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Abstract. Ordered binary decision diagrams (OBDDs) are nowadays
the most common dynamic data structure or representation type for
Boolean functions. Among the many areas of application are verification,
model checking, computer aided design, relational algebra, and symbolic
graph algorithms. Although many even exponential lower bounds on the
OBDD size of Boolean functions are known, there are only few functions
where the OBDD size is even asymptotically known exactly. In this pa-
per the exact OBDD sizes of the fundamental functions multiplexer and
addition of n-bit numbers are determined.

1 Introduction and Results

When working with Boolean functions as in circuit verification, synthesis, model
checking, and even in graph algorithms, ordered binary decision diagrams, de-
noted OBDDs, introduced by Bryant (1986), are the most often used data struc-
ture supporting all fundamental operations on boolean functions.

Definition 1. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A vari-
able order π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables.

Definition 2. A π-OBDD on Xn (see Figure 1 ) is a directed acyclic graph
G = (V, E) whose sinks are labeled by Boolean constants and whose non sink
(or inner) nodes are labeled by Boolean variables from Xn. Each inner node has
two outgoing edges one labeled by 0 and the other by 1. The edges between inner
nodes have to respect the variable order π, i.e., if an edge leads from an xi-node
to an xj-node, π−1(i) ≤ π−1(j) (xi precedes xj in xπ(1), . . . , xπ(n)). Each node
v represents a Boolean function fv : {0, 1}n → {0, 1} defined in the following
way. In order to evaluate fv(a), a ∈ {0, 1}n, start at v. After reaching an xi-
node choose the outgoing edge with label ai until a sink is reached. The label of
this sink defines fv(a). The size of the π-OBDD G is equal to the number of its
nodes.

Note, that OBDDs are not restricted to the representation of single-output
functions. An OBDD represents a Boolean function f ∈ Bn,m by representing
simultaneously the outputs f1, f2, . . . , fm of f .
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The size of the reduced π-OBDD representing f is described by the follow-
ing structure theorem (Sieling and Wegener (1993)). In order to simplify the
description we describe the theorem only for the special case where π equals the
identity id(i) = i.

Theorem 1. The number of xi-nodes of the id-OBDD for f = (f1, . . . , fm) is
the number si of different subfunctions fj|x1=a1,...,xi−1=ai−1

, 1 ≤ j ≤ m and
a1, . . . , ai−1 ∈ {0, 1}, essentially depending on xi (a function g depends essen-
tially on xi if g|xi=0 6= g|xi=1).

The variable order π is not given in advance and we have the freedom (and
the problem) to choose a good or even an optimal order for the representation
of f . Let π-OBDD(f) denote the π-OBDD size of f .

Definition 3. The OBDD size of f (denoted by OBDD(f)) is the minimum of
all π-OBDD(f).

It is an obvious aim to determine OBDD(f) for as many of the interesting
functions f as exactly as possible. This is similar to other fundamental com-
plexity measures, among them circiut size, formula size, monotone circuit size or
algebraic complexity (for such results see Wegener (1987)). Although many even
exponential lower bounds on the OBDD size of Boolean functions are known
and the method how to obtain such bounds is simple, there are only few func-
tions where the OBDD size is asymptotically known exactly (see, e.g., Bollig
and Wegener (2000).) Surprisingly enough, there is only one paper presenting
tight bounds on the OBDD size (Wegener (1984)) which has even been pub-
lished before the notion OBDD was established. For several of the fundamental
functions one believes to know the optimal variable order but has no proof for
this conjecture. We start to fill this gap by determining exact OBDD bounds for
two fundamental functions, namely multiplexer MUXn, often also called direct
storage access function DSAn, and binary addition ADDn.

Definition 4. The multiplexer MUXn (or direct storage access function DSAn)
is defined on n + k variables ak−1, . . . , a0, x0, . . . , xn−1, where n = 2k.
MUXn(a, x) = x|a|, where |a| is the number whose binary representation equals
(ak−1, . . . , a0). The a-variables are called address variables and the x-variables
data variables.

Definition 5. Binary addition ADDn:{0, 1}2n → {0, 1}n+1 maps two n-bit in-
tegers x = xn−1 . . . x0 and y = yn−1 . . . y0 to their sum. That is ADDn(x, y)=
sn . . . s0 where x + y = s, where s = sn . . . s0. ADDi,n computes the ith bit si of
ADDn.

The results of the paper are the following ones.

Theorem 2. OBDD(MUXn) = 2n + 1.

Theorem 3. OBDD(ADD1) = 6 and, for n ≥ 2, OBDD(ADDn) = 9n − 5.
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The upper bounds are contained in Wegener (2000) (Theorem 4.3.2 and
Theorem 4.4.3). For binary addition the case n = 1 is special since the output
of ADD1 are symmetric functions (x0 ∧ y0 and x0 ⊕ y0) and the π-OBDD size
does not depend on π. Hence, it is sufficient to consider one of the two possible
variable orders.

In Sections 2 and 3 the lower bounds are proved where it is essential to avoid
an inspection of too many cases since the number of variable orders grows ex-
ponentially. The following simple observation will be helpful. Given an arbitrary
variable order π the number of nodes labeled by a variable x in the π-OBDD
representing a given function f is not smaller than the number of x-nodes in a
π-OBDD representing any subfunction of f . Furthermore, the proofs of the lower
bounds are based on Theorem 1 implying that we do not introduce a new lower
bound method. However, we show how to solve some combinatorial problems in
order to obtain more precise results than known before.

2 Tight bounds for the OBDD size of the Multiplexer

In this section, we determine a lower bound on the size of OBDDs for the rep-
resentation of the multiplexer.

Lemma 1. The size of an OBDD for the representation of the multiplexer is at
least 2n + 1.

Proof.

Let π be an arbitrary variable order. In order to simplify the description,
we assume w.l.o.g. that the sequence of the address variables according to π

is a0, a1, . . . , ak−1. This assumption is justified because of the observation that
the size of an OBDD representing the multiplexer remains the same if we only
change the positions of some address variables.

Since the multiplexer depends essentially on all data variables, for each vari-
able xi, 0 ≤ i ≤ n − 1, there is at least one node labeled by xi. Moreover, there
have to be two sinks. In the following, our aim is to prove that there exist for
each address variable ai at least 2i further nodes representing non-constant sub-
functions of the multiplexer, such that the number of nodes altogether in the
OBDD is at least

2 + n +
∑k−1

i=0 2i = 2 + n + 2k − 1 = 2n + 1.

We fix one of the address variables, called ai, and use the following nota-
tion. Let Ti(x) be the set of the x-variables tested before the variable ai, Ri(x)
describes the set of the remaining x-variables. Now, we consider all possible as-
signments to the address variables a0, . . . , ai−1. Our aim is to prove that there
exists at least one further node for each assignment. The data variables are par-
titioned into 2i disjoint groups such that the indices of the variables of each
group agree in their binary representation to the corresponding assignment to
the address variables a0, a1, . . . , ai−1. Let bi be an assignment to the address
variables a0, a1, . . . , ai−1. The group Gbi

contains all data variables xj such that
the i least significant bits of the binary representation of j equals bi. Obviously
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Gbi1
∩ Gbi2

= ∅ for different assignments bi1 and bi2 to the address variables
a0, a1, . . . , ai−1.

For each assignment bi to the address variables we distinguish two cases
a0, . . . , ai−1.

Case 1: Gbi
∩ Ri(x) 6= ∅.

We show that there exists a subfunction corresponding to bi that essentially
depends on ai, therefore there has to be one further node labeled by ai in the
π-OBDD representing the multiplexer.

For this reason we consider the subfunction which corresponds to the follow-
ing assignment to the variables. Let xk be a variable in Gbi

∩Ri(x). The assign-
ment to the address variables a0, a1, . . . , ai−1 is bi, the assignment to all data vari-
ables in Ti(x) is 0. Obviously the corresponding subfunction depends essentially
on xk. Therefore, different assignments to the address variables a0, a1, . . . , ai−1

lead to different subfunctions which have to be represented at different nodes
in the π-OBDD. Furthermore the considered subfunction depends essentially on
ai, since the assignment 1 to xk, 0 to all other data variables, and the binary
representation of k to the address variables has the function value 1 but changing
only the assignment to ai leads to the function value 0.

Altogether we have shown that there has to be one further ai-node in the
π-OBDD representing the multiplexer.

Case 2: Gbi
∩ Ri(x) = ∅.

This case is more difficult because it is possible that there does not exist a
subfunction for which the assignment to the variables a0, a1, . . . , ai−1 agrees with
bi and which essentially depends on ai. We have to inspect this case very carefully
in order to guarantee that we count each node of the π-OBDD representing the
multiplexer only once.

Let b
j
i , j ≤ i, be the assignment to the variables a0, a1, . . . , aj−1 according

to bi. Let i′ be the minimum number in {0, . . . , i} such that Gbi′

i
∩ Ri′(x) = ∅.

Since Gbi
⊆ Gbi′

i
we know that Gbi

⊆ Ti′(x). Now, we consider the assignment

bi′−1
i which is unique for bi. Let xk be the jth data variable of the set G

bi′

i
in

the sequence according to π. Our aim is to show that there are at least 2j−1 xk-
nodes in the π-OBDD representing the multiplexer. For this reason we consider
the following 2j−1 different assignments to the first variables of the set G

bi′

i

which are before xk in the sequence according to π. The address variables are

set according to the assignment bi′−1
i , the data variables in Ti′(x) \ Gbi′

i
are

fixed to 0 and for the first j − 1 variables from G
bi′

i
according to π we consider

all possible assignments. Obviously the corresponding subfunctions essentially
depend on xk. Furthermore, two different assignments to the first j − 1 data
variables of G

bi′

i
according to π lead to different subfunctions, since each of

these data variables can determine the output of the multiplexer. For this we
consider the following assignments to the remaining variables. Let xk′ be one of
the first j − 1 data variables under consideration. The remaining data variables
are set to 0 and the address variables are set to the binary representation of k′.
The output of the multiplexer is equal to the assignment of xk′ .
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Using the fact that |G
bi′

i
| = 2k−(i′−1) we can conclude that there are at least

2k−(i′−1)∑

j=0

2j = 22k−i′+1 − 1

nodes labeled by a data variable from Gbi′

i
in the π-OBDD representing the

multiplexer. We have already counted one node for each data variable, therefore
we have shown that there are at least

(22k−i′+1 − 1) − 2k−(i′−1)

further nodes.
On the other hand, there are 2`−(i′−1) assignments b` to the address variables

a0, a1, . . . , a`−1, ` ≥ i′ − 1, such that bi′−1
i is equal to bi′−1

` . Therefore, we can
conclude that there are

k−1∑

`=i′−1

2`−(i′−1) =

k−i′∑

`=0

2` = 2k−i′+1 − 1

assignments to the address variables corresponding to bi′−1
i that lead to case

2 in our investigation.

Since 22k−i′+1

− 1 ≥ 2k−i′+2 − 1, we are done.
2

3 Tight bounds for the OBDD size of Binary Addition

As noted before Wegener (2000) has already presented the upper bound of 9n−5
on the OBDD size of binary addition for two n-bit numbers where n ≥ 2. In the
following, we prove the matching lower bound. Figure 1 shows an OBDD for the
binary addition of two 4-bit numbers according to an optimal variable order.

In order to obtain lower bounds on the size of OBDDs one-way communi-
cation complexity has become a standard technique (see Hromkovič (1997) and
Kushilevitz and Nisan (1997) for the theory of communication theory). In the
following, we do not really use methods from communication theory but the
notion of a communication matrix which is nothing else but the value table of
a function in a different form. A function f : {0, 1}m × {0, 1}n → {0, 1} can
be described by a matrix of size 2m × 2n. The matrix entry at position (a, b),
a ∈ {0, 1}m and b ∈ {0, 1}n, is f(a, b). The number of different rows is equal to
the number of different subfunctions obtained by the replacement of the first m

variables by constants. Since each column is associated with an assignment to
the last n variables, a row corresponds to a subfunction essentially depending
on a variable z iff there exist two columns associated with two assignments that
differ only in the assignment of z and for which the entries in the matrix are
different.
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Fig. 1. An OBDD for the binary addition of 4-bit numbers
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Since the functions ADDi,n, 0 ≤ i ≤ n, are different and non-constant there
are at least n + 1 nodes representing ADDi,n in an OBDD representing binary
addition. Our aim is to show that for almost all pairs (xi, yi), 0 ≤ i ≤ n−1, there
exist at least 8 nodes labeled by xi or yi not representing one of the functions
ADDi,n, 0 ≤ i ≤ n. Together with the two sinks we are done.

We start our investigation with the following two simple observations. Let
π be an arbitrary variable order. Symmetric variables for a given function f

are variables that can be exchanged without changing the considered function,
i.e. the variables zi and zj are symmetric variables for f when f|zi=0,zj=1 =
f|zi=1,zj=0. In order to simplify the description, we assume w.l.o.g. that for each
variable pair (xi, yi), 0 ≤ i ≤ n− 1, the variable xi ist tested before the variable
yi according to π. This assumption is justified because of the observation that
xi and yi are symmetric variables for binary addition.

Since the functions ADDi,n, 0 ≤ i ≤ n−1, essentially depend on the variables
x0, y0, x1, . . . , xi, yi and ADDn,n essentially depends on all variables, none of the
functions ADDi,n, 0 ≤ i ≤ n, can be represented at a node labeled by a y-
variable.

Now, we introduce some useful notation. Let X be the set of all x-variables
and Y the set of all y-variables. The set X>i contains the variables xi+1, . . . , xn−1.
Similar the sets Y >i, X<i, and Y <i are defined.

Let Πxi
= (Axi

, Bxi
), 0 ≤ i ≤ n− 1, be a partition of the variables in X ∪ Y

according to a given variable order π, where Axi
contains all variables that are

tested before xi according to π and Bxi
the remaining variables. Sometimes we

abbreviate (Axi
, Bxi

) by (A, B) when the meaning is clear from the context.
Similar, Πyi

is defined. For a subset S ⊆ X ∪ Y , we denote by A(S) the set of
all possible assignments to the variables in S.

Lemma 2. Let π be an arbitrary variable order and Πxi
= (Axi

, Bxi
) be a

partition of the variables in X∪Y according to π and an arbitrary chosen variable
xi, 0 ≤ i ≤ n − 1. Let G be a π-OBDD representing ADDn. If Axi

∩ X>i 6= ∅,
the number of xi-nodes in G not representing one of the functions ADDj,n,
0 ≤ j ≤ n, is at least 2.

Proof. Let h := min{j | xj ∈ Axi
∩ X>i}. In the following, we define two

assignments a0 and a1 to the variables in Axi
and two different assignments b0

and b1 to the variables in Bxi
. Our aim is to prove that ADDh,n|a0

and ADDh,n|a1

are two different subfunctions that essentially depend on xi. In a0, a1, b0, and
b1, the variables yi, . . . , yh−1 are set to 1, the remaining y-variables are set to
0. Furthermore, all variables in X \ {xh, xi} are set to 0. In a0 the variable xh

is fixed to 0, in a1 to 1. In b0 the variable xi is set to 0, in b1 to 1. Figure 2
illustrates the replacement of some of the variables by constants. The x- and
the y-inputs are shown and A and B indicate the set to which the correpondent
variable belong.

Table 1 shows a part of the communication matrix for ADDh,n : A(Axi
) ×

A(Bxi
) → {0, 1}. Obviously, the subfunctions ADDh,n|a0

and ADDh,n|a1
are

different and essentially depend on xi.
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Fig. 2. The replacement of some of the variables by constants in the proof of Lemma 2

ADDh,n b0 b1

a0 0 1
a1 1 0

Table 1. Part of the communication matrix for ADDh,n

It remains to prove that the subfunctions ADDh,n|a0
and ADDh,n|a1

are dif-
ferent from the functions ADD0,n, . . ., ADDn,n. Since ADDh,n|a0

and ADDh,n|a1

do not depend on xh but essentially depend on xi the subfunctions are differ-
ent from ADDj,n for j ≥ h or j < i. In order to prove that the subfunctions
ADDh,n|a0

and ADDh,n|a1
are different from the functions ADDj,n for i ≤ j < h

we investigate some assignments to the variables in Bxi
. Because of the choice of

h we know that the variables xi′ and yi′ , i′ ∈ {i, . . . , h− 1} are in Bxi
. If one of

the variables xi−1 or yi−1 is in Axi
, the subfunctions ADDh,n|a0

and ADDh,n|a1

have to be different from the functions ADDj,n, i ≤ j < h, since the subfunc-
tions do not essentially depend on xi−1 and yi−1. Therefore, we can assume that
xi−1, yi−1 ∈ Bxi

. In b′0 all variables are set to 0, in b′1 only the variable yi′ is set
to one. Obviously, the function value for ADDi′,n is 0 for b′0 and 1 for b′1. The
function value for ADDh,n|a0

is 0 for b′0 and b′1, the function value for ADDh,n|a1

is 1 for b′0 and b′1. Therefore, the two subfunctions ADDh,n|a0
and ADDh,n|a1

are
different from ADDi′,n, i′ ∈ {i, . . . , h − 1}. 2

Lemma 3. Let π be an arbitrary variable order and Πxi
= (Axi

, Bxi
) be a

partition of the variables in X∪Y according to π and an arbitrary chosen variable
xi, 0 ≤ i ≤ n − 1. Let G be a π-OBDD representing ADDn. If Axi

∩ X<i 6= ∅,
the number of xi-nodes in G not representing one of the functions ADDj,n,
0 ≤ j ≤ n, is at least 4.

Proof. Let xl be an arbitrary variable in Axi
∩X<i. In the following, we define

two assignments a0 and a1 to the variables in Axi
that differ only in the assign-

ment to the variable xl. Our first aim is to prove that ADDi,n|a0
, ADDi,n|a1

,
ADDn,n|a0

, and ADDn,n|a1
are four different subfunctions that essentially de-

pend on xi. For this reason, we define four assignments b00, b01, b10, and b11 to
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the variables in Bxi
that differ only in the assignments to the variables xi and

yi.
In aj , j ∈ {0, 1}, the variable xl is set to j. All y-variables in Axi

are set
to 1, the remaining x-variables in Axi

to 0. In bj1j2 , j1, j2 ∈ {0, 1}, the variable
xi is set to j1, the variable yi to j2. The remaining y-variables in Bxi

are set
to 1, the remaining x-variables to 0. Table 2 shows part of the communication
matrix for the functions ADDi,n and ADDn,n. Obviously, the four subfunctions
ADDi,n|a0

, ADDi,n|a1
, ADDn,n|a0

, and ADDn,n|a1
are different and essentially

depending on xi. Figure 3 illustrates the replacement of the variables with the
exception of xl, xi, and yi by constants.
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0

yi

xi

B

xl

AB

Fig. 3. The replacement of some of the variables by constants in the proof of Lemma 3

ADDi,n b00 b01 b10 b11

a0 0 1 1 0
a1 1 0 0 1

ADDn,n b00 b01 b10 b11

a0 0 0 0 1
a1 0 1 1 1

Table 2. Part of the communication matrix for ADDi,n and ADDn,n

It remains to prove that these four subfunctions are different from the func-
tions ADD0,n, . . ., ADDn,n. The functions ADD0,n, . . ., ADDi−1,n do not es-
sentially depend on the variable xi, whereas the functions ADDi,n, . . ., ADDn,n

essentially depend on xl. Therefore, none of the functions ADD0,n, . . ., ADDn,n is
equal to one of the subfunctions ADDi,n|a0

, ADDi,n|a1
, ADDn,n|a0

, and ADDn,n|a1
.

2

Combining Lemma 2 and Lemma 3 we obtain the following result.

Corollary 1. Let π be an arbitrary variable order and let G be a π-OBDD
representing ADDn. The number of x-nodes in G not representing one of the
functions ADDj,n, 0 ≤ j ≤ n, is at least 2n − 2.

Lemma 4. Let π be an arbitrary variable order and Πyi
= (Ayi

, Byi
) be a

partition of the variables in X∪Y according to π and an arbitrary chosen variable
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yi, 0 ≤ i ≤ n − 1. Let G be a π-OBDD representing ADDn. If Ayi
∩ X>i 6= ∅

and Byi
∩ Y <i 6= ∅, the number of yi-nodes in G is at least 6.

Proof. Let xh be a variable in Ayi
, h > i, and yl be a variable in Byi

, l < i.
We consider the following four assignments to the variables in Ayi

that differ
only in the assignments to the variables xi and xh. In aj1j2 , j1, j2 ∈ {0, 1}, the
variable xi is set to j1 and the variable xh to j2. The remaining x-variables in
Ayi

are set to 1, the y-variables in Ayi
are set to 0. Our aim is to prove that the

six subfunctions ADDh,n|a00
, ADDh,n|a01

, ADDh,n|a10
, ADDh,n|a11

, ADDi,n|a00
,

and ADDi,n|a10
are different and that they essentially depend on yi. For this

reason, we consider the following four assignments to the variables in Byi
that

differ only in the assignments to the variables yl and yi. In bj1j2 , j1, j2 ∈ {0, 1},
the variable yl is set to j1 and the variable yi to j2. The x-variables are set to 1
and the remaining y-variables are set to 0. Figure 4 illustrates the replacement
of some of the variables by constants.
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Fig. 4. The replacement of some of the variables by constants in the proof of Lemma 4

Table 3 shows part of the communication matrix for the functions ADDh,n

and ADDi,n. Obviously, the six presented subfunctions are different and essen-
tially depend on yi. Therefore, there are at least 6 yi-nodes in G.

ADDh,n b00 b01 b10 b11

a00 0 0 0 1
a01 1 1 1 0
a10 0 1 1 1
a11 1 0 0 0

ADDi,n b00 b01 b10 b11

a00 0 1 1 0
a10 1 0 0 1

Table 3. Part of the communication matrix for ADDh,n and ADDi,n

2

Lemma 5. Let π be an arbitrary variable order and Πyi
= (Ayi

, Byi
) be a

partition of the variables in X∪Y according to π and an arbitrary chosen variable
yi, 0 ≤ i ≤ n− 1, where Ayi

∩X>i 6= ∅ and Byi
∩Y <i = ∅. Let G be a π-OBDD

representing ADDn.

10



i) The number of yi-nodes in G is at least 2.

ii) If |Byi
∩ Y | > 1, there are at least 2 + |Byi

∩ Y | nodes labeled by yi.

iii) If |Byi
∩ Y | ∈ {2, 3} and |Byi

∩ X | < |Byi
∩ Y | − 1, the number of yi-nodes

in G is at least 6.

iv) Let |Byi
∩ Y | = 3 and let yr be the variable in Byi

, where Byr
⊂ Byi

and
|Byr

| > 1, with other words the variable yi ist tested before yr but yr is not
the last variable according to π. If |Byi

∩X | = |Byi
∩Y |−1 = 2, there are at

least 4 yr-nodes in G and 4 xr-nodes not representing one of the functions
ADDj,n, 0 ≤ j ≤ n.

Proof. i)
Similar to the proofs of Lemma 2 - 4, we show that there are two different
subfunctions ADDi,n|a0

and ADDi,n|a1
that essentially depend on yi. We consider

the following two assignments to the variables in Ayi
that differ only in the

assignment to the variable xi. In aj, j ∈ {0, 1}, the variable xi is set to j, the
remaining x-variables are set to 1, the y-variables are set to 0. Next, we consider
two assignments to the variables in Byi

that only differ in the assignment to yi.
In bj, j ∈ {0, 1}, the variable yi is set to j, the remaining x-variables are set
to 1, the y-variables are set to 0. Table 4 shows the corresponding part of the
communication matrix for the function ADDi,n. Obviously, the two presented
subfunctions are different and essentially depend on yi. Therefore, there are at
least 2 yi-nodes in G.

ADDi,n b0 b1

a0 0 1
a1 1 0

Table 4. Part of the communication matrix for ADDi,n

ii)
Since |Byi

∩ Y | > 1 and Byi
∩ Y <i = ∅, we can conclude that there exists a

variable in Byi
∩ Y >i. Let yh be an arbitrary variable in Byi

∩ Y >i. Now, we
investigate the subfunctions ADDh,n|a1

and ADDn,n|a1
. Table 5 shows part of

the communication matrix for the functions ADDh,n and ADDn,n. Obviously,
the presented subfunctions are different and essentially depend on yi.

ADDh,n b0 b1

a1 1 0

ADDn,n b0 b1

a1 0 1

Table 5. Part of the communication matrix for ADDh,n and ADDn,n

11



It is not difficult to prove that the subfunctions ADDh,n and ADDn,n essen-
tially depend on yh. Since the subfunctions of ADDi,n do not essentially depend
on variables in Y >i, we can conclude that the considered subfunctions are differ-
ent from subfunctions of ADDi,n. Summarizing, we have shown that there are
at least |Byi

∩ Y | further yi-nodes in G.
iii)

Since Byi
∩Y <i = ∅ and |Byi

∩X | < |Byi
∩Y |−1, there exist a variable xh ∈ Ayi

and a corresponding variable yh ∈ Byi
, where h > i.

We consider three assignments to the variables in Ayi
that differ only in

the assignments to the variables xh and xi. In a01 the variable xh is set to 0,
the variable xi to 1, in a10 the variable xh is set to 1, the variable xi to 0,
and in a11 both are set to 1. The remaining x-variables in Ayi

are set to 1,
the y-variables in Ayi

are set to 0. Our aim is to prove that the subfunctions
ADDi,n|a10

, ADDi,n|a11
, ADDh,n|a01

, ADDh,n|a11
, ADDn,n|a01

, and ADDi,n|a11

are different and that they essentially depend on yi. For this reason, we consider
the following four assignments to the variables in Byi

that differ only in the
assignments to the variables yh and yi. In bj1j2 , j1, j2 ∈ {0, 1}, the variable yh is
set to j1, the variable yi to j2. The x-variables are set to 1 and the remaining y-
variables are set to 0. Figure 5 illustrates the replacement of some of the variables
by constants.
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yi
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xh
xi

Fig. 5. The replacement of some of the variables by constants in the proof of Lemma
5 iii)

Table 6 shows part of the communication matrix for the functions ADDi,n,
ADDh,n, and ADDn,n. Obviously, the six presented subfunctions essentially de-
pend on yi and the subfunctions of ADDh,n are different from the subfunctions
of ADDn,n. Since the subfunctions of ADDi,n do not essentially depend on yh,
they are different from the other subfunctions. Therefore, there are at least 6
yi-nodes in G.

iv)
Since |Byi

∩X | = |Byi
∩ Y | − 1 = 2, we know that xr ∈ Byi

. Using the fact that
xi ∈ Ayi

, we can apply Lemma 3 in order to obtain the result that there are at
least 4 nodes labeled by xr in G not representing one of the functions ADDj,n,
0 ≤ j ≤ n.

Let yz be the variable for which |Byz
| = 1, with other words yz is the last

variable according to π.
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ADDi,n b00 b01

a10 0 1
a11 1 0

ADDh,n b00 b01 b10 b11

a01 0 1 1 0
a11 1 0 0 1

ADDn,n b00 b01 b10 b11

a01 0 0 0 1
a11 0 1 1 1

Table 6. Part of the communication matrix for ADDi,n, ADDh,n, and ADDn,n

Case 1: r > z

In aj the variable xr is set to j, the remaining x-variables in Ayr
are set to 1,

the y-variables are set to 0. In bj1,j2 , j1, j2 ∈ {0, 1}, the variable yz is set to j1,
the variable yr to j2. (If xz ∈ Byr

, the variable is set to 1.)

Figure 6 illustrates the replacement of some of the variables by constants.
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1

0

A

BB
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yz
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Fig. 6. The replacement of some of the variables by constants in the proof of Lemma
5 iv)

Table 7 shows part of the communication matrix for ADDr,n and ADDn,n.
Obviously, the four subfunctions ADDr,n|a0

, ADDr,n|a1
, ADDn,n|a0

, and ADDn,n|a1

are different and essentially depend on yr.

ADDr,n b00 b01 b10 b11

a0 0 1 1 0
a1 1 0 0 1

ADDn,n b00 b01 b10 b11

a0 0 0 0 1
a1 0 1 1 1

Table 7. Part of the communication matrix for ADDr,n and ADDn,n

Case 2: r < z

In aj the variable xr is set to j, the remaining x-variables in Ayr
are set to 1,

the y-variables are set to 0. In bj the variable yr is set to j. The variable yz is
set to 0. (If xz ∈ Byr

, the variable is set to 1.)

Figure 7 illustrates the replacement of some of the variables by constants.

Table 8 shows part of the communication matrix for ADDr,n, ADDz,n, and
ADDn,n. Obviously, the subfunctions of ADDz,n and ADDn,n are different and
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� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �

� � �
� � �
� � �

� � �
� � �
� � �

1

0

BB

xr

A

yz
yr

Fig. 7. The replacement of some of the variables by constants in the proof of Lemma
5 iv)

essentially depend on yr. The subfunction of ADDr,n does not essentially depend
on yz and therefore is different from the other subfunctions.

ADDr,n b0 b1

a0 0 1
a1 1 0

ADDz,n b0 b1

a1 1 0

ADDn,n b0 b1

a1 0 1

Table 8. Part of the communication matrix for ADDr,n, ADDz,n, and ADDn,n

2

In the following, we show that for almost all pairs (xi, yi), 0 ≤ i ≤ n− 1, the
number of nodes not representing one of the functions ADDj,n, 0 ≤ j ≤ n, and
labeled by xi or yi is 8 if Ayi

∩ X>i = ∅.

Lemma 6. Let π be an arbitrary variable order and Πyi
= (Ayi

, Byi
) be a

partition of the variables in X∪Y according to π and an arbitrary chosen variable
yi, 0 ≤ i ≤ n−1, where Ayi

∩X>i = ∅. Let G be a π-OBDD representing ADDn.

i) If Axi
6= ∅, the number of xi-nodes in G not representing one of the functions

ADDj,n, 0 ≤ j ≤ n, is at least 4.
ii) The number of yi-nodes in G is at least 2.
iii) If i ≤ n − 2, the number of yi-nodes in G is at least 4.
iv) If |Byi

∩ Y | > 1, the number of yi-nodes in G is at least 4.

Table 9 illustrates the minimal number of nodes not representing one of the
functions ADDj,n, 0 ≤ j ≤ n, and labeled by xi or yi if Ayi

∩ X>i = ∅.

Proof. i) Since Axi
6= ∅ and Ayi

∩X>i = ∅, we know that there exist a variable
xk before xi according to π where k < i. Therefore, we can apply Lemma 3
and obtain at least 4 xi-nodes not representing one of the functions ADDj,n,
0 ≤ j ≤ n.

ii) We consider two assignments to the variables in Ayi
that differ only in the

assignment to the variable xi. In aj, j ∈ {0, 1}, the variable xi is set to j, the

14



Axi
= ∅ Axi

6= ∅
i = n − 1 ∧ |Byi

∩ Y | = 1 2 6
i ≤ n − 2 ∨ |Byi

∩ Y | > 1 4 8

Table 9. The minimal number of xi- and yi-nodes if Ayi
∩ X>i = ∅

remaining x-variables in Ayi
are set to 1, the y-variables in Ayi

are set to 0. Our
aim is to prove that the subfunctions ADDi,n|a0

and ADDi,n|a1
are different and

that they essentially depend on yi. For this reason, we consider the following
two assignments to the variables in Byi

that differ only in the assignment to
the variable yi. In bj, j ∈ {0, 1}, the variable yi is set to j, the x-variables in
Byi

are set to 1 and the remaining y-variables are set to 0. Table 10 show part
of the communication matrix for ADDi,n. Obviously, the two subfunctions are
different and essentially depend on yi.

ADDi,n b0 b1

a0 0 1
a1 1 0

Table 10. Part of the communication matrix for ADDi,n

iii) Using part ii) it remains to prove that there are two further nodes la-
beled by yi. Since Ayi

∩X>i = ∅, we can conclude that there exist a variable yh,
h > i, in Byi

∩ Y . Now, we consider the subfunctions ADDh,n|a1
and ADDn,n|a1

for a1 chosen as in part ii). Both essentially depend on yh and are therefore
different from the subfunctions considered in part ii). Table 11 shows part of the
communication matrix for ADDh,n and ADDn,n. Obviously, both subfunctions

ADDh,n b0 b1

a1 1 0

ADDn,n b0 b1

a1 0 1

Table 11. Part of the communication matrix for ADDh,n and ADDn,n

are different and essentially depend on yi. Together with the proof of part ii) we
obtain at least 4 yi-nodes.

iv) We assume i = n − 1, otherwise we can use part iii) and we are done.
As in part ii) we consider the assignments a0 and a1. Using the proof of part
ii) we know that there have to be 2 yn−1-nodes representing the subfunctions
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ADDn−1,n|a0
and ADDn−1,n|a1

. Our aim is to prove that there have to be two fur-
ther yn−1-nodes in G representing the subfunctions ADDn,n|a0

and ADDn,n|a1
.

Since |Byn−1 ∩ Y | > 1, there has to be a variable yl in Byn−1, where l < n − 1.
We consider the following four assignments to the variables in Byn−1 that differ
only in the assignments to the variables yl and yn−1. In bj1j2 , j1, j2 ∈ {0, 1}, the
variable yl is set to j1 and the variable yn−1 to j2. The x-variables are set to 1
and the remaining y-variables are set to 0.

Figure 8 illustrates the replacement of the variables with the exception of
xn−1, yn−1, and yl by constants.
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Fig. 8. The replacement of some of the variables by constants in the proof of Lemma 6

Table 12 shows part of the communication matrix for ADDn−1,n and ADDn,n.

ADDn−1,n b00 b01 b10 b11

a0 0 1 1 0
a1 1 0 0 1

ADDn,n b00 b01 b10 b11

a0 0 0 0 1
a1 0 1 1 1

Table 12. Part of the communication matrix for ADDn−1,n and ADDn,n

Obviously, the four subfunctions are different and essentially depend on yn−1,
therefore there are at least 4 nodes labeled by yn−1 in G. 2

Theorem 4. The size of an OBDD for the representation of binary addition is
at least 9n− 5 for n ≥ 2.

Proof. Let π be an arbitrary variable order and G be a π-OBDD representing
ADDn. Our aim is to prove that G has at least 9n−5 nodes. There are (n+1)+2
nodes in G representing the functions ADDi,n, 0 ≤ i ≤ n, and the constant
functions 0 and 1. Using Corollary 1 we obtain at least 2n − 2 further nodes
labeled by an x-variable. If we can prove that there are at least 6n − 6 further
nodes, we are done.

Now, we investigate the number of y-nodes in G. For each variable yi, 0 ≤ i ≤
n− 1, exactly one of the Lemmas 4-6 can be applied and for almost all variables
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yi it can be proved that G contains at least 6 yi-nodes. In the following, we
book for each variable xi for which we can prove that there exist at least 4 xi-
nodes in G not representing one of the functions ADDi,n, 0 ≤ i ≤ n, 2 nodes
by the variable yi. Next, we look more carefully at the y-variables for which we
cannot directly guarantee using Lemma 4-6 that there are at least 6 nodes in G.
Figure 9 illustrates all possible cases where the number of nodes accounted for
a y-variable can be less than 6.

1

2

6

3

C2

5

4
|Byi

∩ Y | ∈ {2, 3}

∧|Byi
∩ X| = |Byi

∩ Y | − 1

C3 4i = n − 1 ∧ |Byi
∩ Y | = 1 ∧ Axi

6= ∅
C1 |Byi

∩ Y | = 1 2

4

C5 (i ≤ n − 2 ∨ |Byi
∩ Y | > 1) ∧ Axi

= ∅ 4

i = n − 1 ∧ |Byi
∩ Y | = 1 ∧ Axi

= ∅ 2C4

Fig. 9. Possible sets of y-variables for which less than 6 nodes can be directly booked

– C1 is the set of yi-variables for which Ayi
∩ X>i 6= ∅ and |Byi

∩ Y | = 1.
– C2 is the set of yi-variables for which Ayi

∩ X>i 6= ∅, Byi
∩ Y <i = ∅, and

|Byi
∩ Y | ∈ {2, 3}, where |Byi

∩ X | = |Byi
∩ Y | − 1.

– C3 contains the variable yn−1 if |Byn−1 ∩ Y | = 1 and Axn−1 6= ∅.
– C4 contains the variable yn−1 if |Byn−1 ∩ Y | = 1 and Axn−1 = ∅.
– C5 is the set of yi-variables, i ≤ n− 2, where Ayi

∩ X>i = ∅, |Byi
∩ Y | > 1,

and Axi
= ∅.

The right column of a Cj -row, 1 ≤ j ≤ 5, presents the minimal number of nodes
accounted for a variable in Cj . Obviously, each variable yi can be in at most one
set Cj , j ∈ {1, . . . , 5}. On the other hand, |Cj | ≤ 1 for j ∈ {1, 3, 4, 5}. Lemma 5
part iv) guarantees that C2 can contain at most one variable. An arrow between
a Cj1 - and a Cj2 -row, j1, j2 ∈ {1, 2, . . . , 5}, indicates that there cannot be a
variable in Cj1 for which only the minimal number of nodes can be accounted
for, as well as in Cj2 .

It is not difficult to see that |C1|+ |C3|+ |C4| ≤ 1, therefore the arrows 1− 3
are justified. Furthermore, using the definition of the sets we can immediatley
conclude that |C4| + |C5| ≤ 1 and the arrow 4 follows. For the fifth arrow we
have to work a little bit harder.

Claim:

If C1 6= ∅ and C2 6= ∅, the minimal number of nodes accounted for the variables
in C1 ∪ C2 is at least 8.

Proof. Let yi be the variable in C1 and yj be the variable in C2. Because of
the definition of C2 we know that i > j and xi ∈ Byj

. Therefore, we can apply
Lemma 3 in order to prove that there are at least 4 xi-nodes. 2
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In order to prove that |C2| + |C4| ≤ 1 and therefore the arrow 6 is justified,
we assume that C2 6= ∅. Let yj ∈ C2 and yk ∈ Byi

, with other words the variable
yi is tested before the variable yk according to π. Because of the definition of
C2, more precisely, since |Byi

∩X | = |Byi
∩ Y | − 1, it follows that also xk ∈ Byi

and therefore Axk
6= ∅. Therefore, the set C4 has to be empty.

Summarizing, we obtain the following results:

– |Ci| ≤ 1, i ∈ {1, 2, . . . , 5}.
– C1 6= ∅ ⇒ C2 = C3 = C4 = ∅.
– C4 6= ∅ ⇒ C1 = C2 = C3 = C5 = ∅.

Altogether, we have proved that the number of nodes in G accounted for a
y-variable is at least 6n − 6.

2
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