
Linear and Sublinear Time Algorithms for Basis of Abelian Groups

Li Chen∗and Bin Fu†

Abstract

It is well known that every finite abelian group G can be represented as a direct product of cyclic
groups: G ∼= G1 × G2 × · · · × Gt, where each Gi is a cyclic group of order pj for some prime p and
integer j ≥ 1. If ai generates the cyclic group of Gi, i = 1, 2, · · · , t, then the elements a1, a2, · · · , at

are called a basis of G. We show an algorithm such that given a set of generators M = {x1, · · · , xk}
for an abelian group G and the prime factorizations of orders ord(xi) (i = 1, · · · , k), it computes a

basis of G in O(|M |(
∑t

i=1
p

ni/2

i)) time, where n = |G| has prime factorization p
n1
1

p
n2
2

· · · pnt
t (which is

not a part of input). This implies the existence of an algorithm such that given a set of generators
M = {x1, · · · , xk} of an abelian group G without their orders information, it computes a basis of G

in O(|M |(
∑t

i=1
p

ni/2

i) + (
∑k

i=1

√

ord(xi))) time. This improves Buchmann and Schmidt’s algorithm

that takes O(|M |
√

|G|) time. We show a randomized algorithm such that given a set of generators
M = {x1, · · · , xk} for an abelian group G and the prime factorization of order ord(xi) (i = 1, · · · , k), it

computes a basis of G in O(|M |(log n)2 +
∑t

i=1
nip

ni/2

i) time, where n = |G| has prime factorization
p

n1
1

p
n2
2

· · · pnt
t (which is not a part of input). This implies an algorithm such that given an abelian group

G represented by a set of generators M = {x1, · · · , xk} without their orders information, it computes a

basis of G in O(|M |(log n)2 +
∑t

i=1
nip

ni/2

i + (
∑k

i=1

√

ord(xi))) time. In another model, all elements in
an abelian group are put into a list as a part of input. We obtain an O(n) time deterministic algorithm
and a subliner time randomized algorithm for computing a basis of an abelian group. Our sublinear time
algorithm for computing a basis of an abelian group implies the existence of much faster algorithm for
the abelian groups isomorphism problem than the existing linear time algorithm by Kavitha.

1. Introduction

The theory of groups is a fundamental theory of mathematics. Its applications can be found throughout
entire mathematics and theoretical physics especially quantum mechanics. In recent years, the complexity
of group computation becomes more important due to the ever-increasing significance of its relationship to
quantum computing [5, 7, 15, 17, 18, 21, 25, 26] and its application in cryptography (e.g. [7, 18, 21]). Since the
early developmental period of computational complexity, computer scientists have shown great interest in
the study of groups.

It is well known that a finite Abelian group (also called commutative group) can be decomposed into a
direct product of cyclic groups with prime-power order (called cyclic p-groups) [12]. The set of generators
with exactly one from each of those cyclic groups form a basis of the abelian group. Because a basis of an
abelian group fully determines its structure, which is the nondecreasing orders of the elements in a basis,
finding a basis is crucial in computing the general properties for abelian groups. The orders of all elements in
a basis form the invariant structure of an abelian group. There is a long line of research about the algorithm
for determining group isomorphism (e.g. [9, 11, 13, 14, 16, 19, 20, 23, 29]). Two abelian groups are isomorphic
if and only if they have the same structure.

For finding a basis of abelian group, Chen [4] showed an O(n2) time algorithm for finding a basis of
an abelian group G given all elements and size of G as input. An abelian group is often represented by
a set of generators in filed of computational group theory (e.g., [27]) as a set of generators costs a small

∗Address: Department of Computer Science, University of District of Columbia, Washington, DC 20008, USA,

Email:lchen@udc.edu. Phone: 202-274-6301.
†Address: Department of Computer Science, University of Texas-Pan American, Edinburg, TX 78539, USA, Email:

binfu@cs.panam.edu. Phone: 956-381-3635. Fax: 956-384-5099.

1

amount memory. The algorithm for basis of abelian group with a set of generators as input was developed
by Buchmann, et al [2], Teske [28], and Buchmann and Schmidt [3] with the fastest proven time O(m

√

|G|).
The methods for computing the order for one element in a group also has connection with computing the
abelian basis were also reported in [2, 24].

In this paper, we show an algorithm such that given a set of generators M = {x1, · · · , xk} for an
abelian group G and the prime factorizations of orders ord(xi) (i = 1, · · · , k), it computes a basis of G

in O(|M |(∑t
i=1 p

ni/2
i)) time, where n = |G| has prime factorization pn1

1 pn2
2 · · · pnt

t (which is not a part of
input). This implies an algorithm such that given an abelian group G represented by a set of generators

M = {x1, · · · , xk} without their orders information, it computes a basis of G in O(|M |(∑t
i=1 p

ni/2
i) +

(
∑t

i=1

√

ord(xi))) time. This improves Buchmann and Schmidt’s algorithm that takes O(|M |
√

|G|) time.
We show a randomized algorithm such that given a set of generators M = {x1, · · · , xk} for an abelian group
G and the prime factorization of order ord(xi) (i = 1, · · · , k), it computes a basis of G in O(|M |(log n)2 +
∑t

i=1 nip
ni/2
i) time, where n = |G| has prime factorization pn1

1 pn2
2 · · · pnt

t (which is not a part of input).
This implies an algorithm such that given an abelian group G represented by a set of generators M =

{x1, · · · , xt} without their orders information, it computes a basis of G in O(|M |(log n)2 +
∑t

i=1 nip
ni/2
i +

(
∑k

i=1

√

ord(xi))) time.
In the model of all elements in an abelian group being put into a list as a part of input, we derive

an O(
∑t

i=1 ni min(p
ni/2
i , pni−1

i) +
∑t

i=1 ni log n)-time randomized algorithm to compute a basis of abelian
group G of order n with factorization n = pn1

1 · · · pnt
t , which is also a part of the input. It implies an

O(n1/2
∑t

i=1 ni)-time randomized algorithm to compute a basis of an abelian group G of order n. It also
implies that if n is an integer in {1, 2, · · · , m} − J(m, c), then a basis of an abelian group of order n can
be computed in O((log n)c+1)-time, where c is any positive constant and J(m, c) is a subset of the small

fraction of integers in {1, 2, · · · , m} with |J(m,c)|
m = O(1

(log m)c/2) for every integer m. The formal definition

of J(m, c) is given in Section 6. We show an algorithm such that given a set of generators M = {x1, · · · , xk}
for an abelian group G and the prime factorizations of orders ord(xi) (i = 1, · · · , k), it computes a basis of

G in O(|M |(∑t
i=1 p

ni/2
i)) time, where n = |G| has prime factorization pn1

1 pn2
2 · · · pnt

t (which is not a part
of input). We also obtain an O(n)-time deterministic algorithm for computing a basis of an abelian group
with n elements. The existing algorithms need O(n2) time by Chen and O(n1.5) time by Buchmann and
Schmidt . Our sublinear time algorithm for computing a basis of an abelian group implies the existence of
much faster algorithm for the abelian groups isomorphism problem than the existing linear time algorithm
by Kavitha [14].

In section 4, we give a randomized algorithm to compute a basis of an abelian group given a set of
generators as input. In section 5, we give a deterministic algorithm to compute a basis of an abelian group
given a set of generators as input. In section 6, we give a randomized algorithm to compute a basis of an
abelian group given the entire group as input. In section 7, we give a deterministic algorithm to compute a
basis of an abelian group given the entire group as input. We consider Theorem 11 and Theorem 23 as two
main theorems of this paper. In all algorithms, the multiplication table of an abelian group is accessed as a
black box and no inverse operation is used.

2. Notations and Some Elementary Facts about Abelian Groups

Let (x, y) represent the greatest common divisor (GCD) of two integers x and y. For a set A, |A| denotes
the number of elements in A. For a real number x, let bxc be the largest integer at most x and let dxe be
the smallest integer at least x. For two integers x and y, x|y means that y = xc for some integer c.

A group is a nonempty set G with a binary operation “·” that is closed in set G and satisfies the following
properties (for simplicity, “ab” represents “a · b”): 1) for every three elements a, b and c in G, a(bc) = (ab)c;
2) there exists an identity element e ∈ G such that ae = ea = a for every a ∈ G; 3) for every element a ∈ G,
there exists a−1 ∈ G with aa−1 = a−1a = e. A group is finite if it has only finitely many elements. For a
prime p, a p-group is a group with pj many elements for some integer j ≥ 0.

Let e be the identity element of G, i.e. ae = a for all a ∈ G. For a ∈ G, ord(a), the order of a, is the
least positive integer k such that ak = e. For a ∈ G, define 〈a〉 to be the subgroup of G generated by the
element a (in other words, 〈a〉 = {e, a, a2, · · · , aord(a)−1}). Let A and B be two subsets of the group G, define

2

AB = A ·B = A ◦B = {ab|a ∈ A and b ∈ B}. We use ∼= to represent the isomorphism between two groups.
A group G is abelian if ab = ba for every pair of elements a, b ∈ G. Assume that G is an abelian

group with elements g1, g2, · · · , gn. According to the theory of abelian group, a finite abelian group G of n
elements can be represented as G = G(pn1

1) ◦ G(pn2
2) ◦ · · · ◦G(pnt

t) ∼= G(pn1
1) × G(pn2

2) × · · · ×G(pnt
t), where

n = pn1
1 pn2

2 · · · pnt
t , p1 < p2 < · · · < pt are the prime factors of n, and G(pni

i) is a subgroup of G with pni
i

elements (see [12]). We also use the notation Gpi to represent the subgroup of G with order pni
i . Any abelian

group G of order pm can be represented by G = Fm1 ◦ Fm2 ◦ · · · ◦ Fmk
∼= Fm1 × Fm2 × · · · × Fmk

, where

m =
∑k

i=1 mi, 1 ≤ m1 ≤ m2 ≤ · · · ≤ mk, and Fmi
is a cyclic group of order pmi (i = 1, 2, · · · , k).

For a1, a2, · · · , ak from the abelian group G, denote 〈a1, a2, · · · , ak〉 to be the set of all elements in G
generated by a1, · · · , ak. In other words, 〈a1, a2, · · · , ak〉 = 〈a1〉〈a2〉 · · · 〈ak〉. An element a ∈ G is independent
of a1, a2, · · · , ak in G if a 6= e and 〈a1, a2, · · · , ak〉 ∩ 〈a〉 = {e}. If G = 〈a1, a2, · · · , ak〉, then {a1, a2, · · · , ak}
is called a set of generators of G. If X is a set of elements in G, we also use 〈X〉 to represent the subgroup
generated by set X.

The elements a1, a2, · · · , ak in an abelian group G are independent if ai is independent of a1, · · · , ai−1,
ai+1, · · · , ak for every i with 1 ≤ i ≤ k. A basis of G is a set of independent elements a1, · · · , ak that can
generate all elements of G (in other words, G = 〈a1, a2, · · · , ak〉).

We list some elementary results about abelian groups. Their proofs can be found in some standard
algebra text books [8, 12].

Lemma 1. Assume that a and b are two elements in a group G. If b = aj for some integer j ≥ 1, then

ord(b) = ord(a)
(ord(a),j) .

Lemma 2. Every finite abelian group G of order n with prime factorization n = pn1
1 · · · pnt

t can be factorized
into product the G = G(pn1

1) ◦ · · · ◦ G(pnt
t), where G(pni

i) is the subgroup of G with pni
i elements.

Lemma 3. Every finite abelian group G has a basis.

Lemma 4. Let G be an abelian group of order pm for some prime p and integer m. Let b1, · · · , bt be a basis
of G with ord(b1) ≥ · · · ≥ ord(bt) and b′1, · · · , b′t′ be another basis of G with ord(b′1) ≥ · · · ≥ ord(b′t′). Then
t = t′ and ord(b1) = ord(b′1), · · · , ord(bt) = ord(b′t).

Lemma 5 shows how a finite abelian group is decomposed into the direct product of subgroups.

Lemma 5. Assume G is an abelian group of order n. We have the following two facts: i) If n = m1m2

with (m1, m2) = 1, F1 = {a ∈ G|am1 = e} and F2 = {am1 |a ∈ G}, then both F1 and G are subgroups of G,
G = F1 ◦F2, |F1| = m1 and |F2| = m2. Furthermore, for every a ∈ G, if (ord(a),m1) = 1, then a ∈ F2. ii)If

n = pn1
1 pn2

2 · · · pnt
t , then G = G(pn1

1)◦G(pn2
2)◦ · · · ◦G(pnt

t), where G(pni
i) = {a ∈ G|ap

ni
i = e} for i = 1, · · · , t.

3. Overview of Our Methods

For an abelian group G with n = pn1
1 × pn2

2 · · · × pnt

k elements, it can be decomposed into a product
G(pn1

1) ◦ G(pn2
2) ◦ · · · ◦ G(pnt

k) ∼= G(pn1
1) × G(pn2

2) × · · · × G(pnt

k), where each G(pni
i) is a subgroup of G of

order pni
i . The problem for finding a basis of G is to find a basis of every subgroup G(pni

i) i = 1, 2, · · · , t.
The union of those basis for all G(pni

i) (i = 1, 2, · · · , t) forms a basis of G. This decomposition method is
used in every algorithm of this paper.

4. Randomized Algorithm for Basis via Generators

An abelian group is often represented by a set of generators. The size of a set of generators for a group is
usually much less than the order of the group. It is important to find the algorithm for computing a basis of
abelian group represented by a set of generators. The randomized algorithms in this paper belong to Monte
Carlo algorithms [1], which have a small probability to output error results.

3

Let B = {b1, · · · , bk} be a set of basis for an abelian group G of size pm (p is a prime) and assume that
ord(b1) ≤ ord(b2) ≤ · · · ≤ ord(bk). The structure of G is defined by 〈ord(b1), ord(b2), · · · , ord(bk)〉. We note
that the structure of an abelian group is invariant, but its basis is not unique.

The theorem of Buchmann and Schmidt [3] is used in our algorithm for finding a basis of abelian group.
The following Theorem 6 follows from Lemma 3.1 and Theorem 3.4 in [3]. Buchmann and Schmidt’s algorithm
converts a finite abelian group G into direct product G = 〈G1〉 × · · · 〈Gs〉, where each Gi is cyclic subgroup
of G (1 ≤ i ≤ s) and |Gi| divides |Gi+1| for 1 ≤ i < s. Theorem 6 is a special case of their algorithm.

Theorem 6 (Buchmann et al [3]). There exists an O(m
√

|G|) time algorithm such that given a set of
generators of order m for an abelian group G of order pt for some prime number p and intger t ≥ 1, the
algorithm returns a basis and the structure of G in O(m

√

|G|) steps.

Theorem 7 (Buchmann et al [3]). There exists an algorithm such that given an element g of an abelian
group G, it returns ord(g) in O(

√

ord(g)) steps.

Lemma 8. Let M = {x1, · · · , xk} be a set of generators for an abelian group G. Assume that |G| = n =
pn1
1 · · · pnt

t is the prime factorization of the order of G. Let mi = max{ti : pti
i |ord(xj) for some xj in M}

and ui =
∏

v∈{1,···,t}−{i} pmv
v for i = 1, · · · , t. Let Mi = {xui

1 , · · · , xui

k }. Then Mi is a set of generators for

G(pni
i).

Proof: For all xui
j ∈ Mi, we have (xui

j)p
ni
i = e. Therefore, all elements of Mi are in G(pni

i) (by Lemma 5).

Let g be an arbitrary element in G(pni
i). By Lemma 5, gp

ni
i = e. Since M is a set of generators for G, let

g = xz1
1 · · ·xzk

k . Since the greatest common divisor (ui, p
ni
i) = 1, there exist two integers y1 and y2 such that

y1ui + y2p
ni
i = 1. We have that

g = gy1ui+y2p
ni
i = gy1uigy2p

ni
i = gy1ui = (xz1

1 · · ·xzk

k)y1ui = (xui
1)z1y1 · · · (xui

k)zky1 .

We just show that g can be generated by the elements in Mi. Therefore, Mi is a set of generators for G(pni
i).

Let X = {x1, · · · , xk} be a set elements in a group G. Define a p-random product xa1
1 · · ·xak

k , where
a1, · · · , ak are independent random integers in the interval [0, p − 1].

Lemma 9. Let F1 be a proper subgroup of an abelian group G = 〈x1, · · · , xk〉 of order pm for some prime
p. Let g be a p-random product of {x1, · · · , xk}. Then Pr(g ∈ F1) ≤ 1

p .

Proof: Since F1 6= G, let i be the least index such that xi 6∈ F1. Consider g = xa1
1 · · ·xai−1

i−1 xai
i x

ai+1

i+1 · · ·xak

k .
Let u = xa1

1 · · ·xai−1

i−1 and v = x
ai+1

i+1 · · ·xak

k . We show that for any fixed u and v, there exists at most one

integer ai ∈ [0, p−1] such that uxai
i v ∈ F1. Assume that there exist a′

i < a′′
i ∈ [0, p−1] such that ux

a′

i
i v ∈ F1

and ux
a′′

i
i v ∈ F1. We have that x

a′′

i −a′

i
i ∈ F1 since G is an abelian group. Let ord(xi) = ps. There exists

an integer j such that j(a′′
i − a′

i) = 1(mod ps) since a′′
i − a′

i ∈ (0, p − 1]. Clearly, x
a′′

i −a′

i
i ∈ F1 implies

xi = x
j(a′′

i −a′

i)
i ∈ F1. A contradiction. Therefore, with probability at most 1

p , the element g is in F1.

Lemma 10. There exists a randomized algorithm such that given a set of generators M = {x1, x2, · · · , xk}
for a finite abelian p-group G, prime p, and integer h at least 1, it computes a basis for G in O(|M |hr log p+
(r + h)pr/2) time with probability at most p−h to fail, where |G| = pr (which is not a part of input).

Proof: We have the algorithm Randomly-Find-Basis-for-p-Group to find a basis for a p-group.

Algorithm Randomly-Find-Basis-for-p-Group
Input: prime p, a set of generators x1, · · · , xk of a finite abelian group G of order pr (pr is not a part of

input), and a parameter h.
Output: a basis of G

4

Step:
Let A0 = {e} (only contains the identity).
Let B0 = {e}.
Let S0 = 〈0〉 (the structure for the group with one element).
i = 0.
Repeat

i = i + 1.
Generate p-random products a1, · · · , ah of M .
Let Ai = Bi−1 ∪ {a1, · · · , ah}.
Let Bi be a basis of 〈Ai〉 and Si be the structure of 〈Ai〉 by the
Algorithm in Theorem 6.

Until Si = Si−1.
Output Bi−1 as a basis of G.

End of Algorithm

We prove that the algorithm has a small probability failing to return a basis of G. Assume that the
subgroup 〈A〉 is not equal to G. By Lemma 9, for a p-random product g of M , the probability is at most 1

p

that g ∈ 〈A〉. Therefore, for h p-random elements a1, · · · , ah, the probability that all a1, · · · , ah are in 〈A〉 is
at most p−h. We have that the probability at most p−h that the algorithm stops before returning a basis of
G.

Each cycle in the loop of the algorithm is indexed by the variable i. Since G is of order pr, the order
|〈Bi〉| of subgroup 〈Bi〉 of G is pmi for some integer mi. A basis of G contains at most r elements since
|G| = pr. Therefore, |Bi| ≤ r. Since computing the power function am takes O(log m) multiplications, it
takes O(|M |h log p) time for generating a1, · · · , ah in each cycle i. The time spent in cycle i is O(|M |h log p+
(|Bi| + h)

√

|〈Bi〉|). The loop is repeated at most r times since 〈Bi−1〉 6= 〈Bi〉. Assume the algorithm stops

when i = i0. The total time is O(
∑i0

i=1(|M |h log p + (|Bi| + h)
√

|〈Bi〉|). Since 〈B0〉 6= 〈B1〉 6= · · · 6= 〈Bi0〉,
we have that 0 = m0 < m1 < · · · < mi0 ≤ r. We have

∑i0
i=1((|Bi| + h)

√

|〈Bi〉|) ≤ ∑r
i=1((r + h)

√

pi =

(r + h)
(
√

p)r+1−1√
p−1 . The total time is O(|M |hr log p + (r + h)pr/2).

Theorem 11. Let ε be a small constant greater than 0. Then there exists a randomized algorithm such that
given a set of generators M = {x1, x2, · · · , xk} for a finite abelian group G and the prime factorization for

the order ord(xi) of every xi(i = 1, · · · , k), it computes a basis for G in O((|M |(log n)2 +
∑t

i=1 nip
ni/2
i))

time and has probability at most ε to fail, where n = |G| has prime factorization pn1
1 pn2

2 · · · pnt
t (which is not

a part of input) with p1 < p2 < · · · < pt.

Proof: Our algorithm to find a basis of G is decomposed into finding a basis of every p-group of G. The
union of every basis among all p-subgroups of G is a basis of G. Let h be a constant such that 1

(h−1)2h−1 ≤ ε.

Algorithm Randomly-Find-Basis-By-Generators
Input: a set of generators x1, · · · , xk of a finite abelian group G and the prime factorization for every

ord(xi) (i = 1, · · · , k).
Output: a basis of G
Step:

Let p1, · · · , pt be all of the prime numbers p with p|ord(xi) for some i in {1, 2, · · · , k}.
For i = 1 to t let vi = max{pti

i : pti
i |ord(xj) for some xj in M}.

Let u = v1v2 · · · vt.
For i = 1 to t let ui = u

vi
.

For i = 1 to t let Mi = {xui
1 , · · · , xui

k }.
For i = 1 to t let Bi be a basis of 〈Mi〉 by the Algorithm in Lemma 10 with input p,Mi, and h.
Output B1 ∪ B2 ∪ · · · ∪ Bt as a basis of G.

End of Algorithm

By Lemma 8, Mi is a set of generators for Gpi . By Lemma 10, the probability is at most p−h
i that Bi

is not a basis of Gpi . The probability failing to output a basis of G is at most
∑t

i=1 p−h
i <

∑∞
i=p1

1
ih ≤

5

∫ ∞
p1

1
xh dx ≤ 1

(h−1)ph−1
1

≤ ε since h is selected with 1
(h−1)2h−1 ≤ ε. By Lemma 8 and Lemma 5, B1∪B2∪· · ·∪Bt

is a basis of G.
Since the prime factorization of the order ord(xi) for i = 1, · · · , k is a part input, it takes O(|M |t) time

to compute one vi. It takes O(|M |t2) = O(|M |(log n)2) time to compute v1, · · · , vt. It takes O(t) time to
compute u and u1, · · · , ut.

The time for computing each element in Mi is O(log n) since ui is at most n and computing the power
function (xn) takes O(log n) time. It takes O(|M | log n) time to generate one set Mi and O(|M |t log n) =
O(|M |(log n)2) time to generate all M1, · · · ,Mt. By Lemma 10, the computational time for computing each

basis of 〈Mi〉 is O(|Mi|nih log pi + (ni + h)p
ni/2
i). The total time is O((|M |(log n)2 + (

∑t
i=1 nip

ni/2
i))) since

h is a constant, |Mi| = |M |, and
∑t

i=1 ni = O(log n).

The fastest-known fully proven deterministic algorithm for integer factorization is the Pollard-Strassen
method, which is stated in Theorem 12.

Theorem 12 (Pomerance et al [10, 22]). There exists an 2O((log n)1/3(log log n)2/3)) time algorithm to fac-
torize any integer n.

We have Theorem 13 to compute a basis of an abelian group only given a set of generators. Some
additional time is needed to compute the orders of elements among generators.

Theorem 13. There exists a randomized algorithm such that given a set of generators M = {x1, x2, · · · , xk}
for a finite abelian group G of order n, it computes a basis for G in O(|M |(log n)2 +

∑t
i=1 nip

ni/2
i +

∑k
i=1

√

ord(xi)) time, where n has prime factorization pn1
1 pn2

2 · · · pnt
t (which is not a part of input).

Proof: By Theorem 7, we can find ord(xi) for i = 1, · · · , k in O(
∑k

i=1

√

ord(xi)) time. Apply the

algorithm of Theorem 12 to factorize an integer j = ord(xi) with 2O((log j)1/3(log log j)2/3)) = O(
√

j) time for

i = 1, · · · , k. Apply Theorem 11 to get a basis of G. The total time is O(|M |(log n)2 +
∑t

i=1 nip
ni/2
i +

∑k
i=1

√

ord(xi)).

We have Theorem 14 to compute a basis of an abelian group only given a set of generators and their
orders. Some additional time is needed to factorize the orders of elements among generators.

Theorem 14. There exists a randomized algorithm such that given a set of generators M = {x1, x2, · · · , xk}
and their orders for a finite abelian group G of order n, it computes a basis for G in O(|M |(log n)2 +
∑t

i=1 nip
ni/2
i + |M |2O((log n)1/3(log log n)2/3))) time, where n has prime factorization pn1

1 pn2
2 · · · pnt

t , which is
not a part of input.

Proof: By Theorem 12, we need |M |2O((log n)1/3(log log n)2/3)) time to factorize the orders of all elements
in M . Use Theorem 11 to get a basis of G.

5. Deterministic Algorithm with a Set of Generators as Input

We give a deterministic algorithm for computing a basis of an abelian group G with a set of generators
M in this section. Our Theorem 15 and Corollary 16 imply the existence of an algorithm that matches
Buchmann et al’s algorithm [3] with O(|M |

√

|G|) time in the worst case, but it is faster than Buchmann et
al’s algorithm in many cases when the orders of generators are given in the input.

Theorem 15. Then there exists a deterministic algorithm such that given a set of generators M =
{x1, x2, · · · , xk} for a finite abelian group G and the prime factorization for the order ord(xi) of every

xi(i = 1, · · · , k), it computes a basis for G in O(|M |(∑t
i=1 p

ni/2
i) time, where n has prime factorization

pn1
1 pn2

2 · · · pnt
t (which is not a part of input).

6

Proof: Our algorithm to find a basis of G is decomposed into finding a basis of every p-group of G. The
union of those basis among all p-subgroups of G is a basis of G.

Algorithm Find-Basis-By-Generators
Input: a set of generators x1, · · · , xk of a finite abelian group G and the prime factorization for every

ord(xi) (i = 1, · · · , k).
Output: a basis of G
Step:

Let p1, · · · , pt be all of the prime numbers p with p|ord(xi) for some i in
{1, 2, · · · , k}.
For i = 1 to t let vi = max{pti

i : pti
i |ord(xj) for some xj in M}.

Let u = v1v2 · · · vt.
For i = 1 to t let ui = u

vi
.

For i = 1 to t let Mi = {xui
1 , · · · , xui

k }.
For i = 1 to t let Bi be a basis of 〈Mi〉 the Algorithm in Theorem 6.
Output B1 ∪ B2 ∪ · · · ∪ Bt as a basis of G.

End of Algorithm

By 8, we have that Mi is a set of generator for G(pni
i). By Lemma 8 and Theorem 6, B1 ∪B2 ∪ · · · ∪Bt

is a basis of G.
It is similar to that in Theorem 11 that the computational time before computing Bi is O(|M |(log |G|)2).

It takes O(|M |
√

pni
i) time to find a basis of pi subgroup of G by Theorem 6. Therefore, the total com-

putational time of the Algorithm Find-Basis-By-Generators is O(|M |(∑t
i=1 p

ni/2
i) + (|M |(log |G|)2)) =

O(|M |(∑t
i=1 p

ni/2
i)).

Corollary 16. There exists a deterministic algorithm such that given a set of generators M =

{x1, x2, · · · , xk} for a finite abelian group G of order n, it computes a basis for G in O(|M |(∑t
i=1 p

ni/2
i) +

∑t
i=1

√

ord(xi)) time, where n has prime factorization pn1
1 pn2

2 · · · pnt
t , which is not a part of input.

Proof: By Theorem 7, we can find ord(xi) for i = 1, · · · , k in O(
∑k

i=1

√

ord(xi)) time. Apply the

algorithm of Theorem 12 to factorize an integer j = ord(xi) with 2O((log j)1/3(log log j)2/3)) = O(
√

j) time for

i = 1, · · · , k. Apply Theorem 15 to get a basis of G. The total time is O(|M |(∑t
i=1 p

ni/2
i)+

∑t
i=1

√

ord(xi)).

6. Sublinear Time Algorithm with Entire Group as Input

In this section, we present a sublinear time randomized algorithm for finding a basis of a finite abelian group.
The input contains a list that holds all the elements of an abelian group. We first show how to convert a
random element from G to its subgroup G(pni

i) in Lemma 17.

Lemma 17. Let n = pn1
1 · · · pnt

k and G be an abelian group with n elements. Assume mi = n
p

ni
i

for i =

1, · · · , t. If a is a random element of G that with probability 1
|G| , the element a is equal to b for all element

b ∈ G, then ami is a random element of G(pni
i), the subgroup of G with pni elements, such that with

probability 1
p

ni
i

, the element ami is equal to b for all b ∈ G(pni
i)

Proof: Let bi,1, bi,2, · · · , bi,ki form a basis of G(pni
i), i.e. G(pni

i) = 〈bi,1〉 ◦ · · · ◦ 〈bi,ki〉. Assume a is

a random element in G. Let a = (
∏ki

j=1 b
ci,j

i,j)a′, where a′ is an element in
∏

j 6=i G(p
nj

j). For every two
integers x 6= y ∈ [0, pni

i − 1], we have mix 6= miy(mod pni
i) (Otherwise, mix = miy(mod pni

i) implies x = y
because (mi, pi) = 1). Thus, the list of numbers mi · 0(mod pu

i),mi · 1(mod pu
i), · · · ,mi(p

u
i − 1)(mod pu

i) is a
permutation of 0, 1, · · · , pu

i − 1, where u is an arbitrary integer at least 1. Thus, if ci,j is a random integer in
the range [0, ord(bi,j) − 1] such that with probability 1

ord(bi,j)
, ci,j = c′ for all c′ ∈ [0, ord(bi,j) − 1], then the

7

probability is also 1
ord(bi,j)

that mici,j = c′ for all c′ ∈ [0, ord(bi,j)−1]. Therefore, ami = ((
∏ki

j=1 b
ci,j

i,j)a′)mi =
∏ki

j=1 b
mici,j

i,j , which is a random element in G(pni
i).

Lemma 18. Let G be a group of order pr. Then the probability is at most 2
ph ln p

that a set of r+2h log h+9h
random elements from G cannot generate G.

Proof: For every subgroup G′ of G, if |G′| = ps, then the probability is ps−r that a random element
of G is in G′. We use this fact to construct a series of subgroups G0 = 〈e〉 ⊆ G1 ⊆ G2 ⊆ · · · ⊆ Gr′

with r′ ≤ r. Each Gi is 〈Hi〉, where Hi is a set of random elements from G and we have the chain
H0 = {e} ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hr′ , which shows that Hi+1 is extended from Hi by adding some additional
random elements to Hi.

If |Gi| = ps ≤ pr−h, then add one more random element to Hi to form Hi+1. With probability at most
ps−r, the new element is in Gi. Let a be the random element to be added to Hi. Therefore, Hi+1 = Hi∪{a},
Gi+1 = 〈Hi+1〉, and the probability is at most ps−r that Gi = Gi+1.

Now assume that |Gi| > pr−h. We add new random elements according to size of Gi. Let |Gi| = ps.
We have r − s < h since |Gi| > pr−h. We will construct at most h − 1 extensions (from Gi = 〈Hi〉 to
Gi+1 = 〈Hi+1〉). For 0 < r − s < h, there exists an integer k ∈ [0, blnhc] such that r − s ∈ (h

2k+1 , h
2k]. If

r − s is in the range (h
2k , h

2k+1], then in order to form Hi+1, we add 2 · 2k+1 new random elements to Hi so

that the probability is at most 1
p2h that all of the 2 · 2k+1 new elements are in Gi. Thus, the probability is

at most 1
p2h that Gi = Gi+1.

Let i0 be the least integer i with |Gi| > pr−h. The number of random elements used in Hi0−1 is at most
r − h since one element is increased from Hi−1 to Hi for i < i0.

Let j = blnhc. The number of integers in (h
2k+1 , h

2k] is at most h
2k − h

2k+1 + 1 = h
2k+1 + 1. For i ≥ i0, the

set Hi+1 is increased by 2 · 2k+1 new random elements from Hi, where |Gi| = ps with r− s ∈ (h
2k+1 , h

2k]. For

all extensions from Hi to Hi+1 after i ≥ i0, we need at most ((h − h
2 + 1) · 4 + (h

2 − h
4 + 1) · 8 + · · · + (h

2j −
h

2j+1 +1) · 2 · 2j+1) = (
∑j

i=0 2h+
∑j

i=0 2i+2) ≤ 2h(lnh+1)+8h = 2h lnh+10h random elements. The total
number of random elements used is at most (r − h) + (2h lnh + 10h) = r + 2h lnh + 9h.

The probability that Gi = Gi+1 for some i < i0 is at most
∑∞

i=h
1
pi . The probability that Gi = Gi+1 for

some i ≥ i0 is at most (h−1)
p2h . The probability that r + 2h lnh + 9h random elements of G are not generators

for G is at most
∑∞

i=h
1
pi + (h−1)

p2h ≤ 2
∑∞

i=h
1
pi ≤ 2

∫ ∞
h

1
px dx ≤ 2

ph ln p
.

Theorem 19. Let h be an integer parameter. There exists a randomized algorithm such that given a list
of all elements of an abelian group G, the black box of its multiplication table, its order n = |G|, the prime
factorization n = pn1

1 · · · pnt
t with p1 < p2 < · · · < pt, the algorithm computes a basis of G in O(

∑t
i=1(ni +

h log h)min(p
ni/2
i , pni−1

i) +
∑t

i=1(ni + h log h) log n) time and has probability at most 2

(h−1)ph−1
1 ln p1

to fail.

Proof: It takes O(log n) steps to compute ami for an element a ∈ G, where mi = n
p

ni
i

. Each random

element of G can be converted into a random element of G(pni
i) by Lemma 17. Each G(pni

i) needs O(ni +
h log h) random elements to find a basis by Lemma 18. Each G(pni

i) needs O((ni + h log h) log n) time to

convert the O(ni + h log h) random elements from G to G(pni
i). It takes O(

∑t
i=1(ni + h log h) log n)) time

to convert random elements of G into the random elements in all subgroups G(pni
i) for i = 1, · · · , t. For

n = pn1
1 · · · pnt

t , we have
∑t

i=1 ni log pi = log n.
If ni = 1, we just select an nonidentity element to be the basis for G(pni

i). If ni > 1, by Theorem 6, each

G(pni
i) needs O((ni + h log h)p

ni/2
i) time to find a basis for G(pni

i). The time spent for computing a basis of

G(pni
i) is O((ni + h log h)min(p

ni/2
i , pni−1

i)). The sum of time for all G(pni
i)s to find basis is O(

∑t
i=1(ni +

h log h)min(p
ni/2
i , pni−1

i)). The total time for the entire algorithm is equal to the time for generating random
elements for t subgroups G(pni

i) and the time for computing a basis of every G(pni
i) (i = 1, · · · , t). Thus, the

total time can be expressed as O(
∑t

i=1(ni + h log h)min(p
ni/2
i , pni−1

i) +
∑t

i=1(ni + h log h) log n).

8

By Lemma 18, the probability is at most 2
ph

i
ln pi

that we cannot get a set of generators for G(pni
i)

by selecting O(ni + h log h) random elements in G(pni
i). The total probability to fail is

∑t
i=1

2
ph

i
ln pi

≤
2

ln p1

∑t
i=1

1
ph

i

≤ 2
ln p1

∫ ∞
p1

1
xh dx = 2

(h−1)ph−1
1 ln p1

.

Definition 20. For an integer n, define F (n) = max{pi−1 : pi|n, pi+1 6 |n, i ≥ 1, and p is a prime }. Define
J(m, c) to be the set of all integers n in [1,m] such that F (n) ≥ (log n)c. Define H(m, c) = |J(m, c)|.

According to the above definition, J(m,O(1)) contains all integers n in [1,m] such that for every prime p
with pj |n, then pj = (log n)O(1). We show that the most integers in [1,m] are in J(m,O(1)) by Lemma 21.

Theorem 21. H(m,c)
m = O(1

(log m)c/2) for every constant c > 0.

Proof: Note that H(m, c) is size of J(m, c), which is a subset of integers in [1,m]. We discuss the three
cases.

Case 1. The number of integers in the interval [1, m
(log m)c/2] is at most m

(log m)c/2 .

We consider those numbers in the range I = [m
(log m)c/2 ,m]. It is easy to see that for every integer n ∈ I,

2(log n)c ≥ (log m)c for all large m since c is fixed. We consider each number n ∈ I such that pt|n with

pv ≥ (log m)c

2 for some prime p and integer v ≥ 0.

Case 2. For a prime number p ∈ [2, (log m)c/2], let t be the least integer with pt ≥ (log m)c

2 . We count
the number of integers n ∈ I such that pu|n for some u ≥ t. The number is at most m

pt + m
pt+1 + · · · ≤

m
pt (1 + 1

2 + 1
22 + · · ·) ≤ 2m

pt ≤ 4m
(log m)c . Therefore, it has at most (log m)c/2 · 4m

(log m)c ≤ 4m
(log m)c/2 integers n ∈ I

to have pt|n with pt ≥ (log m)c

2 .

Case 3. Let’s consider the cases pt|n for p > (log m)c/2 and t ≥ 2. We ignore the case t = 1 because
p1−1 = 1, which has no impact for F (n) ≥ (log n)c. The number of integers n ∈ I for a fixed p with p2|n
is at most m

p2 + m
p3 + · · · ≤ 2m

p2 . The total number of integers n ∈ I that have p2|n for some prime number

p > (log m)c/2 is at most

2m

((log m)c/2)2
+

2m

(1 + (log m)c/2)2
+

2m

(2 + (log m)c/2)2
+ · · ·

<
2m

((log m)c/2)2
+

2m

((log m)c/2)(1 + (log m)c/2)
+

2m

((1 + (log m)c/2)(2 + (log m)c/2)
+ · · ·

≤ 2m

((log m)c/2)2
+

2m

(log m)c/2
<

4m

(log m)c/2
.

Combining the cases above, we have H(m,c)
m = O(1

(log m)c/2).

The following Theorem 22 shows that most abelian groups can be factorized in (log n)O(1) time.

Theorem 22. Let ε be a small positive constant and c ≥ 1 is an arbitrary constant. Then there exists
a randomized algorithm such that given an abelian group H of order n ∈ [1,m] − J(m, c) for any integer
m > 0, and the prime factorization of n, the algorithm computes a basis of H in O((log n)c+1)-time and has

probability at most ε to fail, where J(m, c) is a subset of integers in [1, m] with |J(m,c)|
m = O(1

(log m)c/2) for

all integer m.

Proof: Select a constant h such that 2
(h−1)2h−1 ln 2

> ε. For prime factorization n = pn1
1 · · · pnt

t , we have
∑t

i=1 ni = O(log n). Apply Theorem 19 and Theorem 21.

By Theorems 19 and 22, our sublinear time algorithm for computing a basis of an abelian group implies
the existence of a much faster algorithm for the abelian groups isomorphism problem than the existing linear
time algorithm by Kavitha [14].

9

7. Deterministic Algorithm with Entire Group as Input

We also develop deterministic algorithms to compute a basis of an abelian group. Our O(n) time algorithm
needs the results of Kavitha [13, 14]. The proof of Theorem 23 is shown in section 7.2. We also give a self
contained proof for an O(n log n) time algorithm in section 7.3.

Theorem 23. There is an O(n) time algorithm for computing a basis of an abelian G group with n elements.

7.1. Proof for O(n) Time Algorithm

The algorithm in this section has two parts. The first part decomposes an abelian group into product
G(pn1

1) ◦ G(pn2
2) ◦ · · · ◦ G(pnk

k). In order to get the subgroup of order pni
i , we find the set of elements with

the order of pi-power.
The second part finds a basis of each group G(pni

i). The algorithm has several stages and each stage finds a
member of basis at a time for G(pni

i). Assume that b1, · · · , bh, which satisfy ord(b1) ≥ ord(b2) ≥ · · · ≥ ord(bh),
are the elements of a basis of the abelian group G(pu). We will find another basis a1, · · · , ah. The element a1 is
selected among all elements in G(pu) such that a1 has the largest order ord(a1). Therefore, ord(a1) = ord(b1).
Assume that a1, · · · , ak have been obtained such that ord(a1) = ord(b1), · · · , ord(ak) = ord(bk). We show that
it is always possible to find another ak+1 such that (〈a1〉 · · · 〈ak〉)∩〈ak+1〉 = {e} and ord(ak+1) = ord(bk+1).
The possibility of such an extension is shown in Lemma 24 and Lemma 26. We maintain a subset M of
elements of G(pu) such that M consists of all elements a ∈ G that are independent of a1, a2, · · · , ak and
ord(a) ≤ ord(ak). We search for ak+1 from M by selecting the element with the highest order. After ak+1

is found, M will be updated.
We show a linear time algorithm by using a result of Kavitha [13]. For an integer n, it can be factorized

into product of prime numbers in O(
√

n(log n)2) time by the brute force method. Both this section and
section 7.2 spend at least linear time for computing a basis of an abelian group. Therefore, we always
assume that the prime factorization of n, which is the order of input abelian group, is known in the two
sections.

In this section, we give some basic lemmas that show how to extend a partial basis for an abelian group
of order pu to a full basis. The following lemma is from Chen’s early work [4]. Its proof, which was written
in Chinese, is translated and refined here.

Lemma 24 (Chen [4]). Let G be an abelian group of order pt for prime p and integer t ≥ 1. Assume
a1, a2, · · · , ak are independent elements in G and b is also an element in G with ord(b) ≤ ord(ai) for i =
1, · · · , k. Then there exists b′ ∈ 〈a1, · · · , ak, b〉 with ord(b′)|ord(b) such that i) 〈a1, · · · , ak, b′〉 = 〈a1, · · · , ak, b〉;
ii) b′ can be expressed as b′ = b

∏k
i=1(a

−tip
ui−v

i), where v is the least integer that bpv ∈ 〈a1, · · · , ak〉 and

bpv

= at1pu1

1 · · · atkpuk

k . iii) a1, · · · , ak, b′ are independent elements in G; and

Proof: Let ord(ai) = pni and ord(b) = pm, ni ≥ m for i = 1, ..., k. Let 〈a1, · · · , ak〉 ∩ 〈b〉 = 〈c〉. We
assume that c 6= e (Otherwise, let b′ = b and the proof is finished). Assume,

c = at1pu1

1 · · · atkpuk

k = bhpv

, (1)

where 0 ≤ ti < pni−ui and (ti = 0 or (ti, p) = 1) for i = 1, · · · , k and 0 < h < pm−v with (h, p) = 1 and
v < m (because c 6= e).

Since (ti, p) = 1, the order of each atip
ui

i is pni

pui
for i = 1, · · · , k. The order of at1pu1

1 · · · atkpuk

k is

max{pni

pui
|ti 6= 0, and i = 1, ..., k}. On the hand, the order of bhpv

is pm

pv since (h, p) = 1. Thus, we have

max{pni

pui
|ti 6= 0, and i = 1, ..., k} = pm

pv . Therefore, pni−ui ≤ pm−v for all i = 1, · · · , k. Thus, we have

ni − ui ≤ m− v. Since (h, p) = 1, we have 〈bhpv 〉 = 〈bpv 〉. Without loss of generality, we assume that h = 1.
It is easy to see that v is the least integer such that bpv ∈ 〈a1, · · · , ak〉. We have ui ≥ v + (ni − m) ≥ v for
i = 1, ..., k. Let

b′ =
k

∏

i=1

(a−tip
ui−v

i) · b. (2)

10

Clearly, b′ ∈ 〈a1, · · · , ak〉 · 〈b〉 and 〈a1, · · · , ak, b′〉 = 〈a1, · · · , ak, b〉. Thus the statement i) is true.

By equation (1) and the fact h = 1, we have bpv

= (
∏k

i=1 atip
ui−v

i)pv

. By (2), we have b′p
v

= e, which
implies ord(b′)|pv. We obtain the following:

〈a1, · · · , ak, b〉 = 〈a1, · · · , ak, b′〉.

We now want to prove that 〈a1, · · · , ak〉 ∩ 〈b′〉 = {e}.
If, on the contrary, 〈a1, · · · , ak〉 ∩ 〈b′〉 = 〈c′〉 and c′ 6= e. We assume c′ = b′upw

for some integer u with
(u, p) = 1 and integer w ≥ 0. Since 〈b′upw〉 = 〈b′pw〉, let u = 1. Thus the statement ii) is true. There exist
integers si, u

′
i(i = 1, · · · , k) such that

c′ =
k

∏

i=1

asip
u′

i

i = b′p
w

=
k

∏

i=1

a−tip
ui−v+w

i · bpw

, (3)

where 0 ≤ u′
i ≤ ni, and 0 ≤ w < v. If w ≥ v, we have c′ = e By equations (1), (2), and (3). This contradicts

the assumption c′ 6= e.
Since c = bpv 6= e and 0 ≤ w < v, we have bpw 6= e. Since 〈a1, · · · , ak〉 ∩ 〈b〉 = 〈bpv 〉 and 0 ≤ w < v, we

have bpw

/∈ 〈a1, · · · , ak〉 ∩ 〈b〉. By (3),

bpw

=
k

∏

i=1

asip
u′

i

i ·
k

∏

i=1

atip
ui−v+w

i (4)

By equation (4), we also have bpw ∈ 〈a1, · · · , ak〉 ∩ 〈b〉. This contradicts that v is the least integer such that
bpv ∈ 〈a1, · · · , ak〉 (notice that w < v). Thus, 〈a1, · · · , ak〉∩〈b′〉 = {e}. Therefore, the statement iii) has been
proven.

Definition 25. Assume that a group G has basis b1, · · · , bt with ord(b1) ≥ · · · ≥ ord(bt).

• Assume that a1, · · · , ak and b are the same as those in Lemma 24. We use independent-extension(a1, · · · , ak, b)
to represent b′ derived in the Lemma 24 such that (1) a1, · · · , ak, b′ are independent elements in G; and
(2) 〈a1, · · · , ak, b′〉 = 〈a1, · · · , ak, b〉.

• Let a1, · · · , ak be the elements of G with ord(a1) = ord(b1), · · · , ord(ak) = ord(bk) and (
∏

i 6=j〈ai〉) ∩
〈aj〉 = {e} for every j = 1, · · · , k. Then a1, · · · , ak is called a partial basis of G. If C(a1, · · · , ak) = {a ∈
G|〈a1, · · · , ak〉 ∩ 〈a〉 = {e} and ord(a) ≤ ord(ak)}, then C(a1, · · · , ak) is called a complementary space
of the partial basis a1, · · · , ak.

Lemma 26. Let a1, · · · , ak be partial basis of the abelian G with pi elements for some prime p and integer
i ≥ 0. Then i) G can be generated by {a1, · · · , ak} ∪ C(a1, · · · , ak); and ii) the partial basis a1, · · · , ak

can be extended to another partial basis a1, · · · , ak, ak+1 with complementary space C(a1, · · · , ak, ak+1) =
{a ∈ C(a1, · · · , ak)|〈a1, · · · , ak, ak+1〉 ∩ 〈a〉 = {e} and ord(a) ≤ ord(ak+1)} , and ak+1 is the element of
C(a1, · · · , ak) having the largest order ord(ak+1).

Proof: Assume group G has a basis b1, · · · , bt with ord(b1) ≥ · · · ≥ ord(bt). i) We prove it by us-
ing induction. It is trivial in the case k = 0. Assume that it is true at k. We consider the case at
k + 1. Let a1, · · · , ak, ak+1 be the elements of a partial basis of G. Let the C(a1, · · · , ak) be the com-
plementary space for a1, · · · , ak. By assumption, G can be generated by {a1, · · · , ak} ∪ C(a1, · · · , ak).
By the definition of partial basis (see Section 2), it is easy to see that ak+1 ∈ C(a1, · · · , ak). Se-
lect a′

k+1 from C(a1, · · · , ak) such that ord(a′
k+1) = max{ord(a) : a ∈ C(a1, · · · , ak)}. By Lemma 24,

independent-extension(a1, · · · , ak, a′
k+1, b) ∈ C(a1, · · · , ak, a′

k+1) for all b ∈ C(a1, · · · , ak). We still have the
property that {a1, · · · , ak, a′

k+1}∪C(a1, · · · , ak, a′
k+1) can generate G. Thus, a1, · · · , ak can be extended to a

basis of G: a1, · · · , ak, a′
k+1, · · · , a′

t′ with ord(a1) ≥ ord(a2) ≥ · · · ≥ ord(ak) ≥ ord(a′
k+1) ≥ · · · ≥ ord(at′) by

repeating the method above. Since the decomposition of G has a unique structure (see Lemma 4), we have
that t = t′, ord(a1) = ord(b1), · · · , ord(ak) = ord(bk), ord(a′

k+1) = ord(bk+1), · · · , and ord(a′
t) = ord(bt).

11

Therefore, ord(a′
k+1) = ord(bk+1) = ord(ak+1). Thus, we can select ak+1 instead of a′

k+1 to extend the
partial basis from a1, · · · , ak to a1, · · · , ak, ak+1.

ii) Notice that C(a1, · · · , ak, ak+1) ⊆ C(a1, · · · , ak). It follows from the proof of i).

Lemma 27. Assume G is a group of order n = pn1
1 pn2

2 · · · pnt
t . Given the table of the orders of all elements

g ∈ G with ord(g) = pj
i for some pi and j ≥ 0, with O(n) steps, G can be decomposed as the product of

subgroups G(pn1
1) ◦ · · · ◦ G(pnt

t).

Proof: By Lemma 5, the elements of each G(pni
i) consist of all elements of G with order pj

i for some
integer j ≥ 0. Therefore, we have the following algorithm:

Compute the list of integers p1, p
2
1, · · · , pn1

1 , p2, p
2
2, · · · , pn2

2 , · · · , pt, p
2
t , · · · , pnt

t . This can be done in
O((log n)2) steps because n1 +n2 + · · ·+nt ≤ log n. Also sort the integers p1, p

2
1, · · · , pn1

1 , p2, p
2
2, · · · , pn2

2 , · · · ,
pt, p

2
t , · · · , pnt

t in increasing order. It takes O((log n)2) steps because bubble sorting those O(log n)
integers takes O((log n)2) steps. Let q1 < q2 · · · < qm be the list of integers sorted from
p1, p

2
1, · · · , pn1

1 , p2, p
2
2, · · · , pn2

2 , · · · , pt, p
2
t , · · · , pnt

t .
Set up an array A of n buckets. Put all elements of order k into bucket A[k] for all k in the list

p1, p
2
1, · · · , pn1

1 , p2, p
2
2, · · · , pn2

2 , · · · , pt, p
2
t , · · · , pnt

t . Merge the buckets A[pi], A[p2
i], · · · , A[pni

i] to obtain G(pni
i).

This can be done by scanning the array A from left to right once and fetching the elements from the array
A[] at those positions q1, q2, · · · , qm with q1 < q2 · · · < qm.

Assume the abelian group G has pj elements. By Lemma 31, we can set up an array U [] of m buckets

which in position U [gi] contains all the elements a of G with a
ord(a)

p = gi. We also maintain a double linked
list M that contains all of the elements of G with order from small to large.

Definition 28. Assume a1, a2, · · · , ak, ak+1 are elements of abelian group G with pt elements for some prime
p and integer t ≥ 0.

• Define L(a1, · · · , ak) = 〈a
ord(a1)

p

1 , · · · , a
ord(ak)

p

k 〉 − {e}.

• If A = {a1, · · · , ak}, define L(A) = L(a1, · · · , ak).

Lemma 29. Assume a1, a2, · · · , ak, ak+1 are independent elements of G, which has pt elements for some
prime p and integer t ≥ 0. Then i) L(a1, · · · , ak, ak+1) = L(a1, · · · , ak)∪(L(ak+1)∪(L(ak+1)◦L(a1, · · · , ak))),
and ii) L(a1, · · · , ak) ∩ (L(ak+1) ∪ (L(ak+1) ◦ L(a1, · · · , ak))) = ∅.

Proof: To prove i) in the lemma, we just need to follow the definition of L(). For ii), we use the condition
〈ak+1〉 ∩ 〈a1, a2, · · · , ak〉 = {e} since a1, a2, · · · , ak are independent (see the definition at Section 2).

Lemma 30. In O(m) steps one can compute ap for all elements a of group G, where |G| = m = pi elements
for some prime p and integer i ≥ 0.

Proof: Initially mark all elements of G − {e} “unprocessed” and mark the unit element e “processed”.
We always select an unprocessed element a ∈ G and compute ap until all elements in G have been processed.
Compute ap, which takes O(log p) steps (by using the recursion a2k+1 = akaka and a2k = akak), and its

order ord(a) = pj by trying ap, ap2

, · · · , apj

, which takes O(j2 log p) steps. Process ak according to the order

k = 1, 2, · · · , pj , compute (ak)p = (ap)k in O(pj) steps and mark a, a2, · · · , apj

“processed”. For all k with
1 ≤ k ≤ pj and (k, p) = 1, the element ak is not processed before because the subgroups generated by ak

and a are the same (in other words, 〈ak〉 = 〈a〉). There are pj − pj−1 ≥ pj

2 integers k in the interval [1, pj]

to have (k, p) = 1. Therefore, we process at least pj

2 new elements ak in O(pj) steps by computing akp from

ap. Since it takes O(pj) steps to process at least pj

2 new elements, the total number of steps is O(m).

Lemma 31. In O(m) steps one can compute a
ord(a)

p and logp ord(a) for all elements a of group G with

|G| = m = pi for some prime p and integer i ≥ 0.

12

Proof: For any two elements a, b ∈ G, if apj

= b for some integer j with pj ≤ ord(a) and ord(b) = pt

for some t ≥ 1, by Lemma 1, we have ord(a) = pj+t. This implies that if apj

= b 6= e for some j, then

a
ord(a)

p = b
ord(b)

p and logp(ord(a)) = logp(ord(b)) + j. This fact is used in the algorithm design.
By Lemma 30, we can compute a table P with P (a) = ap in O(m) time. Assign flag −1 to each element

in the group G in the first step. If an element a has its values a
ord(a)

p and logp ord(a) computed, its flag

is changed to +1. We maintain the table that always has the property that if a
ord(a)

p and logp ord(a) are

available (the flag of a is +1), then b
ord(b)

p and logp ord(b) are available for every b = apj

for some j > 0.

For an element b of order pt, when computing b
ord(b)

p = bpt−1

, we also compute b
ord(bi)

p

i and logp ord(bi) for

bi = bpi

with i = 1, 2, · · · , t − 1 until it meets some bi with flag +1. The element bi = bp
i−1 can be computed

in O(1) steps from bi−1 since the table P is available. It is easy to see that such a property of the table is
always maintained. Thus, the time is proportional to the number of elements with flag +1. The total time
is O(m).

The procedure of obtaining L is shown in the following algorithm, which is also used to find a basis of
the abelian group of order power of a prime in Lemma 32.

Algorithm A
Input: an abelian group G with order pt, prime p and integer t,
Output: a basis of G;
begin

build a table T with T (a) = a
ord(a)

p for all a 6= e;
build a table R with R(a) = j if ord(a) = pj for all a ∈ G;
build an array of buckets U with U(b) = {a|T (a) = b};
build a double linked list M that contains all elements a of G with nondecreasing order by ord(a)
(each element a ∈ G has a pointer to the node N , which holds a, in M);
L = ∅;B = ∅;
repeat

select a ∈ M with the largest ord(a) (a is at the end of the double
linked list M);
B = B ∪ {a};
L′ = L(a) ∪ (L(a) ◦ L);
for (each b ∈ L′) remove all elements in U(b) from M ;
L = L ∪ L′;

until (
∑

aj∈B R(aj) = t);
output the set B as a basis of G;

end
End of Algorithm A

Lemma 32. There is an O(m) time algorithm for computing a basis of a group G with m = pt elements for
some prime p and integer t ≥ 0.

Proof: Algorithm A is described above the lemma. By Lemma 30, we can obtain the orders of all elements
of G in O(m) time. With another O(m) time for Bucket sorting (see [6]), we can set up the double linked
list M that contains all elements a of G in nondecreasing order by ord(a). By Lemma 31, with O(m) steps,

we can obtain the table T and table R with T (a) = a
ord(a)

p and R(a) = logp ord(a) for all a 6= e in G. With
table R, we can obtain the array of buckets U with U(b) = {a|T (a) = b} for all b ∈ G in O(m) steps by
Bucket sorting. The tables T and R, bucket array U , and double linked list are used as the inputs of the
algorithm.

For every element b ∈ G with b 6= e, ord(b) ≤ min{ord(ai)|i = 1, · · · , k}, and 〈a1, · · · , ak〉 ∩ 〈b〉 6= {e}
if and only if b

ord(b)
p is in L(a1, · · · , ak). When a new ak+1 is found, we compute L(a1, a2, · · · , ak, ak+1) =

L(a1, a2, · · · , ak)∪ (L(ak+1)∪L(ak+1) ◦L(a1, a2, · · · , ak)) by Lemma 29. For all new element gi ∈ L(ak+1)∪
L(ak+1)◦L(a1, a2, · · · , ak) = L(a1, a2, · · · , ak, ak+1)−L(a1, a2, · · · , ak) (see Lemma 29), we obtain the bucket

U [gi] that contains all elements a ∈ G with a
ord(a)

p = gi. Then remove all elements of U [gi] from the double

13

linked list M . This makes M hold all elements of C(a1, · · · , ak, ak+1) (see Definition 25). Removing an
element takes O(1) time and each element is removed at most once. Therefore, the total time is O(m). It is
easy to check the correctness of the algorithm by using Lemma 26.

An O(n) time algorithm for computing the orders of all elements in an abelian group G was recently
reported by Kavitha [14]. The proof is more involved.

Theorem 33 (Kavitha [14]). Given any group G with n elements , one can compute the orders of all
elements in G in O(n) time.

Theorem 34. There is an O(n) time algorithm for computing a basis of an abelian group with n elements.

Proof: The theorem follows from Lemma 27, Lemma 32, and Theorem 33.

7.2. Second Proof for O(n) Time Algorithm

We give second O(n) time algorithm by using a result of Kavitha [13]. It is slightly weaker than Theorem 33.

Theorem 35 (Kavitha [13]). Given any group G with n elements, one can compute the orders of all
elements in G in O(n log p) time, where p is the smallest prime non-divisor of n.

Our second proof for Theorem 34 shows that it also follows from Lemma 32 and Lemma 38, which is
proved slightly later. Using Theorem 35 instead of Theorem 33, we obtain a linear time group decomposition
G = G(pn1

1) ◦ · · · ◦ G(pnt
t), where the abelian group G has n elements with n = pn1

1 · · · pnt
t . This provides a

second proof of Theorem 34 without depending on Theorem 33. The technique we use here is the following:
For an abelian group G with |G| = 2n1m2, where m2 is an odd number, we derive a decomposition of
G = G1 ◦ G2 in linear time such that |G1| = 2n1 and |G2| = m2. Then we apply Theorem 35 to decompose
the group G2. In order to derive the elements of G2, we convert this problem into a search problem in a
special directed graph in which each of the nodes has one outgoing edge. The directed graph has all elements
of G as its vertices. A vertex a has edge going to a vertex b if a2 = b. Each weakly connected component
of such a directed graph has a unique directed cycle. We show that each node in the cycle can be added to
G2. Removing the cycle nodes, we obtain a set of directed trees. The nodes that have a path of length at
least n1 to a leaf node can be also added to the group G2. Searching the directed graph takes O(n) time.
Combining with Kavitha’s theorem, we obtain the O(n) time decomposition for the graph G.

Our linear time decomposition method using Theorem 35 is also technically interesting as it converts an
algebraic problem into a searching problem in a directed graph for which every node has exactly one outgoing
edge. Our method is simpler than that in [14] as we just combine an easy graph searching algorithm with
that in [14]. Our algorithm can be converted into a linear time algorithm for the abelian groups isomorphism
problem.

Figure 1: Each node has one outgoing edge

An undirected graph G = (V,E) consists a set of
nodes V and a set of undirected edges E such that the
two nodes of each edge in E belong to set V . A path of
G is a series of nodes v1v2 · · · vk such that (vi, vi + 1) is
an edge of G for i = 1, · · · , k − 1. A undirected graph
is connected if every pair of nodes is linked by a path.
A graph G1 = (V1, E1) is a subgraph of G = (V, E) if
E1 ⊆ E and V1 ⊆ V . A connected component of G is
a (maximal) subgraph G1 = (V1, E1) of G such that G1

is a connected subgraph and G does not have another
connected subgraph G2 = (V2, E2) with E1 ⊂ E2 or
V1 ⊂ V2.

A directed graph G = (V,E) consists of a set of nodes
V and a set of directed edges E such that each edge in E
starts from one node in V and ends at another node in

14

V . A path of G is a series of nodes v1v2 · · · vk such that
(vi, vi +1) is a directed edge of G for i = 1, · · · , k− 1. A
(directed) cycle of G is a directed path v1v2 · · · vk with
v1 = vk. For a directed graph G = (V, E), let G =

(V, E′) be the undirected graph where E′ is derived from E by converting each directed edge of E into
undirected edge. A directed graph G = (V,E) is weakly connected if G = (V,E′) is connected. A subgraph
G1 = (V1, E1) of G = (V, E) is a weakly connected component of G if (V1, E

′
1) is a connected component of

(V, E′).
We need the following lemma that shows the structure of a special kind directed graph in which each of

its nodes has exactly one outgoing edge. An example of such a kind of graph is given in Figure 1.

Lemma 36. Assume that G = (E, V) is a weakly connected directed graph such that each node has exactly
one outgoing edge that leaves it (and may come back to the node itself). Then the directed graph G = (V, E)
has the following properties: i) Its derived undirected graph G′ = (V,E′) has exactly one cycle. ii) G has
exactly one directed cycle. iii) Every node of G is either in the directed cycle or has a directed path to a node
in the directed cycle. iv) For every node v of G, if v is not in the cycle of G, then there exists a node w in
the cycle of G such that every path from v to another node w′ in the cycle of G must go through the node w.

Proof: Since each node of G has exactly one edge leaving it, the number of edges in G is the same as the
number of nodes. Therefore, G′ can be considered to be formed by adding one edge to a tree. Clearly, G′

has exactly one cycle. Therefore, G has at most one directed cycle.
Now we prove that G have at least one directed cycle. We pick up a node from G. Since each node of G

has exactly one edge leaving it, follow the edge leaving the node to reach another node. We will eventually
come back to the node that is visited before since G has a finite number of nodes. Therefore, G has at least
one cycle. Therefore, G has exactly one directed cycle. Thus, statement i) is proved. This process also
shows that every node of G has a directed path linking to a node in the directed cycle. Thus, statement ii)
is proved.

Assume that v is a node of G and v is not in the cycle. Let w be the first node in the directed cycle
such that v has a path to w and the path does not visit any other node in the cycle of G. Let e be the edge
leaving w. Clearly, H = (V, (E − e)′) is a tree. Therefore, for every node w′ in the cycle of G, every path in
(V, E − e) from v to w′ has to go through w. It is still true when e is added back since e connects w. Thus,
both statements iii) and iv) are proved.

Lemma 37. There exists an O(n) time algorithm such that given an abelian group G of order n, a prime p
with p|n, and a table H with H(a) = ap, it returns two subgroups F1 = {a ∈ G|apn1

= e} and F2 = {apn1 |a ∈
G} such that |F1| = pn1 , |F2| = m2 and G = F1 ◦ F2, where n = pn1m2 with (p,m2) = 1 .

Proof: It is easy to see that F1 can be derived in O(n) time since we have the table H available. By
Lemma 5, we have G = F1 ◦F2. We focus on how to generate F2 below. For all element a, set up a flag that
is initially assigned −1. In order to decompose the group G into F1 ◦ F2 with |F1| = pn1 and |F2| = m2, we
use Lemma 5 to build up two subsets A and B of G, where A = {a ∈ G|apn1

= e} and B = {apn1 |a ∈ G and
apn1 6= e}. Then let F1 = A and F2 = B ∪ {e}.

During this construction, we have the table H such that H(a) = ap for every a ∈ G. We compute apj

for

j = 1, 2, · · · , n1. If apj

= e for some least j with 1 ≤ j ≤ n1, put a into A and change the flag from −1 to 1.
It is easy to see we can obtain all elements of A in O(n) steps. We design an algorithm to obtain B by

working on the elements in G − A. We build up some trees for the elements in V0 = G − A.
Algorithm B
Input:

group G with a black box of its multiplication, its order n and a prime p with p|n;
table H() with H(a) = ap for all a ∈ G;

Output: subgroup {apn1 |a ∈ G};
begin

for every a ∈ V0 with ap = b (notice H(a) = ap)
begin

15

let (a, b) be a directed edge from a to b;
end (for)
form a directed graph (V0, E);
let (E1, V1), (E2, V2), · · · , (Em, Vm) be the weakly connected components
of (E, V0);
for all (Vi, Ei) with i = 1, 2, · · · , m
begin

find the loop Li, and put all elements of the loop into the set B;
for all tree in (Vi, Ei) − Li compute the height of each node;
put all nodes of height at least n1 into B;

end (for)
output B;

end
End of Algorithm B
For all component of (E, V0), each node has only one outgoing edge. It has at most one loop in the

component (see Lemma 36 for the structure of such a directed graph). The height of a node in a subtree
tree, which is derived from a weakly connected component by removing a directed cycle, is the length of
longest path from a leaf to it. For all node v in the cycle, clearly, there is a path v0v1 · · · vn1 with vn1 = v
(notice that all the other nodes v0, v1, · · · , vn1−1 are also in the cycle). Thus, v ∈ B. If v is not in the cycle,
v ∈ B if and only if there is a path with length at least n1 and the path ends v. Since each node has one
outgoing edge, each node in the cycle has no edge going out the cycle. Thus, a node is in B if and only if it
has height of at least n1 or it is in a cycle. Therefore, the set B can be derived in O(n) steps by using the
depth first method to scan each tree.

Lemma 38. There is an O(n) time algorithm such that given a group G of order n, it returns the decom-
position G(pn1

1) ◦ G(pn2
2) ◦ · · · ◦ G(pnt

t), where n has the factorization n = pn1
1 pn2

2 · · · pnt
t and G(pni

i) is the
subgroup of order pni

i of G for i = 1, 2, · · · , t.

Proof: For n = pn1
1 pn2

2 · · · pnt
t , assume that p1 < p2 < · · · < pt. We discuss the following two cases.

Case 1: p1 > 2. In this case, 2 is the least prime that is not a divisor of n. By Theorem 35, we can find
the order of all elements in O(n log p) = O(n) time since p = 2 here. By Lemma 27, we can obtain the group
decomposition in O(n) time.

Case 2: p1 = 2. Apply Lemma 37, we have G = G(2n1) ◦ G′. In the next stage, we decompose G′ into
the product of subgroups G′ = G(pn2

2) ◦ · · · ◦G(pnt
t). Since G′ does not have the divisor 2, we come back to

Case 1. Clearly, the total number of steps is O(n).

Now we have the second proof about our linear time algorithm to compute a basis of an abelian group.

Theorem 39. There is an O(n) time algorithm for computing the basis of an abelian group with n elements.

Proof: The theorem follows from Lemma 38 and Lemma 32.

7.3. Self-contained Proof for an O(n log n) Time Algorithm

In this section, we develop an O(n log n) time algorithm to compute a basis of a finite abelian group. The
algorithm and its proof are self-contained so that it can help the readers to understand our method.

Lemma 40 (Vikas [29]). There exists an O(n log n) time algorithm which, given a list of all elements in
a group G of order n and its multiplication table as a black box, it computes the order of all elements g with
ord(g) = pj

i for some pi||G| and j ≥ 0.

Proof: Assume that n has the prime factorization n = pn1
1 pn2

2 · · · pnt
t and ni ≥ 1 for i = 1, 2, · · · , t. Given

the black box of multiplication table of G, in O(log m) steps, we can compute am for any nonnegative integer
m. This can be done by a straightforward divide and conquer method with the recursion am = a

m
2 · am

2 if

m is even or am = a · abm
2 c · abm

2 c if m is odd.

16

For all prime factor pi of n, compute api for all a ∈ G. Build the table Ti so that Ti(a) = api for a ∈ G.
The table Ti can be built in O(n log pi) steps.

For all a ∈ G and prime factor pi of n, try to find the least integer j, which may not exist, such that

apj
i = e. It takes O(ni) steps by looking up the table Ti. For each pi, trying all a ∈ G takes O(n(log pi +ni))

steps. Therefore, the total time is O(n(
∑t

i=1(log pi + ni))) = O(n log n).

Theorem 41. There is an O(n log n) time algorithm for computing a basis of an abelian G group with n
elements.

Proof: Assume n = pn1
1 · pn2

2 · · · · · pnt
t . By Lemma 40 and Lemma 27, the group G can be decomposed

into product G = G(pn2
1) ◦ G(pn2

2) ◦ · · · ◦ G(pnt
t) in O(n log n) steps. By Lemma 32, a basis of each G(pni

i)

(i = 1, 2, · · · , t) can be found in O(pni
i) time. Thus, the total time is O(n log n) + O(

∑t
i=1 pni) = O(n log n).

8. Further Research and Open Problem

An interesting problem of further research is if there exists an (log n)O(1) randomized time algorithm to find
the basis of an abelian group of size n = pr for some prime p. The positive answer implies that there exists
an (log n)O(1) time algorithm to find a basis of an abelian group with known prime factorization for its size.
Our algorithm only shows that the time is (log n)O(1) for most of abelian groups.

Acknoledgements: We would like to thank Eric Allender and Igor Shparlinski for their help and
comments on an earlier version of this paper. We would like to thank the anonymous referees for their many
helpful comments.

References

[1] L. Babai. Randomization in group algorithms: conceptual questions. Groups and Computation. II
(L. Finklelstein and W. M. Kantor, eds.), DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, 28:1–17, 1997.

[2] J. Buchmann, M. J. Jacobson Jr., and E. Teske. On some computational problems in finite abelian
groups. Mathematics of Computation, 66:1663–1687, 1997.

[3] J. Buchmann and A. Schmidt. Computing the structure of a finite abelian group. Mathematics of
Computation, 74:2017–2026, 2005.

[4] L. Chen. Algorithms and their complexity analysis for some problems in finite group. Journal of Sandong
Normal University, in Chinese, 2:27–33, 1984.

[5] K. Cheung and M. Mosca. Decomposing finite abelian groups. Quantum Information and Computation,
1:26–32, 2001.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms, Second Edition.
The MIT Press, 2001.

[7] Y. G. Desmedt and Y. Frankel. Homomorphic zero-knowledge threshold schemes over any finite abelian
group. SIAM Journal on Discrete Mathematics, 7(4):667–679, 1994.

[8] J. A. Gallian. Contemporary Abstract Algebra. Houghton Mifflin Company, 2004.

[9] M. Garzon and Y. Zalcstein. On isomorphism testing of a class of 2-nilpoten groups. Journal of
Computer and System Sciences, 42:237–248, 1991.

[10] K. Hardy, J. B. Muskat, and K. S. Williams. A deterministic algorithm for solving n = fu2 + gv2 in
coprime integers u and v. Math. Comput., 55:327–343, 1990.

17

[11] C. M. Hoffmann. Group-Theoretic Algorithms and Graph Isomorphism. Springer-Verlag, 1982.

[12] T. Hungerford. Algebra. Springer-Verlag, 1974.

[13] T. Kavitha. Efficient algorithms for abelian group isomorphism and related problems. In Proceedings
of Foundations of Software Technology and Theoretical Computer Science, Lecture notes in computer
science, 2914, pages 277–288, 2003.

[14] T. Kavitha. Linear time algorithms for abelian group isomorphism and related problem. Journal of
Computer and System Sciences, 73:986–996, 2007.

[15] A. Y. Kitaev. Quantum computations: Algorithms and error correction. Russian Math. Surveys,
52:1191, 1997.

[16] J. Köbler, U. Schöning, and J. Toran. The Graph Isomorphism Problem: Its Structural Complexity.
Birkhouser, 1993.

[17] C. Lomont. The hidden subgroup problem -review and open problems. http://arxiv.org/abs/quant-
ph/0411037, 2004.

[18] A. Menezes. Elliptic curve cryptosystems. CryptoBytes, 1:1–4, 1995.

[19] G. L. Miller. On the nlog n isomorphism technique. In Proceedings of the tenth annual ACM symposium
on theory of computing, pages 128–142, 1978.

[20] G. L. Miller. Graph isomorphism, general remarks. Journal of Computer and System Sciences, 18:128–
142, 1979.

[21] V. Miller. Uses of elliptic curves in cryptography. In Advances in Cryptology CRYPTO’85, Lecture
Notes in Computer Science, pages 417–426, 1986.

[22] C. Pomerance. Analysis and comparison of some integer factorization algorithms. In Computational
Methods in Number Theory, Part 1 (Ed. H. W. Lenstra and R. Tijdeman). Amsterdam, Netherlands:
Mathematisch Centrum, pages 89–139, 1982.

[23] C. Savage. An O(n2) algorithm for abelian group isomorphism. Technical report, North Carolina State
University, January 1980.

[24] D. Shanks. Class number, a theory of factorization and genera. Proc. Symp. Pure Math., 20:414–440,
1971.

[25] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing, 26:1484 1509, 1997.

[26] D. R. Simon. On the power of quantum computation. SIAM Journal on Computing, 26:1474 1483,
1997.

[27] C. Sims. Computation with Finitely Presented Groups. Cambridge University Press, 1994.

[28] E. Teske. A space efficient algorithm for group structure computation. Mathematics of Computation,
67:1637–1663, 1998.

[29] N. Vikas. An O(n) algorithm for abelian p-group isomorphism and an O(n log n) algorithm for abelian
group isomorphism. Journal of Computer and System Sciences, 53:1–9, 1996.

18

