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Abstract

It is well known that every finite Abelian group G can be represented as a direct product of cyclic
groups: G = G1◦G2◦· · ·◦Gt, where each Gi is a cyclic group of size pj for some prime p and integer j ≥ 1.
If ai is the generator of the cyclic group of Gi, i = 1, 2, · · · , t, then the elements a1, a2, · · · , at are called a
basis of G. In this paper, we first obtain an O(n)-time deterministic algorithm for computing the basis
of an Abelian group with n elements. The existing algorithms need O(n2) time by Chen and O(n1.5)

time by Buchmann and Schmidt . We then derive an O((
∑k

i=1
p

ni/2
i n2

i )(log n) log log n)-time randomized
algorithm to compute the basis of Abelian group G of size n with factorization n = p

n1
1 · · · pnt

t , which is
also a part of the input. It implies an O(n1/2(log n)3 log log n)-time randomized algorithm to compute
the basis of an Abelian group G of size n. It also implies that if n is an integer in {1, 2, · · · , m}−G(m, c),
then the basis of an Abelian group of size n can be computed in O((log n)

c
2
+3 log log n)-time, where c

is any positive constant and G(m, c) is a subset of the small fraction of integers in {1, 2, · · · , m} with
|G(m,c)|

m
= O( 1

(log m)c/2 ) for every integer m.

(Key words: Basis of Abelian Group; Linear time; Sublinear Time; Randomization)

1. Introduction

The theory of groups is a fundamental theory of mathematics. Its applications can be found throughout entire
mathematics and theoretical physics especially quantum mechanics. In recent years, interest in studying
the computational complexity of groups has raised dramatically due to the ever-increasing significance of
its relationship to quantum computing and its application in elliptic curve cryptography. Since the early
developmental period of computational complexity, computer scientists have shown great interest in the
study of groups.

Abelian groups are groups with commutative property. It is well known that a finite Abelian group can
be decomposed to a direct product of cyclic groups with prime-power order (called cyclic p-groups) [10].
This fundamental theorem is also called the Kronecker decomposition theorem. In quantum computing,
the hidden subgroup problem (HSP) greatly interests scientists. The finite Abelian case was first used to
spectacular effect by Shor and Simon [22, 23]. “If the group G is Abelian, then it is possible to solve the HSP
in polynomial time with bounded error on a quantum computer.” A polynomial time algorithm in quantum
computing means an algorithm whose running time is a polynomial of the logarithm of the size of the group.
There is a polynomial time quantum algorithm for solving HSP over Abelian groups [4, 6, 13, 15, 16, 19, 22, 23].
The famous Shor’s quantum algorithm to factorize integers is one special case.

On the other hand, finite Abelian groups have been used in elliptic curve cryptosystems that were
introduced by Miller in 1986 [19]. This system is based on the discrete logarithm problem, which is as
follows: given an element g in a finite group G (over an elliptic curve) and another element h in G, find an
integer x such that gx = h [16]. The advantage of using elliptic curve crypto-systems over other public-key
crypto-systems is that the elliptic curve system may lead to smaller key sizes and better performance with
the similar level of security. Another application in cryptography can be found in [6]
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No polynomial-time algorithm has been found for determining if two general groups are isomorphic. The
group isomorphism problem is related to the graph isomorphism problem and is also easier to solve than
the graph isomorphism problem [18]. Hoffmann published a book in 1982 that presents interesting algebraic
results that relate the graph isomorphism problem to the automorphism groups of the two graphs [8]. The
related development can be found in [14]. Miller [17] showed an O(nlog n+O(1)) time algorithm for the group
isomorphism problem. Savage [20] claimed the isomorphism between two Abelian groups can be checked in
O(n2) steps. Vikas [24] improved it to O(n) time for the Abelian p-group and O(n log n) time for Abelian
group. Kavitha [12] showed that the Abelian group isomorphism problem can be computed in O(n log log n)
time. Garzon and Zalcstein [7] also discussed that the polynomial time algorithms for the isomorphism
problem of Abelian groups. Recently, Kavitha [11], using a new method for computing the orders of all
elements in O(n) time, obtained O(n) time algorithm for the Abelian group isomorphism problem. The
methods for computing the order for one element in an Abelian group was also reported in [1, 21]. In [2],
Buchmann and Schmidt showed an O(m

√

|G|) time algorithm to compute the basis of an Abelian group G
with a set of generator of size m. Their result implies an O(n1.5) time algorithm for computing the basis of
an Abelian group of size n. It is easy to see that an algorithm for finding the basis of Abelian group can be
easily converted to the algorithm of checking the isomorphism of two Abelian groups.

Since the basis of an Abelian group fully determines its structure, finding the basis is crucial in computing
the general properties for Abelian groups. The orders of all elements in a basis form the invariant structure
of an Abelian group. Two Abelian group are isomorphic if and only if they have the same structure, which
can be determined by the orders of elements in basis. Also, finding the basis of an Abelian group is the
generalization of the integer factorization problem, one of the fundamental problems in computer science.
For an integer n > 0, the set {0, 1, 2, · · · , n−1} with the addition (mod n) forms an Abelian group. Therefore,
pursing efficient algorithms in the classical computing model for the basis of Abelian group has fundamental
significance.

In this paper, we obtain an O(n)-time deterministic algorithm for finding the basis of an Abelian group
with n elements. This improves the previous O(n2) time and O(n1.5) time algorithms by Chen [3] and by

Buchmann and Schmidt [2] respectively. We then derive an O((
∑k

i=1 p
ni/2
i n2

i )(log n) log log n)-time random-
ized algorithm to compute the basis of Abelian group G of size n with factorization n = pn1

1 · · · pnt
t , which

is also a part of the input. It implies an O(n1/2(log n)3 log log n)-time randomized algorithm to compute
the basis of an Abelian group G of size n. It also implies that if n is an integer in {1, 2, · · · ,m} − G(m, c),
then the basis of an Abelian group of size n can be computed in O((log n)

c
2+3 log log n)-time, where c is

any positive constant and G(m, c) is a subset of the small fraction of integers in set {1, 2, · · · ,m} with
|G(m,c)|

m = O( 1
(log m)c/2 ) for every integer m. Since saving the multiplication table of a group of size n takes

O(n2) space, the multiplication table of the Abelian group can be accessed as an oracle during the compu-
tation. In many applications, multiplication table is not necessary since the product of two elements can be
calculated in running time.

2. Notations

For two positive integers x and y, (x, y) represents the greatest common divisor (GCD) between them. For
a set A, |A| denotes the number of elements in A. For a real number x, bxc is the largest integer ≤ x and
dxe is the least integer ≥ x. For two integers x and y, x|y means that y = xc for some integer c.

A group is a nonempty set G with a binary operation “·” that is closed in set G and satisfies the following
properties (for simplicity, “ab” represents “a · b”): 1)for every three elements a, b and c in G, a(bc) = (ab)c;
2)there exists an identity element e ∈ G such that ae = ea = a for every a ∈ G; 3)for every element
a ∈ G, there exists a−1 ∈ G with aa−1 = a−1a = e. A group G is finite if G has only finite elements.
Let e be the identity element of G, i.e. ae = a for each a ∈ G. For a ∈ G, ord(a), the order of a, is
the least integer k such that ak = e. For a ∈ G, define 〈a〉 to be the subgroup of G generated by the
element a (in other words, 〈a〉 = {e, a, a2, · · · , aord(a)−1}). Let A and B be two subsets of group G, define
AB = A · B = A ◦ B = {ab|a ∈ A and b ∈ B}.

A group G is an Abelian group if ab = ba for every pair of elements a, b ∈ G. Assume that G is
an Abelian group with elements g1, g2, · · · , gn. For each element gi ∈ G, it corresponds to an index i.
According to the theory of Abelian group, a finite Abelian group G of n elements can be represented as
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G = G(pn1
1 )◦G(pn2

2 )◦· · ·◦G(pnt
t ), where n = pn1

1 pn2
2 · · · pnt

t , p1 < p2 < · · · < pt are the prime factors of n, and
G(pni

i ) is a subgroup of G with pni
i elements (see [9]). We also use the notation Gpi

to represent the subgroup
of G with size pni

i . Any Abelian group G of size pm can be represented by G = G(pm1)◦G(pm2)◦· · ·◦G(pmk),

where m =
∑k

i=1 mi and 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk. Notice that each G(pmi) is a cyclic group.
For, a1, a2, · · · , ak from the Abelian group G, denote 〈a1, a2, · · · , ak〉 to be the set of all elements in G

generated by a1, · · · , ak. In other words, 〈a1, a2, · · · , ak〉 = 〈a1〉〈a2〉 · · · 〈ak〉. An element a ∈ G is independent
of a1, a2, · · · , ak in G if a 6= e and 〈a1, a2, · · · , ak〉 ∩ 〈a〉 = {e}. If G = 〈a1, a2, · · · , ak〉, then {a1, a2, · · · , ak}
is called a set of generators of G.

The elements a1, a2, · · · , ak from the Abelian group G are independent if ai is independent of
a1, · · · , ai−1, ai+1, · · · , ak for every i with 1 ≤ i ≤ k. A basis of G is a set of independent elements a1, · · · , ak

that can generate all elements of G (in other words, G = 〈a1, a2, · · · , ak〉).

3. Algorithm with O(n log n) Steps

The algorithm in this section has two parts. The first part decomposes an Abelian group into product
G(pn1

1 ) ◦G(pn2
2 ) ◦ · · · ◦G(pnk

k ). In order to get the subgroup of size pni
i , we find the set of elements with the

order of pi-power.
The second part finds the basis of each group G(pni

i ). The algorithm has several stages and each
stage finds a member of basis at a time for G(pni

i ). Assume that b1, · · · , bh, which satisfy ord(b1) ≥
ord(b2) ≥ · · · ≥ ord(bh), are the elements of a basis of the Abelian group G(pu). We will find another
set of the basis a1, · · · , ah. The element a1 is selected among all elements in G(pu) such that a1 has the
largest order ord(a1). Therefore, ord(a1) = ord(b1). Assume that a1, · · · , ak have been obtained such that
ord(a1) = ord(b1), · · · , ord(ak) = ord(bk). We show that it is always possible to find another ak+1 such that
(〈a1〉 · · · 〈ak〉) ∩ 〈ak+1〉 = {e} and ord(ak+1) = ord(bk+1). The possibility of such an extension is shown at
Lemma 4 and Lemma 7. We maintain a subset M of elements of G(pu) such that M consists of all elements
a ∈ G that are independent of a1, a2, · · · , ak and ord(a) ≤ ord(ak). We search for ak+1 from M by selecting
the element with the highest order. After ak+1 is found, M will be updated.

In this section, we develop an O(n log n) time algorithm to compute the basis of a finite Abelian group.
The algorithm and its proof are self-contained. In section 4, we improve this algorithm to be in linear time
by using a result of Kavitha [12]. For an integer n, it can be factorized into product of primer numbers in
O(

√
n(log n)2) time by the brute force method. Both this section and section 4 spend at least linear time

for computing the basis of an Abelian group. Therefore, we always assume that the primer factorization of
n, which is the size of input Abelian group, is known in the two sections.

Lemma 1 ([24]). There exists an O(n log n) time algorithm such that given a group G of size n, it computes
the order of all elements g with ord(g) = pj

i for some pi||G| and j ≥ 0.

Proof: Assume that n has the primer factorization n = pn1
1 pn2

2 · · · pnt
t and ni ≥ 1 for i = 1, 2, · · · , t. Given

the multiplication table of G, with O(log m) steps, we can compute am. This can be done by a straightforward

divide and conquer method with the recursion am = a
m
2 · am

2 if m is even or am = a · abm
2 c · abm

2 c if m is
odd.

For each prime factor pi of n, compute api for each a ∈ G. Build the table Ti so that Ti(a) = api for
a ∈ G. The table Ti can be built in O(n log pi) steps.

For each a ∈ G and prime factor pi of n, try to find the least integer j, which may not exist, such that

apj
i = e. It takes O(ni) steps by looking up the table Ti. For each pi, trying all a ∈ G takes O(n(log pi +ni))

steps. Therefore, the total time is O(n(
∑t

i=1(log pi + ni)) = O(n log n).

Lemma 2. Assume G is an Abelian group of size n. We have the following two facts: 1) If n = m1m2

with (m1,m2) = 1, G′ = {a ∈ G|am1 = e} and G′′ = {am1 |a ∈ G}, then both G′ and G are subgroups of G,
G = G′ ◦G′′, |G′| = m1 and |G′′| = m2. Furthermore, for every a ∈ G, if (ord(a),m1) = 1, then a ∈ G′′. 2)If

n = pn1
1 pn2

2 · · · pnt
t , then G = G(pn1

1 )◦G(pn2
2 )◦ · · · ◦G(pnt

t ), where G(pni
i ) = {a ∈ G|ap

ni
i = e} for i = 1, · · · , t.
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Proof: It is easy to verify that G′ is subgroup of G. Assume a1, · · · , as1
, b1, · · · , bs2

are the elements in
a basis of G such that ord(ai)|m1 for i = 1, · · · , s1 and ord(bj)|m2 for j = 1, · · · , s2. It is easy to see that
am1

i = e for i = 1, · · · , s1 and bm1
j 6= e for j = 1, · · · , s2. For each bj , 〈bj〉 = 〈bm1

j 〉 since (m1,m2) = 1 and
ord(bj)|m2. Assume that x = am1 and y = a′m1 . Both x and y belong to G′′. Let’s consider xy = (aa′)m1 .
We still have xy ∈ G′′. Thus, G′′ is closed under multiplication. Since G′′ is a subset of a finite group, G′′

is a group. Therefore, G′′ is a group generated by bm1
1 , · · · , bm1

s2
that is the same as the group generated by

b1, · · · , bs2
. Therefore, G′′ is of size m2. On the other hand, G′ has basis of elements a1, · · · , as1

and is of size
m1. We also have that G′ ∩ G′′ = {e}. It is easy to see that G = G′ ◦ G′′. For a ∈ G with (ord(a),m1) = 1,
〈am1〉 = 〈a〉 and am1 6= e. So, we have am1 ∈ G′′, which implies that a ∈ 〈a〉 = 〈am1〉 ⊆ G′′. Part 2) follows
from part 1).

Lemma 3. Assume G is a group of size n = pn1
1 pn2

2 · · · pnt
t . Given the table of the orders of all elements

g ∈ G with ord(g) = pj
i for some pi and j ≥ 0, with O(n) steps, G can be decomposed as the product of

subgroups G(pn1
1 ) ◦ · · · ◦ G(pnt

t ).

Proof: By Lemma 2, the elements of each G(pni
i ) consists of all elements of G with order pj

i for some
integer j ≥ 0. Therefore, we have the following algorithm:

Compute the list of integers p1, p
2
1, · · · , pn1

1 , p2, p
2
2, · · · , pn2

2 , · · · , pt, p
2
t , · · · , pnt

t . This can be done in
O(log n)2 steps because n1 +n2 + · · ·+nt ≤ log n. Also sort those integers p1, p

2
1, · · · , pn1

1 , p2, p
2
2, · · · , pn2

2 , · · · ,
pt, p

2
t , · · · , pnt

t by increasing order. It takes (log n)2 steps because bubble sorting those log n integers takes
O((log n)2) steps. Let q1 < q2 · · · < qm be the list of integers sorted from p1, p

2
1, · · · , pn1

1 , p2, p
2
2, · · · , pn2

2 , · · · ,
pt, p

2
t , · · · , pnt

t .
Set up the array A of n buckets. Put all elements of order k into bucket A[k]. Merge the buckets

A[pi], A[p2
i ], · · · , A[pni

i ] to obtain G(pni
i ). This can be done by scanning the array A from left to right once

and fetching the elements from the array A[ ] at those positions q1 < q2 · · · < qm.

The following lemma is essential from Chen’s early work [3]. Its proof, which was written in Chinese, is
refined here.

Lemma 4 ([3]). Let G be an Abelian group of size pt for prime p and integer t ≥ 1. Assume a1, a2, · · · , ak

are independent elements in G and b is also an elements in G with ord(b) ≤ ord(ai) for i = 1, · · · , k. Then
there exists b′ ∈ 〈a1, · · · , ak, b〉 with ord(b′)|ord(b) such that (1) a1, · · · , ak, b′ are independent elements in G;

(2) 〈a1, · · · , ak, b′〉 = 〈a1, · · · , ak, b〉; and (3) b′ can be expressed as b′ = b
∏k

i=1(a
−tip

ξi−η

i ), where η is the
least integer that bpη ∈ 〈a1, · · · , ak〉.
Proof: Let ord(ai) = pni and ord(b) = pm, ni ≥ m for i = 1, ..., k. Let 〈a1, · · · , ak〉 ∩ 〈b〉 = 〈c〉. We
assume that c 6= e (Otherwise, let b′ = b and finish the proof). Assume,

c = at1pξ1

1 · · · atkpξk

k = bhpη

, (1)

where 0 ≤ ti < pni−ξi and (ti = 0 or (ti, p) = 1) for i = 1, · · · , k and 0 < h < pm−η with (h, p) = 1 and
η < m (because c 6= e).

Since (ti, p) = 1, the order of each atip
ξi

i is pni

pξi
. The order of at1pξ1

1 · · · atkpξk

k is max{pni

pξi
|ti 6= 0, and i =

1, ..., k}. On the hand, the order of bhpη

is pm

pη . Thus, we have max{pni

pξi
|ti 6= 0, and i = 1, ..., k} = pm

pη .

Therefore, pni−ξi ≤ pm−η for each i = 1, · · · , k. Thus, we have ni − ξi ≤ m − η. Since (h, p) = 1, we have
〈bhpη 〉 = 〈bpη 〉. Without loss of generality, we assume that h = 1. It is easy to see that η is the least integer
such that bpη ∈ 〈a1, · · · , ak〉. We have ξi ≥ η + (ni − m) ≥ η for i = 1, ..., k. Let

b′ =

k
∏

i=1

(a−tip
ξi−η

i ) · b. (2)

Clearly, b′ ∈ ∏k
i=1〈ai〉 · 〈b〉. By (1) and the fact h = 1, bpη

= (
∏k

i=1 atip
ξi−η

i )pη

. By (2), we have b′p
η

= e,
which implies ord(b′)|pη. We obtain the following:

〈a1, · · · , ak, b〉 = 〈a1, · · · , ak, b′〉.
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We now want to prove that 〈a1, · · · , ak〉 ∩ 〈b′〉 = {e}.
If, on the contrary, 〈a1, · · · , ak〉 ∩ 〈b′〉 = 〈c′〉 and c′ 6= e. We assume c′ = b′p

uη′

for some u with (u, p) = 1.

Since 〈b′puη′

〉 = 〈b′pη′

〉, let u = 1. There exist integers si, ξ
′
i(i = 1, · · · , k) such that

c′ =
k

∏

i=1

asip
ξ′

i

i = b′p
η′

=
k

∏

i=1

a−tip
ξi−η+η′

i · bpη′

, (3)

where 0 ≤ ξ′i < n, 0 ≤ η′ < η. If η′ ≥ η, we have c′ = e by (1), (2), and (3). This contradicts the assumption
c′ 6= e.

Since c = bpη 6= e, we have bpη′

6= e. Since 〈a1, · · · , ak〉 ∩ 〈b〉 = 〈bpη 〉 and η > η′, we have bpη′

/∈
〈a1, · · · , ak〉 ∩ 〈b〉. By ( 3),

bpη′

=

k
∏

i=1

asip
ξ′

i

i ·
k

∏

i=1

atip
ξi−η+η′

i (4)

By (4), we also have bpη′

∈ 〈a1, · · · , ak〉 ∩ 〈b〉. This contradicts that η is the least integer such that bpη ∈
〈a1, · · · , ak〉 (notice that η′ < η). Thus, 〈a1, · · · , ak〉 ∩ 〈b′〉 = {e}.

Definition 5. Assume that group G has basis b1, · · · , bt with ord(b1) ≥ · · · ≥ ord(bt).

• Assume that a1, · · · , ak and b are the same as those in Lemma 4. We use independent-extension(a1, · · · , ak, b)
to represent b′ derived in the Lemma 4 such that (1) a1, · · · , ak, b′ are independent elements in G; and
(2) 〈a1, · · · , ak, b′〉 = 〈a1, · · · , ak, b〉.

• Let a1, · · · , ak be the elements of G with ord(a1) = ord(b1), · · · , ord(ak) = ord(bk) and (
∏

i6=j〈ai〉) ∩
〈aj〉 = {e} for every j = 1, · · · , k. Then a1, · · · , ak is called a partial basis of G. If C(a1, · · · , ak) = {a ∈
G|〈a1, · · · , ak〉 ∩ 〈a〉 = {e} and ord(a) ≤ ord(ak)}, then C(a1, · · · , ak) is called a complementary space
of the partial basis a1, · · · , ak.

It is well known that the decomposition of Abelian group is unique (see [9]). For the completeness
purpose, we prove the following lemma.

Lemma 6. Let G be an Abelian group of size pm for some prime p and integer m. Let b1, · · · , bt be a basis
of G with ord(b1) ≥ · · · ≥ ord(bt) and b′1, · · · , b′t′ be another basis of G with ord(b′1) ≥ · · · ≥ ord(b′t′). Then
t = t′ and ord(b1) = ord(b′1), · · · , ord(bt) = ord(b′t).

Proof: Assume that i be the least integer that ord(bi) 6= ord(b′i). Without loss of generality, we assume
that ord(bi) > ord(b′i). Let h = ord(b′i). Consider the generators set {bh

1 , bh
2 , · · · , bh

t }, which generates a

subgroup of G with
∏i

j=1 pord(bj)−h elements. On the other hand, generator set {b′h1 , b′h2 , · · · , b′ht′ }, which

generates a subgroup of G with
∏i

j=1 pord(b′j)−h =
∏i−1

j=1 pord(b′j)−h =
∏i−1

j=1 pord(bj)−h elements. Both sets

generate the subgroup {ah : a ∈ G}. This is a contradiction.

.

Lemma 7. Let a1, · · · , ak be partial basis of the Abelian G with pi elements for some prime p and inte-
ger i ≥ 0. Then 1)G can be generated by {a1, · · · , ak} ∪ C(a1, · · · , ak); and 2)the partial basis a1, · · · , ak

can be extended to another partial basis a1, · · · , ak, ak+1 with complementary space C(a1, · · · , ak, ak+1) =
{a ∈ C(a1, · · · , ak)|〈a1, · · · , ak, ak+1〉 ∩ 〈a〉 = {e} and ord(a) ≤ ord(ak+1)} , and ak+1 is the element of
C(a1, · · · , ak) having the largest order ord(ak+1).

Proof: Assume group G has the basis b1, · · · , bt with ord(b1) ≥ · · · ≥ ord(bt). 1) We prove it by us-
ing induction. It is trivial at the case k = 0. Assume that it is true at k. We consider the case at
k + 1. Let a1, · · · , ak, ak+1 be the elements of a partial basis of G. Let the C(a1, · · · , ak) be the com-
plementary space for a1, · · · , ak. By assumption, G can be generated by {a1, · · · , ak} ∪ C(a1, · · · , ak).
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By the definition of partial basis (see Section 2), it is easy to see that ak+1 ∈ C(a1, · · · , ak). Se-
lect a′

k+1 from C(a1, · · · , ak) such that ord(a′
k+1) = max{ord(a) : a ∈ C(a1, · · · , ak)}. By Lemma 4,

independent-extension(a1, · · · , ak, a′
k+1, b) ∈ C(a1, · · · , ak, a′

k+1) for each b ∈ C(a1, · · · , ak). We still have
such a property that {a1, · · · , ak, a′

k+1} ∪ C(a1, · · · , ak, a′
k+1) can generate G. Thus, a1, · · · , ak can be ex-

tended into the basis of G: a1, · · · , ak, a′
k+1, · · · , a′

t′ with ord(a1) ≥ ord(a2) ≥ · · · ≥ ord(ak) ≥ ord(a′
k+1) ≥

· · · ≥ ord(at′) by repeating the method above. Since the decomposition of G has a unique structure (see
Lemma 6), we have that t = t′, ord(a1) = ord(b1), · · · , ord(ak) = ord(bk), ord(a′

k+1) = ord(bk+1), · · · , and
ord(a′

t) = ord(bt). Therefore, ord(a′
k+1) = ord(bk+1) = ord(ak+1). Thus, we can select ak+1 instead of a′

k+1

to extend the partial basis from a1, · · · , ak to a1, · · · , ak, ak+1.
2) Notice that C(a1, · · · , ak, ak+1) ⊆ C(a1, · · · , ak). It follows from the proof of 1).

Lemma 8. With O(m) steps, one can compute ap for all elements a of group G, where |G| = m = pi

elements for some prime p and integer i ≥ 0.

Proof: Initially mark all elements of G − {e} “unprocessed” and mark the unit element e “processed”.
We always select an unprocessed element a ∈ G and compute ap until all elements in G are processed.
Compute ap, which takes O(log p) steps, and its order ord(a) = pj by trying ap, ap2

, · · · , apj

, which takes
O(j2 log p) = O((log pj)2) steps. Process ak according to the order k = 1, 2, · · · , pj , compute (ak)p = (ap)k

in O(pj) steps and mark a, a2, · · · , apj

“processed”. For each k with 1 ≤ k ≤ pj and (k, p) = 1, ak is not
processed before because the subgroups generated by ak and a are the same (In other words, 〈ak〉 = 〈a〉).
There are pj − pj−1 ≥ pj

2 integers k in the interval [1, pj ] to have (k, p) = 1. Therefore, we process at least
pj

2 new elements ak in O(pj) steps by computing akp from ap. Therefore, the total number of steps is O(m).

Lemma 9. With O(m) steps, one can compute a
ord(a)

p and logp ord(a) for all elements a of group G with

|G| = m = pi for some prime p and integer i ≥ 0.

Proof: We first prove that for any two elements a, b ∈ G, if apj

= b for some j ≥ 0 and ord(b) = pt for

some t ≥ 1, then ord(a) = pj+t. Assume that ord(a) = ps. First we should notice the number j for apj

= b

is unique. Otherwise, apk 6= e for any integer k. This contradicts ord(a)|pi. Assume apj1
= apj2

= b 6= e for

some j1 < j2. Then we have (apj1
)pj2−j1

= apj1 6= e. The loop makes apk 6= e for every k ≥ 0.

We have apj+t

= (apj

)pt

= bpt

= e. Therefore, s ≤ j + t. Since apj

= b 6= e and ord(a) = ps, we

have j < s. bps−j

= (apj

)s−j = aps

= e. Since ord(b) = pt, t ≤ s − j and t + j ≤ s. Thus, we have

s = t + j. Therefore, ord(a) = pj+t. This implies that if apj

= b 6= e for some j, then a
ord(a)

p = b
ord(b)

p and
logp(ord(a)) = logp(ord(b)) + j. This fact is used in the algorithm design.

By Lemma 8, we can have a table P with P (a) = ap in O(m) time. Assign flag −1 to each element in the

group G in the first step. If an element a has its values a
ord(a)

p and logp ord(a) computed, its flag is changed

to +1. We maintain the table that always has the property that if a
ord(a)

p and logp ord(a) are available (the

flag of a is +1), then b
ord(b)

p and logp ord(b) are available for every b = apj

for some j > 0. For an element

b of order pt, when computing b
ord(b)

p = bpt−1

, we also compute b
ord(bi)

p

i and logp ord(bi) for bi = bpi

with
i = 1, 2, · · · , t− 1 until it meets some bi with flag +1. The element bi = bp

i−1 can be computed in O(1) steps
from bi−1 since table P is available. It is easy to see that such a property of the table is always maintained.
Thus, the time is proportional to the number of elements with flag +1. The total time is O(m).

Assume the Abelian group G has pj elements. By Lemma 9, we can set up an array U [ ] of m buckets

that each its position U [gi] contains all the elements a of G with a
ord(a)

p = gi. We also maintain a double
linked list M that contains all of the elements of G with order from small to large in the first step.

Definition 10. Assume a1, a2, · · · , ak, ak+1 are elements of Abelian group G with pt elements for some prime
p and integer t ≥ 0.
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• Define L(a1, · · · , ak) = 〈a
ord(a1)

p

1 , · · · , a
ord(ak)

p

k 〉 − {e}.

• If A = {a1, · · · , ak}, define L(A) = L(a1, · · · , ak).

Lemma 11. Assume a1, a2, · · · , ak, ak+1 are independent elements of G, which has pt elements for some
prime p and integer t ≥ 0. Then 1) L(a1, · · · , ak, ak+1) = L(a1, · · · , ak)∪(L(ak+1)∪(L(ak+1)◦L(a1, · · · , ak))),
and 2) L(a1, · · · , ak) ∩ (L(ak+1) ∪ (L(ak+1) ◦ L(a1, · · · , ak))) = ∅.

Proof: To prove 1) in the lemma, we just need to follow the definition of L( ). For 2), we use the condition
〈ak+1〉 ∩ 〈a1, a2, · · · , ak〉 = {e} since a1, a2, · · · , ak are independent (see the definition at Section 2).

The procedure of obtaining L is shown in the following algorithm, which is also used to find the basis of
the Abelian group of size power of a prime in Lemma 12.

Algorithm A
Input:

an Abelian group G with size pt, prime p and integer t,

a table T with T (a) = a
ord(a)

p for each a 6= e,
a table R with R(a) = j if ord(a) = pj for each a ∈ G,
an array of buckets U with U(b) = {a|T (a) = b}.
a double linked list M that contains all elements a of G with nondecreasing order by ord(a)
(each element a ∈ G has a pointer to the node N , which holds a, in M).

Output: the basis of G;
begin

L = ∅;B = ∅;
repeat

select a ∈ M with the largest ord(a) (a is at the end of the double linked list M);
B = B ∪ {a};
L′ = L(a) ∪ (L(a) ◦ L);
for (each b ∈ L′) remove all elements in U(b) from M ;
L = L ∪ L′;

until (
∑

aj∈B R(aj) = t);
output the set B as the basis of G;

end
End of Algorithm A

Lemma 12. There is an O(m) time algorithm for computing the basis of an G group with m = pt elements
for some prime p and integer t ≥ 0.

Proof: Algorithm A is described above the lemma. By Lemma 8, we can obtain the orders of all elements
of G in O(m) time. With another O(m) time for Bucket sorting (see [5]), we can set up the double linked
list M that contains all elements a of G with nondecreasing order by ord(a). By Lemma 9, with O(m) steps,

we can obtain the table T and table R with T (a) = a
ord(a)

p and R(a) = logp ord(a) for each a 6= e in G. With
table R, we can obtain the array of buckets U with U(b) = {a|T (a) = b} for each b ∈ G in O(m) steps by
Bucket sorting. The tables T and R, bucket array U , and double linked list are used as the inputs of the
algorithm.

For every element b ∈ G with b 6= e, ord(b) ≤ min{ord(ai)|i = 1, · · · , k}, and 〈a1, · · · , ak〉 ∩ 〈b〉 6= {e} iff

b
ord(b)

p is in L(a1, · · · , ak). When a new ak+1 is found, L(a1, a2, · · · , ak) becomes to L(a1, a2, · · · , ak, ak+1) =
L(a1, a2, · · · , ak) ∪ (L(ak+1) ∪ L(ak+1) ◦ L(a1, a2, · · · , ak)). For each new element gi ∈ L(ak+1) ∪ L(ak+1) ◦
L(a1, a2, · · · , ak) = L(a1, a2, · · · , ak, ak+1) − L(a1, a2, · · · , ak) (see Lemma 11), we obtain the bucket U [gi]

that contains all elements a ∈ G with a
ord(a)

p = gi. Then remove all elements of U [gi] from the double linked
list M . This makes M hold all elements of C(a1, · · · , ak, ak+1) (see Definition 5). Removing an element
takes O(1) time and each element is removed at most once. Therefore, the total time is O(m). It is easy to
check the correctness of the algorithm by using Lemma 7.
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Figure 1: Structure for Proving Theorem 18

Theorem 13. There is an O(n log n) time algorithm for computing the basis of an Abelian G group with n
elements.

Proof: Assume n = pn1
1 · pn2

2 · · · · · pnt
t . By Lemma 1 and Lemma 3, the group G can be decomposed

into product G = G(pn2
1 ) ◦G(pn2

2 ) ◦ · · · ◦G(pnt
t ) in O(n log n) steps. By Lemma 12, the basis of each G(pni

i )

(i = 1, 2, · · · , t) can be found in O(pni
i ) time. Thus, the total time is O(n log n) + O(

∑t
i=1 pni) = O(n log n).

4. Algorithm in O(n) Time

In this section, we improve the running time from O(n log n) to O(n) by using a result of Kavitha [12].
Kavitha’s theorem is stated below:

Theorem 14 ([12]). Given any group G of n elements, one can compute the orders of all elements in G
in O(n log p) time, where p is the smallest prime non-divisor of n.

In this section, we obtain a linear time group decomposition G = G(pn1
1 )◦ · · · ◦G(pnt

t ), where the Abelian
group G has n elements with n = pn1

1 · · · pnt
t . The technique we use here is the following: For an Abelian

group G with |G| = 2n1m2, where m2 is an odd number. We derive a decomposition of G = G1 ◦ G2 in
linear time such that |G1| = 2n1 and |G2| = m2. Then we apply Kavitha’s theorem to decompose the
group G2. In order to derive the elements of G2, we convert this problem into a search problem in a special
directed graph where each of its nodes has one outgoing edge. The directed graph has all elements of G as its
vertices. Vertex a has edge going to vertex b if a2 = b. Each weakly connected component of such a directed
graph has a unique directed cycle. We show that each node in the cycle can be added to G2. Removing the
cycle nodes, we obtain a set of directed trees. The nodes that have a path of length at least n1 to a leaf
node can be also added to the group G2. Searching the directed graph takes O(n) time. Combining with
Kavitha’s theorem, we obtain the O(n) time decomposition for the graph G. Using the result of section 3,
we obtain the O(n) time algorithm for finding the basis. An O(n) time algorithm for computing the orders
of all elements in an Abelian group G was recently reported by Kavitha [11]. The proof is more involved.
Our linear time decomposition method using Theorem 14 is also technically interesting as it converts an
algebraic problem into a searching problem in a directed graph that every node has exactly one outgoing
edge. Using Theorem 14, our method is much simpler than that in [11] and can easily converted into a linear
time algorithm for the Abelian group isomorphism problem. The structure for proving our theorem for the
sublinear time algorithm is shown in Figure 1.

An undirected graph G = (V,E) consists a set of nodes V and a set of undirected edges E such that the
two nodes of each edge in E belong to set V . A path of G is a series of nodes v1v2 · · · vk such that (vi, vi +1)
is an edge of G for i = 1, · · · , k − 1. A undirected graph is connected if every pair of nodes is linked by a
path. A graph G1 = (V1, E1) is a subgraph of G = (V,E) if E1 ⊆ E and V1 ⊆ V . A connected component of
G is a (maximal) subgraph G1 = (V1, E1) of G such that G1 is a connected subgraph and G does not have
another connected subgraph G2 = (V2, E2) with E1 ⊂ E2 or V1 ⊂ V2.

A directed graph G = (V,E) consists of a set of nodes V and a set of directed edges E such that each
edge in E starts from one node in V and ends at another node in V . A path of G is a series of nodes
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v1v2 · · · vk such that (vi, vi + 1) is a directed edge of G for i = 1, · · · , k − 1. A (directed) cycle of G is a
directed path v1v2 · · · vk with v1 = vk. For a directed graph G = (V,E), let G = (V,E′) be the undirected
graph that E′ is derived from E by converting each directed edge of E into undirected edge. A directed
graph G = (V,E) is weakly connected if G = (V,E′) is connected. A subgraph G1 = (V1, E1) of G = (V,E)
is a weakly connected component of G if (V1, E

′
1) is a connected component of (V,E′).

We need the following lemma that shows the structure of a special kind directed graph in which each of
its nodes has exactly one outgoing edge.

Lemma 15. Assume that G = (E, V ) is a weakly connected directed graph such that each node has exactly
one outgoing edge that leaves it (and may come back to the node itself). Then the directed graph G = (V,E)
has the following properties: 1) Its derived undirected graph G′ = (V,E′) has exactly one cycle. 2)G has
exactly one directed cycle. 3)Every node of G is either in the directed cycle or has a directed path to a node
in the directed cycle. 4)For every node v of G, if v is not in the cycle of G, then there exists a node v′ in
the cycle of G such that every path from v to another node v′′ in the cycle of G must go through the node v′.

Proof: Since each node of G has exactly one edge leaving it, the number of edges in G is the same as the
number of nodes. Therefore, G′ can be considered to be formed by adding one edge to a tree. Clearly, G′

has exactly one cycle. Therefore, G has at most one directed cycle.
Now we prove that G have at least one directed cycle. We pick up a node from G. Since each node of G

has exactly one edge leaving it, follow the edge leaving the node to reach another node. We will eventually
come back to the node that is visited before since G has a finite number of nodes. Therefore, G has at least
one cycle. Therefore, G has exactly one directed cycle. This process also shows that every node of G has a
directed path linking to a node in the directed cycle.

Assume that v is a node of G and v is not in the cycle. Let v′ be the first node such that v has a path
to v′ and the path does not visit any other node in the cycle of G. Let e be the edge leaving v′. Clearly,
H = (V, (E − e)′) is a tree. Therefore, for every node v′′ in the cycle of G, every path in (V,E − e) from v
to v′′ has to go through v′. It is still true when e is added back since e connects v′.

Lemma 16. There exists an O(n) time algorithm such that given an Abelian group G of size n, prime p|n,
and a table H with H(a) = ap, it returns two subgroups G′ = {a ∈ G|apn1

= e} and G′′ = {apn1 |a ∈ G} such
that |G′| = pn1 , |G′′| = m2 and G = G′ ◦ G′′, where n = pn1m2 with (p,m2) = 1 .

Proof: It is easy to see that G′ can be derived in O(n) time since we have the table H available. By
Lemma 2, we have G = G′ ◦ G′′. We focus on how to generate G′′ below. For each element a, set up a flag
that is initially assigned −1. In order to decompose the group G into G′ ◦G′′ with |G′| = pn1 and |G′′| = m2,
we use Lemma 2 to build up two subsets A and B of G, where A = {a ∈ G|apn1

= e} and B = {apn1 |a ∈ G
and apn1 6= e}. Then let G′ = A and G′′ = B ∪ {e}.

During this construction, we have the table H such that H(a) = ap for every a ∈ G. We compute apj

for

j = 1, 2, · · · , n1. If apj

= e for some least j with 1 ≤ j ≤ n1, put a into A and change the flag from −1 to 1.
It is easy to see we can obtain all elements of A in O(n) steps. We design an algorithm to obtain B by

working on the elements in G − A. We build up some trees for the elements in V0 = G − A.
Algorithm B
Input:

group G, its size n and p with p|n;
table H( ) with H(a) = ap for each a ∈ G;

Output: subgroup {apn1 |a ∈ G};
begin

for every a ∈ V0 with ap = b (notice H(a) = ap)
begin

let (a, b) be a directed edge from a to b;
end (for)
form a directed graph (V0, E);
let (E1, V1), (E2, V2), · · · , (Em, Vm) be the weakly connected components of (E, V0);
for each (Vi, Ei) with i = 1, 2, · · · ,m
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begin
find the loop Li, and put all elements of the loop into the set B;
for each tree in (Vi, Ei) − Li compute the height of each node;
put all nodes of height at least n1 into B;

end (for)
output B;

end
End of Algorithm B
For each component of (E, V0), each node has only one outgoing edge. It has at most one loop in the

component (see Lemma 15 for the structure of such a directed graph). The height of a node in a subtree
tree, which is derived from a weakly connected component by removing a directed cycle, is the length of
longest path from a leaf to it. For each node v in the cycle, clearly, there is a path v0v1 · · · vn1

with vn1
= v

(notice that all the other nodes v0, v1, · · · , vn1−1 are also in the cycle). Thus, v ∈ B. If v is not in the cycle,
v ∈ B iff there is a path with length at least n1 and the path ends v. Since each node has one outgoing edge,
each node in the cycle has no edge going out the cycle. Thus, a node is in B iff it has height of at least n1

or it is in a cycle. Therefore, the set B can be derived in O(n) steps by using the depth first method to scan
each tree.

Lemma 17. There is an O(n) time algorithm such that given a group G of size n, it returns the decom-
position G(pn1

1 ) ◦ G(pn2
2 ) ◦ · · · ◦ G(pnt

t ), where n has the factorization n = pn1
1 pn2

2 · · · pnt
t and G(pni

i ) is the
subgroup of size pni

i of G for i = 1, 2, · · · , t.

Proof: For n = pn1
1 pn2

2 · · · pnt
t , assume that p1 < p2 < · · · < pt. We discuss the following two cases.

Case 1: p1 > 2. In this case, 2 is the least prime that is not a divisor of n. By Theorem 14, we can find
the order of all elements in O(n log p) = O(n) time since p = 2 here. By Lemma 3, we can obtain the group
decomposition in O(n) time.

Case 2: p1 = 2. Apply Lemma 16, we have G = G(2n1) ◦ G′. In the next stage, we decompose G′ into
the production of subgroups G′ = G(pn2

2 ) ◦ · · · ◦G(pnt
t ). Since G′ does not have the divisor 2, we come back

to Case 1. Clearly, the total number of steps is O(n).

Theorem 18. There is an O(n) time algorithm for computing the basis of an Abelian group with n elements.

Proof: The theorem follows from Lemma 17 and Lemma 12.

5. Sublinear Time Algorithm for the Basis of Abelian Group

In this section, we present a sublinear time algorithm for finding the basis of a finite Abelian group. For
n = pn1

1 · · · pnk

k , we derive a randomized algorithm with O((
∑k

i=1 pni−1
i n2

i log pi)(log n)(log log n)) running
time (Theorem 21). For this sublinear time algorithm, we always assume that the Abelian group size n and
the prime factorization of n are a part of the input. We give a self-contained proof for Theorem 21 that
implies that the algorithm can find the basis for most Abelian groups in (log n)O(1) time. The structure for
proving Theorem 21 for the sublinear time algorithm is shown in Figure 2.

We also derive an O((
∑k

i=1 p
ni/2
i n2

i )(log n) log log n)-time randomized algorithm to compute the basis
of Abelian group G of size n (Theorem 28). Using a theorem of Buchmann and Schmidt [2], we obtain
Theorem 28, which improves Theorem 21 and shows that there exists a sublinear time algorithm to compute
the basis for every Abelian group. The structure for proving Theorem 28 for the sublinear time algorithm is
shown in Figure 3.

We assume that G has n elements a1, · · · , an and each ai is represented by an integer. The integer
representation has the advantage in that those elements have linear order and we can use B-tree to store
them so that finding and inserting can be done in O(log n) steps. We first present a sublinear time algorithm
for computing the basis of a G group, which has pt elements for some integer t ≥ 1 and prime p.

Algorithm C
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Figure 2: Structure for Proving Theorem 21 that implies most Abelian groups can be factorized in sublinear
time
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Figure 3: Structure for Proving Theorem 28 that implies every Abelian group can be factorized in sublinear
time

Input: an Abelian group G, its size pt, p and t;
Output: a basis of G;

Phase 0:
If t = 0 then output e as the basis for G and stop the algorithm;
Else

Let H0 = {e};
Let m =

⌈

x+log t
log p

⌉

;

Enter Phase 1;

Phase 1:
Randomly select m elements b1, · · · , bm from G.
Compute the orders of b1, · · · , bm (since each ord(bi) = pηi , we just save logp(ord(bi)) = ηi));
Let a′

1 = bj , where bj has the largest order ord(bj) = max{ord(bi)(i = 1, · · · ,m)};.
Let E1 = logp(ord(a′

1));
If (E1 < t) then
Begin

H1 = {a′j
1 |j = 0, 1, · · · , ord(a′

1) − 1} ;
Put all elements of H1 in a B-tree;
Enter Phase 2;

End (then)
Else output a′

1 as the basis of G and stop the algorithm;

Phase s + 1:
Assume that a′

1, · · · , a′
s have been found at the Phases 1 to s;

Randomly select m elements b1, · · · , bm from G.
For each bi ((i = 1, 2, · · · ,m)
Begin
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For each g ∈ Hs

Begin
Let b = gbi;
Compute the order pu for b and the set B = {b, bp, bp2

, · · · , bpu−1};
(Save logp(ord(b)) = u);
If (ord(b) ≤ ord(a′

s) and (B ∩ Hs = ∅)) Then
Begin

Let b′i = gbi;
Goto L;

End (if)
End (for)

L: Continue;
End (for)
Let a′

s+1 = b′j , where b′j has the largest order ord(b′j) = max{ord(b′i)(i = 1, · · · ,m)};
Let Es+1 = Es + logp(ord(a′

s+1));
If (Es+1 < t) then
Begin

Hs+1 = {a′j
s+1h|h ∈ Hs and j = 0, 1, · · · , ord(a′

s+1) − 1};
Put all elements of Hs+1 in a B-tree;
Enter the phase s + 2;

End (Then)
Else output a′

1, a
′
2, · · · , a′

s+1 as the basis for G and halt the algorithm.
End of Algorithm C

For a finite set A, a random element r of A has the probability that with probability 1
|A| , r = a for every

a ∈ A. The following fact is easy to verify by the definition of the basis and will be used in the proof of the
algorithm.

Fact 1. Let b1, b2, · · · , bk be the basis of Abelian group G. For each i ∈ {1, 2, · · · , k}, an random element
r is has the format bη

i c, where c is a random element in 〈b1, b2, · · · , bi−1, bi+1, · · · , bk〉 and η is a random
number in {0, 1, · · · , ord(bi) − 1}.

Lemma 19. (i)There exists a randomized algorithm such that given an Abelian group G of size pt, p, t ≥ 0,

and integer x > 0, it runs in O(pt−1(x+log t)t2 log p) steps, uses at most
⌈

x+log t
log p

⌉

t random elements selected

from G, and computes its basis with a failure probability at most 1
2x .

(ii)With probability at most 1
2x , a set of

⌈

x+log t
log p

⌉

t random elements of G is not a set of generators of G.

Proof: Assume that a1, · · · , ak form a basis of G with orders ord(a1) ≥ ord(a2) ≥ · · · ≥ ord(ak). Our
algorithm finds a basis {a′

1, a
′
2, · · · , a′

k} of G with ord(a′
1) = ord(a1), ord(a′

2) = ord(a2), · · · , and ord(a′
k) =

ord(ak).
If m ≥ x+log t

log p , then m log p ≥ x + log t. It implies 1
pm ≤ 1

t2x . The algorithm is described in Algorithm C
.

Phase 0: If t = 0 then output e as the basis for G and stop the algorithm. Otherwise, let H0 = {e}
and m =

⌈

x+log t
log p

⌉

. Then enter Phase 1. We set m =
⌈

x+log t
log p

⌉

in the algorithm for the number of random

sample elements selected from G to find one element in the basis of G in the coming phases.
Phase 1: Randomly select m elements b1, · · · , bm from G. Assume that bi = aηi

1 ci, where ci ∈ 〈a2, · · · , ak〉
and ηi is an integer in the interval [0, ord(a1) − 1]. If (ηi, p) = 1, then ord(bi) = ord(a1) (notice that
ord(a1) = pj for some integer j ≥ 1 and ord(a1) ≥ ord(a2) ≥ · · · ≥ ord(ak)). Since bi is a random element
in G, ηi is a random number in [0, ord(a1) − 1] and the probability is 1

ord(a1)
that ηi is equal to any integer

in [0, ord(a1)− 1] (by Fact 1). Assume that ord(a1) = pj1 . There are pj1−1 integers i in [0, ord(a1)− 1] with

(i, p) 6= 1. With probability at most pj1−1

pj1
= 1

p , (ηi, p) 6= 1. With probability at most 1
pm , (ηi, p) 6= 1 for

every i = 1, · · · ,m. Therefore, with probability at most 1
pm , max{ord(b1), · · · , ord(bm)} < ord(a1).
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Computing the orders of b1, · · · , bm takes O(m·t2 log p) steps. This is because for each bi (i = 1, · · · ,m), we

compute bp
i , b

p2

i , · · · , bpt

i and take O(log pt) steps for each of them. Let a′
1 = bi with ord(bi) = max{ord(bj)|j =

1, · · · ,m}. Clearly, with probability at most 1
pm , ord(a′

1) = ord(a1) is not true. At the end of this phase,

the algorithm checks if G = 〈a′
1〉, which is equivalent to ord(a′

1) = pt or logp ord(a′
1) = t. If not, it generates

H1 = 〈a′
1〉 (all elements of H1 are stored in a B-tree), and then enter Phase 2.

Phase s + 1: Assume that a′
1, · · · , a′

s have been obtained such that ord(a′
i) = ord(ai) for i = 1, · · · , s,

a′
1, · · · , a′

s are independent, and Hs = 〈a′
1, · · · , a′

s〉. We will find a′
s+1 in this phase. By Lemma 7, there

are a′′
s+1, · · · , a′′

k such that a′
1, · · · , a′

s, a
′′
s+1, · · · , a′′

k form the basis of G with ord(a′
1) = ord(a1), ord(a′

2) =
ord(a2), · · · , ord(a′

s) = ord(as), ord(a′′
s+1) = ord(as+1), · · · , and ord(a′′

k) = ord(ak). If b is a random

element from G, then b = a′′η
s+1c and η is a random integer in [0, ord(a′′

s+1) − 1] (by Fact 1), where c ∈
〈a′

1, · · · , a′
s, a

′′
s+2, a

′′
s+3, · · · , a′′

k〉.
Randomly select m elements b1, · · · , bm from G. Let bi = a′′ηi

s+1ci and ηi be a random integer in
[0, ord(a′′

s+1) − 1], where ci ∈ 〈a′
1, · · · , a′

s, a
′′
s+2, a

′′
s+3, · · · , a′′

k〉. Similar to Phase 1, the probability is at most
1

pm that (ηi, p) 6= 1 for every i = 1, · · · ,m.

For each bu, we can always find another g ∈ Hs such that ord(bug) ≤ ord(a′
s) and (〈a′

1, · · · , a′
s〉)∩〈bug〉 =

{e}. This is because we can let g = a′−j1
1 · · · a′−js

s when bu = a′j1
1 · · · a′js

s a
′′js+1

s+1 · · · a′′jk

k .

Assume that g ∈ 〈a′
1, · · · , a′

s〉 and 〈gbu〉 ∩ Hs = {e}. Let gbu =
∏s

i=1 a′tip
ξi

i

∏k
j=s+1 a

′′tjpξj

j , where

(ti, p) = 1 for i = 1, · · · , k. We claim that (a) max{ord(a′tip
ξi

i )|i = 1, · · · , s} ≤ max{ord(a
′′tjpξj

j )|j =

s + 1, · · · , k}; and (b) ord(gbu) = max{ord(a
′′tjpξj

j )|j = s + 1, · · · , k}. Assume (a) is not true. We have that

max{ord(a′tip
ξi

i )|i = 1, · · · , s} > max{ord(a
′′tjpξj

j )|j = s+1, · · · , k}. Let max{ord(a
′′tjpξj

j )|j = s+1, · · · , k} =

pξ. Then (
∏s

j=s+1 a
′′tjpξj

j )pξ

= e and (
∏s

i=1 a′tip
ξi

i )pξ 6= e. Thus, e 6= (gbu)pξ ∈ Hs (recall Hs = 〈a1, · · · , as〉).
This contradicts that 〈gbu〉 ∩ Hs = {e}. Therefore, (a) is true. (b) follows from (a).

If bi = a′′ηi

s+1ci with ci ∈ 〈a′
1, · · · , a′

s, a
′′
s+2, a

′′
s+3, · · · , a′′

k〉. We find b′i = gbi such that ord(gbi) ≤ ord(a′
s) and

〈gbi〉 ∩Hs = {e}. The s + 1-th element a′
s+1 is selected to be b′j with ord(b′j) = max{ord(b′i)(i = 1, · · · ,m)}.

If (ηi, p) = 1, then ord(b′i) = ord(a′′
s+1) = ord(as+1). We already know that the probability is at most

1
pm that (ηi, p) 6= 1 for every i = 1, · · · ,m. Thus, with probability at most 1

pm , ord(a′
s+1) 6= ord(as+1).

At the end of this phase, the algorithm checks if G = 〈a′
1, a

′
2, · · · , a′

s, a
′
s+1〉, which is equivalent to that

logp(ord(a′
1)) + logp(ord(a′

2)) + · · · + logp(ord(a′
s+1)) = t. If not, it generates Hs+1 = Hs ◦ 〈a′

s+1〉 =
〈a′

1, · · · , a′
s, a

′
s+1〉 (all elements of Hs+1 are stored in a B-tree) and enter Phase s + 2.

Assume the algorithm stops at Phase z + 1. The basis generated by the algorithm is a′
1, · · · , a′

z, a
′
z+1.

Thus, H1,H2, · · · ,Hz have been generated with H1 ⊂ H2 ⊂ · · · ⊂ Hz ⊂ G. The size of Hz is strictly less
than that of the group G. It is easy to see that Hi = 〈a′

1, a
′
2, · · · , a′

i〉, which is the subgroup generated by the

part of elements that have been found from Phase 1 to Phase i for (i = 1, · · · , z). Thus, |Hi| =
∏i

j=1 ord(a′
j).

The algorithm stops at Phase z+1, which has found the full basis a′
1, · · · , a′

z+1 and it does not generate Hz+1

any more. This is why we use less than than linear time. It is easy to see that |Hz| ≤ pt−1 and |Hy−1| ≤ |Hy|
p

for y = z, z − 1, · · · , 2, 1. We have |Hz|+ |Hz−1|+ · · ·+ |H1| = O(pt−1 + · · ·+ p2 + p) = O(pt−1
p−1 ) = O(pt−1).

For each bi, it takes |Hs| steps to generate all b = gbi for all g ∈ Hs. For each b = gbi, it takes

O(t log pt) = O(t2 log p) steps to compute its order ord(b) = pu and the set B = {b, bp, bp2

, · · · , bpu−1}
in the algorithm. It is easy to see that Hs ∩ 〈b〉 = {e} if and only if Hs ∩ B = ∅. It takes another
O(t log pt) = O(t2 log p) steps for checking if B ∩ Hs = ∅, which needs to use at most t finding operations
to a B-tree with at most pt elements. It takes O(|Hs|t2 log p) steps to compute one b′i. Thus, it takes
O(|Hs|mt2 log p) steps to compute all b′is for i = 1, 2, · · · ,m.

The total running time is O(|H1|+· · ·+|Hz)mt2 log p) = O(pt−1(x+log t)t2 log p
log p ) = O(pt−1(x+log t)t2 log p).

With probability at most 1
pm , one phase fails. There are at most t phases since each phase generates a new

element in the basis and the group has size pt. The total probability of failure is at most t
pm ≤ 2x by the

setting of m.
(ii)Let Bi = {b1, b2, · · · , bm} be the set of randomized elements of G. Assume that (i) terminates at Stage

t and returns the basis a′
1, · · · , a′

t. According to the proof of (i), we have that a′
i is generated by the elements

in ∪t
i=1Bi. Therefore, ∪t

i=1Bi is a set of generators of G. The number of elements in ∪t
i=1Bi is bounded by

13



⌈

x+log t
log p

⌉

t. The failure probability is at most that of (i).

Lemma 20. Let n = pn1
1 · · · pnk

k and G be an Abelian group of n elements. Assume mi = n
p

ni
i

for i = 1, · · · , k.

If a is a random element of G that with probability 1
|G| , a is equal to b for each b ∈ G, then ami is a random

element of G(pni
i ), the subgroup of G with pni elements, such that with probability 1

p
ni
i

, ami is b for any

b ∈ G(pni
i )

Proof: Let bi,j (j = 1, · · · , ki) be the basis of G(pni
i ), i.e. G(pni

i ) = 〈bi,1〉 ◦ · · · ◦ 〈bi,k〉. Assume a is

a random element in G. Let a = (
∏ki

j=1 b
ci,j

i,j )a′, where a′ is an element in
∏

j 6=i G(p
nj

j ). For every two
integers x 6= y ∈ [0, pni

i − 1], mix 6= miy(mod pni
i ) (Otherwise, mix = miy(mod pni

i ) implies x = y because
(mi, pi) = 1). Thus, the list of numbers mi · 0(mod o(pt

i)),mi · 1(mod o(pt
i)), · · · ,mi(p

t
i − 1)(mod o(pt

i)) is
a permutation of 0, 1, · · · , pt

i − 1. Thus, if ci,j is a random integer in the range [0, ord(bi,j) − 1] such that
with probability 1

ord(bi,j)
, ci,j = c′ for each c′ ∈ [0, ord(bi,j) − 1], then the probability is also 1

ord(bi,j)
that

mici,j = c′ for each c′ ∈ [0, ord(bi,j) − 1]. Therefore, ami = ((
∏ki

j=1 b
ci,j

i,j )a′)mi =
∏ki

j=1 b
mici,j

i,j , which is a

random element in G(pni
i ).

Theorem 21. There exists a randomized algorithm such that given an Abelian group G of size n with
n = pn1

1 · · · pnk

k , the algorithm computes the basis of G in O((
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n) running
time.

Proof: Let x = 3 log log n. Then 1
2x < 1

(log n)2 . It takes O(log n) steps for computing ami for an

element a ∈ G, where mi = n
p

ni
i

. Each random element of G can be converted into a random element of

G(pni
i ) by Lemma 20. Each G(pni

i ) needs O(x + log ni)ni random elements by Lemma 19. Each G(pni
i )

needs O((x + log ni)ni log n) time to convert the (x + log ni)ni random elements from G to G(pni
i ). It takes

O(
∑k

i=1(x+log ni)ni log n)) time to convert random elements of G into the random elements in all subgroups

G(pni
i ) for i = 1, · · · , k. For n = pn1

1 · · · pnk

k ,
∑k

i=1 ni log pi = log n. Furthermore, x+log ni = O(log log n). By

Lemma 19, the sum of time for all G(pni
i )s to find basis is O((

∑k
i=1 pni−1

i (log log n+log ni)n
2
i log pi)(log n)) =

O((
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n). This follows from Lemma 20 and Lemma 19. The group size n has
at most log n prime factors. Since each G(pni

i ) has a probability at most 1
2x of failure, the total probability

of failure is at most log n
2x ≤ 1

log n .

Corollary 22. There exists a randomized algorithm such that given an Abelian group G of size n with
n = pn1

1 · · · pnk

k , the algorithm computes the basis of G in O(min(n, (
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n))
running time.

Proof: Assume that n = pn1
1 · · · pnk

k is the size of an Abelian group. If n ≥ (
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n,

then apply Theorem 18. Otherwise, apply Theorem 21.

Corollary 23. There exists a randomized algorithm with O(min(n, n1− 1
d (log n)3(log log n))) running time

that given an Abelian group G of size n = pn1
1 · · · pnk

k , it computes the basis of G, where d = max{ni|i =
1, · · · , k}.

Proof: For n = pn1
1 · · · pnk

k ,
∑k

i=1 ni log pi = log n and pni−1
i ≤ n1− 1

d . If n ≥ n1− 1
d (log n)3(log log n), then

by Theorem 21, the running time is O((
∑k

i=1 pni−1
i n2

i log pi)(log n) log log n) = O(n1− 1
d (log n)3(log log n)).

Otherwise, apply Theorem 21.

Definition 24. For an integer n, define F (n) = max{pi−1|pi|n, pi+1 6 |n, i ≥ 1, and p is a prime }. Define
G(m, c) as the set of all integers in [1,m] with F (n) ≥ (log n)c and H(m, c) = |G(m, c)|.

Theorem 25. H(m,c)
m = O( 1

(log m)c/2 ) for every constant c > 0.
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Proof: H(m, c) is the number of integers in G(m, c), which is a subset of integers in [1,m]. We discuss
the three cases.

The number of integers in the interval [1, m
(log m)c/2 ] is at most m

(log m)c/2 . We only consider those numbers

in the range I = [ m
(log m)c/2 ,m]. It is easy to see that for every integer n ∈ I, 2(log n)c ≥ (log m)c for all large

m since c is fixed. We consider each number n ∈ I such that pt|n with pt ≥ (log m)c

2 for some prime p.

For each prime number p ∈ [2, (log m)c/2], let t be the least integer with pt ≥ (log m)c

2 . We count
the number of integers n ∈ I such that pu|n for some u ≥ t. The number is at most m

pt + m
pt+1 + · · · ≤

m
pt (1 + 1

2 + 1
22 + · · ·) ≤ 2m

pt ≤ 4m
(log m)c . Therefore, it has at most (log m)c/2 · 2m

(log m)c ≤ 4m
(log m)c/2 integers n ∈ I

to have pt|n with pt ≥ (log m)c

2 .

Let’s consider the cases pt|n for p > (log m)c/2 and t ≥ 2. The number of integers n ∈ I for a fixed
p with p2|n is at most m

p2 + m
p3 + · · · ≤ 2m

p2 . The total number of integers n ∈ I that have p2|n for some

prime number p > (log m)c/2 is at most 2m
(1+(log m)c/2)2

+ 2m
(2+(log m)c/2)2

+ · · · < 2m
((log m)c/2)(1+(log m)c/2)

+

2m
((1+(log m)c/2)(2+(log m)c/2)2

+ · · · ≤ 2m
(log m)c/2 . Combining the cases above, we have H(m,c)

m = O( 1
(log m)c/2 ).

Theorem 21 and Theorem 25 imply the following theorem:

Theorem 26. There exists a randomized algorithm such that if n is in [1,m] − G(m, c), then the ba-
sis of an Abelian group of size n whose prime factorization is also part of the input can be computed in
O((log n)c+3 log log n)-time, where c is an arbitrary positive constant and G(m, c) is a subset of integers in

[1,m] with |G(m,c)|
m = O( 1

(log m)c/2 ) for each integer m.

We apply a theorem of Buchmann and Schmidt [2] to improve our sublinear time algorithm for finding
the basis of Abelian group. The improved algorithm is sublinear in all cases.

Theorem 27 ([2]). There exists an O(m
√

|G|) time algorithm such that given a set of generators of size

m for an Abelian group G, the algorithm returns the basis of G in O(m
√

|G|) steps.

Theorem 28. There exists a randomized algorithm such that given an Abelian group G of size n with

n = pn1
1 · · · pnk

k , the algorithm computes the basis of G in O((
∑k

i=1 p
ni/2
i n2

i )(log n) log log n) running time.

Proof: Let x = 3 log log n. Then 1
2x < 1

(log n)2 . It takes O(log n) steps to compute ami for an element

a ∈ G, where mi = n
p

ni
i

. Each random element of G can be converted into a random element of G(pni
i )

by Lemma 20. Each G(pni
i ) needs O(x + log ni)ni random elements by Lemma 19. Each G(pni

i ) needs
O((x + log ni)ni log n) time to convert the (x + log ni)ni random elements from G to G(pni

i ). It takes

O(
∑k

i=1(x+log ni)ni log n)) time to convert random elements of G into the random elements in all subgroups

G(pni
i ) for i = 1, · · · , k. For n = pn1

1 · · · pnk

k ,
∑k

i=1 ni log pi = log n. Furthermore, x + log ni = O(log log n).

By Theorem 27, the sum of time for all G(pni
i )s to find basis is O((

∑k
i=1 p

ni/2
i (log log n+log ni)n

2
i )(log n)) =

O((
∑k

i=1 p
ni/2
i n2

i )(log n) log log n)
It follows from Lemma 20 and Lemma 19. The group size n has at most log n prime factors. Since each

G(pni
i ) has a probability at most 1

2x of failure, the total probability of failure is at most log n
2x ≤ 1

log n .

Theorem 28 and Theorem 25 imply the following theorem:

Theorem 29. There exists a randomized algorithm such that if n is in [1,m] − G(m, c), then the basis
of an Abelian group of size n whose prime factorization is also part of the input can be computed in
O((log n)

c
2+3 log log n)-time, where c is an arbitrary positive constant and G(m, c) is a subset of integers

in [1,m] with |G(m,c)|
m = O( 1

(log m)c/2 ) for each integer m.

15



6. Conclusion

In this paper, we obtained an O(n)-time deterministic algorithm for computing the basis of an Abelian
group with n elements. We also derive an O(n1/2(log n)3 log log n)-time randomized algorithm to compute
the basis of an Abelian group G of size n. We also show that for each integer n ∈ [1,m]−G(m, c), the basis
of an Abelian group of size n can be computed in (log n)

c
2+3 log log n time (n = pn1

1 · · · pnt
t is the part of the

input of the algorithm), where c is a constant and m is arbitrary integer. An interesting problem of further
research is to obtain time lower bound to compute the basis of an Abelian group of n elements.
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