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Abstract

Non-interactive zero-knowledge proofs and non-intevactvitness-indistinguishable proofs have
played a significant role in the theory of cryptography. Hearelack of efficiency has prevented them
from being used in practice. One of the roots of this inefficieis that non-interactive zero-knowledge
proofs have been constructed for general NP-complete &gegusuch as Circuit Satisfiability, causing
an expensive blowup in the size of the statement when reduicto a circuit. The contribution of this
paper is a general methodology for constructing very sirapteefficient non-interactive zero-knowledge
proofs and non-interactive witness-indistinguishableofs that work directly for groups with a bilinear
map, without needing a reduction to Circuit Satisfiability.

Groups with bilinear maps have enjoyed tremendous sucoetbe ifield of cryptography in recent
years and have been used to construct a plethora of protdtosspaper provides non-interactive witness-
indistinguishable proofs and non-interactive zero-kremlgle proofs that can be used in connection with
these protocols. Our goal is to spread the use of non-irtteeaaryptographic proofs from mainly theo-
retical purposes to the large class of practical cryptdgjaprotocols based on bilinear groups.
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1 Introduction

Non-interactive zero-knowledge proofs and non-intevactiitness-indistinguishable proofs have played a
significant role in the theory of cryptography. Howeverkaxd efficiency has prevented them from being
used in practice. Our goal is to construct efficient and prakhon-interactive zero-knowledge (NIZK)
proofs and non-interactive witness-indistinguishabl®¥N proofs.

Blum, Feldman and Micali [BFM88] introduced NIZK proofs. @&ih paper and subsequent work, e.g.
[FLS99, Dam92, KP98, DDP02], demonstrates that NIZK praofist for all of NP. Unfortunately, these
NIZK proofs are all very inefficient. While leading to inteteng theoretical results, such as the construction
of public-key encryption secure against chosen ciphegtatk by Dolev, Dwork and Naor [DDNOO], they
have therefore not had any impact in practice.

Since we want to construct NIZK proofs that can be used intpedt is worthwhile to identify the roots
of the inefficiency in the above mentioned NIZK proofs. Onavdback is that they were designed with a
general NP-complete language in mind, e.g. Circuit Saligifia In practice, we want to prove statements
such as “the ciphertextencrypts a signature on the messageor “the three commitments,, ¢, ¢, contain
messages, b, c soc = ab”. An NP-reduction of even very simple statements like thgises us big circuits
containing thousands of gates and the corresponding NI&Kfpithen become very large.

While we want to avoid an expensive NP-reduction, it is siikirable to have a general way to express
statements that arise in practice instead of having to naetston-interactive proofs on an ad hoc basis. A
useful observation in this context is that many public-keyptography protocols are based on finite abelian
groups. If we can capture statements that express relabiemgeen group elements, then we can express
statements that come up in practice such as “the commitmgnts, c. contain messages $0= ab” or
“the plaintext ofc is a signature omn”, as long as those commitment, encryption, and signatunerses
work over the same finite group. In the paper, we will therefasnstruct NIWI and NIZK proofs fagroup-
dependent languages.

The next issue to address is where to find suitable group depetanguages. We will look at state-
ments related to groups with a bilinear map, which have becaidely used in the design of cryptographic
protocols. Not only have bilinear groups been used to give canstructions of such cryptographic staples
as public-key encryption, digital signatures, and key egrent (see [DBS04] and the references therein),
but bilinear groups have enabled the first constructionsesicty goals that had never been attained be-
fore. The most notable of these is the Identity-Based Enicnymscheme of Boneh and Franklin [BFO3]
(see also [Wat05]), and there are many others, such as #triBased Encryption [SW05, GPSWO06],
Searchable Public-Key Encryption [BCOP04, BSW06, BWO®G|] ®ne-time Double-Homomorphic En-
cryption [BGNO5]. For an incomplete list of papers (curtemver 200) on the application of bilinear groups
in cryptography, see [Bar06].

1.1 Our Contribution

In this work, we develop a general set of highly efficient téghes for proving statements involving bilinear
groups. The generality of our work extends in two directidrisst, we formulate our constructions in terms
of modules over commutative rings with an associated tdlimeap. This framework captures all known bi-
linear groups with cryptographic significance — for bothexsngular and ordinary elliptic curves, for groups
of both prime and composite order. Second, we consider dhengatical operations that could take place
in the context of a bilinear group — exponentiation, additoy multiplication of exponents, multiplication
of group elements and use of the bilinear map. We also allaiv bmup elements and exponents to be
“unknowns” in the statements to be proven.

With our level of generality, for example it would be easy tdtevdown a short statement, using the
operations above, that encodesis an encryption of the value committed todrunder the product of the



two keys committed to im andb” where the encryptions and commitments being referred eoeaisting
cryptographic constructions based on bilinear groups.idab@perations like AND and OR are also easy to
encode into our framework using standard techniques ihragtization.

The proof systems we build anen-interactive. This allows them to be used in contexts where interaction
is undesirable or impossible. We first build highly efficigvitness-indistinguishable proof systems, which
are of independent interest. We then show how to transfoasetlinto zero-knowledge proof systems. We
also provide a detailed examination of the efficiency of amstructions in various settings (depending on
what type of bilinear group is used).

The security of constructions arising from our framework be based oany of a variety of computa-
tional assumptions about bilinear groups (3 of which weugdisdn detail here). Thus, our techniques do not
rely on any one assumption in particular.

Informal statement of our results. We consider equations over variables frém G5 andZ,, as described
in Figure 1. We construct efficient witness-indistinguisleaproofs for the simultaneous satisfiability of a
set of such equations. The witness-indistinguishable fprbave perfect completeness and there are two
computationally indistinguishable types of common refegestrings giving respectively perfect soundness
and perfect witness indistinguishability. We refer to 8atP for precise definitions.

We also consider the question of non-interactive zero-kedge. We say a set of equationgriactable
if it is possible to compute a satisfiability witness in theieasetting where we allow the exponent variables
o,-..,0K,01,...,07 to take different values in each equation. We offer a teakmig transform a set of
equations into an equivalent tractable set of equatiorectable equations have efficient non-interactive zero-
knowledge proofs with perfect completeness and two typesoofputationally indistinguishable common
reference strings giving respectively perfect soundnadsarfect zero-knowledge simulation.

Instantiation 1: Subgroup decision. Throughout the paper, we will give a general descriptionusftech-
nigues. We will also offer three instantiations that ilhasé the use of our techniques. The first instantiation
is based on the composite order groups introduced by Boneh,aBd Nissim [BGNO5]. Let7, G be
cyclic groups of orden = pq, wherep, q are primes. Ley be a generator off. Lete : G x G — Grp

be a non-degenerate bilinear map, i€g, g) generate€:r and for alla, b we havee(g?, ¢°) = e(g, 9)?.
[BGNO5] gives an example of a way to set up such groups suthalihgperations are efficiently computable
and membership aff, Gy can be decided efficiently.

We can writeG = G, x G4, whereGy, G4 are the subgroups of order and q respectively. The
subgroup decision problem is to distinguish a random eléfnem G from a random element fror&¥. In
this paper, we will demonstrate that assuming the hardrfetse subgroup decision problem there exists a
witness-indistinguishable proof for satisfiability of & séequations from Figure 1 in the subgroGf, and
the orderp subgroup ofG.

Instantiation 2: XDH and SXDH. Let Gy, G2, G be groups of prime ordgp with a non-degenerate
bilinear mape : G; xGy — Gr. The external Diffie-Hellman (XDH) assumption is that theidmnal Diffie-
Hellman (DDH) problem is hard in one of the grou@s or G, [Sco02, BBS04, BGAMMO05, GR04, Ver04].
The Symmetric XDH assumption is that the DDH problem is harthath G; and G,. We will construct

a witness-indistinguishable proof for these groups unkerSXDH assumption. We will also observe that
given only the XDH assumption, we can still give NIWI proots S§ome interesting special cases.

Instantiation 3: DLIN. Let G, Gy be groups of prime ordgs with a non-degenerate bilinear map:
G x G — Gp. The decisional linear assumption (DLIN) introduced by BloyBoyen and Shacham [BBS04]
states that given three random generafrs, g and f, h*, ¢*, it is hard to distinguish the cage= r + s



Variables: T1,...,x0m € Gp yl,...,yNEGg, ¢17--~7¢K7617---,0L€Zn-

Pairing product equation:
Q M N
[T etaq IT wiemobg [T wn) =,
q=1 m=1 n=1
for constantsy, € G1,b, € G2, T € G, 0y, Byn € Zn.

Multi-exponentiation in G:

L M I

~ 0¢+
[Tafr - [T wimt= o =,
/=1

m=1

for constantsi,, t1 € G andayy,e, B € Zn.

Multi-exponentiation in G:
K N %
I]:bzk_ I]:y%:kzlank¢k+ﬁn _ tQ
k=1 n=1

for constant$y,, to € Go anda,,i., 5y, € Zn.

General arithmetic gate:

K L K L
Yotk + D B + DD veedrbe = 7,
k=1 =1

k=1 (=1

for constantsyy, B¢, Yie, T € Zn.

Figure 1: Equations over groups with bilinear map.

from ¢t random. They offer an example of such a group based on elliptives, where the DLIN problem
is assumed hard. Assuming the hardness of the DLIN probleswill/suggest a witness-indistinguishable
proof for satisfiability of a set of equations from Figure 1.

The instantiations illustrate the variety of ways bilinggoups can be constructed. We can choose prime
order groups or composite order groups, we can l@ve= Go andG; # G4, and we can make various
cryptographic assumptions. All three security assumptloave been used in the cryptographic literature to
build interesting protocols.

For all three instantiations, the techniques presented YVietd very efficient witness-indistinguishable
proofs. In particular, the cost in proof size of each extraagign is constant and independent of the number
of variables in the equation. The size of the proofs, can bepced by adding the cost, measured in group
elements fromz; or G4, of each variable and each equation listed in Figure 2. War ttef Section 9 for
more detailed tables.

1.2 Related Work

As we mentioned before, early work on NIZK proofs demonsttathat all NP-languages have non-
interactive proofs, however, did not yield efficient praofSne cause for these proofs being inefficient in
practice was the need for an expensive NP-reduction to drguiCSatisfiability. Another cause of ineffi-
ciency was the reliance on the so-called hidden bits modatweven for small circuits is inefficient.



Subgroup decisior SXDH DLIN
Variable inG1 or Go 1 2 3
Variable inZy, or Zy, 1 2 3
Paring product equation 1 8 9
Multi-exponentiation in; or G 1 6 9
General arithmetic gate 1 4 6

Figure 2: Number of group elements each variable or equatets.

Groth, Ostrovsky, and Sahai [GOS06b, GOS06a] investigdtZd proofs for Circuit Satisfiability using
bilinear groups. This addressed the second cause of iregftigisince their techniques give efficient proofs for
Circuit Satisfiability, but to use their proofs one must stibke an NP-reduction to Circuit Satisfiability thus
limiting the applications. We stress that while [GOS06b,$8Ba] used bilinear groups, their application
was to build proof systems for circuit satisfiability. Heme devise entirely new techniques to deal with
general statementbout bilinear groups, without having to reduce to an NP-compktguage.

Addressing the issue of avoiding an expensive NP-reduatehave works by Boyen and Waters [BWO06,
BWAO07] that suggest efficient NIWI proofs for statementsterlao group signatures. These proofs are based
on bilinear groups of composite order and rely on the suhgd®cision assumption.

Groth [Gro06] was the first to suggest a general group-degernidnguage and NIZK proofs for state-
ments in this language. He investigated a restricted kinga@ring product equation in which only group
elements can be variables. He also looked only at the spEasal of prime order groups, G with a bilin-
ear map : G x G — G7 and, based on the decisional linear assumption [BBSO04§tameted NIZK proofs
for such restricted pairing product equations. Howeveandar very small statements, the very different and
much more complicated techniques of Groth yield proofs isting of thousands of group elements (whereas
ours would be in the tens) Our techniques are much easier to understand, signifjcartite general, and
vastly more efficient.

We summarize our comparison with other works on NIZK proaffigure 3.

Inefficient Efficient
Circuit Satisfiability E.g. [KP98] [GOS06b, GOS064]
Pairing Product Equations[Gro06] (restricted case)) This work

Figure 3: Classification of NIZK proofs according to usefsa.

We note that there have been many earlier works (starting [@iMR89]) dealing with efficieninterac-
tive zero-knowledge protocols for a number of algebraic refetidHere, we focus onon-interactive proofs.
We also note that even for interactive zero-knowledge o006 set of techniques was known for dealing
with general algebraic assertions arising in bilinear geyas we do here.

1.3 New Techniques

[GOS06b, GOS06a, Gro06] start by constructing non-intemagroofs for simple statements and then com-
bine many of them to get more powerful proofs. The main baddblock in [GOS06b], for instance, is a
proof that a given commitment contains either 0 or 1, which litHe expressive power on its own. Our

1Furthermore, even when limited to the restricted types atestents considered by [Gro06], there are examples ofitsf
statements for which there is anbitrary polynomial gap between the efficiency of the proof systems of [Gro06] and oilihus,
our construction not only dominates that of [Gro06] in tewhgypical use, but also in asymptotic terms.



approach is the opposite: we directly construct proofs &y expressive languages; as such, our techniques
are very different from previous work.

The way we construct our efficient yet powerful NIWI proofdisviewing the groupss1, G, G as sub-
modules of appropriately chosen modulds, Ms, Mr. Furthermore, from the bilinear map G, x Gy —
G, we can construct a bilinear mdp: M; x M, — My . We introduce a number of new techniques for
building NIWI proofs in this setting. The primary advantagfethe modular setting is that it permits char-
acterizing witness-indistinguishability in a very simplay. Moreover, witness-indistinguishability relies on
high-level properties of modules over a commutative ringwoapproach becomes very general and covers
a wide range of different types of bilinear groups.

1.4 Applications

There are many applications of our NIWI proofs and NIZK psodBubsequent to this work, Chandran, Groth
and Sahai [CGSO07] construct ring-signatures of sublinizarusing the NIWI proofs in the first instantiation,
which is based on the subgroup decision problem. Groth arfféLQ7] use the NIWI and NIZK proofs from
instantiations 1 and 3 to construct non-interactive prdofghe correctness of a shuffle. We note that the
proofs of Boyen and Waters [BW06, BW07] used to construcugrsignatures can be seen as examples
of the NIWI proofs in instantiation 1. Also, by attaching NdZproofs to semantically secure public-key
encryption in any instantiation we get an efficient nonsiattive verifiable cryptosystem. Boneh [Bon06]
has suggested using this for optimistic fair exchange [c@here two parties use a trusted but lazy third
party to guarantee fairness.

2 Non-interactive Witness-Indistinguishable Proofs

Let R be an efficiently computable ternary relation. For tripletsz, w) € R we callz the statement and
the witness. Given somewe let L be the language consisting of statementRir-or a relation that ignores
o this is of course the standard definition of an NP-language.

A non-interactive proof system for a relatidd consists of a three probabilistic polynomial time algo-
rithms: a CRS generation algorithf, a proverP and a verifiel/. The CRS generation algorithm produces
a common reference string The prover takes as inp(t, x, w) and produces a proaf. The verifier takes
as input(o, z, ) and outputs 1 if the proof is acceptable and 0 if rejectingptesf. We call(K, P,V) a
non-interactive proof system fat if it has the completeness and soundness properties degddow.

PERFECT COMPLETENESSFor all adversaries! we have

Pr [a — K(1%); (z,w) — A(0);7 — P(o,z,w) : V(o,z,7) = 1if (0,2,w) € R] =1

PERFECT SOUNDNESSFor all adversariegl we have

Pr [a — K(1); (z,7m) « A(0) : V(o,2,7m) = 0if = ¢ L] =1

COMPOSABLE WITNESS INDISTINGUISHABILITY. In this paper, we will use a strong definition of witness
indistinguishability. We introduce a reference string giator S that generates a simulated CRS. We require
that the adversary cannot distinguish a real CRS from a stediCRS. Then we require that on a simulated
CRS, it isperfectly indistinguishable, which witness the prover used.

In other words, for all non-uniform polynomial time adveisa.A we have

Prloc — K(1%) : A(0) = 1] = Prjo — S(1%) : A(0) = 1]



and
Pr [O’ — S(1%); (2, wo, w1) — A(0); T — P(o,z,wp) : A(m) = 1}
= Pr |:O' — S(1%); (&, wo, wy) — A(0);m — P(o,z,wy) : A(n) = 1},

where we requiréo, x,wy), (o, z,w1) € R.

COMPOSABLE ZERGKNOWLEDGE. Composable zero-knowledge [Gro06] is a strengthenindgn@fusual
notion of non-interactive zero-knowledge. First, we reguhat an adversary cannot distinguish a real CRS
from a simulated CRS. Second, we require that the advesanhen it gets access to the secret simulation
key 7, cannot distinguish real proofs on a simulated CRS from kited proofs.

In other words, there exists a polynomial time simuldt$y, S2) so for all non-uniform polynomial time
adversariesd we have

Pr [a — K(1F): A(o) = 1} ~ Pr [(a, ) — S (1%) : Afo) = 1},
and
Pr [(J,T) — 81 (1%); (z,w) — A(o,7); 7 — P(o,z,w) : A(w) = 1 and(z,w) € R]

= Pr [(J,T) — S1(1%); (z,w) — A(o,7);m — Sy(o,7,2) : A(w) = 1 and(z,w) € R}.

3 Commitment from Modules

Let(R,+,-,0,1) be a commutative ring. Recall, that &amodule is an abelian grougd/, -, 1) such that for
allr,s € R andu,v € M we havé

't = u"u® and (uv)" =u"v".
Letwuq,...,ur be elements in a®-module M. Consider an element € M. We may commit tor by
choosingry,...,r; «— R atrandom and letting the commitment be
1
ci=x H ut
=1

DefineU to be the submodule generateddy ..., u;. In caser € U, the message is perfectly hidden.
On the other hand; uniquely determines in the factor groupV//U, so if uy,...,ur do not generaté/,
thenc contains non-trivial information about

Peeking a little ahead, we will be interested in modules,revités hard to tell whethekd = U. The com-
mon reference string for our NIWI proofs will contain a setgk. If they generatell, we will get perfect
witness indistinguishability. On the other hand, if theyrdi generaté/, we will get perfect soundness.

Instead of committing to messages frdh we may be interested in committing to a ring elemgrt R.
Consider therefore a setup, where have M anduq,...,u;. We can commit ta by selectingry,...,ry
at random and computing the commitment

2Note that our modules will correspond to the groups undeglyiur cryptographic constructions. In order to maintaiypts-
graphic tradition, we therefore write modules with muitipkive notation. This breaks mathematics tradition inckhinodules are
written with additive notation. Such differences in natatare common in the cryptographic literature.



In case,u € U this perfectly hides the message. On the other hand, sircél//U determines a unique
valueu? € M /U, the commitment contains non-trivial information abguf v ¢ U.

As we shall see below, our treatment of commitments usindathguage of modules generalizes sev-
eral previous works dealing with commitments over bilingaoups, including [BGN05, GOS06b, GOSO06a,
Gro06, Wat06].

Instantiation 1: Subgroup decision. Based on the subgroup decision assumption, we can set up-a com
mitment scheme as follows. We have an elenteatG and commit tar € G by pickingr «— Z,, at random

and computing the commitmeat= zh". In case/ has ordem this commitment is perfectly hiding. On the
other hand, if» has ordek, thenc € G/Gq determines: € Gy, uniquely. Actually, given the factorization

of n we can also decrypt the commitmentaas- ca(@™ ! modp) ¢ Gp.

If we want to commit to ring elements, we lgbe a generator af. A commitment: = g?h" is perfectly
hiding in caseh has ordem. In caseh has orderq, the commitment uniquely determingésmod p. The
latter setup was used in [BGNO5] to construct a cryptosystehis both additively homomorphic and also
has a one-time multiplication map.

Instantiation 2: XDH and SXDH. Consider a cyclic groug of prime orderp, where the DDH problem is
hard. By entry-wise multiplication we get an abelian graéify which is a module ovet,,. Let (g, k), (u, v)

be two elements iz2. We can commit to1,z) € G? asc = (g,h)" (u,v)!(1,2) = (g"u’, h"v"z).

If there existss € Zp so (u,v) = (g,h)*, then the commitment corresponds to EIGamal encryption of
x, i.e.,c = (¢g" s, " Ts'z). On the other hand, ifg, ») and (u,v) are linearly independent, thenis a
perfectly hiding commitment te. Distinguishing betweeflg, 1) and (u,v) being linearly independent or
not corresponds to the DDH problem.

To commit to a ring element, we use the following approach.hake a setup with elements, ~) and
(u,v). Under the DDH assumption, we cannot tell whether these esiésrare linearly independent or not.
We commit tog € Zj, by choosing- at random and setting := (g, h)?(u,v)". In case,(g, h), (u,v) are
linearly independent this determines= Z,, uniquely, but if(g, h) = (u, v)® for somes € Zj, then we have
a perfectly hiding Pedersen commitmentito

Instantiation 3: DLIN. Let f,h, g be three random generators Gfso f = ¢*, h = ¢”. The DLIN
assumption states that it is hard to tell whether three e¥s\ie, v, w) = (f", h**, g*») have the property
thatt, = r, + s,. We will look at theZ,-module G formed by entry-wise multiplication. Consider
three elementsf, 1, g), (1, h,9), (u,v,w) in G3. To commit to a messager;, 2, 3) We computec :=
(z1,22,23)(f,1,9)" (1, h, 9)*(u,v,w)" for randomr,s,t € Zy. In case,(f,1,9),(1,9,h), (u,v,w) are
linearly independent they generate all @f and thus we have a perfectly hiding commitment. On the
other hand, in caséu,v,w) = (f™,h%, g™ %) for somer,,s, € Zp, we have that:l_l/o‘cz_l/ﬁc;», =
1‘1_1/&.%'2_1/5.%'3 is uniquely determined. In particular, if we commit(to 1, =), then we can with knowledge
of a, 8 extractz from the commitment. This commitment scheme coincides thi¢hbscheme of [Wat06]. We
note that the different, and less efficient, commitment s@hef [Gro06] can be similarly described in our
language of modules, as well.

To commit to a message < Z;, we also consider a setup with three eleméifitd, g), (1, k, g), (u, v, w).
We commit to¢ by choosingr, s at random and computing := (f,1,9)"(1,h,g)*(u,v,w)?. In case
(u,v,w) can be written agf™, h%v, g™ 1) this is a perfectly hiding commitment scheme. But if
(f,1,9),(1,h,g), (u,v,w) are linearly independent, the commitment scheme detesyire Z, uniquely.
This coincides with the scheme of [GOS06a].



4 Setup

Let My, My, Mr be R-modules. Let furthermorel : My x Ms; — My be a bilinear map, i.e., for all
r,s € Randu,u’ € My,v,v" € My we have

E™d,v) = E(u,v)"E(u,v) and E(u,v*v") = E(u,v)*E(u,v").

In the paper, we will always assume a setup witmodulesi, My, M and bilinear mag : My x My —
M. Letuq,...,ur be elements id/; andwvy,...,v; be elements il/,. Let U be the submodule aff;
generated by, ..., u;r andV be the submodule o/, generated by, ..., v .

There arel J not necessarily distinct elemenmigu;, v;) in M. They give rise to atRk-linear map

I J

p: RY — My (P11,--~7PIJ)HHHE(UuUj)p”-
i—1 j=1

Trivially, (0,...,0) always belongs to the kernel &f, however, there may or may not be more vectors in the
kernel. Letn,,...,ng € R be H vectors inR!” that generate the kernel pf In other words, given any
vectorp = (pi1, ..., pry) SO

I J
H H E(ui,vj)p"f = 1,

i=1j=1
there existgy,...,ty € R so it can be written as

" " "
p=> twpn  thatis  (pu1,...,pr0) = O thnmans - Y thiars)-
h=1 h=1 h=1

Looking ahead, the CRS for the NIWI proofs we are about to ssgwill containu,...,u; € M;
andwvy,...,vy € My, as well as,...,ny. Depending on how we generate the CRS we will get either
perfect soundness or perfect withess indistinguishgbilit the perfect witness indistinguishability case, we
will require thatny, .. ., ny generate the kernel of the map For perfect soundness, we do not make such
a requirement, however, notice that common referencegstoinperfect soundness and simulated common
reference strings for perfect witness indistinguishabitiust be computationally indistinguishable, so in the
perfect soundness case we also hatsg,) = 1 for all ny, ..., nx.

The symmetric setting. In the next section, we will offer NIWI proofs based on thiadiof setup. In some
cases, we will havd/ = M, = M,, which may yield some efficiency improvements. We may use#mee
set of vectors, i.e., instead of working with, ... ,u; andvy,...,v; we may simplify to the case where
we just haveus,...,u; € M. Similarly, for commitments to exponents we use= v. Finally, £ may be
symmetric, i.e., for alki, v € M we haveE(u,v) = E(v,u). We call this thesymmetric setting.

Instantiation 1: Subgroup decision. Recall in this setting we have two cyclic groups G of order

n = pq and a bilinear map : G x G — Gp. The subgroup decision assumption says that we cannot
distinguish whether an elemehthas ordeky or ordern. We will useh of orderq to get perfect soundness,
while we will usel of ordern to get perfect witness indistinguishability. Sincés non-degenerate(h, h)
generate€yr whenh has ordem. This means the map : Z, — G given byp +— e(h, h)” has trivial
kernel0.



Instantiation 2: XDH and SXDH. Here we have three prime order groups with a bilinear mag-; x
G2 — Gr. As described in the previous section, we ggt modules)M; = G%,Mz = G%. Entry-wise
multiplication also maked/; = G4. aZ,-module. There is a bilinear map given by

BGxGi—Gh (- ().

It is easy to see that

1 1

Ed( ) (Lg2) » Eu( - )ilen1) o Ed((T ) (Lg2) o Ea((9'),(92,1))
g1 g1 1 1

form a basis foiG7. sincee(g1, g2) generateg 7. By the bilinear properties of, we therefore have that
Ey(ur,v1) ,  Ea(ui,va) , Ey(ug,v1) ,  Ea(uz,vo)

form a basis foiG%., wheneven,, uy are linearly independent i? and vy, v, are linearly independent in
G3. Therefore, when they are linearly independent the map

2 2

pia : Zgy — G (p11, P12, P21, p22) — H H Eq(ui, v;)P
i=1j=1

has trivial kernel0, 0, 0, 0).

Instantiation 3: DLIN. In this setting we have a bilinear map: G x G — Gp. With entry-wise
multiplication, we get theZ,-modules)M; = M, = G3. In the main body of the paper, we will use the
module My = G given by entry-wise multiplication. In special cases, thedule G2 will be more useful,
see Section 8.

We will use the symmetric bilinear mafg; : G* x G* — G§. given by

a e(a,z) e(a,y)e(b,x) e(a,z)e(c,x)
(1o | (=y2)— e(b,y) e(b,?)e(i,y)

The corresponding map
MGZ?)HG% (p117-"7p33)HHHE(UZ',UJ‘)’)U
i=1j=1

has a non-trivial kernel. Ifi, us, u3 form a basis foiG?3, the three identitiesZs (u;, u;) Ee(uj, u;) ™! = 1
yield a basis for the kernel gfs. This basis consists of the vectors

N = (0, 1,0, —1,0,0,0,0,0) , M2 = (0,0, 1,0,0,0, —1,0,0) and n3 = (0,0,0,0,0, 1,0, —1,0).
For any linearly independent; , us, us we have that
Eg(ur,u1), Es(ur,u2), Es(ui,us) , Eg(uz,uz), Eg(uz,u3), Eg(us,us)

form a basis foGS..



5 Pairing Product Equations

In this section, we will assume that we have already comahitbethe variables. We will offer a method to
construct non-interactive proofs for the committed vals@t$sfying a pairing product equation. Our method
yields proofs with perfect completeness, perfect sourglard on a simulated common reference string with
perfectly hiding commitments it gives us proofs with petfeitness-indistinguishability.

A simple pairing product equation. We have commitments;, ...,cq € M; anddy,...,dg € My. We
will look at the satisfiability of the following simple pairg product equation over variables, ...,zq €
Ml,yl, -5 YQ € Ms andrqi, Sqj € R.

Q I ;
H E(xq,yq) =T and Cg = T4 Hu:qz ,dy =Yg H v;‘”,
q=1 ol

i=1

whereT is a constant inV/.
Suppose, we have,, y,, 74, 54 SO the equations described above hold. For arbitrary, € R we have
the following equality, which is central to this paper:

Q

Q
l_IE(cq,alq)-T_1 = H quurq',quvsq’ T
q=1

=1

Q Q I Q J
= H (2q:Yq) HHE ?qz’qu v HHE(:C‘]’UJ(U)
q=1 q=11i=1 q=1j=1
I Q J
T [ - TEQT o)
i=1 q=1 j=1 q=1
I J Q J I Q
= [IE@ I - T1de) - TTEqQTw ™ - T« v
i=1 j=1 q=1 j=1 =1 ¢=1
! J s @ , J —ti; A i @ v
_ HE(UZ" ijw . H d;ql) . HE(H u, ij h=1trThij Hw2q37?}])
i=1 j=1 g=1 j=1 =1 q=1

Write
Q I s I
. tij . Tqi o h=1thMhij Sqj
e R ) (O IR | O [Iw" H:v
j i=1 i=1

to get the simpler

Q J
H (cgrdg) = T - HE (ug, ;) H wjavj 1)

We shall user;’s and;’'s computed in this way as Witness—indistinguishable pobi those proofs, we
will choose thet;;'s and thet;,’s at random fromR. Perfect completeness of the NIWI proofs will follow
from Equation 1. Perfect soundness of our proofs will folkoem the fact that for any,, y, such that there

existsryi, $qj S0¢q = xq [[1y u;*,dy = [}, v valid proofs satisfying Equation (1) imply

1

Q J
[ E@ave) - T € ] Blus, M) - [ ] E(My, ;).
q=1 J=1

i=1

10



To prove witness indistinguishability, the following lerarwill be useful.

Lemma 1 Assume we have uq,...,u;y € My and vq,...,v5 € My and ny,...,ng generating the kernel
of . Consider two WItNesses 4, Y, Tgi» Sqj @nd Tq, Yy, 7y, S, SAtisfying the equations. If for all ¢ we have
Tq, Ty € U, yq,yq € V and we pick the t;;'sand ¢,’s at random from R, then the distribution of the resulting

proofs 7;, 1;'s and , ¥’s are identical.

Proof. Consider a witnessg,, yq,74i, Sq; as specified in the lemma. This gives us,..., 77 € V
and v1,...,9; € U. Since we pick thel;;’s at random, ther;’s are distributed uniformly at ran-
dom in V. Consider any fixed tuplér,..., ;) of elements fromV/. The corresponding);’s in U
satisty [T/, E(¥;,v5) = [1%, Bcg,dg) - T~ Ty E(us,m)~". Sincens, ...,y generate the ker-
nel of u, by picking thet,’s at random in the construction of the;’s, we get randomy;’s from U
such that[[/_; E(v;,v;) = [12 E(cq,dg) - T~ [Ti—; E(u;, m;)~!. We conclude that with the witness
Zq,YqsTqi» Sqj W get a uniform random sample af,+; under the restriction tha}t—[qulE(cq,dq)

T - [li_y E(ui,m) - [I/—; E(;,v;). By a similar argument the other witness}, y,,r"., s, gives
exactly the same distribution otj, .

The symmetric setting. In the symmetric setting, wheted = M; = M, and we use the same generators
u1,...,us for both modules and’ is symmetric, we can simplify the expression by collapsimg proofs.

We have
I I

Q I
HE(Cmdq)'T_l = HE(uz‘,Wz') : HE(T/)]',UJ') = HE(uiaﬂ'iwi)'
q:l =1

j=1 i=1
This may lead to protocols with higher efficiency.

General pairing product equations. In the general case, we are interested in variables. .,z €
My, y1,...yn € My andr,,;, Snj € R so

Q M N 1 J
Qgm n Tmi _ Snj
HE(aqumq 7quynq):T ) szmeui 7dn—ynHUj 7
=1 m=1 n=1 i=1 j=1

for constants:,,,, a, € My,dy, by € Mz, T € My, ogm, Bgn € R.
The commitments are homomorphic, we have

M M I M 1 o
(0% : « e Tmi
aq H em'™ = ag H (meuf”“)aqm = a, H T Huiz’”*l amm,
m=1 m=1 i=1 m=1 i=1

This means, anybody can compute commitmenb‘:qtp[ff:1 ™. In a similar fashion, anybody can com-

pute commitments to, ngl yﬁq". The general case of pairing product equations, can therbfreduced

to the simpler case we have looked at in this section.

Instantiation 1: Subgroup decision. We are now ready to present our first withess-indistinguikhproof.
The common reference string will &, G, G, e, h), whereh has ordery. On a simulation reference string,
we useh of ordern. Whenh has ordem, the kernel ofu is trivial, so on neither type of reference string do
we need to concern ourselves with generators for the kernel.

11



The statement consists of commitmeaisd,, ..., cq,dg € G andT € Gr, and we claim that,, d,
are commitments ta,,y, € Gp SO ]_[(?:1 e(zq,yq) = Tp, WhereT}, = T ' modp) je T restricted to
the orderp subgroup ofG.

Suppose we have a witness, y, € G, ¢, 5q € Zn SO

H e(xg,yq) =T , cq=z4h" , dq=ysh™.

Since we are in the symmetric setting we can construct a proef H g1 xqqdrq SO

H E(cq,d,) = E(h, 7).
q=1

This will be our witness-indistinguishable proof.

Lemma 2 The non-interactive proof system has perfect completeness, perfect soundness and composable
witness indistinguishability. The size of the proof is 1 element from G.

Proof. Perfect completeness follows from Equation (1). The hasslire the subgroup decision problem
implies that it is hard to distinguish a common referencmgtwith / of orderq from a simulated common
reference string withh of ordern. From Lemma 1 we get perfect witness indistinguishabilityewh has
ordern.

It remains to prove that in cagehas ordeky, we get perfect soundness. Define Z,, to be the number
S0\ = 1mod p, A = 0 mod q. Observer) defines a unique, € G, soc, = x,h"™ for somer, € Zy.
Similarly, d, defines a uniqug, € G, sod, = y,h*. We have

H xqayq E €(h> G)>

so if we letT, = T* then we can conclud‘p—[q:1 e(xq,yq) = Tp In Gp. O
It is worth noting that if we know the factorization ef, then we can extract,,y, € Gp from the
commitments, so the scheme is a perfect proof of knowledge.

Instantiation 2: XDH and SXDH. We will construct a NIWI proof for the existence of committed
1,29 € G1,Y1,-..,Yq € G2 sol‘[?:1 e(xq,yq) = T for a constant” € Gr. The common reference
string will contain a description of the groups we are wogkiver and four vectorg; , us € G, vy, v € G3,
such thatu; = uj,v; = v for somer,s € Z,. This meansu;, u, are linearly dependent and span a 1-
dimensional subspace 6, andvy, v, are linearly dependent and span a 1-dimensional subspé&ce b¥e
also require that these vectors are linearly independe(it, of ) € G2, (1, g2) € G3, whereg; generatess;
andg, generatesss.

The commitments to the,’s will be of the forme, = (1, z,)u;" u,™ and the commitments to thg's
will be of the formd, = (1,y,)v;" v5*, for randomryy, ry2, sq1, ng € Z We construct the proofs as
Q
Ty = t11 t12 H dy rat . t21 t22 H dqu = t21 H xf"ql Ry — 1—t12u2—t22 H(l,xq)SQQ,
q=1

for randomly chosemM — Zp. The proofs satisfy

Q
HE(Cq>dq) = ( i % > E(uy, m1)E(ug, ) E(th1,v1) E(1h2, v2), 3
-1

3Please, keep in mind that we use entry-wise multiplicatioatrix multiplication is not even defined here.

12



this is what the verifier checks.

Lemma 3 The scheme described above has perfect completeness, perfect soundness and composable witness
indistinguishability. The size of the proof is 4 elements from G; and 4 elements from Gs.

Proof. Perfect completeness follows from Equation (1) and thetfzat all operations are efficiently com-
putable. By the SXDH assumption, we cannot distinguish tvarnon reference string from a simulated
reference string, where, andus are linearly independent, and andwv, are linearly independent. When
both these pairs are linearly independent, we Have: G7 andV = G%, and thereforg1,z,) € U and
(1,y4) € V. Lemma 1 then gives us perfect witness indistinguishabilit

It remains to prove that we have perfect soundness on a reahoa reference string. Sineg, us span
a 1-dimensional vector space, which does not coritain, ) eache, has a unique,, soc, = (1, z,)u;" uy™.
Similarly, eachd, defines a uniqug, sod, is a commitment tg1, y,). A valid proof implies

< | 11
TTE, 00 (s ) € Bl G E G, G E(G ) E(GE )
q=1 e

Let us consider the possible values the bilinear map canwdiden used on the vectois , us, vy, v.
Sinceu; anduy are set up so they're linearly dependent we h&e,, G3)E(uz, G%) = E(us, G3), and
similarly sincev; andwv, are linearly dependent we hav&(G?,v1)E(G?,v2) = E(G?,v3). Let us now
consider what the vectors in these two sets look like. Write= (g1, ¢f*) andvy = (gg,gg) fora, 8 € Zyp.
For any vectol(z, y) € G2 we have

_ g1 T _ e(g1,2)  e(g1,y)
E(U,Q,(.%',y)) _E(( el )7( 7y)) - < e(g1,36)°‘ e(ghy)a )

Similarly, for any(a, b) € G2 we have
a _ a B\ e(aagQ) e(ath)B
By ) = By (amesh) = (S Sl ).
The existence of proofs;, s, 11, ¥ implies the existence af, b, z,y SO

< 1 1 > _ ( e(gr, x)e(a, g2)  e(gr,y)e(a, g2)? )

LTI e(ag yg) - T e(gr,2)%e(b, g2) e(g1,y)"e(b, g2)°)

This meang(g1,z) = e(a, g2)~'. Inserting this in entry1, 2) gives usy = =”. While inserting it in entry
(2,1) shows thab = a“. Inserting these three observations in erffry2) we conclude

Q
H e(zq,yq) = Telg1,y)e(b, 92)5 =T(e(g1, x)e(a792))°‘5 =1T.
q=1

U
If we know the appropriate discrete logarithms, then we azerypt the ElGamal ciphertext,, d, and
extractz,, y,. In other words, we have a perfect proof of knowledge.

Instantiation 3: DLIN.  Let us return to the symmetric setting using the DLIN assimnptWe set up the

common reference string with three vectais= (f,1, g),us = (1, h, g), us = (u, v, w) such that they form

a 2-dimensional subspace 6f and f, h, g all are generators afl. We require that1,1,9) ¢ U. Each
3 Tqi J

commitmentc,, d, therefore uniquely defines,, y, soc, = (1,1, 24) [[/_; w;",dq = (1,1,54) szl uj‘”’.
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We are interested in the statememf:1 e(xq,yq) = T. Following Equation 1 in the symmetric setting, we
let the proof consist of, 9, w3 given by

3 s5_ Q
_ » o
Jj=1

q=1
The verifier checks that

Q 1 1 1 3
11 Es(cq.dy) = 11| ] Be(ui, m).
q=1 T ] i=1

Lemma 4 The proof has perfect completeness, perfect soundness and composable witness indi stingui shabil -
ity. The proof consists of 9 elements from G.

Proof. Perfect completeness follows from Equation (1) and thetfaitwe can compute all operations effi-
ciently. By the DLIN assumption the common reference stidnigdistinguishable from a common reference
string with uy, uo, u3 being linearly independent. In the latter setting, we heive- G and therefore all
(1,1,24),(1,1,y4) € U. By Lemma 1 we therefore have perfect witness indistingabgity on this kind of
reference string.

It remains to prove perfect soundness. Sifitel,g) ¢ U, each commitment,, d, specifies unique
messages$l, 1,z,), (1,1, y,). Since(1, 1, g) is linearly independent af;, u, we have

-1

Q 1 1 1 1
HEG( 1 7(131>yq)) I 1 € E6(u17G3)E6(u27G3)
q=1 l‘q T
impliesTIZ, e(zq, yg) = T. O

Given the relevant discrete logarithms fofh with respect tq; it is possible to decrypt the commitments
cq andd, to get out the plaintexts,, y,. We therefore have a perfect proof of knowledge.

6 General Arithmetic Gates

The common reference string containsu,,...,u; € My andv,vq,...,vy € My as well aslJ vectors
m,...,ng. The common reference string should be indistinguishabla & simulated reference string, and
on a simulated reference string we require U,v € V andn, ..., nyg generate the kernel ¢f.

We will focus on the following simple case first. We have cotmentscy,...,c, € Mi,dy,...,d,; €
M, and interested in the existence®f, v, 64, s¢; SO

I J Q
Cq = u® Hu:q’ , dg = VP H v;‘” and Z $qbq = 0.
i=1 j=1

q=1
It follows from Equation 1 that if this is the case, then fobitnary ¢;;, ¢, € R we have

I

Q J
HE(Cq7dq) = HE(ui,m) ' HE(%‘,UJ‘),
q=1 j=1

=1
where
J Q I . I Q
T = H U;ij . H qui and W) = Huizhzl thinij Hu;tij ) H ubasai
j=1 q=1 i=1 i=1 q=1
This will give us perfect completeness. Perfect witnestsiinguishability on a simulated reference
string, wherey, € U, v € V follows from the following corollary to Lemma 1.
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Corollary 5 Ifu € U and v € V then for any set of ¢, r4;, 04, s4; Satisfying the equation above, by picking
t;;,ty at random from R we get the same distribution of ;, 1;’s.

To argue perfect soundness, we will use that a valid proofigsp
o I J
E(u,v)=a=1%% ¢ [] E(us, M) H (M, v;),
=1 7j=1

for any possible way of writing, = u% [[__, u,” andd, = v’ ]"[j Tk

The symmetric case. In the symmetric case, whefeis symmetric and: = v, I = J,u; = v1,...,u; =
vj, we obtain a computational saving by combining the proofie Verifier checksf[ff:1 E(cq,dq) =

T B(ug, miy).

General arithmetic gate. In evaluating a general arithmetic gate, we have commitment .., cx €

My, dy,...,dr € My and constantsy,, 3¢, ke, 7 € R. A witness will be on the forngy,, ry;, 04, s¢; € R SO
I J
Z%% + Zﬁzaz + Z Z’kak@é =7 a=u]Ju , de=0"J]v}".
k=1 ¢=1 i=1 j=1

Let us observe that due to the homomorphic properties of dhentdtment schemes, this case can be
reduced to the simpler case that we just handled. Anybodyeaaity compute trivial commitments ih/,
to theay,’s asv®*. Similarly, anybody can compute commitmentssian M; asu®. Given a commitment
to ¢y, of the forme;, = u®* ]_[L1 u;™, it is for any vy, € R straightforward to compute a commitment to
Vker ASCIF = uTkedk [T, w)*"™. Finally, v~ is a commitment to-~ andu, v are commitments td in
respectivelyM; and Ms. Rewriting the general equation as

Z¢k Oék+2ﬁé 9@#‘22%@% ) b +(-7)-1 =0,

k=1 ¢=1

shows that we can make a NIWI proof for the general arithngaie using the NIWI proof given earlier.

Instantiation 1. Subgroup decision. The common reference string now contains two group elements
g, h, with g playing the role ofu andh playing the role ofu;. The elemeny is a generator, whilé has
orderq. We will suggest a NIWI proof for the statement that. .., cq,d,...,dg are commitments to
&1y, 00, 01,...,00 € Zy SO 222:1 ®494 = 0 mod p. Sinceh has orderq, these commitments define
¢q,0q € Zp uniquely.

Given a witnessy, ..., ¢Q,01,...,0¢ € Zy andry, s, € Zy, SO

Cq — g(bthq , dq — qu hSq , Z ¢q9q =0 mod n,
qg=1

we simply carry out the NIWI proof from the previous sectioithnve, = g%,yq = ¢%. We have the
following corollary to Lemma 2.

Lemma 6 The NIW proof has perfect completeness, perfect soundness and composable witness indistin-
guishability. The size of the proof is 1 group element from G.
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Instantiation 2: XDH and SXDH. The common reference string will contain two linearly indep
dent vectorsu,u; € G? and two linearly independent vectorsv; € G2, whereas in the simulation we
chooseu € U andv € V. Given a witnessp,,ry,04,5 € Zp SO 222:1 ¢4y = Omodp , ¢4 =
ufru)” ,  dy = v%0]?, we make proofs

Q Q
=l H dy’ and Y= uft . H uasa,
q=1 q=1
for a randomly selectetl— Z,. The verifier accepts if

Q
H E4(Cq, dq) = Ey(u1, 7"')E‘4('L/}7 Ul)'
q=1

Lemma 7 The proof has perfect completeness, perfect soundness and composable witness indi stingui shabil -
ity assuming the SXDH problem is hard. It consists of 2 elements from G; and 2 elements from Gs,.

Proof. Perfect completeness follows by inspection. By the SXDHuagdion a common reference string
as described above is indistinguishable from a simulatésterece string where = ] andv = v for
somer, s € Zy. In this latter case, we hawe € U andv € V, so by Corollary 5 we have perfect witness
indistinguishability on this kind of common reference ratyi

It remains to argue perfect soundness, whem; andv, v, are linearly independent. Note, in this case
the commitments are perfectly bindingdg, 6,. We have

Q
Ey(u,v)==190% € By(uy, G3) - E4(G2,v).

By the linear independence of the vectarsu; andv, vy, E4(u,v), Ey(u1,v), E4(u,v1), Eg(ug,vy) is a
basis forGi4.. This impliesE (u, v)Za=1 #fs = 1, S03 | ¢40, = 0 mod p. O

Instantiation 3: DLIN. We set up the common reference string, so it has three elsmgnt=
(f,1,9),u2s = (1,h,g), andu which is linearly independent af;,us. The simulated reference string,
will containu € U. SinceEs is symmetric we havéls (uq, us) = Eg(usz,u1). The vectom = (0,1, —1,0)
is a basis for the kernel of.

Given commitments,, d, we are interested in the existencegQf ry;, 0,4, s4i € Zp SO

Q
Zqﬁqﬁq =0 , cg=uu"u?  dy = ulu]" g™
q=1
From a satisfying witnesg,r,1, 742, 04, S41, 542 We can create a proof
Q Q

T — T,
T = th H aqulu‘éqsq1 , T 1= U] t H dq‘ﬂu%sqz,
q=1 q=1

for randomly chosen — Zj. The verifier accepts if and only if

Q
H FEg(cq,dg) = Eg(u1, m1) Eg(u2, m2).
q=1
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Lemma 8 The proof has perfect completeness, perfect soundness and composable witness indi stingui shabil -
ity. The proof consists of 6 elements from G.

Proof. Completeness follows from Equation 1. By the DLIN assummqtige cannot distinguish the common
reference string from a simulated reference string wheeeU. With the latter type of common reference
string we have perfect witness indistinguishability adiag to Corollary 5.

It remains to prove perfect soundness. We have

Eg(u, u)z‘?:l $aba ¢ E@(ul, Gs)Eﬁ(u27 Gs)

Sinceu is linearly independent af;, us this meansz(?:1 $¢04 = 0 mod p. O

7 Multi-exponentiation

We will without loss of generality consider the task of makia multi-exponentiation of elements i .
The case of multi-exponentiation i, is of course similar.

The common reference string will containg,...,u; € M; andv,vq,...,v5 € M, as well as
m,...,ng. On a simulated reference string, we will hawes V andny,...,ng generating the kernel
of p.

We will first look at a simple case, and treat the general raxionentiation case later. The input
consists of commitments;,...,cg € M; andd,,...,dg € M. We are interested in the existence of a
witnessz, € My, 74, 04,54 € R SO

I J Q
— Tqi _ .0 Sqj Oy _
cq—wq”ui , dq—vq”vj and ||xq =1,
i=1 j=1 a=1

for a constant; € M;.
Given a satisfying witness,, r4;, 04, 54, We get from Equation 1 that for arbitraty;, t;, € R

1

J
HECq7 (th ) = H uuﬂ'z H 1/}]77}] (2)
J=1

=1
where
I 0o, 1 Q
H 'l H dg" and ;= Huiz":l Rilhis Hu;t” . H z"
i=1 i=1 q=1
Perfect completeness follows from this. To argue perfetriegis-indistinguishability on a simulated common
reference string we have the following corollary to Lemma 1.

Lemma9 If v € V and n,...,ng generate the kernel of ., then for any witness x4, 7y, 04, 54 SO
z1,...,2g € U weget the same distribution of proofs ;, 1);.

Perfect soundness will follow from the fact that a valid drimoplies
, I J
HI’ qt_l HE(UZ7M2) . HE(Ml,Uj)
j=1

i=1

for any way of writinge, = z, ]_[Z Lu ' dg = vfa HJ 1Y v,
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The symmetric case. We may haveM; = M, and £ symmetric. In case there is overlap between
u,...,ur andwvy,...,vy We may save computation by combining the relevant proofs. réfer to the
instantiations for a concrete treatment of this issue.

General multi-exponentiation relationship in A;. In the general multi-exponentiation case, we are in-
terested in the existence of, € M, 0¢, 7y, 505 € R SO

! J L M . ,
, ) 3 N
Cm = Tm H u;ml , dp = Uez H ’UJS-KJ and H azl . H xe =1 amebe + Bm _—
J=1 =1

i=1 m=1
for constantse,,, € My, ap,dp,to € Mo, e, B € R. In other wordsey, ..., ¢y are commitments to
variablesr, ..., z) anddy,. .., d;, are commitments to variablds, . . ., 87, so the equation is satisfied.

By the homomorphic properties of the commitment scheme,

L J
L
ofn T dem = o2 o1 CmebetBrm I1 U]Zzzl meses
=1 j=1

is a commitment t(Zle amefe + Bm. Furthermoregq, can be seen as a commitmentfovith randomness

s¢; = 0. We now have commitments i, to 6;,...,60, Zle a1y + O, - - ,zﬁzl amebe + Bar and
commitments inV; to aq,...,ar,x1,...,23. We have reduced the general multi-exponentiation case, to
the special case we treated above.

Instantiation 1: Subgroup decision. The common reference string containg:, whereh has orderq.
Given a witness, € G, 74,04, 84 € Zn SO

Q
cq=agh" , dy= g%hn*  and H xgq =t,
q=1

we compute a proof of the form
Q
=[] da’=5".
q=1
The verifier accepts if and only if

Q
H G(Cq, dq) = G(t, g)e(¢a h)
q=1

We have the following corollary to Lemma 2.

Lemma 10 The proof has perfect completeness, perfect soundness and assuming the subgroup decision
problem is hard it has composable witness indistinguishability. The sizeis 1 group element.

Instantiation 2: XDH and SXDH. The common reference string will contain, uy € G? so(1,¢;) ¢ U
andv,v; € G2 sov ¢ V. Given awitness, € G1,741,742,04, 54 € Zp SO

Q
0
cg = Lz u"upy”® , dy= veqqu and H xy' = t,
q=1
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we construct a NIWI proof as

Q

Q Q
T T - -
7 =o't | | dg™ , o 1= v’ | | dg™ , Y= uy My | |(1,xq)3q,
q=1 q=1 q=1

for randomly chosen, 1, t21 < Zp. The verifier accepts if and only if

Q
1 Eacq.dy) = Ea((1,t1),v) Ba(ur, m1) Eg(uz, m2) Ea (), v1).
q=1

Lemma 11 The proof has perfect completeness, perfect soundness, and assuming the SXDH problemishard
it has composable witness indistinguishability. A proof consists of 2 elements from G; and 4 elements from
Go.

Proof. Perfect completeness on both real and simulated commorenete strings follows from Equation
2. Perfect witness-indistinguishability follows from Lema 9. To argue perfect soundness, note that the
commitments:, andd, definexz, andd, uniquely. We have

Q
Ey([](12q)% - (1,871, 0) € Ea(ur, G3) - Ea(GF,v1),
q=1

sinceuy,us are linearly dependent. The linear inpendencélof;) andu;, and the linear independence
of v andwv; implies thatE,((1, g),v), Ex(u1,v), E4((1,9),v1), E4(u1,v1) is a basis forG3.. This implies
H?:l .%'gq =17. ]

Instantiation 3: DLIN.  The common reference string contains vectors= vy = (f,1,9),us = vy =
(1,h,g) andus,v soug = ujus for somer,s € Z, while v ¢ V. We have thay) = (0,1,—-1,0,0,0)
corresponding to the identitys(u1,v2) = Eg(ug,v1) generates the kernel gf. Given a witnessc, €
G, Tql,7q2,Tq3, Hq, Sqls Sq2 S Zp SO

3 2

Q
i j 0,
cq:(l,l,xq)”u;q , dq:veq”v;“ and leqq: )
g=1

i=1 j=1
we construct a proof as

Q Q Q
. o t12, 113 Tql s . ,,—t12,,t23 Tq2 s . ,,—t13,,123 Tq3
T = Uy Ug H dg" (1,1, 24)%" w9 = uy Pug H dg” (1,1, 24)%?, 73 := uy Pusy H dq"”,

q=1 q=1 q=1

for randomly chosetty s, t13, t23 < Zp. The verifier checks that

Q
1 Es(cq.dy) = Es((1,1,1),0) Ee(u, m1) Eg(u2, 72) Eg (us, m3).
q=1

Lemma 12 The proof has perfect completeness, perfect soundness and assuming the DLIN problemis hard
it has composable witness indistinguishability. The proof consists of 9 group elements.
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Proof. Perfect completeness follows from Equation (2). Perfeth@gs-indistinguishability on a simula-
tion reference string follows from Lemma 9. To argue perfamindness observe that the commitments

andd, deflnexq and@, uniquely. Sinceus is linearly dependent on;, uy we haveLs( H 1(1,1,24)%
(1,1,6)"1,0) € Es((f,1,9), G} Eg((1, h, g), G*). Writev = (1,1, 9)°ul'u$?, then we have

11 1 f 1
1 1 €eEs(| 1 |,GHEs(| h |,G?).
6 _
B(Hqul 'Iqq -t 179) g g
This impliequQ:1 xf,q =t as required. O

8 The One-Sided Case

We have given NIWI proofs for the general case, where we hawentitments in both\/; and Ms. If all
the commitments in one of the modules are trivial, i.e., va have constants in eith@f; or M5 it may be
possible to give simpler NIWI proofs. In this section, welwifer simpler NIWI proofs for the one-sided
case.

We remark that the NIWI proofs based on the subgroup decigioblem are already so efficient that
there is no saving to be made by considering the one-sided ¢éstherefore only consider the instantiations
based on the DLIN assumption and the SXDH assumption. Mereovthe one-sided case we only need the
DDH assumption to hold in one of the groups. We can therefstrict ourselves to the XDH assumption.

8.1 Pairing Product Equations

In case all the commitments ilf; or M are trivial we may simplify our NIWI proofs. Without loss of
generality, let us look at the case where all the commitmienid, are trivial, i.e., we have public elements

bi,...,bg. Given satisfyinge,, r4; we have for arbitrary, € R,
Q I
[1E(cq b)) - T = [ Blaq[Juiv bg) - T
g=1 q=1 i=1

— 1 [ B, H ") ®)

E
wherer; == H;] v thMhij HQ b?“qz
Perfect completeness will foIIow from this equation. Thid@ing lemma will give us perfect witness

indistinguishability on a simulated common referencengtri
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Lemma 13 Assumewe have uq,...,u; € My andvy,...,vy € My and nq, ..., ng generates the kernel of
. In the special case described above, all witnesses with z1,...,2¢ € U and constants by,...,bg € V'
yield the same distribution of proofs ; if we choose the t,’s at random from R.

Proof. Sincec, € U,b, € V andn,...,ny generates the kernel pf we get a uniform distribution of the
proofs; that satisfy the equation by choosing thés at random fromR. O
Perfect soundness will follow from the implication of a hjiroof that

Q I

[ E@e,by) - T71 € T B(ws, Ma),

q=1 =1
whenever we can write, = zq [, u;*".
Instantiation 2: XDH and SXDH. The XDH assumption states that in one of the groups the DD blpno
is hard. Assume without loss of generality that in gratip the DDH problem is hard. This suffices to
construct a witness-indistinguishable proof for the splecase wherely, ..., dg are commitments with
trivial randomness, i.e., on the form, b1), ..., (1,bg). The common reference string contains descriptions
of the group and:;, u» that form a 1-dimensional subspace@f. Now there is a NIWI proof consisting of
2 elements irGG, for the commitments;, . .., cg containing(1, z;), ..., (1,zq) sol‘[?:1 e(xq,by) =T.

The prover has witness, € Gi andry; € Zp s0¢, = (1,zg)u"uy” and [[2 ) e(wg,b,) =

1. The proof consists ofr; := Hle(l,bq)’"ql and mp = Hle(l,bq)”ﬂ. The verifier checks that

1 1
H(?:l E4(C(I’dQ) = < 1 T )H@zl E4(ul'a77i)-

Lemma 14 The NIW proof for the one-sided case has perfect completeness, perfect soundness and com-
posable witness indistinguishability assuming the DDH problemishard in G;. The proof consists of 2 group
dementsin Gs.

Proof. Perfect completeness follows from Equation 3. A simulaBting containguy, u, that are linearly
independent. By the DDH assumption@®, it is indistinguishable from a common reference stringereh
up anduy are linearly dependent. On a simulation string, and uy form a basis forG? and therefore
(1,z,) € U. By Lemma 13 we get perfect witness indistinguishability.

To prove soundness, we use the fact thatu, G3) = F,(uz, G3). The proof therefore shows

Q
[T B o) (] 4h ) € Batun 63

q=1

Since(1, g1) is linearly independent af; this impliesl_[?:1 e(xqg,by) =T. O

Instantiation 3: DLIN. It turns out that in the one-sided case, we get simpler propissing the bilinear
map Fy defined below instead dfs. The mapFy is not symmetric, however, we observe that in the one-sided
case symmetry will not be needed. We use the modifife= G%. and the bilinear may : G3 x G — G%
given by

a e(a,z) e(a,y) e(a,z)

(1 b | (@y2)—| ebz) elby) ebz)

c e(c,z) e(e,y) elc,z)
If we have linearly independent elemenis us, us € G*, then the mapuy : Z3 — G7. has trivial kernel
and the nine different combinatios (u;, u;) form a basis of75..
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We will consider the simplified case, where tligs are trivial commitments, i.ed, = (1,1,b,) for
public b,. We still havec, € G* andT € Gr and want to prove the existencexf, r,; S0

Q 3

Tqi
He(xq,bq) =T , cq:quuiq ,
a=1 i=1

whereuy, uq, ug are set up as in the previous example. It turns out that in teesae case, it is more
convenient for us to use the mdy instead ofE, so we will do that. As a consequence, the mgmhas
trivial kernel, which will make our protocol simpler.

A real common reference string will havg = uju3 for somer, s, such that, is a perfectly binding
commitment toz,. On the other hand, a simulated common reference stringnailew, uz, us linearly
independent, so the commitment is perfectly hiding. Thefi®

Q Q Q
m o= l_Iaqu1 , Ty 1= H dg‘ﬂ , Ty 1= H dgq?’.
q=1 q=1 q=1

The verifier checks,

Q 11 1)\ 3
[IEo(cqd)=1 1 1 1 |J]Eolui,m)
q=1 1 1 7T /) i=1

Please note, sineg, = (1, 1, b,), the proof only consists of 3 group elements.

Lemma 15 The proof has perfect completeness, perfect soundness and compaosable witness indistinguisha-
bility assuming the DLIN problem is hard. The proof consists of 3 group elements.

Proof. Perfect completeness, no matter whether it is a real comeference string or a simulated reference
string, follows from Equation 3. By the DLIN assumption, amwon reference strings and simulated reference
strings are indistinguishable. On a simulated referemaggst.; , uo, us are linearly independent, $6 = G°>.
Therefore, by Lemma 13 we have perfect witness indistirguasgity.

It remains to consider perfect soundness on a common refergring, whereus is linearly dependent
onu; = (f,1,9),us = (1, h, g). From the verification, we get, are commitments to unique, so

-1

Q 1 1 1 1
[TE(l 1 | ib))| 11 1 € Ey(uy, G3) Ey(ug, G3).
q=1 Tq 11T
This implies the existence af b, ¢, z,y,z € G so
1 1 1
11 Q 1 = EQ(ula(a> ba C))EQ(UQ,(CC,y,Z)).
L1 Hq:l e(q,by) - T
Since(1, 1, g) is linearly independent ai;, us we have]_[ff:1 e(xq,by) =T. O

8.2 General Arithmetic Gates: Linear Relations

An interesting special case, is the situation where we hawentitmentscy, ..., cx and are interested in
equations over variables,, ri; € R of the form

I K
Cr = ud”“ Hu:’“ and Z (Zskﬁk =T,
i=1 k=1
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for constants3,, 7 € R. Given variablesy,, ri; € R satisfying the equation, we have for arbitragyc R

K I J
H L.
H (ck,v E(u,v)™" = HE(Ui77Ti) where ;= pXk=1 BeTri ijz":lthnh”.

i=1 j=1
We get the following corollary to Lemma 13.

Lemmal6 If u € U and v € V, then no matter the witness ¢, rr;, we get identical distributions of
Tlyeee s TR

For perfect soundness, we will use that for any way of writipg= % H "% g valid proof implies

i=1;

I
E(u,v) 2= 007 e TT Bus, My).
=1

Instantiation 2: XDH and SXDH. The special case, where we have commitmen}s. ., cx and con-
stantsgy, ..., Bk, and wantto prov{fz1 o0, = 7 is easily solvable. The common reference string will
containu, u; that spanG? and we select = (1,g2) € G3. Assuming the XDH assumption, with the DDH
problem being hard iz, we cannot distinguish this kind of reference string frone evhereu € U. The
NIWI proof is 7 := Hszl v%7k. The size is only 1 group elements frai sincev = (1, g2). The verifier
checks that

K
H Ck, E4(u 1)) E4(U1,7T).

Lemma 17 The proof has perfect completeness, perfect soundness and compaosable witness indistinguisha-
bility under the XDH assumption. The proof consists of 1 group element from G.

Proof. Perfect completeness follows from Equation 1. The hardagé#se DDH problem inG; means that
we cannot distinguish common reference strings with, linearly independent from simulated reference
strings withu € U. Perfect witness indistinguishability on simulated refere strings now follows from the
fact thatr = (1, z) is uniquely determined by the verification, so all witnesgietd the same proof. For
perfect soundness, we ObseW@(u,v)HkI’;l =T € Ey(ur,G3) implies Hle orBr = T sinceu, u; are
linearly independent. O

Instantiation 3: DLIN.  Consider a common reference string set up in the same wayas bl the linear
case, we have commitmentsand constantg, ..., Ok, 7. The witness will be of the formy,, 7.1, 710 SO

K
Tk Tk
Z kb =7 , k= U¢ku1klu2k2-

Definev = (1,1, g). We can compute the proaf, := v i=1 51 andry := v2ic1 #4752 This consists of
2 group elements. The verifier checks

K
H Ck, Eg(u ?)) Eg(ul,ﬂ'l)Eg(UQ,ﬂ'g).

Lemma 18 The proof has perfect completeness, perfect soundness and composable witness indistinguisha-
bility under the DLIN assumption. The proof consists of 2 group elements.
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Proof. Perfect completeness follows from Equation 3. By the DLINuasption, we cannot distinguish
whetheru € U or not, so common reference string and simulated referemicgs are indistinguishable.
There are unigque proofs,, m» satisfying the equation, so no matter which witness we haeajet the same
proofs. To prove perfect soundness wheg@ U, observe that the commitments defifig 71, 12 uniquely.
We have

Eg(u, ’U)(bk’gkiT € Eg(ul, Gs)Eg(UQ, Gs)

Sinceu, uy, uo are linearly independent we ha¥ (u, U)Ziil ok0k—7 = 1, which implies>_r_, ér08 = .
Ol

8.3 Multi-exponentiation of Constants

We have elements,,...,a; € M; and commitmentd,...,d; € M, and are interested in the existence
of 0, 5¢; SO

J L
dp = v H v;“ and H agl =11,
j=1 (=1

for a constant; € M;.
Givend,, s;; so the equations are satisfied, we get from Equation 3 thairbararyt;;, ¢, € R

L J
[1E(ae.de) - E(t1,v) H (¥, v5),
=1 j=1

where

t s
HUZ}L 1 thMhij Ha lj.

We have the following corollary to Lemma 13.

Lemmal9 Ifv e V,ay,...,ar, € Uandn,...,ng generates the kernel of £, then for any witness 6, s;;
we get the same distribution of proofs ;.

Instantiation 2: XDH and SXDH. Inthe special case, where we are just looking at a multi-egptiation
of constants, we do not need, us. The witness i9,, s, SO

L
_ ,,00,,5¢ O _
dy = vt and Haz =t.

We construct a proof as
L
— Se
=]
/=1

The verifier accepts if and only if

L
H E4((1> CL@), dé) = E4((1’ t)’ U)E4(¢a vl)'

(=1

Lemma 20 The proof has perfect completeness, perfect soundness, and assuming the DDH problem is hard
in G we have composable witness indistinguishability. The size of the proof is 2 elements from G .
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Proof. Perfect completeness follows by inspection. Perfect witriadistinguishability on a simulated refer-
ence string follows from Lemma 13. To argue perfect soursinestice that, v, being independent implies
thatd, defines a uniqué, € Z,. We haveEy((1, T/, ) - t~1),v) € E4(G3,v1). This is only possible if
Hle a?"' = t. O

Instantiation 3: DLIN. We have a common reference string withu, us sow is linearly independent of
u1, us. the witness i#y, sp1, sp2 SO

¢
dp = ulrut*0yl? , H =t.
(=1
The proof is
L L
T = H(l,l,ag)sﬂ ; o 1= H(l,l,ag)sm.
=1 =1

The verifier checks that

L
[T Bo((1,1,a0),di) = Eo((1,1,81), ) Eo (1, u1) Eo(ma, uz).
(=1

Observe, only the last entriesin, mo are non-trivial, so the proof consists of 2 group elements.

Lemma 21 The proof has perfect completeness, perfect soundness and assuming the DLIN problemis hard
it has composable witness indistinguishability. The proof consists of 2 group elements.

Proof. Perfect completeness can be verified directly. Perfectes#findistinguishability follows from
Lemma 13 on simulation reference string wherds linearly dependent omq,us. To argue perfect
soundness, observe thatu; = (f,1,9),us = (1,h,g) being independent implies tha} definesd,
uniquely. We haveFy([TE,(1,1,a0)%(1,1,)" ,u) € Eo((f,1,9),G*)Eo((1,h,g),G?). Write u =
(1,1,9)°(f.1,9)° (1, h, 9) for § € Z%, to see that this implieF[}_, a)’ = t. O

9 Witness-indistinguishable Proofs

We will now present the witness-indistinguishable proafdquations over modules. The setup consists of
R-modulesM;, My, My and a bilinear ma : M, x My — Myp. We have a commitment scheme that we
can use to commit to elements M, and M, given by elements,...,u; € My,v1,...,v5 € My, We
also have elements, v}, ..., u}, € My,v,v,...,v", € My, which gives us a commitment scheme for the
ring elements. For all relevant combinations of these efgspavhich may or may not have some overlap,
we also have generatons, . . ., ny for the kernels of the corresponding maps

Consider a set of equations over variables,...,zy, € My, y1,..., YN €
My, ¢1,...,0K,601,...,0, € R. We have the following witness-indistinguishable protottzat takes
as input the common reference string and a witness for simedtus satisfiability of all equations.

1. Commit to all variables. Pick,,;, s,;, pri, 0¢; € R at random and set
I r J'

J
Cm = T | | w,™ dy = yYn | | v;" ¢}, = u®* I |(u§)p’“ , dy =¥ | |(v§-)‘”ﬂ.
Jj=1

i=1 i=1 j=1
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2. For each pairing product equation make a proof as deschib®ection 5. This costselements inV/,
and.J elements ilV/; for each pairing product equation.

3. For each multi-exponentiation relationshiplify make a proof as described in Section 7. This costs
J' elements fromV/; andI elements from\/s.

4. For each multi-exponentiation relationshiplify make a proof as described in Section 7. This cdsts
elements from\/; and’ elements from\/s.

5. For each general arithmetic gate, make a NIWI proof asrifestin Section 6. Each proof consists of
J' elements from\/; andI’ elements from\/s.

NIWI proofs for bilinear groups.  The overarching goal of this paper is to obtain non-intéraatitness-
indistinguishable proofs for equations over groups withliadar map. We now have the following method
to construct such proofs.

1. Embed the bilinear groups into appropriately chosen resduith a bilinear map.
2. Express group elements and equations as elements angbeguiathe modules.

3. Use the witness-indistinguishable proof described abov

Instantiation 1: Subgroup decision. Given an orderp subgroup of the composite order group
(n,G,Gr,€,9,9q) — G(1%), we will set up the witness-indistinguishable proof asda.

CRS generation: Chooseh = g, for r « Z3. The CRS isr := (n,G,Gr,e,9,h).

Simulated CRS generation: Chooseh = ¢" for r < Z}. The simulated CRS i8 := (n,G,Gr,e,g,h).

Proof: Given a witness on the form,, € G, ¢, € Zy* we can pick randomizers,,, p, and commit
to them asc,, = z,,h"™ and¢), := g% hPx. For each type of equation, we now make a witness-
indistinguishable proof as described in the previous sesti

Verification: Check the proof for each equation.

Theorem 22 The proof has perfect completeness, perfect soundness with respect to the order p subgroups,
and assuming the subgroup decision prablemis hard it has composable witness indistinguishability. The size
of the proof can be found by adding the costs of variables and equations found in Figure 4.

Proof. Lemmas 2, 6, 10 prove this theorem. O

Subgroup Decision DLIN DLIN one-sided
Variablex,,, (equal toy,,) 1 3 3
Variable ¢y, (equal tofy)
Pairing product equation
Multi-exponentiation
General arithmetic gate

e
o © O w

3
3
2
2

Figure 4: Cost of each variable and equation measured irpggliments front:.

4Since this is the symmetric setting, we do not need to sepératvariables int@.,,, v, andey, 0s.
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Instantiation 2: XDH and SXDH.  Given(p, Gy, G, G, e, 91, 92) «— G(1¥), we will set up the witness-
indistinguishable proof as follows.

CRS generation: We choosery, z2,y1, Y2, 7,8 « Zj, andty, ty « Zp. We setu; := (91,97"),uz == uj
andu := uil(l,gl)yl. We setv; := (g2,65%),v2 = v andv := v?(l,gQ)y?. This way, we
haveu,, uy are linearly dependent and independent fidny; ), while u, u; are linearly independent.
Similarly, we havev;, vo being linearly dependent and both independent ffong- ), while v, v, are
linearly independent. Set:= (p, G1,G2,Gr, e, g1, g2, U1, ug, U, V1, V2, V).

Simulated CRS generation: We choosexy,z2,y1,Y2,7,8 < Zg and iy, ta «— Zp. We setu; =
(91,97),u := u} anduy := ul'(1,91)¥". We setv; := (g2,95%),v := v andvy := !> (1, go)¥2.
This way, we haveu,,us are linearly independent, while,u, are linearly dependent. Simi-
larly, we havewq,vs being linearly independent, while,v; are linearly dependent. Set :=
(p,G1, G2, Gr, €, 91, 92, u1, U2, U, U1, V2, V)

Proof: We have a witness,,, € G1,y, € G2, ¢k, 0, € Zp. We pick randomizers,,;, s, ;, px, o¢ < Zp and
commit to the witness as, := (1, 2, )uy™ us™?, di, := (1, yn vy v3"2, ¢}, = u®kul*, d = Ve,
For each equation, we make a witness indistinguishablef podescribed in the previous sections.

Verification: Check the proof for each equation.

Theorem 23 The proof has perfect completeness, perfect soundness, and assuming the SXDH problem is
hard it has composable witness indistinguishability. The size of the proof can be found by adding the costsin
Figure 5.

Proof. Lemmas 3, 7, 11 prove this theorem. O
SXDH XDH (one-sided)
G1 GQ G1 G2
Variablez,, 2 0 2 0
Variabley,, 0 2 N/A N/A
Variable ¢y, 2 0 2 0
Variabled, 0 2 N/A N/A
Pairing product equation 4 4 0 2
Multi-exponentiation inGy 2 4 N/A N/A
Multi-exponentiation inG, 4 2 2
General arithmetic gate 2 2 0 1

Figure 5: Cost of each variable and equation measured irpglaments frontz; andG,.

Instantiation 3: DLIN.  We have a group with a bilinear mdp, G,Gr, e, g) «— G(1%). We set up the
proof as follows.

CRS generation: Pick o, 3,t « Zy andrs,s3, 7,5 «— Zp. Setf = g% h = ¢°. We setu; :=
(f,1,9),u2 == (1,h,9),us := uPPus®,u = ujuj(1l,1,9)". This way we haveu, us, us being lin-
early independent dfl, 1, g) andu. Seto := (p, G, Gr, e, g,u1, uz, us, u).

Simulated CRS generation: Pick o, 8,t « Zy andrs, s3,r,s « Zp. Setf := g* h = g®. We set
uy = (f,1,9),us == (1,h, g),us := uus?(1,1, g)%, u := ujus. This way we haveu,, us, uz being
linearly independent, and € U. Seto := (p, G, Gr, e, g, u1, us, us, u).
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Proof: We have a witness,,, € G,¢, € Zp satisfying a set of equations. We pick randomizers
TmlsTm2: Tm3, Pk, P2 — ZLp* and commit to the witness ag, := (1,1,xm)]_[f:1u;"'"i and
dj, = u®* H?Zl uf*. For each equation, we make a proof as described in the presictions.

Verification: Verify the proof for each equation.

Theorem 24 The proof has perfect completeness, perfect soundness and assuming the DLIN problemishard
it has composable witness indistinguishability. The increase in proof size that each variable and equation
costsisgivenin Figure 4.

Proof. Lemmas 4, 8, 12 prove this theorem. O

For comparison, we also list the cost of the general prototéligure 6 both for the general case, where
My # M, and the symmetric case whelé = M, andE is symmetric. The figure also contains the price
to pay in case the equation is one-sided, in which case sawiay be obtained.

Asymmetric| Symmetric| One-sided

My My, | My=DM, | My My
Variablez,, 1 0 1 1 0
Variabley,, 0 1 1 N/A  N/A
Variable ¢y, 1 0 1 1 0
Variabled, 0 1 1 N/A  N/A
Pairing product equation J I I 0 I
Multi-exponentiation inM; | T J’ I N/A  N/A
Multi-exponentiation inMy | I’ J I 0 r
General arithmetic gate J r r 0 r

Figure 6: Cost of each variable and equation measured inegisnfromA/; and M.

10 Non-interactive Zero-Knowledge Proofs

We have presented some very efficient NIWI proofs for setgjofons over bilinear groups. In this section,
we will show that in many cases our techniques can also betasmahstruct efficient NIZK proofs.

Suppose we have a set of equations over variabigs...,zy; €  Gi,y1,...,yn €
Go,¢1,...,0K,01,...,0, € R and we want to prove a set of equations are simultaneoudlfighle.
An obvious strategy would be to use the witness and make a Pdf that the equations are satisfiable.
There is also an obvious problem with this strategy, the Eitoudoes not know a witness and therefore it
cannot simulate a proof.

It turns out that the strategy is better than it seems at fiasiog. In the NIWI proof we have described, we
make a proof for each single equation by itself and each iithdal proof is witness-indistinguishable. In the
simulation, the commitments are perfectly hiding and tfoeeewe may imagine using trapdoor commitments
and opening the commitments to different exponents for egciation and witness-indistinguishable proof.

In particular, to commit to an exponemit we computec := u? [['_, u/*. If we know a linear relation
7'“i+§i(¢—¢/). We

=1 """

&1,....&rs0u = [[;_ uf we can open it to any given messagfeasc := u? Hle u;
define a NIWI proof to beindividual composable witness-indistinguishable, if it is composabitness-
indistinguishable, the simulation reference string setperfect hiding commitments to the group elements
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and perfect trapdoor commitments for the exponents andezaddition gets it own witness-indistinguishable

proof.

We call a sef5 of equations over variables, ...,z € G1,y1,...,yv € Go,¢1,...,0K,01,...,01 €
R tractable if itis possible to deterministicalfiycompute a satisfiability witness for each individual equrati
such that all witness use the same. ..,z ,v1,...,yn, but may varyg, ..., ¢k, 01, ..., 60 freely from

equation to equation.

Theorem 25 For a set of tractable equations over bilinear groups (n, G1, G2, Gr, €, g1, g2) with anindivid-
ual composable witness-indistinguishable proof, there is a composable zero-knowledge simulator.

Proof. The simulatorS; creates a simulated reference string and outputs alsoapédors for the commit-
ment schemes used to commit to the exponents.

The simulatorS, gets the tractable set of equations and computes a salisfiakitness w such
that x1,...,23p,91,...,yp are the same in each equation, whilg,..., ¢x,01,...,0; may vary
from equation to equation. It commits ta,...,xa,y1,---,yn, While making trapdoor commitments
ci,...,CK,d1,...,dy, to the exponents. For each equation, it opens the trapdoomiiments to get satis-
fying z1,..., 25,91, .., YN, 1, -, PK, 01, ...,0, and makes a withess-indistinguishable proof.

We will now prove that on a simulation reference string, weehperfect zero-knowledge. We are given
a witness for simultaneous satisfiability of all equationsl dave to show that on a simulation reference
string, it is perfectly indistinguishable whether we ceeatproof using the witness or we use the simulator
to create the proof. Consider the following hybrid experitevhere we run the simulator to generate the
commitments but then open all the commitments (using biareej to the witness and make real witness-
indistinguishable proofs for each equation. Since eadkithabl proof is perfectly witness-indistinguishable,
this is perfectly indistinguishable from the simulatiom e other hand, since each commitment is perfectly
hiding the hybrid experiment is also perfectly indistirghable from running the real prover on a simulated
reference string. O

Corollary 26 Tractable equations in the subgroup decision, SXDH and DLIN cases described in this paper
have composable zero-knowledge proofs with perfect completeness and perfect soundness, computational
indistinguishability between real common reference strings and simulated reference strings, and perfect zero-
knowledge on simulated reference strings.

Making sets of equations tractable. There is atechnique to make sets of equations tractablentvideluce
some extra variables, among theiny € R. We will also introduce some extra equations, among them
¢ = 0,6 = 0. Note, we can commit to them as= 1,d := 1, so there is no extra cost here.

Let us start with the general arithmetic gate. We can modlify i

K L K L
G- 1+ otk + O Bibe + DD yudrbe = T,
k=1 =1

k=1 /¢=1

for constantswy, Be, vee, T € Zyn. Since¢ can be opened to anything, it is now easy to see that we can
satisfy any individual general arithmetic gate equatioinc& the proof size is independent of the number of
variables, this modification costs nothing.

For a multi-exponentiation equation @, we can introduce an extra variablec G; and use

L M L 0

— + _
Hazl . H w%lfla"w 4 Bm . tl 1 — 297
(=1

m=1

SWe define tractability in terms of a deterministic witnessaputing algorithm because we want it to be possible to ctiektly
whether a set of equations is tractable or not.
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for constantsiy, t1 € G1 anda,,, B € Zy. For this equation we can uge= 1 and just set to be the
product given in the equation, so the equation is now thivishtisfiable. Multi-exponentiation equations in
G5 work similarly.

The most complicated type of equation to make tractablesig#iring product equation. The problem is
that it may be hard to compute group elemettsy, , . . ., aly, b, So[]'_, e(d’,,b.,) = T. However, assume

T is on a form such that this is possible, then we can move thistpahe other side of the equation. This
reduces the problem to the cdBe= 1.

We introduce variables, . . ., zg and rewrite the pairing product equation as
Q N M
H e(zq,bq H y") =1, z4= (a4 H i B
q=1 n=1 m=1
which is solvable by picking; = --- =29 = 1andf = 1.

The case of pairing product equations point to a fundamedifierence between witness-
indistinguishable proofs and zero-knowledge proofs usingtechniques. NIWI proofs can handle any
targetT’, whereas zero-knowledge proofs can only handle speciabtgptargefl’. Second, evenil’ = 1 it
seems like in the most general case the cost is line@rfor pairing product equations, whereas in the NIWI
proofs the cost of such an equation is constant.

11 Conclusion and an Open Problem

Our main contribution in this paper is the construction dicefnt non-interactive cryptographic proofs for
use in bilinear groups. Our proofs can be instantiated wigmyndifferent types of bilinear groups and
the security of our proofs can be based on many differentstgbentractability assumptions, of which we
have given three instantiations: the subgroup decisionnagton, the SXDH assumption and the DLIN
assumption.

Since we have been interested in bilinear groups we haveriinstantiations based the modules on
bilinear groups. Itis possible that other types of moduléh ®bilinear map exist, which are not constructed
from bilinear groups. The existence of such modules migid te efficient NIWI and NIZK proofs based on
entirely different intractability assumptions. We lealie tonstruction of such modules with a bilinear map
as an interesting open problem.
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