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Abstract

The Earth Mover Distance (EMD) between two equal-size sets of points in Rd is defined to be the
minimum cost of a bipartite matching between the two pointsets. It is a natural metric for comparing
sets of features, and as such, it has received significant interest in computer vision. Motivated by recent
developments in that area, we address computational problems involving EMD over high-dimensional
pointsets.

A natural approach is to embed the EMD metric into `1, and use the algorithms designed for the
latter space. However, Khot and Naor [KN05] show that any embedding of EMD over the d-dimensional
Hamming cube into `1 must incur a distortion Ω(d), thus practically losing all distance information. We
circumvent this roadblock by focusing on sets with cardinalities upper-bounded by a parameter s, and
achieve a distortion of only O(log s · log d). Since in applications the feature sets have bounded size,
the resulting distortion is much smaller than the Ω(d) lower bound. Our approach is quite general and
easily extends to EMD over Rd.

We then provide a strong lower bound on the multi-round communication complexity of estimating
EMD, which in particular strengthens the known non-embeddability result of [KN05]. Our bound ex-
hibits a smooth tradeoff between approximation and communication, and for example implies that every
algorithm that estimates EMD using constant size sketches can only achieve Ω(log s) approximation.

1 Introduction

The Earth Mover Distance (EMD) between two sets of points in Rd of equal sizes (say, s) is defined to
be the cost of the minimum cost bipartite matching between the two pointsets. It is a natural metric for
comparing sets of geometric features of objects. For example, an image can be represented as a set of pixels
in a color space; computing EMD between such sets yields an accurate measure of dissimilarity between
color characteristics of the images [RTG00]. In an analogous manner, an image can be represented as a
set of representative geometric features, such as object contours [GD04] and other features [GD05a].

Starting with the work of [RTG00], the EMD metric has received significant interest in computer vision.
Unfortunately, the computational properties of EMD are not very good. The best exact algorithm known
for computing EMD between two feature sets, even low-dimensional ones, has cubic running time [Law76]1.
Furthermore, in many applications, one needs to select one feature set out of a large collection of sets (e.g.,

∗Most of the work was done while the author was visiting IBM Almaden Research Center.
1Faster, but still super-quadratic algorithms, are known for the case of d = 2. Better running times are achievable by

approximation algorithms, cf. [Ind07a] and references therein.
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the one closest to a given query set), which requires a number of EMD computations that is linear in the
size of the collection. This approach is clearly not scalable to large data sets, which can easily contain
millions of feature sets.

This computational bottleneck motivates the need for faster algorithms dealing with the EMD metric.
A particularly versatile approach to this problem is through metric embeddings. In this approach, each
feature set is mapped to a vector in a normed space (say `1), such that the distance between sets is
well-approximated by the distance between the corresponding vectors (the approximation factor is called
the distortion of the embedding). After performing the mapping, the distances can be estimated simply
by computing the distances between the vectors. Analogously, the nearest neighbor problem over EMD
space can be solved by using efficient algorithms developed for the vector space, such as kd-trees or other
methods [KOR98, IM98].

It is shown in [Cha02, IT03] that if the feature sets are subsets of [∆]d, then one can obtain an embedding
into `1 with O(d log ∆) distortion and furthermore the running time of computing the embedding of a given
feature set is near-linear in the set size. Despite non-constant distortion bounds, the embeddings are still
quite accurate [IT03, GD04, GD05a, CLL04, CLJ+06, GD06a], especially for low values of d such as 2 or 3.
The geometric representation of the EMD space which they provide turns out to be very useful for other
reasons as well. For example, it has been used to design Mercer kernels, useful for supervised classification
of the images [GD05b] and unsupervised learning [GD06b]. Also, the algorithmic techniques have led to
efficient algorithms for computing EMD without performing the actual embedding. E.g., [Ind07a], building
on the work of [AV04], gave an s logO(1) s time constant factor approximation algorithm for computing
EMD between low-dimensional pointsets.

Choice of Norm. Throughout the paper, we assume that distances in Rd are measured using to the `1-
norm. This norm is often more convenient than the `2-norm (at least in the context of theoretical analysis
of EMD). Our results can generally be adapted to the `2-norm (using e.g. a constant distortion embedding

of `d2 into `
O(d)
1 , see [Ind07b] for a recent account of such embeddings, or using a trivial embedding with

distortion
√
d), but we will not discuss such extensions in this version of the paper. It should be noted

however that some of the experimental results we mentioned, including [RTG00] and [GD05b], actually
use the `2-norm.

High-Dimension. We focus on the case of high dimension d, which is also important in practice. For
instance, in [GD06a] the image recognition rate was studied for dimension d in the range [8, 128] and
set-size s = 256. The previously mentioned embeddings of [Cha02, IT03, GD05b] suffer (both in theory
and in practice [GD06a]) from a high approximation error when the dimension is ”too large”. Recently,
a different method for embedding EMD over high-dimensional spaces was introduced [GD06a]; although
achieving much lower empirical error, this method is heuristic and has no guarantees. In fact, it is known
[KN05] that every embedding of EMD over a d-dimensional Hamming cube into `1 requires Ω(d) distortion.
However, the lower bound is shown only for rather large subsets of the Hamming space, namely of size
exponential in d, leaving open the possibility of designing much more accurate embeddings for sets of more
moderate size s = s(d), with distortion bound parametrized by (and growing slowly with) s. For example,
an embedding that has low distortion when s is polynomial in d may be useful in practice for sets with a
few hundreds or thousands of points.

Results I: Improved Embeddings. We prove that EMD metric over s-subsets of the d-dimensional
Hamming cube {0, 1}d can be embedded into `1 with distortion O(log s·log d). Since an Ω(log s) lower bound
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on the distortion follows immediately from the aforementioned result of [KN05], our upper bound is within
O(log d) of optimal. The embedding naturally extends to EMD over s-subsets of [∆]d, achieving distortion
bound O(log s · log(d∆)). Since many metrics (e.g., variants of edit distance [MS00, CM02, OR05, CK06])
can be embedded with bounded distortion into `1 with small integer coordinates, our result implies that
EMD over s-subsets of such metrics can be embedded into `1 as well. As hinted earlier, the standard
applications of these embeddings include a fast estimate of EMD distance and algorithms for nearest
neighbor problem over EMD space. These embedding results are presented in Section 3.

Although our embedding into `1 attains a near-optimal distortion, one might ask whether metric
embedding (into `1 and in general) is the best algorithmic technique for dealing with EMD over high-
dimensional spaces. To answer this question, we provide a strong communication lower bound that goes
beyond the usual embedding lower bound. In particular, it strengthens and immediately implies the known
non-embeddability result of [KN05].

Distance Estimation. The problem of estimating EMD in the sketching model is defined as follows:
given s-subsets of {0, 1}d, preprocess each subset separately into a short representation called a sketch,
so that the EMD distance between two subsets can be approximated only from their sketches. (The
preprocessing may use shared randomness, but the approximation should succeed with probability at least
2/3 over these random coins.) Solving this problem could lead to very fast approximation of EMD distance,
since the second step of using the sketches to compute the approximation often runs in time that is linear
in the sketch size. For example, it is known that estimating `1 distance in the sketching model (defined
analogously to EMD) can be solved with 1 + ε approximation (in the sense of a relaxed decision problem)
using sketches of size O(1/ε2), for every ε > 0 [KOR98]. Another application of an estimation algorithm
that uses small sketches could be as a filtering method for the nearest neighbor problem (i.e. the EMD
distance between a query and each item in a data set could be estimated quickly from their sketches,
avoiding many accurate but elaborate computations).

Results II: Communication Lower Bounds. We prove that a sketch of constant size can only yield
Ω(d) approximation; in terms of s, a lower bound of Ω(log s) follows immediately. Let us compare this
result to non-embeddability into `1. Observe that a distortion D embedding of the EMD metric into `1
could be composed with the aforementioned estimate for `1 distance, yielding an EMD estimation with 2D
approximation using constant-size sketches. We conclude that D = Ω(d), recovering the result of [KN05].
But these same arguments give a similar conclusion for embeddings into `2-squared (negative type) metrics,
which strictly includes `1. We thus see that, in general, lower bounds for the sketching model are much
stronger than non-embeddability into `1.

Our impossibility result for the sketching model is shown in the well-known framework of communication
complexity and is actually more general—it pertains to multi-round communication complexity (see Section
2.2 for a review of standard terminology): Alice and Bob are two players that have access to shared
randomness; upon receiving s-subsets A and B, respectively, as their inputs, they wish to determine, by
exchanging messages, whether EMD(A,B) ≤ r or EMD ≥ αr, for some threshold r > 0 and approximation
ratio α > 1. Our main result says that in order to succeed with constant probability, the two parties must
exchange a total of Ω( dα ) bits. This bound is optimal for α = Ω(d), since d approximation is trivial using
O(1) bits. This communication lower bound appears in Section 4.

Techniques. A (somewhat simplified) overview of our embedding is as follows. First, we use dimen-
sionality reduction techniques in `d1 to reduce the dimension of the underlying space to, say, O(log s); this
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step is implemented by a randomized map that, with high probability, preserves up to a small approxi-
mation factor all pairwise distances in a set of 2s points. The second step is an embedding of EMD over
low-dimensional spaces [CCG+98], which incurs distortion linear in the dimension. In general, dimension
reduction in `1 requires a large distortion [BC03, LN04]; but for our purposes, it essentially suffices to ob-
tain a randomized mapping from [∆]d into a weighted Hamming cube of dimension O(log(d∆)) (a subset

of `
O(log(d∆))
1 ) that with probability at least 1 − 1/s2 distorts the distance between a pair of points by at

most O(log s · log ∆). Furthermore, due to our particular weighting of the Hamming cube, we can embed
EMD over this weighted cube into `1 with only constant distortion.

For the lower bound on the total communication between Alice and Bob, we first prove that it suffices
to analyze very restricted protocols, where Alice sends only one bit to Bob. These protocols clearly
correspond to boolean functions over {0, 1}d, and can be analyzed directly using the powerful approach of
Fourier analysis, employing in particular (but not only) the technique developed in [KN05]. We show that
every such restricted protocol succeeds with a tiny probability, implying the desired lower bound on the
communication complexity of general protocols. To the best of our knowledge, the only other metric for
which a super-constant non-approximability in communication protocols is known is the `∞ metric (and
the metrics embeddable into it with sufficiently small distortion, such as `p for p > 2) [SS02, BYJKS04].

2 Preliminaries

We define the Earthmover distance over a general metric as follows.

Definition 2.1. Consider a metric space X endowed with distance function dX . Then, for two multi-sets
A,B ⊂ X, of size s = |A| = |B|, the earthmover distance (EMD) between A and B is defined as

EMDX(A,B) =
1

s
min
φ:A→B

∑

x∈A

dX(x, φ(x))

where the minimum is taken over all bijections φ : A→ B. The resulting metric is called EMD over X.

When the metric X is `1, we will omit the substript and simply write EMD(A,B) = EMD`1(A,B) =
1
s minφ:A→B

∑
x∈A ‖x− φ(x)‖1.

2.1 Notation

We use lg x to denote logarithm in base 2, and denote [∆] = {1, 2, . . .∆}. For a finite alphabet Σ and
x, y ∈ Σ, we defineH(x, y) = 1 if x 6= y and H(x, y) = 0 if x = y. For a distribution µ on (x, y), its marginal
distributions are called µx, µy. Let Supp(µ) denote the support of µ. For two vectors x, y ∈ {0, 1}d, let
x+ y ∈ {0, 1}d be the component-wise sum modulo 2.

2.2 Communication Complexity of Protocols and Sketching

Consider a (partial) function F (x, y) : D → {0, 1}, where D ⊆ X × Y; we view this function as a commu-
nication problem, where Alice gets x ∈ X , Bob gets y ∈ Y and they want to compute F (x, y) (given that
(x, y) ∈ D). To compute F (x, y), Alice and Bob exchange some messages in rounds, where in each round
one player sends exactly one message to the other player. At the end, Bob outputs the result. We call
communication protocol Π one such procedure by which Alice and Bob compute the messages and their
output. The protocol is valid if protocol’s output is equal to F (x, y) for all (x, y) ∈ D.
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The protocol is randomized if Alice and Bob have access to a shared infinite random string. If the
protocol is randomized, then a valid protocol has to output F (x, y) with probability at least 2/3 for all
(x, y) ∈ D.

The communication complexity of a protocol Π is the maximum total length of the exchanged messages;
we denote the communication complexity of Π by |Π|. Finally, the communication complexity of a problem
F , denoted R(F ), is the minimum communication complexity of a valid (randomized) protocol for the
problem F .

We also define the sketch size of a problem F : D → {0, 1}, D ⊆ X × Y. In a sketching scenario,
Alice and Bob independently send some l bits to a common referee, who ultimately decides the output
of the function. Formally, sketch size of F is the minimum l such that there exist a distribution ΠS over
functions sA : X → {0, 1}l, sB : Y → {0, 1}l, and output function φref : {0, 1}l × {0, 1}l → {0, 1}, such
that φref (sA(x), sB(y)) = F (x, y) for every (x, y) ∈ D with probability at least 2/3 (over the choice of
(sA, sB , φref ) according to ΠS). We denote by S(F ) the sketch size of the problem F .

It is immediate to check that S(F ) ≥ R(F ): since, for a communication protocol, Alice only needs to
send l bits representing sA(x) to Bob, and Bob can locally compute φref (sA(x), sB(y)). Thus, for proving
lower bounds on S(F ), it is sufficient to prove lower bounds on R(F ).

2.3 Fourier Analysis over {0, 1}d

We review basic properties of Fourier analysis over {0, 1}d. The set of functions f : {0, 1}n → R is a vector
space of dimension 2n in which the inner product between two elements f and g is defined as

〈f, g〉 = Ex [f(x) · g(x)] =
1

2d

∑

x∈{0,1}d

f(x)g(x).

For a set S ⊆ [d], define the character χS : {0, 1}d → {−1, 1} as χS(x) = (−1)
P

i∈S xi . The set of all
characters {χS : S ⊆ [d]} forms an orthonormal basis for the vector space. This implies that every function
f : {0, 1}d → R can be expanded uniquely as f(x) =

∑
S⊆[d] f̂(S)χS(x) where f̂(S) = 〈f, χS(x)〉 is the

Fourier coefficient of f with respect to set S. Moreover, for two functions f, g : {0, 1}d → R, we have that
〈f, g〉 =

∑
S⊆[d] f̂S ĝS .

The notation Nε stands for the random noise vector. Specifically, Nε ∈ {0, 1}d is a vector of d random
independent boolean values, each equal to one with probability 1/2 − ε/2.

We will make use of the noise operator Tε (also called Bonami-Beckner operator), which, for a function
f : {0, 1}d → R is defined as (Tεf)(x) = ENε [f(x+Nε)]. A standard fact about this operator states that,

for every set S ⊆ [d], (̂Tεf)S = f̂Sε
|S|.

3 Upper bound

We will first prove the main theorem of this section. We will then present the algorithmic implications of
the theorem. Our main theorem concerns embedding EMD over grids [∆]d into `1.

Theorem 3.1. For any d,∆ ≥ 1, one can construct a randomized embedding ψ of EMD over [∆]d into `1
such that, for every two multi-sets A,B ⊆ [∆]d, of size s = |A| = |B|, we have that

1. Eψ [‖ψ(A) − ψ(B)‖1] ≤ O(log(d∆)) · EMD(A,B),
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2. With probability at least 1 − 1/s, we have:

‖ψ(A) − ψ(B)‖1 ≥ Ω

(
1

log s

)
· EMD(A,B).

In addition, for a given multi-set A of size s, ψ(A) is computable in O(sd logO(1)(sd∆)) time, and ψ(A)
is a sparse vector having only O(s log(d∆)) non-zero coordinates.

The proof proceeds in two stages. First we show an embedding of [∆]d into a weighted Hamming metric
Hw. Then we show that EMD over Hw is O(1)-embeddable into `1.

Formally, we define a k-dimensional metric Hk
w as follows. Fix some alphabet Σ. Then the metric Hk

w

is over strings in Σk, and the distance between x, y ∈ Σk is defined as Hw(x, y) =
∑k

i=1 2i ·H(xi, yi). It is
easy to verify that Hk

w satisfies the axioms of a metric. We will denote Hw(x, y) the distance function of
the metric Hk

w.
The following two lemmas correspond to the two stages of the proof.

Lemma 3.2. There exists a probabilistic embedding ρ : [∆]d → Hk
w, for k = lg(d∆)+ 1 such that for every

x, y ∈ [∆]d, it holds that

1. Eρ [Hw(ρ(x), ρ(y))] ≤ 2k · ‖x− y‖1

2. For all δ > 0, we have: Pr
[
Hw(ρ(x), ρ(y)) ≥ Ω( 1

log 1/δ ) · ‖x− y‖1

]
≥ 1 − δ.

Proof. The embedding ρ is into Hk
w over alphabet Σ = {0, 1, . . .∆}d. Each coordinate of ρ(x) is a hash of

x into Σ. Impose a randomly shifted cubic grid with cell side length 2t on the space [∆]d. Then the point
x is hashed into the cell containing x. Formally, for t ≥ 1, define a hash function on x = (x1, x2, . . . , xd) to
be

ht(x) ,

(⌊
x1 + u1

2t

⌋
,

⌊
x2 + u2

2t

⌋
, . . .

⌊
xd + ud

2t

⌋)
(1)

where each u1, u2, . . . ud is chosen uniformly at random from [2t]. It is easy to verify that, for every
x, y ∈ [∆]d,

1 − ‖x− y‖1

2t
≤ Pr

ht

[ht(x) = ht(y)] ≤ e−‖x−y‖1/2t

.

Thus, we have that

Eht
[H(ht(x), ht(y))] ≤ 1 −

(
1 − ‖x− y‖1

2t

)
=

‖x− y‖1

2t
. (2)

Also, for ‖x− y‖1 ≥ Ω(2t log 1/δ),

Pr
ht

[H(ht(x), ht(y)) = 1] ≥ 1 − e−‖x−y‖1/2t ≥ 1 − δ. (3)

Finally, we define ρ as follows:
ρ , (id, h1, h2, h3, . . . , hk−1)

where id is the identity function id(x) = x, and ht, t = 1 . . . k − 1, are chosen randomly as explained
above.
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Now, to prove property (1) of lemma, note that, by Eqn. (2),

Eρ [Hw(ρ(x), ρ(y))] = Eρ

[
2H(x, y) +

k−1∑

t=1

2t+1H(ht(x), ht(y))

]
≤ 2‖x−y‖1+(k−1)·2‖x−y‖1 ≤ 2k·‖x−y‖1.

For property (2) of the lemma, note that, by Eqn. (3), for ‖x − y‖1 ≥ Ω(log 1/δ), with probability at
least 1 − δ,

Hw(ρ(x), ρ(y)) = 2H(x, y) +
k−1∑

t=1

2t+1H(ht(x), ht(y)) ≥ min

{
d∆,

‖x− y‖1

O(log 1/δ)

}
≥ ‖x− y‖1

O(log 1/δ)
.

Also, for ‖x− y‖1 ≤ O(log 1/δ), ρ(x) and ρ(y) differ in the first coordinate and thus

‖ρ(x) − ρ(y)‖1 ≥ 2 ≥ ‖x− y‖1

O(log 1/δ)
.

Lemma 3.3. For any k > 0, EMD over Hk
w is embeddable into `1 with distortion O(1).

Proof. Suppose the metric Hk
w is over some alphabet Σ. The embedding results from the following two

steps:

1. The metric Hk
w embeds into a tree metric with distortion 2 as follows. For x = (x1, . . . xk) ∈ Σk, let

R(x) , (xk, xk−1, . . . x1) be the reverse of x. Then take the tree metric to be the trie on all R(x),
x in Hk

w, with the corresponding weights: edges at the first level are weighted by 2k, edges at the
second level are weighted by 2k−1, etc. Note that all points in Hk

w correspond to leaves of the tree.
We call the resulting tree metric T .

Now, for any x, y from Hk
w, we have that T (x, y) = maxxi 6=yi,i∈[k]

∑i
j=1 2j = maxxi 6=yi,i∈[k] 2

i+1 − 1,

which is a 2-approximation to Hw(x, y) =
∑k

i=1 2iH(xi, yi).

2. EMD over a tree metric T is O(1)-embeddable into `1 (cf. [Cha02]).

We are now ready to prove the theorem.

Proof of theorem 3.1. We construct a randomized embedding ψ by composing the embeddings from Lemma 3.2,
and Lemma 3.3. Let ρ be the embedding from Lemma 3.2, and µ be the embedding from Lemma 3.3.
Then define ψ(A) , µ(ρ(A)), where ρ(A) , {ρ(x) | x ∈ A}. We use Lemma 3.2 for δ = 1/s3. Since there
are only s2 pairs (x, y) ∈ A×B, by union bound, with probability at least 1− 1/s, all pairs (x, y) ∈ A×B

satisfy Hw(ρ(x), ρ(y)) ≥ Ω
(

1
log s

)
· ‖x − y‖1. Also, Eρ [Hw(ρ(x), ρ(y))] ≤ O(log(d∆)) · ‖x − y‖1 for all

x, y ∈ A×B.
Then, Lemma 3.3 implies that

1. Eρ [‖ψ(A) − ψ(B)‖1] ≤ Eρ

[
O(1) ·EMDHk

w
(ρ(A), ρ(B))

]
≤ O(log(d∆)) · EMD(A,B),
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2. With probability at least 1 − 1/s,

‖ψ(A) − ψ(B)‖1 ≥ Ω(1) ·EMDHk
w
(ρ(A), ρ(B)) ≥ Ω

(
1

log s

)
· EMD(A,B).

Note that we can compute ρ(A) in O(sd log(d∆)) time. Also, the embedding ψ(a) = µ(ρ(A)) can
be computed in O(sd logO(1)(sd(d∆))) time. The embedding of [Cha02] of EMD over the tree metric T
yields a vector in `1 that has at most O(s log(d∆)) non-zero coordinates. Thus, ψ(A) is computable in
O(sd logO(1)(sd∆)) time and has O(s log(d∆)) non-zero coordinates.

The above theorem has several further implications. First implication is a low distortion embedding of
EMD over [∆]d into `1.

Corollary 3.4. Let d,∆ ≥ 1. Then there exist an embedding ψ of EMD over [∆]d into `1 for sets of size
s that achieves distortion O(log s · log(d∆)).

Proof. We can derandomize the embedding of the above theorem by simply listing all possible (randomized)
embeddings ψ (each occupying a new set of coordinates).

We also obtain an efficient algorithm for approximating EMD between two sets A,B ⊆ [∆]d of size s.

Corollary 3.5. Let d,∆ ≥ 1. For any two set A,B ⊆ [∆]d of size s, we can compute EMD(A,B) up to
approximation O(log s · log(d∆)) in O(sd logO(1)(sd∆)) time.

Finally, together with the algorithm of, e.g., [Pan06], we obtain an efficient nearest neighbor data
structure for approximation O(log s · log(d∆)).

Corollary 3.6. Let d,∆ ≥ 1. Then, for any constant ε > 0, there exist an O(log s · log(d∆))-approximate
nearest neighbor data structure for EMD over [∆]d that achieves Õ(ns(d log ∆)O(1)) space and Õ(nεs(d log ∆)O(1))
query time.

4 Lower bound

In this section, we prove a lower bound on the communication complexity on the following problem of
estimating EMD over {0, 1}d (see Section 2.2 for the relevant definitions): Alice receives a set A ⊂ {0, 1}d
and Bob receives a set B ⊂ {0, 1}d, where |A| = |B|, and they wish to determine whether EMD(A,B) > R
or EMD(A,B) ≤ R/α for some threshold R and approximation ratio α ≥ 1. This promise problem is
described by the partial function

FR,α(A,B) =

{
1 if EMD(A,B) ≤ R/α,

0 if EMD(A,B) > R.
(4)

The main result of this section is stated in the following theorem.

Theorem 4.1. For every dimension d ≥ 1, and approximation ratio 1 ≤ α ≤ d, there exists R such that
the problem FR,α has communication complexity R(FR,α) ≥ Ω( dα).
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This theorem implies that the sketch size for estimating EMD over {0, 1}d is at least Ω( dα) for any
approximation factor α ≤ d. We note that in this proof, the size of the multisets is s ≤ 2d. Hence, in terms
of s the lower bound is Ω( log s

α ), and it immediately extends to every larger d (and same s).
Before proving Theorem 4.1 we need to introduce a simpler (more restricted) model of communication,

which is easier to analyze. Specifically, we consider protocols where Alice sends exactly one bit to Bob,
and Bob decides on the value of the output. For such protocols, we are interested in the correctness
probability, and more specifically in the advantage of the protocol over a random decision (i.e., difference
between protocol’s success probability and 1/2). The connection to this restricted model is that an efficient
communication protocol for FR,α always implies a 1-bit protocol with a “not too small” advantage (Section
4.1.1). We further show a Fourier-analytic characterization of such 1-bit protocols (Section 4.1.2). We
will then show (Section 4.2) an upper bound on the advantage of any 1-bit protocol for our problem FR,α.
Altogether, this will imply a lower bound on the communication complexity of general communication
protocols for FR,α, proving Theorem 4.1.

4.1 Restricted Communication Protocols

In the sequel, we consider two restricted types of communication protocols. In the first one, one-way
protocols, only Alice can send (once) a message of length l to Bob, and Bob has to decide on the output
using this message. The second type of protocols, LSH protocols2 , is a further restriction of one-way
protocols, where, after receiving Alice’s message f(x), Bob computes some function g(y) of his input, and
outputs 1 iff f(x) = g(y). As before, we will mostly consider a pair of functions (f, g) that is drawn from
some joint distribution (i.e., Alice and Bob use shared randomness).

We proceed to formally define these notions and to establish connections between communication
complexity of (unrestricted) protocols and the success probability of 1-bit LSH protocols.

4.1.1 One-way Protocols

As before, F (x, y) : D → {0, 1} is a communication problem, where D ⊆ X × Y.

Definition 4.2. A deterministic one-way l-bit protocol is a pair (A,B) of functions A : X → {0, 1}l and
B : Y × {0, 1}l → {0, 1}. For an input distribution µ over D ⊆ X × Y, we define the success probability of
the protocol (A,B) on µ to be Prµ [B(y,A(x)) = F (x, y)].

Definition 4.3. A randomized one-way l-bit δ-error protocol is a distribution Π over one-way deterministic
l-bit protocols, such that for every input (x, y) ∈ D ⊆ X × Y, with probability at least 1 − δ the chosen
protocol gives a correct answer on the input, namely, PrΠ [B(y,A(x)) = F (x, y)] ≥ 1 − δ.

To measure the efficiency of a one-way randomized l-bit protocol, we use the success probability of the
protocol, and, more specifically, the advantage of the protocol over a random guess. We’ll use the following
notation: AdvOWF (l) is the difference between the maximum success probability of one-way randomized
l-bit protocols and 1/2; i.e., AdvOWF (l) ≥ 1/2 − δ iff there exists some one-way randomized l-bit δ-error
protocol for the problem F . For a distribution µ over (x, y) ∈ (X ,Y), we also define AdvOWF (l, µ) to be
the difference between the maximum success probability of an l-bit deterministic protocol and 1/2.

By Yao’s minimax principle [Yao83], AdvOWF (l) = minµ AdvOWF (l, µ).

2The name comes from protocol’s resemblance to the Locality Sensitive Hashing, a framework used for solving approximate
nearest neighbor problem in high dimensions [IM98]. In particular, for the considered distance estimation problem in a metric,
the LSH protocol is exactly equivalent to some LSH family of hash functions in the same metric.
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We now prove that if the communication complexity of problem F is R(F ) ≤ l, then there exists a
one-way 1-bit protocol for F with advantage AdvOWF (1) ≥ 2−O(l). To this purpose, we prove first that if
there exist a one-way l-bit protocol for F , then AdvOWF (1) ≥ 2−O(l).

Lemma 4.4. For any l > 1, if AdvOWF (l) ≥ ε > 0, then AdvOWF (1) ≥ 2−lε.

Proof. We construct a new randomized protocol with success probability ≥ 1/2 + 2−lε. Fix (x, y) ∈ D.
Let δ = 1/2 − ε, and let Π0 be a one-way randomized l-bit δ-error protocol.

In the new protocol, first pick (A0,B0) according to the distribution Π0. Alice and Bob jointly pick a
random s∗ ∈ {0, 1}l. Let s = A0(x) be the string that Alice would send in the original protocol. If s = s∗,
Alice sends 1, otherwise Alice sends 0. If Bob receives 1, Bob will run the original protocol on string s∗,
i.e., Bob outputs B0(y, s

∗); otherwise Bob outputs a random output 0 or 1.
Next, we compute the probability of success of the new protocol. Let µ(s) be the distribution of

s = A0(x). Also, let η(s) = PrΠ0
[B0(y, s) = F (x, y) | A0(x) = s]. Note that the success probability of the

old protocol Π0 is
∑

s∈{0,1}l µ(s)η(s) ≥ 1 − δ.
The success probability of the new protocol is

∑

s∗∈{0,1}l

2−l
(
µ(s∗)η(s∗) + (1 − µ(s∗)) · 1

2

)
= 2−l

∑

s

µ(s)η(s)+
1

2
(1−2−l) ≥ 2−l(1−δ)+1

2
(1−2−l) =

1

2
+2−lε

Lemma 4.5. If R(F ) ≤ l, then AdvOWF (1) ≥ 2−4l/6.

The idea of the proof is to eliminate round by round inductively. For each round, reduce the number
of communicated bits to one using the previous lemma.

Proof. If R(F ) ≤ l, then there must exist some protocol Π with success probability ≥ 2/3 that is t-round
protocol, where t ≤ 2l + 1 is odd, and Π is an alternating protocol, defined as follows. An alternating
protocol is a protocol where all messages are of length 1 and Alice sends messages in the odd rounds and
Bob in the even rounds.

We prove by induction that for every even i ∈ {0, 2, . . . t− 1}, there exists a (t− i)-rounds alternating
protocol Πi with success probability at least 1

2 + 1
6 · 2−2i. The induction is on i.

For the base case notice that Π0 = Π. Assume the statement for i − 2: Πi−2 is a (t − i + 2)-rounds
alternating protocol with success probability at least 1

2 + 1
62−2(i−2). Construct the protocol Πi as follows.

In the last two rounds from Πi−2, Bob sends a bit to Alice, and then Alice sends a bit to Bob. Note that,
these two rounds could be replaced by a round where Alice just sends two bits: one for each possible bit
coming from Bob. Thus, there exists a (t− i + 1)-rounds protocol Π′ which has first t− i rounds exactly
the same as in Πi−2, and in the (t− i+ 1)th round, Alice sends two bits. Combining round t− i and round
t − i + 1, both with messages from Alice to Bob, we get a (t − i)-rounds protocol Π′′ with same success
probability as Πi−2 and with first t− i− 1 rounds having messages of length 1, and the (t− i)th message
of length 3. Apply Lemma 4.4 to round t − i of Π′′ to obtain a (t − i)-rounds protocol Πi with message
lengths 1 and success probability at least 1

2 + 1
62−2(i−2) · 2−3 > 1

2 + 1
62−3i. Note that Πi is a (t− i)-rounds

alternating protocol.
In the end, Πt−1 is exactly a one-way 1-bit protocol. Since Πt−1 has success probability at least

1
2 + 1

62−2t, we conclude that AdvOWF (1) ≥ 1
62−2t ≥ 2−4l/6.
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4.1.2 LSH Protocols

We further restrict our attention to a particular type of one-way protocols, which we call LSH protocols.
Here, Bob simply computes a function HB(y) : Y → {0, 1}l , compares it to the value HA(x) he receives
from Alice, and outputs 1 iff HA(x) = HB(y). Thus, in terms of a one-way protocol, Alice’s function is
A = HA, and Bob’s function is B(y, z) = χ[z = HB(y)], where χ[α = β] is 1 if α = β and 0 otherwise.

Definition 4.6. A deterministic LSH l-bit protocol is defined to be a pair of functions (HA,HB), where
HA : X → {0, 1}l, HB : Y → {0, 1}l. For a given input distribution µ, define the success probability of
(HA,HB) on µ to be Prµ

[
F (x, y) = χ[HA(x) = HB(y)]

]
.

As before, we define a randomized LSH l-bit δ-error protocol to be a distribution over determinis-
tic protocols, where for every input (x, y) the probability of success is ≥ 1 − δ. For a problem F and
input distribution µ, we also define AdvLSHF (l, µ) (AdvLSHF (l)) to be the analogue of AdvOWF (l, µ)
(AdvOWF (l)) for deterministic (randomized) LSH l-bit protocols. Again, Yao’s minimax principle implies
AdvLSHF (l) = minµ AdvLSHF (l, µ).

Note that AdvLSHF (l, µ) ≤ AdvOWF (l, µ) for any problem F and distribution µ since LSH protocols
are a restriction of one-way protocols. However, when l = 1, we can also show that AdvLSHF (1, µ) =
AdvOWF (1, µ) for a specific type of µ’s.

Lemma 4.7. Let µ be a distribution on (x, y) such that for every y0 ∈ Supp(µy), Prµ[F (x, y) = 0 | y =
y0] = 1/2. Then AdvLSHF (1, µ) = AdvOWF (1, µ).

Proof. Let ε = AdvOWF (1, µ), δ = 1/2 − ε, and let (A,B) be the deterministic protocol realizing the
success probability 1 − δ.

We argue that there exists a one-way protocol (A,B′) with success probability ≥ 1 − δ on µ, where
B′(y, 0) 6= B′(y, 1) for every y ∈ Supp(µy). We construct B′ by taking B and modifying the function on all
y’s for which B(y, 0) = B(y, 1). Let y0 be such that B(y0, 0) = B(y0, 1). Let A0 = A−1(0) ⊆ X and A1 =
A−1(1) ⊆ X . Next, let a = Prµ[A(x) = F (x, y0) | y = y0] and b = 1 − a = Prµ[A(x) 6= F (x, y0) | y = y0].
If a ≤ 1/2 then set B′(y0, 0) = 0 and B′(y0, 1) = 1, and, if b < 1/2, then B′(y0, 0) = 1 and B′(y0, 1) = 0.

Such modification of the protocol for an y0 increases the error by

Prµ[y = y0] · (Pr[B′(y0,A(x)) = F (x, y0) | y = y0] − Pr[B(y0, 0) = F (x, y0) | y = y0])
= Prµ[y = y0] ·

(
min{a, b} − 1

2

)

≤ 0

After doing as above for all y0 where B(y0, 0) = B(y0, 1), take the LSH protocol to be HA(x) , A(x)
and HB(y) , B′(y, 1). Since this LSH protocol has success probability at least 1 − δ, we conclude that
AdvLSHF (1, µ) ≥ AdvOWF (1, µ).

The following lemma gives a Fourier-analytic characterization of the success probability of LSH 1-bit
protocols on input distributions µ of a certain structure. Recall that Nε is a vector of d random independent
boolean values, each equal to one with probability 1/2 − ε/2.

Lemma 4.8. Fix f, g : {0, 1}d → {0, 1}. Let µ0 be the distribution where x, y ∈ {0, 1}d are random and
independent. Let µ1 be the distribution where x ∈ {0, 1}d is random and y = x+Nε. Then

Prµ0
[f(x) = g(y)] + Prµ1

[f(x) 6= g(y)]

2
=

1

2
−

∑

S 6=∅

f̂S ĝSε
|S|

11



Proof. Let pf , Ex [f(x)] = f̂∅ and pg , Ey [g(y)] = ĝ∅. If we set f̄(x) , 1 − f(x), then note that
ˆ̄f∅ = 1 − pf and ˆ̄fS = −f̂S for S 6= ∅ (analogously for g).

We can then write that

Pr
µ0

[f(x) = g(y)] = pf · pg + (1 − pf ) · (1 − pg)

and
Pr
µ1

[f(x) 6= g(y)] = pf Pr
µ1

[g(y) = 0 | f(x) = 1] + (1 − pf ) Pr
µ1

[gy = 1 | f(x) = 0].

If we set a , Prµ1
[g(y) = 0 | f(x) = 1], then we have that

a = Pr
µ1

[ḡ(y) = 1 | f(x) = 1] = 2d · 〈 1

|f−1(1)|Tεf, ḡ〉 =
1

pf

∑

S

f̂S ˆ̄gSε
|S| =

1

pf


pf (1 − gf ) −

∑

S 6=∅

f̂S ĝSε
|S|


 .

Similarly, define b as

b , Pr
µ1

[g(y) = 1 | f(x) = 0] =
1

1 − pf


(1 − pf )gf −

∑

S 6=∅

f̂S ĝSε
|S|


 .

Thus,

Pr
µ0

[f(x) = g(y)] + Pr
µ1

[f(x) 6= g(y)] =

= pfgf + (1 − pf )(1 − gf ) + pfa+ (1 − pf )b

= pfpg + (1 − pf )(1 − pg) + pf (1 − gf ) + (1 − pf )gf − 2
∑

S 6=∅

f̂S ĝSε
|S|

= 1 − 2
∑

S 6=∅

f̂S ĝSε
|S|.

4.2 Analysis of 1-bit Protocols

We are now ready to complete the proof of Theorem 4.1. In fact, we shall give a direct analysis of the
advantage of 1-bit protocols, as stated in the following proposition.

Proposition 4.9. For every dimension d ≥ 1, and approximation ratio 1 ≤ α ≤ d, there exists R, such
that every randomized 1-bit protocol for FR,α has advantage at most 2−Ω(d/α).

By combining this proposition together with Lemma 4.5, we immediately conclude that R(FR,α) =
Ω(d/α), proving Theorem 4.1. It thus remains to prove the proposition. Our proof builds on the techniques
and insights of the non-embeddability result of [KN05]; in particular, we use their code-based distribution
of “hard” inputs, as well as its Fourier-analytic properties.

Proof of Proposition 4.9. We assume that 1 < α ≤ d/200, since for α > d/200 the conclusion is trivial.
Fix R = d/100, and define r = R/2α.
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Fix C ⊂ {0, 1}d to be a linear code with dimension ≥ d/4 and weight ≥ cd, where c is a constant; for
existence of such code, see e.g. [KN05, Corollary 3.5]. For x ∈ {0, 1}d, we denote by Gx the set {x+a}a∈C⊥

(formally, G is the set of isometries fg(x) = x+ g, g ∈ C⊥, and Gx is the orbit of x induced by the group
action G). In the sequel, we will only consider as inputs (for Alice and Bob) sets of the form X = Gx for
some x ∈ {0, 1}d. Notice these sets all have size s = |C⊥| ≤ 23d/4. Furthermore, for all X = Gx, Y = Gy,
and y′ ∈ Y , we have EMD(X,Y ) = minx′∈X ‖x′ − y′‖1 (see e.g. [KN05, Lemma 3.1]).

Recall that Nε is a vector of d random independent boolean values, each equal to one with probability
1/2−ε/2. Let η0 be the uniform distribution over pairs (x, y) ∈ {0, 1}d×{0, 1}d, and let η1 be a distribution
over pairs (x, y) ∈ {0, 1}d × {0, 1}d where x is random and y = x + Nε for ε = 1 − 2r/d. For i ∈ {0, 1},
define µi as the distribution of (Gx,Gy) where (x, y) are picked from ηi. Since not all the pairs (x, y) in
the support of µi satisfy F (x, y) = i, we define µ′i to be the distribution µi conditioned on the fact that
FR,α(X,Y ) = i.

We next show that for all i ∈ {0, 1} the statistical distance between µi and µ′i is 2−Ω(r). For (x, y) drawn
from µ1, with probability at least 1−2−Ω(r), we have ‖x−y‖1 ≤ 2r, implying that EMD(X,Y ) ≤ 2r = R/α,
or FR,α(X,Y ) = 1. Similarly, for (x, y) drawn from µ0, we can prove that for every x′ ∈ Gx, the probability
that ‖y − x′‖1 > d/100 is at least 1 − 2−Ω(d). Indeed, for every x′ ∈ Gx, the number of points at distance
≤ d/100 from x′ is at most by

(
d

d/100

)
≤ 2d/10. Thus, with probability at least 1 − s · 2d/10/2d ≥ 1 − 2Ω(r),

for all x′ ∈ Gx we have ‖y − x′‖1 > d/100, implying that F (x, y) = 0.
Now let (A,B) be a deterministic one-way 1-bit protocol with maximal success probability on µ′ =

µ′
0
+µ′

1

2 . Let δ be such that this success probability is 1 − δ. Applying Lemma 4.7 to µ′, we conclude

there exists some LSH protocol (H̃A, H̃B) with success probability 1 − δ on µ′. Note that µ′ satisfies the
precondition of the Lemma 4.7, because (i) both µ′0, µ

′
1 have marginals that are uniform (by symmetry),

and (ii) after conditioning µ′ on y = y0, the probability that F (x, y) = 0 is exactly 1/2.

Since (H̃A, H̃B) is a deterministic δ-error LSH protocol on distribution µ′, and because µi and µ′i are
statistically close for all i ∈ {0, 1}, we have

Prµ0
[H̃A(X) = H̃B(Y )] + Prµ1

[H̃A(X) 6= H̃B(Y )]

2
≤

Prµ′
0
[H̃A(X) = H̃B(Y )] + Prµ′

1
[H̃A(X) 6= H̃B(Y )]

2
+ 2−Ω(r)

≤ δ + 2−Ω(r). (5)

We define HA,HB : {0, 1}d → {0, 1} as the extensions of H̃A and H̃B in the natural way: HA(x) ,

H̃A(Gx) and HB(x) , H̃B(Gx). By definition, for all a ∈ C⊥ we have HA(x) = HA(x+ a) and HB(x) =

HB(x+ a). Furthermore, for all i ∈ {0, 1}, Prηi

[
HA(x) = HB(y)

]
= Prµi

[
H̃A(Gx) = H̃B(Gy)

]
, and thus

we have from Eqn. (5) that

Prη0 [HA(x) = HB(y)] + Prη1 [HA(x) 6= HB(y)]

2
≤ δ + 2−Ω(r) (6)

By the Fourier characterization of Lemma 4.8,

Prη0 [HA(x) = HB(y)] + Prη1 [HA(x) 6= HB(y)]

2
=

1

2
−

∑

S 6=∅

ĤA
S ĤB

S ε
|S| ≥ 1

2
−

∑

S 6=∅

ĥ2
Sε

|S|, (7)

where h : {0, 1}d → {0, 1} is equal to either HA or HB (the last inequality is by Cauchy-Schwarz). Since
h(x) = h(x+a) for all a ∈ C⊥, we have from [KN05, Lemma 3.3] that ĥS = 0 for all S with 0 < |S| < w(C),
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where w(C) ≥ cr is the weight of the code C. Now since
∑

S ĥ
2
S ≤ 1,

∑

S 6=∅

ĥ2
Sε

|S| =
∑

|S|≥cd

ĥ2
Sε

|S| ≤ εcd = (1 − 2r/d)cd ≤ e−2cr. (8)

Putting together Equations (6), (7),and (8), we get 1
2 − e−2cr ≤ δ + 2−Ω(r). We conclude that

AdvOWFR,α
(1) ≤ AdvOWFR,α

(1, µ′) = 1/2 − δ ≤ e−2cr + 2−Ω(r) = 2−Ω(d/α), proving the proposition.
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