)) times in parallel:

(a) Run Random — Invertible(n, 55) to generate a matrix R. If the execution outputs

1, then the answer from this iteration is 0.
(b) Choose a uniformly distributed non-zero element c in F'.

(c) Let R’ be the matrix R with every entry in the first row multiplied by ¢. If
¢- P(R) # P(R') then the answer from this iteration is 0, otherwise the answer is
1.

If the fraction of 0-answers is at least % then reject, otherwise accept.

Figure 8: Matrix Determinant Tester

Tester Analysis: The first loop tests that the program P computes a function that is close (with
respect to the uniform distribution on invertible matrices) to a homomorphism from the (non-abelian)
group of invertible matrices over F (denoted GL,(F')) to the (abelian) multiplicative group over the
elements of F' (denoted F*). Note that the determinant is such a homomorphism. We use the generic
homomorphism tester of [BLR93] (with its analysis for non-Abelian groups given in [BOCLR04]) to
analyze the tester.

If the program is ﬁ-good on a random invertible matrix, then in particular it is close to a ho-
momorphism from GL,(F) to F* (the determinant is such a homomorphism), and we can proceed by
following the analysis of [BLR93]. The probability that the program does not compute the homomor-
phism correctly on even one of the random (but not independent) matrices Ry, Ra, R1 X Ry is at most
%. The probability that Random — Invertible fails in one of its two activations is at most %. Taking

a union bound, the total probability of the answer in each iteration being 0 is less than i. Thus, the

program is rejected after the loop with probability at most g

Now consider the case that the program is %—far from computing any homomorphism from G Ly, (F')
to F*. The probability that Random — Invertible fails in one of its two activations is at most %.
When this does not happen R; and R, are random invertible matrices, and the probability that
P(R1) x P(Ry) # P(Ry x Ry) is at least § (see [BOCLRO4]). Taking a union bound, the probability
of the answer in each iteration being 0 is at least 11—0. Thus the program is rejected after the loop with

oye /5‘
probability at least 1 — 5.

The second loop distinguishes between the determinant function and other homomorphisms from

31

GL,(F) to F*. To analyze it we need the following claim.

Claim 6.5. For every homomorphism h : GL,(F) — F*, there ezists an integer 0 < k < |F|—1, such
that for every M € GLy,(F), h(M) = det(M)*.

Proof. Consider the group G of diagonal matrices that have an arbitrary elements of F* along the

diagonal. @G is clearly isomorphic to (F*)" = F* x F* x ... x F* (n times). Next, consider the
restriction h : G — F. This is a homomorphism from (F*)" to F*, and such homomorphisms are
easily seen to all be of the form h(M) = aklaé62 -vakn (for 0 < ky,...,k, < |F|—1), where the a;’s are

the diagonal entries of M. This follows from the fact that F* is cyclic and homomorphisms of product
groups are just products of the homomorphisms on each component.

Now we want to show that k; = kp = ... = k, = k to prove that h(M) = det(M)* for these
specific matrices. Let S be a permutation matrix that swaps rows ¢ and j upon left multiplication and
swaps columns 4 and j upon right multiplication. Clearly, S? = I, so h(S)? = 1. Thus h(SMS) =
h(S)h(M)h(S) = h(M) and so k; = kj, since SM S just swaps a; and a; and the function remains
unchanged. This is true for any 7 and 7, so all the &’s must be the same.

Now consider the row/column-operation matrices, i.e. matrices with 1’s on the diagonal, a single 1
elsewhere, and 0’s everywhere else. These, together with the elements of G generate all of GL, (F'), since
Gaussian elimination allows us to transform any non-singular matrix to the identity, and moreover,
when the matrix is non-singular one can do Gaussian elimination without any swaps, so these operations
do indeed suffice. Conveniently, h(M) = 1 for all of these matrices; indeed, let p be the characteristic
of F, then for any row/column operation matrix M, we have MP = I (note how we use here the fact
that F is finite) and so h(M)P = h(MP) = h(I) = 1 and so h(M) = 1 = 1¥ = det(M)F.

So to conclude, we exhibited a set of generators of GL,(F') such that every matrix 7" in this set
has h(T) = det(T)* for some global, fixed k, and therefore h(M) = det(M)* for every matrix in
GL,(F). O

We now proceed with the analysis of the tester. In each iteration of the second loop, unless the
Random— Invertible call fails (probability at most 3%), the matrices R and R’ are uniformly distributed
in GL,(F) (though not independent). If the program is zis-close to the determinant function (with
respect to the uniform distribution on invertible matrices), then with probability at least ggg the
program agrees with the determinant on both matrices. Taking a union bound, the answer from each
iteration will be 0 with probability at most LG By the Chernoff bound, the program is accepted in
Step 2 with probability at least 1 — ﬁ

On the other hand, if the program is 16 -close to some other homomorphism h : GL,(F) — F*,
then by Claim 6.5, h(M) = det(M)* for some fixed 0 < k < |F| —1 (k # 1). With probability at
least %, the program evaluated on both R and R’ agrees with h. In this case we will have, ¢ - P(R) =
c-h(R) = c-det(R)*, and on the other hand P(R') = det(R')* = cF - det(R)*. With probability at
least 1/2 over the choice of ¢, ¢ # c¥ (since k # 1). Taking a union bound over the probability that
Random — Invertible fails, we conclude that the answer from each iteration is 0 with probability at
least 1 . Therefore, by the Chernoff bound the program will be rejected with probability at least 1 — 8

In conclusmn if the program is 256 -good on invertible matrices, it is rejected in any of the two steps
with probability at most 'g The total rejection probability is at most (. If the program is not 16 -good,
then either it is not 116 close to any homomorphism, and rejected in the first loop with probability at
least 1 — 5, or it is E—close to some homomorphism h # det, and then it is reJected with probability
at least 1 — g in the second loop. Thus the probability that the tester rejects a 16 -far program is at
least than 1 — 3.

Tester-Corrector Pair: The (oracle) tester and corrector are a tester- corrector pair because the
tester rejects any program that is not ——good w.h.p, and the corrector corrects E -good programs.

32

Composing the Tester and Corrector: The tester and corrector presented above are constant
depth using oracle gates to the matrix multiplication and inversion functions.'” We want to use the
Composition Theorem (Theorem 3.7), with matrix determinant as an external function, and inversion
as the internal function, to construct a constant-depth tester and corrector for the determinant function
that does need the inversion oracle. To do this, we need to show that the conditions of the theorem
hold. By the above, Condition 2 (the internal language “helps” to check the external language) holds.
Condition 3 (testability and correctability of the internal language) holds by Claim 6.2.

Condition 1, hardness of the external language for the internal language, also holds. Indeed,
Cramer’s rule states that each coordinate of the inverse is the corresponding cofactor (the signed
determinant of the corresponding minor) divided by the determinant of the matrix. For a matrix
A, denote by M; ;(A) the (i,7)-th minor of A (i.e. A with the i-th row and j-th column removed).
Cramer’s rule states that:
det(Mm(A))

det(A)

Thus we can use the determinant program oracle to compute the inverse. While this suffices for
applying the Composition Theorem, it is somewhat unsatisfying because the reduction from inversion
to determinant needs to compute the entire inverse of a matrix, and thus makes O(n?) program oracle
queries (one call per matrix entry to get det(M; ;(A)), plus another “global” call for getting det(A)).
This implies that when we apply the Composition Theorem it will give a composed tester and corrector
with only polynomially small distance parameters (see Claim 3.14). Roughly speaking, the reason is
that in the composition step, we want the reduction from the internal language to the external language,
to succeed with high probability when its oracle is the program being tested and corrected. For this to
happen we want that with high probability, simultaneously all the oracle calls are correct. We therefore
require that the success probability of each call (or in other words, the distance of the program from
the function it allegedly computes) is smaller than inverse the number of oracle calls the reduction
makes (so that we can apply a union bound over the oracle calls).

In what follows this obstacle is overcome. We show how to amplify the success probability of each
oracle call to the program being tested and corrected, so that it works even with programs that are
only constant close to the function. This results in an amplified reduction from matrix inversion to
determinant, that uses a program for determinant that is €(1)-good to get a program for inversion
that is €2(1)-good. We use this amplified reduction in the Composition Theorem to get a corrector
and tester with constant distance parameters (that still make polynomially many calls to the program
oracle).

(A Yy = (=1)"*7 .

Claim 6.6. For any constant €, there exists a constant depth (e, é)—reduction from matriz inversion
on any distribution D1 to matriz determinant on the uniform distribution. The reduction uses oracle
gates to matriz multiplication.

Proof. We begin with the standard reduction that uses Cramer’s rule. As a simplification first step,
suppose that the reduction could generate random invertible matrices in constant depth. I.e suppose
the reduction has access to an oracle that outputs random invertible matrices. Now observe that the
standard reduction using Cramer’s Rule makes many oracle calls to determinant only on invertible
matrices. On singular matrices the reduction makes only one call (because if the determinant is 0 we
already know that there is no inverse).

To amplify the success probability of the reduction when computing determinants of invertible
matrices, we will use the following modification of the corrector for the matrix determinant function
given in Figure 7: first, start the execution of the corrector from step 2 in Figure 7 (step 1 is not
necessary since we know that the matrix is invertible). Second, we will use our oracle that generates
random invertible matrices instead of the procedure Random — Invertible. Note that this modified
corrector does not use an oracle to inversion, but its correction properties (for invertible matrices)
remain the same.

1"Note that multiplication and division of field elements over large fields cannot be done in AC?. They are, however,
easily doable in ACY with an oracle to matrix multiplication.

33

We now use this corrector to amplify the success probability of each call that the standard (Cramer’s
Rule) reduction makes to compute the determinant of an invertible matrix. Every time the reduction
wants to call the program on some matrix A, it will instead run the corrector on A with the same
program, setting 3 (the confidence parameter) to be O(1/n?). If the program for determinant is 6%1-
good on random matrices, then it is at least 11—6—g00d on random invertible matrices, and with high
probability (more than 1 — 1/n?) det(A) will be computed correctly by the corrector. Thus with high
(constant) probability the whole inverse matrix is computed correctly.

Finally, the reduction still needs a method for generating random invertible matrices. To overcome
this difficulty, observe that if the program oracle is a 6i4-good program for computing determinant on
random matrices, then it can compute almost random invertible matrices in constant depth. To do this,
generate (in parallel) several (O(1)) random matrices, use the determinant program oracle to check
whether or not their determinant is zero, and output the first matrix whose determinant (according to
the program oracle) is non-zero. The output of this procedure is an almost random invertible matrix
(the statistical distance between the output and the distribution of random invertible matrices is less
than 3%) The determinant corrector, as it is used in the amplified reduction above, works even when
activated with such almost-random invertible matrices.

This reduction works with high probability for computing the inverse of any matrix, and thus in

particular it works for any distribution on matrices.
O

The amplified reduction (which uses only the determinant program oracle and an oracle to matrix
multiplication) can be used in the Composition Theorem to get a constant-depth tester and corrector
for matrix determinant, using an oracle for matrix multiplication.

Corollary 6.7. The matriz determinant function has an AC? tester and corrector, using an oracle to
matriz multiplication.

Proof. Use the Composition Theorem with inversion as the internal language, determinant as the

external language and the amplified reduction from Claim 6.6.
O

Proposition 6.8. The matriz determinant function has an ACP tester and corrector without any
additional oracles (i.e. a tester and corrector in the standard sense).

Proof. By Corollary 6.7 the determinant function has a constant-depth tester and corrector using a ma-
trix multiplication oracle . While it was already shown above that good programs for determinant can
compute inversions, and thus also multiplications (see the proof of Claim 6.2), again the Composition
Theorem cannot be directly applied because the reduction from matrix multiplication to determinant
makes too many oracle calls. Moreover, the “amplified” reduction from inversion to determinant won’t
help because it itself uses a matrix multiplication oracle.

To overcome these obstacles, observe that one can replace the matrix multiplication oracle with a
vector-sum oracle while maintaining constant depth (computing all the entries of a matrix multiplication
in parallel). The vector-sum function over F' has a constant depth tester and corrector (similar to
the tester and corrector for the parity function in Lemma 4.9 and the matriz-row-sums tester and
corrector in the proof of Claim 6.1). Moreover, there is a one-to-one NC? reduction from vector-sum

34

to determinant. The reduction on a vector ¥ = (1, z2,...,T,) proceeds as follows:

rKA —T2 I3 ... —1n-L. Ty \
1 1 0
0 1 1 0

z”: x; = det
i=1

\60...1 |)

Applying the Composition Theorem (Theorem 3.7), we get a constant-depth tester and corrector
for matrix determinant without any additional oracle gates.
O

O

6.5 Matrix Rank

A tester and corrector for matrix rank were given by [BLR93]. They used a library with matrix-
multiplication and matrix-inversion functions. In this section, we eliminate the need for a library,
using the Composition Theorem to give a standard constant-depth tester and corrector for matrix
rank over fields of polynomial size (we do note, however, that the number of parallel calls to the rank
program oracle made by our tester and corrector is larger than in the library tester and corrector of
[BLRY3]).

Lemma 6.9. The matriz rank function over a prime field F of polynomial size (in the dimension of
the matriz), has an AC® tester and corrector.

Proof. The corrector (Figure 9) and tester (Figure 10) are similar to the ones given by [BLR93], but
they are presented as if they have access to (always correct) matrix multiplication and matrix inversion
oracles . We follow the notation of [BLR93], using I}, to denote the n x n matrix that is all zero,
except for r 1’s in the first r entries of the main diagonal.

We use P to denote the matrix rank program being checked, and Mult and Inv to denote the
(always correct) matrix multiplication and inversion oracles (respectively). The behavior of the tester
and corrector is analyzed on the distribution on 2n X 2n matrices generated by uniformly choosing a
random rank 7 in {0...2n} and then generating a random 2n X 2n matrix of rank r.

Corrector Analysis: The analysis follows that of [BLR93]. The matrix A; (of size 2n x 2n) is of
rank rank(A) + ¢, and thus A3 = Q x A; X R is a random matrix of rank rank(A) + ¢. This fact is
stated in the following claim:

Claim 6.10. Let A be a 2n x 2n matriz of rank r, and let R, Q be random invertible matrices of size
2n x 2n, where all matrices are over F. Then the matriz Q@ X A X R is a random uniformly distributed
matriz of rank r over F.

Proof. There is a bijection from the set of pairs of invertible matrices that take any A to I, to the set
that takes I, to itself.
O

Tester Analysis: The analysis follows that of [BLR93]. The matrix A; (of size 2n x 2n) is of rank
r, and thus A3 = R~! x A; x R is a random matrix of rank r. The tester tests whether the program
correctly computes ranks for a random matrices of randomly selected rank.

35

MATRIX RANK CORRECTOR(A,[)

1. Repeat O(log(1/3)) times in parallel:

(a) Use Random — Invertible(2n,O(f)) to generate two random 2n X 2n invertible
matrices R and Q. If Random — Invertible returns 1, the answer from this
iteration is L.

(b) Choose a random ¢t € {0...n}

A
(c) A « Onxn
Onxn In><n

(d) A2 — Mult(Al, R)
(e) A3+ Mult(Q, As2)
(f) The answer from this iteration is P(As) — ¢

2. Output the majority among the answers for all iterations.

Figure 9: Matrix Rank Corrector

MATRIX RANK TESTER(S)

1. Repeat O(log(1/8)) times in parallel:

(a) Use Random — Invertible(2n,O(f)) to generate two random 2n x 2n invertible
matrices R and Q. If Random — Invertible returns 1, the answer from this
iteration is 0.

Choose a random r € {0...2n}

Ay I§n><2n

Ag < Mult(A1, R)

(e) Az <+ Mult(Q, A2)

(f) If P(A3) = r the the answer from this iteration is 1, otherwise the answer is 0.

1

2. If the fraction of 0-answers is at most 55,

then accept. Otherwise reject.

Figure 10: Matrix Rank Tester

Composing the Tester and Corrector: First, note that the (perfect) matrix multiplication and
inversion oracles that the tester and corrector use can both be replaced by a (perfect) oracle to determi-
nant, while maintaining the (constant) depth of the tester and corrector.!® We now use the Composition
Theorem (Theorem 3.7), to construct a constant-depth tester and corrector in the standard sense (i.e.
without oracle gates). To do this, we need to show that the conditions of the theorem hold when the
external function is matrix rank, and the internal function is matrix determinant. Condition 2 (the
internal function “helps” test/correct the external function) is satisfied by the construction of a tester
and corrector we just presented. Condition 3 (testability and correctability of the internal language)
is satisfied by the constant-depth tester and corrector for matrix determinant given in Claim 6.4.
Condition 1 (hardness of the external language for the internal language) requires more work, and

18Recall that the matrix rank tester and corrector work for fields of polynomial size, and thus multiplication and division
of field elements can be done in ACC.

36

in fact we only know of a reduction from determinant to rank for fields of polynomial size (polynomial
in the matrix size n). The reduction uses the fact that computing whether the determinant of a matrix
over F = GF(k) (for a prime k) is equal to some value a or not is in the complexity class mody — L
(see e.g. [BDHMO1]). Furthermore, any boolean mody — L computation on a polynomial size input
can be transformed (in NC?) into a polynomial size n¢ x n¢ matrix whose rank is full if and only if the
the result of the computation is 1. This leads to a reduction from matrix determinant to matrix rank
over GF(k). For a matrix A:

1. For a <~ 0...k — 1, do the following in parallel:

Construct the matrix D, whose rank is full if and only if the determinant of A equals a. Use the
matrix rank oracle to determine whether the rank of D, is full.

2. Return the a for which the determinant of D, was non-zero.

Note that while this reduction is constant depth, its size and number of oracle calls are polynomial
in the field size k. For small constant field sizes the reduction makes a constant number of oracle
queries, and we can immediately use the Composition Theorem to obtain a constant-depth tester and
corrector for matrix rank with constant distance parameters. For polynomial field sizes, however, the
reduction makes a polynomial number of oracle calls and the distance parameters become polynomially
small (as was the case when composing the matrix determinant tester and corrector). However, as was
the case for matrix determinant, we can again do better by “amplifying” the reduction.

Claim 6.11. For any € > 0, there exists a constant depth (e, é)—reduction from matriz determinant
of n X n matrices on any distribution, to matriz rank on the distribution on n® x n® matrices obtained
by choosing at random a rank r between 0 and n€, and then generating a random matriz of that rank.
The reduction uses an oracle for matrixz multiplication.

Proof. [Sketch] The problem again with the basic reduction outlined above is that even if the program
oracle for matrix rank is reasonably good on average (i.e. a constant distance from perfectly correct),
it could always be bad for at least one of the matrices D, used in the reduction, and the reduction
would fail with very high probability. To overcome this difficulty (using only an oracle for matrix
multiplication), we amplify the success probability in each computation of rank(D,). This is done,
similarly to the amplified reduction from inversion to determinant of Claim 6.6, using the matrix rank
corrector. The amplified reduction computes the rank of each D, by running the corrector, using two
completely random matrices R and @ (this is because unlike the corrector outlined above, we cannot
assume the reduction has access to Random — Invertible). If R and @ were random invertible matrices,
then after taking the majority of many such calls, the reduction computes the rank of a correctly with all
but polynomially small error probability. But now observe that if the field size is at least large enough
constant (recall that for small constant size fields we can directly apply the composition theorem with
the “simple” unamplified reduction), then with very high probability the random matrices R and Q
are, in fact, invertible! The computation of each D,’s rank is successful with all but polynomially small
probability, and the computation of A’s determinant is correct w.h.p. Thus, if the rank program is a
small enough (constant) distance from being correct, then the amplified reduction succeeds with all
but an arbitrarily (polynomially) small error probability. The reduction computes the determinant of

any matrix correctly with high probability, and thus it works for any distribution on matrices.
O

Applying the Composition Theorem, this gives a constant-depth tester and corrector for matrix
rank using matrix multiplication oracles .

Corollary 6.12. The matriz rank function over prime fields of polynomial size has an AC° tester and
corrector with a matriz multiplication oracle .

Proposition 6.13. The matriz rank function over prime fields of polynomial size has an ACC tester
and corrector (ones that do not use any non standard oracle calls).

37

By Corollary 6.12 we get a constant depth tester and corrector that use an oracle for matrix
multiplication. Again, the matrix multiplication oracles are easily replaced by vector-sum oracles
(maintaining constant depth, as in Proposition 6.8). Furthermore, these vector-sum oracles can be
replaced (while maintaining constant depth) by oracles to the (boolean) wvector-sum-equal function.
This function, on input a vector ¥ = (v1,...,v,) and a field element a, outputs 1 if the sum of ¥’s
entries is exactly a. To replace a vector-sum oracle with an oracle to wvector-sum-equal, simply call
vector-sum-equal (in parallel) with all possible values a, and output the one correct a for which vector-
sum-equal’s output is 1. The number of calls to to vector-sum-equal required to replace each vector-sum
oracle is linear in the field size (and thus polynomial in n).

We now apply the Composition Theorem with vector-sum-equal as the internal function and matrix
rank as the external function. Condition 2 (the internal function “helps” test/correct the external
function) is satisfied by the construction above.

Condition 1 (hardness of the external language for the internal language) is satisfied by the following
(constant depth) reduction. For a vector ¥ = (v1,...,v,) and a field element a (in GF(k)), construct
the (n 4 1) x (n + 1) matrix M7 as follows:

10 U1

010 0 v
M7 =

000 ... 1 vy

111 ... 1 a

It is not hard to verify that the rank of M7 is not full if and only if the sum of ¥s entries is a.

Condition 3 (testability and correctability of the internal language) is satisfied by the construction
of a constant-depth tester and corrector for the vector-sum-equal function. The construction is omitted
from this version. Applying the Composition Theorem results in a (standard) constant-depth tester
and corrector for matrix rank.

O

7 Acknowledgements

We thank Salil Vadhan for many valuable conversations and for his astute comments on the manuscript,
Ronitt Rubinfeld for her support and insightful comments, and Swastik Kopparty for helpful conver-
sations.

References

[ABO84] Miklés Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computation.
In Proceedings of the 16th Annual ACM Symposium on Theory of Computing, pages 471—
474, 1984.

[ATK04] B. Applebaum, Y. Ishai, and E. Kushilevitz. Cryptography in NC°. SIAM Journal on
Computing, 2004. To appear. Preliminary version in FOCS 2004.

[Bab87] L. Babai. Random oracles separate PSPACE from the polynomial-time hierarchy. Infor-
mation Processing Letters, 26(1):51-53, 1987.

[Bar89] D.M. Barrington. Bounded-width polynomial-size branching programs recognize exactly
those languages in NC'. Journal of Computer and System Sciences, 38(1):150-164, 1989.

[BDHM91] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph Meinel. Structure
and importance of logspace-MOD-classes. In Symposium on Theoretical Aspects of Com-
puter Science, pages 360-371, 1991.

38

[BFLI0] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. In Proceedings of the 31st Annual IEEE Symposium on Foundations
of Computer Science, pages 16-25, 1990.

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work. Journal
of the ACM, 42(1):269-291, 1995.

[BLR93| Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. Journal of Computer and System Sciences, 47(3):549-595,
1993.

[BOCLRO04] Michael Ben-Or, Don Coppersmith, Michael Luby, and Ronitt Rubinfeld. Non-abelian
homomorphism testing, and distributions close to their self-convolutions. In Proceedings
of APPROX-RANDOM, pages 273-285, 2004.

[CW8T] D. Coppersmith and S. Winograd. Matrix muliplication via arithmetic progressions. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing, pages 1-6,
1987.

[FKN94| U. Feige, J. Kilian, and M. Naor. A minimal model for secure computation. In Proceedings

of the 26th Annual ACM Symposium on Theory of Computing, pages 554-563, 1994.

[Fre79] R. Freivalds. Fast probablistic algorithms. Springer Verlag Lecture Notes in CS, Mathe-
matical Foundations of CS, 74:57—69, 1979.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. Mathematical Systems Theory, 17(1):13-27, April 1984.

[GGH*07] Shafi Goldwasser, Dan Gutfreund, Alexander Healy, Tali Kaufman, and Guy Rothblum.
Verifying and decoding in constant depth. 2007. To appear.

[IK02] Y. Ishai and E. Kushilevitz. Perfect constant-round secure computation via perfect ran-
domizing polynomials. In In proceedins of 29th ICALP, pages 244-256, 2002.

[Kil88] J. Kilian. Founding cryptography on oblivious transfer. In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, pages 20-31, 1988.

[LFKN92] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM, 39(4):859-868, 1992.

[Lip91] R. Lipton. New directions in testing. Proceedings of DIMACS workshop on distributed
computing and cryptography, 2:191-202, 1991.

[Ran93] D. Randall. Effcient random generation of nonsingular matrices. Random Structures and
Algorithms, 4(1):111-118, 1993.

[Rub96] R. Rubinfeld. Designing checkers for programs that run in parallel. Algorithmica,
15(4):287-301, 1996.

[Sha90] A. Shamir. IP = PSPACE. In Proceedings of the 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 11-15, 1990.

[Vol99] Heribert Vollmer. Introduction to circuit complezxity. Springer-Verlag, Berlin, 1999.

[WB97] Hal Wasserman and Manuel Blum. Software reliability via run-time result-checking. Jour-

nal of the ACM, 44(6):826-849, 1997.

39

ECCC ISSN 1433-8092

http://eccc.hpi-web.de/

