
Bounded Pushdown dimension vs Lempel Ziv

information density

Pilar Albert, Elvira Mayordomo, and Philippe Moser ∗

Abstract

In this paper we introduce a variant of pushdown dimension called bounded push-
down (BPD) dimension, that measures the density of information contained in a
sequence, relative to a BPD automata, i.e. a finite state machine equipped with an
extra infinite memory stack, with the additional requirement that every input symbol
only allows a bounded number of stack movements. BPD automata are a natural
real-time restriction of pushdown automata. We show that BPD dimension is a ro-
bust notion by giving an equivalent characterization of BPD dimension in terms of
BPD compressors. We then study the relationships between BPD compression, and
the standard Lempel-Ziv (LZ) compression algorithm, and show that in contrast to
the finite-state compressor case, LZ is not universal for bounded pushdown compres-
sors in a strong sense: we construct a sequence that LZ fails to compress significantly,
but that is compressed by at least a factor 2 by a BPD compressor. As a corollary
we obtain a strong separation between finite-state and BPD dimension.

Keywords

Information lossless compressors, finite state (bounded pushdown) dimension, Lempel-Ziv
compression algorithm.

1 Introduction

Effective versions of fractal dimension have been developed since 2000 [9, 10] and used
for the quantitative study of complexity classes, information theory and data compression,
and back in fractal geometry (see recent surveys in [11, 7, 12]). Here we are interested
in information theory and data compression, where it is known that for several different

∗Dept. de Informática e Ingenieŕıa de Sistemas , Universidad de Zaragoza. Edificio Ada Byron, Maŕıa
de Luna 1 - E-50018 Zaragoza (Spain). Email: {mpalbert, elvira}@unizar.es and mosersan@gmail.com.
Research supported in part by Spanish Government MEC Project TIN 2005-08832-C03-02, by Aragón
Government Dept. Ciencia, Tecnoloǵıa y Universidad, subvención destinada a la formación de personal
investigador-B068/2006 and by Spanish Government MEC Program Juan de la Cierva.

1

Electronic Colloquium on Computational Complexity, Report No. 51 (2007)

ISSN 1433-8092

bounds on the computing power, effective dimensions capture what can be considered the
inherent information content of a sequence in the corresponding setting [12]. In the today
realistic context of massive data streams we need to consider very low resource-bounds,
such as finite memory or finite-time per input symbol.

The finite state dimension of an infinite sequence [3], is a measure of the amount of ran-
domness contained in the sequence within a finite-memory setting. It is a robust quantity,
that has been shown to admit several characterizations in terms of finite-state information
lossless compressors (introduced by Huffman [8], [3]), finite-state decompressors [4, 13],
finite-state predictors in the logloss model [1], and block entropy rates [2]. It is an effec-
tivization of the general notion of Hausdorff dimension at the level of finite-state machines.
Informally, the finite state dimension assigns every sequence a number s ∈ [0, 1], that char-
acterizes the randomness density in the sequence (or equivalently its compression ratio),
where the larger the dimension the more randomness is contained in the sequence.

In a recent line of research, Doty and Nichols [5] investigated a variant of finite-state
dimension, where the finite state machine comes equipped with an infinite memory stack
and is called a pushdown automata, yielding the notion of pushdown dimension. Hence
the pushdown dimension of a sequence, is a measure of the density of randomness in the
sequence as viewed by a pushdown automata. Since a finite-state automata is a special
case of a pushdown automata, the pushdown dimension of a sequence is a lower bound
for its finite state dimension. It was shown in [5], that there are sequences for which the
pushdown dimension is at most half its finite state dimension, hence yielding a strong
separation between the two notions. Unfortunately the notion of pushdown dimension is
not known to enjoy any of the equivalent characterizations that finite state dimension does.
Moreover, the computation time per input symbol can be unbounded, which rules out this
model for many real-time applications.

In this paper we introduce a variant of pushdown dimension called bounded pushdown
(BPD) dimension: Whereas pushdown automata can choose not to read their input and
only work with their stack for as many steps as they wish (each such step is called a
lambda transition), we add the additional real-time constraint that the sequences of lambda
transitions are bounded, i.e. we only allow a bounded number of stack movements per each
input symbol.

We define the notion of bounded pushdown dimension as the natural effectivitation of
Hausdorff dimension via Lutz’s gale characterization [9]. We provide evidence that bounded
pushdown dimension is a robust notion by giving a compression characterization; i.e. we
introduce BPD information-lossless compressors and show that the best compression ratio
achievable on a sequence by BPD compressors is exactly its BPD dimension.

In the context of compression, we study the relationship between BPD compression and
the standard Lempel-Ziv (LZ) compression algorithm [14]. It is well known that the LZ
compression ratio of any sequence is a lower bound for its finite state compressibility [14],
i.e. LZ compresses every sequence at least as well as any finite-state information lossless
compressor. We show that this fails dramatically in the context of BPD compressors, by
constructing a sequence that LZ fails to compress significantly, but is compressed by at least
a factor 2 by a BPD compressor, thus yielding a strong separation between LZ and BPD

2

dimension. This implies that we have the same separation between LZ and (unbounded)
pushdown dimension, and between finite state dimension [3] and BPD dimension.

Section 2 contains the preliminaries, section 3 presents BPD dimension and its basic
properties, section 4 proves the equivalence of BPD compression and dimension and section
5 contains the separation of BPD compression from Lempel Ziv compression. The proofs
are postponed to the appendix.

2 Preliminaries

We write Z for the set of all integers, N for the set of all nonnegative integers and Z+ for
the set of all positive integers. Let Σ be a finite alphabet, with |Σ| ≥ 2. Σ∗ denotes the
set of finite strings, and Σ∞ the set of infinite sequences. We write |w| for the length of
a string w in Σ∗. The empty string is denoted λ. For S ∈ Σ∞ and i, j ∈ N, we write
S[i..j] for the string consisting of the ith through jth symbols of S, with the convention
that S[i..j] = λ if i > j, and S[0] is the leftmost symbol of S. We write S[i] for S[i..i] (the
ith symbol of S). For w ∈ Σ∗ and S ∈ Σ∞, we write w v S if w is a prefix of S, i.e., if
w = S[0..|w| − 1]. All logarithms are taken in base |Σ|.

3 Bounded Pushdown Dimension

In this section we first recall Lutz’s characterization of Hasudorff dimension in terms of
gales that can be used to effectivize dimension. Then we introduce Bounded Pushdown
dimension based on the concept of BPD gamblers and give its basic properties.
Definition. [9] Let s ∈ [0,∞).

1. An s-gale is a function d : Σ∗ → [0,∞) that satisfies the condition

d(w) =

∑
a∈Σ

d(wa)

|Σ|s
(1)

for all w ∈ Σ∗.

2. A martingale is a 1-gale.

Intuitively, an s-gale is a strategy for betting on the successive symbols of a sequence
S ∈ Σ∞. For each prefix w of S, d(w) is the capital (amount of money) that d has after
having bet on S[0..|w| − 1]. When betting on the next symbol b of a prefix wb of S,
assuming symbol b is equally likely to be any value in Σ, equation (1) guarantees that the
expected value of d(wb) is |Σ|−1

∑
a∈Σ

d(wa) = |Σ|s−1d(w). If s = 1, this expected value is

exactly d(w), so the payoffs are “fair”.
Definition. Let d be an s-gale, where s ∈ [0,∞).

1. We say that d succeeds on a sequence S ∈ Σ∞ if

3

lim sup
n→∞

d(S[0..n − 1]) = ∞.

2. The success set of d is

S∞[d] = {S ∈ Σ∞ | d succeeds on S}.

Observation 3.1 Let s, s′ ∈ [0,∞). For every s-gale d, the function d′ : Σ∗ → [0,∞)
defined by d′(w) = |Σ|(s

′−s)|w|d(w) is an s′-gale. Moreover, if s ≤ s′, then S∞[d] ⊆ S∞[d′].

Lutz characterized Hausdorff dimension using gales as follows.

Theorem 3.2 [9] Given a set X ⊆ Σ∞, if dimH(X) is the Hausdorff dimension of X [6],
then

dimH(X) = inf{s | there is an s − gale d such that X ⊆ S∞[d]}

The idea for a Bounded Pushdown dimension is to consider only s-gales that are com-
putable by a Bounded Pushdown (BPD) gambler. Bounded Pushdown gamblers are finite-
state gamblers [3] with an extra memory stack, that is used both by the transition and
betting functions. Additionally, BPDG’s are allowed to delay reading the next character
of the input –they read λ from the input– in order to alter the content of their stack, but
they cannot do this more than a constant number of times per each input symbol. During
such λ-transitions, the gambler’s capital remains unchanged.

The betting function returns a probability measure over the input alphabet.
Definition. Let Σ be a finite alphabet. ∆Q(Σ) is the set of all rational-valued probability
measures over Σ, i.e., all functions π : Σ −→ [0, 1] ∩ Q such that

∑
a∈Σ

π(a) = 1.

We are ready to define BPD gamblers.
Definition. A bounded pushdown gambler (BPDG) is an 8-tuple G =(Q, Σ, Γ, δ, β, q0,
z0, c) where

• Q is a finite set of states,

• Σ is the finite input alphabet,

• Γ is the finite stack alphabet,

• δ : Q×(Σ∪{λ})×Γ → Q×Γ∗ is the transition function (for simplicity we use the nota-
tion δ(q, b, a) = ⊥ when undefined; and we write δ(q, b, a) = (δQ(q, b, a), δΓ∗(q, b, a))),

• β : Q × Γ → ∆Q(Σ) is the betting function,

• q0 ∈ Q is the start state,

• z0 ∈ Γ is the start stack symbol,

• c ∈ N is a constant such that the number of λ-transitions per input symbol is at most
c,

4

with the two additional restrictions:

1. for each q ∈ Q and a ∈ Γ at least one of the following holds

• δ(q, λ, a) =⊥

• δ(q, b, a) =⊥ for all b ∈ Σ

2. for every q ∈ Q, b ∈ Σ ∪ {λ}, either δ(q, b, z0) =⊥, or δ(q, b, z0) = (q′, vz0), where q′

∈ Q and v ∈ Γ∗.

We denote with BPDG the set of all bounded pushdown gamblers.
The transition function δ outputs a new state and a string z′ ∈ Γ∗. Informally,

δ(q, w, a) = (q′, z′) means that in state q, reading input w, and popping symbol a from the
stack, δ enters state q′ and pushes z′ to the stack.

Note that w can be λ (ie, a λ-transition: the input is ignored and δ only computes with
the stack) but this only happens at most c times per input symbol. Any pair (state, stack
symbol) can either be a λ-transition pair or a non λ-transition pair exclusively, because
the first additional restriction enforces determinism.

Moreover, since z0 represents the bottom of the stack, we restrict δ so that z0 cannot
be removed from the bottom by the second additional restriction.

We can extend δ in the usual way to

δ∗ : Q × (Σ ∪ {λ}) × Γ+ → Q × Γ∗,

where for all q ∈ Q, a ∈ Γ, v ∈ Γ∗, and b ∈ Σ ∪ {λ}

δ∗(q, b, av) =

{
(δQ(q, b, a), δΓ∗(q, b, a)v) if δ(q, b, a) 6=⊥,
⊥ otherwise.

We denote δ∗ by δ.
For each i ≥ 2, we will use the notation

δi(q, λ, v) = δ(δi−1
Q (q, λ, v), λ, δi−1

Γ∗ (q, λ, v))

where
δ1(q, λ, v) = δ(q, λ, v).

Since δ is c-bounded we have that for any q ∈ Q, v ∈ Γ∗,

δc+1(q, λ, v) = ⊥

We also consider the extended transition function

δ∗∗ : Q × Σ∗ × Γ+ → Q × Γ∗,

defined for all q ∈ Q, a ∈ Γ, v ∈ Γ∗, w ∈ Σ∗, and b ∈ Σ by

δ∗∗(q, λ, av) = (q, av)

5

δ∗∗(q, wb, av) = δ(δi
Q(q̃, λ, ãṽ), b, δi

Γ∗(q̃, λ, ãṽ))

if δ∗∗(q, w, av) = (q̃, ãṽ), δi(q̃, λ, ãṽ) 6=⊥ and δi+1(q̃, λ, ãṽ) =⊥, i ≤ c.
That is, λ-transitions are inside the definition of δ∗∗(q, b, av), for b ∈ Σ. Notice that

δ∗∗ is not defined on an empty stack string, therefore av needs to be long enough in order
that δ∗∗(q, b, av) 6=⊥.

We denote δ∗∗ by δ, and δ(q0, w, z0) by δ(w). We write δ = (δQ, δΓ∗) for simplicity.
We also consider the usual extension of β

β∗ : Q × Γ+ → ∆Q(Σ),

defined for all q ∈ Q, a ∈ Γ, and v ∈ Γ∗ by

β∗(q, av) = β(q, a),

and denote β∗ by β.
We use BPDG to compute martingales. Intuitively, suppose a BPDG G is to bet on

sequence S has already bet on w < S, with current capital x ∈ Q, current state q ∈ Q and
current top stack symbol a. Then for b ∈ Σ, G bets the quantity xβ(q, a)(b) of its capital
that the next symbol of S is b. If the bet is correct (that is, if wb < S) and since payoffs
are fair, G has capital |Σ|xβ(q, a)(b). Formally,
Definition. Let G = (Q, Σ, Γ, δ, β, q0, z0, c) be a bounded pushdown gambler. The
martingale of G is the function

dG : Σ∗ → [0,∞)

defined by the recursion
dG(λ) = 1

dG(wb) = |Σ|dG(w)β(δ(w))(b)

for all w ∈ Σ∗ and b ∈ Σ.
By Observation 3.1, a BPDG G actually yields an s-gale for every s ∈ [0,∞). We call

it the s-gale of G, and denote it by

ds
G(w) = |Σ|(s−1)|w|dG(w).

A bounded pushdown s-gale is an s-gale d for which there exists a BPDG such that ds
G = d.

The first two properties of BPD gamblers are that any number of λ-transitions can
be replaced by a single λ-transition and that the stack alphabet does not give additional
power.

Proposition 3.3 Let G = (Q, Σ, Γ, δ, β, q0, z0, c) be a BPDG. Then there is a BPDG G′ =
(Q′, Σ, Γ′, δ′, β ′, q′0, z

′
0, 1) such that dG = dG′.

From now on we shall assume that the maximum number of λ-transitions c is 1.

Proposition 3.4 Let G = (Q, Σ, Γ, δ, β, q0, z0, c) be a BPDG. Then there is a BPDG G′ =
(Q′, Σ, {0, 1, z′0}, δ

′, β ′, q′0, z
′
0, c

′) such that dG = dG′.

6

Let us define bounded pushdown dimension. Intuitively, the BPD dimension of a se-
quence is the smallest s such that there is a BPD-s-gale that succeeds on the sequence.
Definition. The bounded pushdown dimension of a set X ⊆ Σ∞ is

dimBPD(X) = inf{s | there is a bounded pushdown s − gale d such that X ⊆ S∞[d]}.

4 Dimension and compression

In this section we characterize the bounded pushdown dimension of individual sequences
in terms of bounded pushdown compressibility, therefore BPD dimension is a natural and
robust definition.
Definition. A bounded pushdown compressor (BPDC) is an 8-tuple

C = (Q, Σ, Γ, δ, ν, q0, z0, c)

where

• Q is a finite set of states,

• Σ is the finite input and output alphabet,

• Γ is the finite stack alphabet,

• δ : Q × (Σ ∪ {λ}) × Γ → Q × Γ∗ is the transition function,

• ν : Q × Σ × Γ → Σ∗ is the output function,

• q0 ∈ Q is the initial state,

• z0 ∈ Γ is the start stack symbol,

• c ∈ N is a constant such that the number of λ-transitions per input symbol is at most
c,

with the two additional restrictions:

1. for each q ∈ Q and a ∈ Γ at least one of the following holds

• δ(q, λ, a) =⊥

• δ(q, b, a) =⊥ for all b ∈ Σ

2. for every q ∈ Q, b ∈ Σ ∪ {λ}, either δ(q, b, z0) =⊥, or δ(q, b, z0) = (q′, vz0), where q′

∈ Q and v ∈ Γ∗.

7

We extend δ to δ∗∗ : Q×Σ∗×Γ+ → Q×Γ∗ as before, and denote δ∗∗ by δ and δ(q0, w, z0)
by δ(w).

For q ∈ Q, w ∈ Σ∗ and z ∈ Γ+, we define the output from state q on input w reading
z on the top of the stack to be the string ν∗(q, w, z) (denoted by ν(q, w, z)) with

ν(q, λ, z) = λ

ν(q, wb, z) = ν(q, w, z)ν(δQ(q, w, z), b, δΓ∗(q, w, z))

for w ∈ Σ∗ and b ∈ Σ. We then define the output of C on input w ∈ Σ∗ to be the string

C(w) = ν(q0, w, z0).

We can restrict λ-transitions to a single one and the stack alphabet to three symbols.

Proposition 4.1 Let C = (Q, Σ, Γ, δ, ν, q0, z0, c) be a BPDC. Then there is a BPDC C ′ =
(Q′, Σ, Γ′, δ′, ν ′, q′0, z

′
0, 1) such that C(w) = C ′(w) for every w ∈ Σ∗.

Proposition 4.2 Let C = (Q, Σ, Γ, δ, ν, q0, z0, c) be a BPDC. Then there is a BPDC C ′ =
(Q′, Σ, {0, 1, z′0}, δ

′, ν ′, q′0, z
′
0, c

′) such that C(w) = C ′(w) for every w ∈ Σ∗.

We are interested in information lossless compressors, that is, w must be recoverable
from C(w) and the final state.
Definition. A BPDC C = (Q, Σ, Γ, δ, ν, q0, z0) is information-lossless (IL) if the function

Σ∗ → Σ∗ × Q

w → (C(w), δQ(w))

is one-to-one. An information-lossless bounded pushdown compressor (ILBPDC) is a
BPDC that is IL.

Intuitively, a BPDC compresses a string w if |C(w)| is significantly less than |w|. Of
course, if C is IL, then not all strings can be compressed. Our interest here is in the
degree (if any) to which the prefixes of a given sequence S ∈ Σ∞ can be compressed by an
ILBPDC.
Definition. If C is a BPDC and S ∈ Σ∞, then the compression ratio of C on S is

ρC(S) = lim inf
n→∞

|C(S[0..n − 1])|

n
.

The BPD compression ratio of a sequence is the best compression ratio achievable by
an ILBPDC, that is
Definition. The bounded pushdown compression ratio of a sequence S ∈ Σ∞ is

ρBPD(S) = inf{ρC(S) | C is a ILBPDC}.

The main result in this section states that the BPD dimension of a sequence and its
ILBPD compression ratio are the same, therefore BPD dimension is the natural concept
of density of information in the BPD setting.

8

Theorem 4.3 For all S ∈ Σ∞,

dimBPD(S) = ρBPD(S).

5 Separating LZ from BPD

In this section we prove that BPD compression can be much better than the compression
attained with the celebrated Lempel-Ziv algorithm.

We start with a brief description of the LZ algorithm [14].
We finish relating BPD dimension (and compression) with the Lempel-Ziv algorithm.

Given an input x ∈ Σ∗, LZ parses x in different phrases xi, i.e., x = x1x2 . . . xn (xi ∈ Σ∗)
such that every prefix y < xi, appears before xi in the parsing (i.e. there exists j < i s.t.
xj = y). Therefore for every i, xi = xl(i)bi for l(i) < i and bi ∈ Σ. We sometimes denote
the number of phrases in the parsing of x as C(x).

LZ encodes xi by a prefix free encoding of l(i) and the symbol bi, that is, if x =
x1x2 . . . xn as before, the output of LZ on input x is

LZ(x) = cl(1)b1cl(2)b2 . . . cl(n)bn

where ci is a prefix-free coding of i (and x0 = λ).
LZ is usually restricted to the binary alphabet, but the description above is valid for

any Σ.
For a sequence S ∈ Σ∞, the LZ compression ratio is given by

ρLZ(S) = lim inf
n→∞

|LZ(S[0 . . . n − 1])|

n
.

It is well known that LZ [14] yields a lower bound on the finite-state dimension (or finite-
state compressibility) of a sequence [14], ie, LZ is universal for finite-state compressors.

The following result shows that this is not true for BPD (hence PD) dimension, in a
strong sense: we construct a sequence S that cannot be compressed by LZ, but that has
BPD compression ratio less than 1

2
.

Theorem 5.1 For every m ∈ N, there is a sequence S ∈ {0, 1}∞ such that

ρLZ(S) > 1 −
1

m

and

dimBPD(S) ≤
1

2
.

As a corollary we obtain a separation of finite-state dimension and bounded pushdown
dimension. A similar result between finite-state dimension and pushdown dimension was
proved in [5].

9

Corollary 5.2 For any m ∈ N, there exists a sequence S ∈ {0, 1}∞ such that

dimFS(S) > 1 −
1

m

and

dimBPD(S) ≤
1

2
.

Conclusion

We have introduced Bounded Pushdown dimension, characterized it with compression and
compared it with Lempel-Ziv compression. It is open if there is a BPD compressor that
is universal for Finite-State compressors, which is true for the Lempel-Ziv algorithm, and
whether Lempel-Ziv compression can surpass BPD-compression for some sequence.

References

[1] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong
dimension in algorithmic information and computational complexity. SIAM Journal
on Computing. To appear.

[2] Chris Bourke, John M. Hitchcock, and N. V. Vinodchandran. Entropy rates and
finite-state dimension. Theor. Comput. Sci., 349(3):392–406, 2005.

[3] Jack J. Dai, James I. Lathrop, Jack H. Lutz, and Elvira Mayordomo. Finite-state
dimension. Theoretical Computer Science, 310(1–3):1–33, January 2004.

[4] D. Doty and P. Moser. Personal communication, based on [13]. 2006.

[5] David Doty and Jared Nichols. Pushdown dimension. Theoretical Computer Science.
To appear.

[6] K. Falconer. The Geometry of Fractal Sets. Cambridge University Press, 1985.

[7] J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. The fractal geometry of complexity
classes. SIGACT News Complexity Theory Column, 36:24–38, 2005.

[8] D. A. Huffman. Canonical forms for information-lossless finite-state logical machines.
Trans. Circuit Theory, pages 41–59, 1959.

[9] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236–
1259, 2003.

[10] J. H. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49–79, 2003.

10

[11] J. H. Lutz. Effective fractal dimensions. Mathematical Logic Quarterly, 51:62–72,
2005.

[12] E. Mayordomo. Effective fractal dimension in algorithmic information theory. In New
Computational Paradigms: Changing Conceptions of What is Computable. Springer-
Verlag, 2007. To appear.

[13] D. Sheinwald, A. Lempel, and J. Ziv. On compression with two-way head machines.
In Data Compression Conference, pages 218–227, 1991.

[14] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-
rate coding. IEEE Transactions on Information Theory, 24(5):530–536, 1978.

11

Technical Appendix

This appendix is devoted to proving Theorem 4.3 and Theorem 5.1. For the first one,
we need the following:

A Proof of Theorem 4.3

Definition. A BPDG G = (Q, Σ, Γ, δ, β, q0, z0) is nonvanishing if 0 < β(q, z)(b) < 1 for
all q ∈ Q, b ∈ Σ and z ∈ Γ.

Lemma A.1 For every BPDG G and each ε > 0, there is a nonvanishing BPDG G′ such
that for all w ∈ Σ∗, dG′(w) ≥ |Σ|−ε|w|dG(w).

Proof of Lemma A.1 . Let G = (Q, Σ, δ, β, q0, Γ, z0) be a BPDG, and let ε > 0. For
each q ∈ Q, z ∈ Γ, b ∈ Σ,

1 − |Σ|−ε
∑

b∈Σ

β(q, z)(b) = 1 − |Σ|−ε > 0,

so we can fix a rational β ′(q, z)(b) such that

|Σ|−εβ(q, z)(b) < β ′(q, z)(b) < 1 − |Σ|−ε
∑

a∈Σ,a6=b

β(q, z)(a)

and ∑

b∈Σ

β ′(q, z)(b) = 1.

Then, 0 < β ′(q, z)(b) < 1 for each q ∈ Q, b ∈ Σ and z ∈ Γ, therefore the BPDG G′ =
(Q, Σ, δ, β ′, q0, Γ, z0) is nonvanishing.

Also, for all q ∈ Q, b ∈ Σ, z ∈ Γ,

β ′(q, z)(b) ≥ |Σ|−εβ(q, z)(b)

so for all w ∈ Σ∗, dG′(w) ≥ |Σ|−ε|w|dG(w).

2

Proof of Theorem 4.3 Let S ∈ Σ∞. For each n ∈ N, let wn = S[0..n − 1].
To see that dimBPD(S) ≤ ρBPD(S), let s > s′ > ρBPD(S). It suffices to show that

dimBPD(S) ≤ s. By our choice of s′, there is an 1-ILBPDC C = (Q, Σ, Γ, δ, ν, q0, z0) for
which the set

I = {n ∈ N | |C(wn)| < s′n}

is infinite.

1

CONSTRUCTION A.1 Given a 1-bounded pushdown compressor (BPDC)
C = (Q, Σ, Γ, δ, ν, q0, z0), and k ∈ Z+ , we construct the 1-bounded pushdown gambler
(BPDG) G = G(C, k) = (Q′, Σ, Γ′, δ′, β ′, q′0, z

′
0) as follows:

i) Q′ = Q × {0, 1, . . . , k − 1}

ii) q′0 = (q0, 0)

iii) Γ′ =
4k−1⋃
i=2k

Γi

iv) z′0 = z2k
0

v) ∀(q, i) ∈ Q′, b ∈ Σ, a ∈ Γ′,

δ′((q, i), b, a) =

((
δQ(q, b, a), (i + 1) mod k

)
, ̂δΓ∗(q, b, a)

)

where for each z ∈ (Γ′)+, z ∈ Γ+ is the Γ-string obtained by concatenating the symbols of
z, and for each y ∈ Γ+, if y = y1y2 · · · y2kl+n with n < 2k, then ŷ ∈ (Γ′)+ is such that
ŷ1 = y1 · · · y2k+n, ŷ2 = y2k+n+1 · · · y4k+n, . . . , ŷl = y2k(l−1)+n+1 · · · y2kl+n.

vi) ∀(q, i) ∈ Q′, a ∈ Γ′, b ∈ Σ

β ′((q, i), a)(b) =
σ(q, bΣk−i−1, a)

σ(q, Σk−i, a)

where σ(q, A, a) =
∑
x∈A

|Σ|−|ν(q,x,a)| .

Lemma A.2 In Construction A.1, if |w| is a multiple of k and u ∈ Σ≤k, then

dG(wu) = |Σ||u|−|ν(δQ(w),u,δΓ∗(w))|σ(δQ(wu), Σk−|u|, ̂δΓ∗(wu))

σ(δQ(w), Σk, δ̂Γ∗(w))
dG(w).

Proof of Lemma A.2. We use induction on the string u. If u = λ, the lemma is
clear. Assume that it holds for u, where u ∈ Σ<k, and let b ∈ Σ. Then

dG(wub) = |Σ|
σ(δQ(wu), bΣk−|u|−1, ̂δΓ∗(wu))

σ(δQ(wu), Σk−|u|, ̂δΓ∗(wu))
dG(wu)

= |Σ|1−|ν(δQ(wu),b,δΓ∗(wu))|σ(δQ(wub), Σk−|u|−1, ̂δΓ∗(wub))

σ(δQ(wu), Σk−|u|, ̂δΓ∗(wu))
dG(wu)

so by the induction hypothesis the lemma holds for ub.

2

2

Lemma A.3 In Construction A.1, if w = w0w1 · · ·wn−1, where each wi ∈ Σk , then

dG(w) =
|Σ||w|−|C(w)|

n−1∏
i=0

σ(δQ(w0 · · ·wi−1), Σk, ̂δΓ∗(w0 · · ·wi−1))

.

Proof of Lemma A.3. We use induction on n. For n = 0, the identity is clear.
Assume that it holds for w = w0w1 · · ·wn−1, with each wi ∈ Σk, and let w′ = w0w1 · · ·wn.
Then Lemma A.2 with u = wn tells us that

dG(w′) =
|Σ|k−|ν(δQ(w),wn,δΓ∗(w))|

σ(δQ(w), Σk, δ̂Γ∗(w))
dG(w)

whence the identity holds for w′ by the induction hypothesis.

2

Lemma A.4 In Construction A.1, if C is IL and |w| is a multiple of k, then

dG(w) ≥ |Σ||w|−|C(w)|−
|w|
k

(l+log m+log k+1),

where l = dlog |Q|e and m = max{|ν(q, b, a)| | q ∈ Q, b ∈ Σ, a ∈ Γ2}.

Proof of Lemma A.4. We prove that for each z ∈ Σ∗,

σ(δQ(z), Σk, δ̂Γ∗(z)) ≤ |Σ|l+log m+log k+1.

To see this, fix z ∈ Σ∗ and observe that at most |Q| strings w ∈ Σk can have the same
output from state δQ(z) with stack content δΓ∗(z). Therefore, the number of w ∈ Σk for
which |ν(δQ(z), w, δΓ∗(z))| = j does not exceed |Q||Σ|j. Hence

σ(δQ(z), Σk, δ̂Γ∗(z)) =
∑

w∈Σk

|Σ|−|ν(δQ(z),w,δΓ∗(z))| ≤

mk∑

j=0

|Q||Σ|j|Σ|−j = |Q|(mk + 1)

≤ |Σ|l+log m+log k+1.

It follows by Lemma A.3 that

dG(w) = |Σ||w|−|C(w)|− |w|
k

(l+log m+log k+1).

2

Lemma A.5 In Construction A.1, if C is IL, then for all w ∈ Σ∗,

dG(w) ≥ |Σ||w|−|C(w)|− |w|
k

(l+log m+log k+1)−(km+l+log m+log k+1),

where l = dlog |Q|e and m = max {|ν(q, b, a)| | q ∈ Q, b ∈ Σ, a ∈ Γ2}.

3

Proof of Lemma A.5. Assume the hypothesis, let l and m be as given, and let w ∈
Σ∗. Fix 0 ≤ j < k such that |w| + j is divisible by k. By Lemma A.4 we have

dG(w) ≥ |Σ|−jdG(w0j)

≥ |Σ|−j+|w0j|−|C(w0j)|− |w0j |
k

(l+log m+log k+1)

= |Σ||w|−|C(w0j)|− |w|
k

(l+log m+log k+1)− j
k
(l+log m+log k+1)

≥ |Σ||w|−|C(w)|−
|w|
k

(l+log m+log k+1)−(km+l+log m+log k+1)

2

Let l = dlog |Q|e and m = max{|ν(q, b, a)| | q ∈ Q, b ∈ Σ, a ∈ Γ2}, and fix k ∈ Z+ such
that l+log m+log k+1

k
< s− s′. Let G = G(C, k) be as in Construction A.1. Then, by Lemma

A.5, for all n ∈ I we have

d
(s)
G (wn) ≥ |Σ|sn−|C(wn)|−n

k
(l+log m+log k+1)−(km+l+log m+log k+1)

≥ |Σ|(s−s′− l+log m+log k+1

k
)n−(km+l+log m+log k+1)

Since s − s′ − l+log m+log k+1
k

> 0, this implies that S ∈ S∞[d
(s)
G].

Thus, dimBPD(S) ≤ s.
To see that ρBPD(S) ≤ dimBPD(S), let s > s′ > s′′ > dimBPD(S). It suffices to show

that ρBPD(S) ≤ s. By our choice of s′′, there is a 1-BPDG G such that the set

J = {n ∈ N | ds′′

G (wn) ≥ 1}

is infinite. By Lemma A.1 there is a nonvanishing 1-BPDG G̃ such that
d �

G
(w) ≥ |Σ|(s

′′−s′)|w|dG(w) for all w ∈ Σ∗.

CONSTRUCTION A.2 Let G = (Q, Σ, Γ, δ, β, q0, z0) be a nonvanishing 1-BPDG, and
let k ∈ Z+. For each z ∈ Γ∗ (long enough for dGq,z

(w) to be defined for all w ∈ Σk)
and q ∈ Q, let Gq,z = (Q, Σ, Γ, δ, β, q, z), and define pq,z : Σk → [0, 1] by pq,z(w) =
|Σ|−kdGq,z

(w). Since G is nonvanishing and each dGq,z
is a martingale with dGq,z

(λ) = 1,
each of the functions pq,z is a positive probability measure on Σk. For each z ∈ Γ∗, q ∈ Q, let
Θq,z : Σk → Σ∗ be the Shannon-Fano-Elias code given by the probability measure pq,z. Then

|Θq,z(w)| = lq,z(w)

lq,z(w) = 1 + dlog 1
pq,z(w)

e

for all q ∈ Q and w ∈ Σk, and each of the sets range(Θq,z) is an instantaneous code. We
define the 1-BPDC C = C(G, k) = (Q′, Σ, Γ′, δ′, ν ′, q′0, z

′
0) whose components are as follows:

i) Q′ = Q × Σ<k

4

ii) q′0 = (q0, λ)

iii) Γ′ =
4k−1⋃
i=2k

Γi

iv) z′0 = z2k
0

v) ∀(q, w) ∈ Q′, b ∈ Σ, a ∈ Γ′,

δ′((q, w), b, a) =

{
(q, wb, a) if |w| < k − 1,

(δQ(q, wb, a), λ, ̂δΓ∗(q, wb, a)) if |w| = k − 1.

vi) ∀(q, w) ∈ Q′, b ∈ Σ, a ∈ Γ′,

ν ′((q, w), b, a) =

{
λ if |w| < k − 1,
Θq,a(wb) if |w| = k − 1.

Since each range(Θq,z) is an instantaneous code, it is easy to see that the BPDC C =
C(G, k) is IL.

Lemma A.6 In Construction A.2, if |w| is a multiple of k, then

|C(w)| ≤
(
1 +

2

k

)
|w| − log dG(w).

Proof of Lemma A.6. Let w = w0w1 · · ·wn−1, where each wi ∈ Σk. For each
0 ≤ i < n, let qi = δQ(w0 · · ·wi−1) and zi = δΓ∗(w0 · · ·wi−1). Then,

|C(w)| =

n−1∑

i=0

lqi,zi
(wi)

=
n−1∑

i=0

(
1 + dlog

1

pqi,zi
(wi)

e
)
≤

n−1∑

i=0

(
2 + log

1

pqi,zi
(wi)

)

=
n−1∑

i=0

(
2 + log

|Σ|k

dGqi,zi
(wi)

)
= (k + 2)n − log

n−1∏

i=0

dGqi,zi
(wi)

= (k + 2)n − log dG(w) = (1 +
2

k
)|w| − log dG(w)

2

Lemma A.7 In Construction A.2, for all w ∈ Σ∗,

|C(w)| ≤
(
1 +

2

k

)
|w| − log dG(w).

5

Proof of Lemma A.7. If |w| is multiple of k, then we apply the Lemma A.6.
Otherwise, let w = w′z, where |w′| is a multiple of k and |z| = j, 0 < j < k.

Then, Lemma A.6 tell us that

|C(w)| = |C(w′)|

≤
(
1 +

2

k

)
|w′| − log dG(w′)

≤
(
1 +

2

k

)
|w′| − log(|Σ|−jdG(w))

=
(
1 +

2

k

)
|w| − log dG(w) −

2j

k

≤
(
1 +

2

k

)
|w| − log dG(w).

2

Fix k > 2
s−s′

, and let C = C(G̃, k) be as in Construction A.2. Then Lemma A.7 tell us
that for all n ∈ J ,

| C(wn) | ≤
(
1 +

2

k

)
n − log d �

G(wn)

≤
(
1 +

2

k
+ s′ − s′′

)
n − log dG(wn)

≤
(2

k
+ s′

)
n − log ds′′

G (wn)

≤
(2

k
+ s′

)
n

< sn.

Thus, ρBPD(S) ≤ s.

2

B Proof of Theorem 5.1

For a string x, x−1 denotes x written in reverse order.
Proof of Theorem 5.1 Let m ∈ N, and let k = k(m) be an integer to be determined

later. For any integer n, let Tn denote the set of strings x of size n such that 1j does not
appear in x, for every j ≥ k. Since Tn contains {0, 1}k−1 × {0} × {0, 1}k−1 × {0} . . . (i.e.
the set of strings whose every kth bit is zero), it follows that |Tn| ≥ 2an, where a = 1−1/k.

Remark B.1 For every string x ∈ Tn there is a string y ∈ Tn−1 and a bit b such that
yb = x.

6

Let An = {a1, . . . au} be the set of palindromes in Tn. Since fixing the n/2 first bits
of a palindrome (wlog n is even) completely determines it, it follows that |An| ≤ 2

n
2 .

Let us separate the remaining strings in Tn − An into two sets Xn = {x1, . . . xt} and
Yn = {y1, . . . yt} with (xi)

−1 = yi for every 1 ≤ i ≤ t. Let us choose X, Y such that x1 and
yt start with a zero. We construct S in stages. For n ≤ k − 1, Sn is an enumeration of all
strings of size n in lexicographical order. For n ≥ k,

Sn = a1 . . . au 12n x1 . . . xt 12n+1 yt . . . y1

i.e. a concatenation of all strings in An (the A zone of Sn) followed by a flag of 2n
ones, followed by the concatenations of all strings in X (the X-zone) and Y (the Y zone)
separated by a flag of 2n + 1 ones. Let

S = S1S2 . . . Sk−1 1k 1k+1 . . . 12k−1 SkSk+1 . . .

i.e. the concatenation of the Sj’s with some extra flags between Sk−1 and Sk. We claim
that the parsing of Sn (n ≥ k) by LZ, is as follows:

Sn = a1, . . . , au, 12n, x1, . . . , xt, 12n+1, yt, . . . , y1.

Indeed after S1, . . . Sk−1 1k 1k+1 . . . 12k−1, LZ has parsed every string of size ≤ k − 1 and
the flags 1k 1k+1 . . . 12k−1. Together with Remark B.1, this guarantees that LZ parses Sn

into phrases that are exactly all the strings in Tn and the two flags 12n, 12n+1.
Let us compute the compression ratio ρLZ(S). Let n, i be integers. By construction of

S, LZ encodes every phrase in Si (except the two flags), by a phrase in Si−1 (plus a bit).
Indexing a phrase in Si−1 requires a codeword of length at least logarithmic in the number
of phrase parsed before, i.e. log(C(S1S2 . . . Si−2)). Since C(Si) ≥ |Ti| ≥ 2ai, it follows

C(S1 . . . Si−2) ≥

i−2∑

j=1

2aj =
2a(i−1) − 2a

2a − 1
≥ b2a(i−1)

where b = b(a) is arbitrarily close to 1. Letting ti = |Ti|, the number of bits output by LZ
on Si is at least

C(Si) log C(S1 . . . Si−2) ≥ ti log b2a(i−1)

≥ cti(i − 1)

where c = c(b) is arbitrarily close to 1. Therefore

|LZ(S1 . . . Sn)| ≥

n∑

j=1

ctj(j − 1)

Since |S1 . . . Sn| ≤ 2k2 +
∑n

j=1(jtj + 4j), (the two flags plus the extra flags between Sk−1

and Sk) the compression ratio is given by

ρLZ(S1 . . . Sn) ≥ c

∑n

j=1 tj(j − 1)

2k2 +
∑n

j=1 j(tj + 4)
(2)

= c − c
2k2 +

∑n

j=1(tj + 4j)

2k2 +
∑n

j=1 j(tj + 4)
(3)

7

The second term in Equation 3 can be made arbitrarily small for n large enough: Let
M ≤ n, we have

2k2 +
n∑

j=1

j(tj + 4) ≥ 2k2 +
M∑

j=1

jtj + (M + 1)
n∑

j=M+1

tj

= 2k2 +

M∑

j=1

jtj + M

n∑

j=M+1

tj +

n∑

j=M+1

tj

≥ 2k2 +

M∑

j=1

jtj + M

n∑

j=M+1

tj +

n∑

j=M+1

2aj

≥ 2k2 +
M∑

j=1

jtj + M
n∑

j=M+1

tj + 2an

≥ M
n∑

j=M+1

tj + M(2k2 + 2n(n + 1) +
M∑

j=1

tj) for n big enough

= M(2k2 +
n∑

j=1

tj + 4
n∑

j=1

j)

Hence

ρLZ(S1 . . . Sn) ≥ c −
c

M

which by definition of c, M can be made arbitrarily close to 1 by choosing k accordingly,
i.e

ρLZ(S1 . . . Sn) ≥ 1 −
1

m
.

Let us show that dimBPD(S) ≤ 1
2
. Consider the following BPD martingale d. Informally,

d on Sn goes through the An zone until the first flag, then starts pushing the whole X
zone onto its stack until it hits the second flag. It then uses the stack to bet correctly on
the whole Y zone. Since the Y zone is exactly the X zone written in reverse order, d is
able to double its capital on every bit of the Y zone. On the other zones, d does not bet.
Before giving a detailed construction of d, let us compute the upper bound it yields on

8

dimBPD(S).

dimBPD(S) ≤ 1 − lim sup
n→∞

log d(S1 . . . Sn)

|S1 . . . Sn|

≤ 1 − lim sup
n→∞

∑n

j=1 |Yj|

2k2 +
∑n

j=1(j|Tj| + 4j)

≤ 1 − lim sup
n→∞

∑n

j=1 j
|Tj |−|Aj|

2

2k2 +
∑n

j=1(j|Tj| + 4j)

≤
1

2
+

1

2
lim sup

n→∞

2k2 +
∑n

j=1(j|Aj| + 4j)

2k2 +
∑n

j=1(j|Tj | + 4j)
.

Since

lim sup
n→∞

2k2 +
∑n

j=1(j|Aj| + 4j)

2k2 +
∑n

j=1(j|Tj| + 4j)
≤ lim sup

n→∞

∑n

j=1 j(|Aj| + 4 + 2k2)
∑n

j=1 |Tj |

≤ lim sup
n→∞

∑n

j=1 j(2
j

2 + 2
j

4)
∑n

j=1 2aj

≤ lim sup
n→∞

n2
3n
4

2an

= 0.

It follows that

dimBPD(S) ≤
1

2
.

Let us give a detailed description of d. Let Q be the following set of states:

• The start state q0, and q1, . . . qv the “early” states that will count up to

v = |S1S2 . . . Sk−1 1k 1k+1 . . . 12k−1|.

• qa
0 , . . . , q

a
k the A zone states that cruise through the A zone until the first flag.

• q1f the first flag state.

• qX
0 , . . . , qX

k the X zone states that cruise through the X zone, pushing every bit on
the stack, until the second flag is met.

• qr
0, . . . , q

r
k which after the second flag is detected, pop k symbols from the stack that

were erroneously pushed while reading the second flag.

• q2f the second flag state.

• qb the betting on zone Y state.

9

Let us describe the transition function δ : Q×{0, 1} × {0, 1} → Q×{0, 1}. First δ counts
until v i.e. for i = 0, . . . v − 1

δ(qi, x, y) = (qi+1, y) for any x, y

and after reading v bits, it enters in the first A zone state, i.e. for any x, y

δ(qv, x, y) = (qa
0 , y).

Then δ skips through A until the string 1k is met, i.e. for i = 0, . . . k − 1 and any x, y

δ(qa
i , x, y) =

{
(qa

i+1, y) if x = 1

(qa
0 , y) if x = 0

and
δ(qa

k , x, y) = (q1f , y).

Once 1k has been seen, δ knows the first flag has started, so it skips through the flag until
a zero is met, i.e. for every x, y

δ(q1f , x, y) =

{
(q1f , y) if x = 1

(qX
0 , 0y) if x = 0

where state qX
0 means that the first bit of the X zone (a zero bit) has been read, therefore

δ pushes a zero. In the X zone, delta pushes every bit it sees until it reads a sequence of
k ones, i.e until the start of the second flag, i.e for i = 0, . . . k − 1 and any x, y

δ(qX
i , x, y) =

{
(qX

i+1, xy) if x = 1

(qX
0 , xy) if x = 0

and
δ(qX

k , x, y) = (qr
0, y).

At this point, δ has pushed all the X zone on the stack, followed by k ones. The next step
is to pop k ones, i.e for i = 0, . . . k − 1 and any x, y

δ(qr
i , x, y) = (qr

i+1, λ)

and
δ(qr

k, x, y) = (q2f
0 , y).

At this stage, δ is still in the second flag (the second flag is always bigger than 2k) therefore
it keeps on reading ones until a zero (the first bit of the Y zone) is met. For any x, y

δ(q2f , x, y) =

{
(q2f , y) if x = 1

(qb, λ) if x = 0.

10

On the last step δ has read the first bit of the Y zone, therefore it pops it. At this stage,
the stack exactly contains the Y zone (i.e. the X zone written in reverse order) except
the first bit; δ thus uses its stack to bet and double its capital on every bit in the Y zone.
Once the stack is empty, a new A zone begins. Thus, for any x, y

δ(qb, x, y) = (qb, λ).

and

δ(qb, x, z0) =

{
(qa

1 , z0) if x = 1

(qa
0 , z0) if x = 0.

The betting function is equal to 1/2 everywhere (i.e no bet) except on state qb, where

β(qb, y)(z) =

{
1 if y = z

0 if y 6= z.

and β stops betting once start stack symbol is met, i.e.

β(qb, z0) =
1

2
.

ut

11

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

