
Algorithms for Playing Games with Limited Randomness

Shankar Kalyanaraman∗ Christopher Umans†

July 3, 2007

Abstract

We study multiplayer games in which the participants have access to only limited randomness. This
constrains both the algorithms used to compute equilibria (they should use little or no randomness) as well
as the mixed strategies that the participants are capable of playing (these should be sparse). We frame
algorithmic questions that naturally arise in this setting, and resolve several of them.

We give deterministic algorithms that can be used to find sparse ε-equilibria in zero-sum and non-
zero-sum games, and a randomness-efficient method for playing repeated zero-sum games. These results
apply ideas from derandomization (expander walks, and δ-independent sample spaces) to the algorithms
of Lipton, Markakis, and Mehta (EC’03), and the online algorithm of Freund and Schapire (GEB ’99).

Subsequently, we consider a large class of games in which sparse equilibria are known to exist (and
are therefore amenable to randomness-limited players), namely games of small rank. We give the first
“fixed-parameter” algorithms for obtaining approximate equilibria in these games. For rank-k games, we
give a deterministic algorithm to find (k + 1)-sparse ε-equilibria in time polynomial in the input size n
and some function f(k, 1/ε). In a similar setting Kannan and Theobald (SODA ’07) gave an algorithm
whose run-time is nO(k). Our algorithm works for a slightly different notion of a game’s “rank,” but is
fixed parameter tractable in the above sense, and extends easily to the multi-player case.

1 Introduction

Ever since Nash’s work in 1951 [Nas51] and Morgenstern and von Neumann’s treatise [MvN44] that introduced
the subject, game theory has been one of the cornerstones of economic analysis. In recent years, game theory
has increasingly become embedded into theoretical computer science. In particular, the field of algorithmic
game theory has seen prolific contributions to areas such as auctions, mechanism design and congestion games.

Traditionally, designing algorithms for such games has been largely driven by the need to find equilibria
time-efficiently. In this context, Chen and Deng [CD06] built on prior work [DP05, CD05, DGP06, GP06]
and showed that the problem of finding a Nash equilibrium for the two-player game is complete for the PPAD
class. This suggests that a polynomial-time algorithm is unlikely to exist. With Teng, Chen and Deng [CDT06]
showed further that finding O(1/nΘ(1))-approximate Nash equilibria is also PPAD-complete.

In this paper, we study algorithms for finding equilibria and playing games randomness-efficiently. By
“playing a game” we mean the actions a player must take to actually sample and play a strategy from a mixed
strategy profile, which necessarily entails randomness. There is an immense body of literature in theoretical
computer science devoted to addressing computational issues when limited or no randomness is available,
and for the same reasons it makes sense to study games whose players have limited access to randomness.
Moreover, as we will see below, limited randomness in games motivates some special classes of games that
have arisen in other contexts thereby providing a viewpoint that we believe is helpful.

Limited randomness imposes two major constraints on players. Firstly, players with access to limited ran-
domness are precluded from executing mixed strategies with large support since playing a mixed strategy with

∗Computer Science, California Institute of Technology, 1200 E. California Blvd, Pasadena CA 91125. email:

shankar@cs.caltech.edu. Supported by NSF Grant CCF-0346991.
†Computer Science, California Institute of Technology, 1200 E. California Blvd, Pasadena CA 91125. email:

umans@cs.caltech.edu. Supported by NSF Grant CCF-0346991, BSF Grant 2004329, a Sloan Research Fellowship, and an

Okawa Foundation research grant.

1

Electronic Colloquium on Computational Complexity, Report No. 59 (2007)

ISSN 1433-8092

support size m requires at least log m bits of randomness (to sample a single strategy from the distribution).
Secondly, they are limited to executing algorithms to help find optimal strategies or equilibria that use a small
amount of randomness. We look at both such manifestations of limited randomness.

1.1 Sparse strategies in single-round games

We first look at single-round games. For the case of zero-sum games where both players have n available
strategies, Lipton and Young [LY94] showed that a random sample of O(log n

ε2) strategies was sufficient to
approximate the value of the game by ε. Lipton, Markakis and Mehta [LMM03] extended this to ε-equilibria
for two-player nonzero-sum games. Indeed, they gave a randomized procedure that produced small-support
strategies for an ε-equilibrium when given a Nash equilibrium with possibly large support. In the following
theorem, we derandomize this procedure by using random walks on expander graphs:

Theorem 1.1 Let G = (R, C, n) be a two-player game, and let (p∗, q∗) be a Nash equilibrium for G. For every

ε > 0, there is a deterministic procedure P running in time poly(|G|)1/ε2 such that the pair (P (G, p∗, 1), P (G, q∗, 2))
is an O(log n

ε2)-sparse 4ε-equilibrium for G.

This can be viewed as a deterministic “sparsification” procedure for ε-equilibria in general two player
games. In zero-sum games one can find optimal strategies efficiently, and as a result, we obtain a deterministic
polynomial time algorithm to find sparse ε-equilibria for zero-sum games:

Corollary 1.2 Let G = (R, C, n) be a two-player zero-sum game. For every ε > 0, there is a deterministic

procedure running in time poly(|G|)1/ε2 that outputs a pair (p∗, q∗) that an O(log n
ε2)-sparse ε-equilibrium for

G.

We point out that Freund and Schapire [FS96] obtained a similar result using an adaptive multiplicative-
weight algorithm (discussed below) with poly(|G|, 1/ε) running time. We obtain the +corollary above using a
very different proof technique that flows from well-known derandomization techniques.

1.2 Reusing randomness in multiple round games

In single-round games a randomness-limited player requires sparse strategies, but in multiple-round games, we
would like to be able to “reuse” randomness across rounds. This is an orthogonal concern to that of reducing
randomness within a single round.

Freund and Schapire [FS99] proposed an adaptive online algorithm for a T -round two-player zero-sum game
with n strategies available to each. Executing the mixed strategies produced by their algorithm uses Ω(T log n)
bits of randomness over T rounds, in the worst case. By making use of almost-pairwise independence, we show
how to reuse randomness across rounds: it is possible to make do with just O(log n + log log T + log(1/ε)) bits
and achieve close to the same quality of approximation as in [FS99].

Theorem 1.3 Let M be the n×n-payoff matrix for a two-player zero-sum T -round game with entries in {0, 1}.
For any ε < 1/2 and constant δ, there exists an online randomized algorithm R using O(log n + log log T +
log(1/ε)) random bits with the following property: for any arbitrary sequence Q1, . . . , QT of mixed strategies
played (adaptively) by the column player over T rounds, R produces a sequence of strategies S1, . . . , ST such
that with probability at least 1 − δ:

1

T

T∑

i=1

M(Si, Qi) ≤
1

T
min

P

T∑

i=1

M(P, Qi) + O

(√
log n

T
+ ε

)

1.3 Games with sparse equilibria

As we have discussed, players with limited access to randomness can only achieve equilibria that are sparse.
We saw before that in the general setting, we are able to deterministically “sparsify” if we are willing to settle
for ε-equilibria. The sparsity cannot in general be less than log n, though, so we are motivated to consider
broad classes of games in which even sparser equilibria are guaranteed to exist.

2

Perhaps the simplest example is a 2-player games in which one player has only k available strategies, while
the other player has n � k available strategies. The results in the work of Lipton et al. [LMM03] imply
there is a Nash equilibrium in this game with support size k + 1. This is somewhat unsatisfying – it means
that in a two-player game one player may need to choose from less-sparse strategies than his opponent (i.e.
requiring slightly more randomness) to achieve equilibrium. Theorem 1.4 rectifies this asymmetry by showing
that k-sparse strategies suffice for the opposing player.

Theorem 1.4 Let G = (R, C, k, n) be a two-player game. Given p∗ for which there exists a q∗ such that
(p∗, q∗) is a Nash equilibrium, we can compute in deterministic polynomial time q′ for which (p∗, q′) is a Nash
equilibrium and |supp(q′)| ≤ k.

We also give a deterministic polynomial time algorithm to compute such a limited-support strategy for one
player, given the k-sparse strategy of the other. We extend this further to the multiplayer case and show that
for an `-player game where players 1 through ` − 1 have k1, . . . , k`−1 pure strategies, respectively, the `-th
player need only play a (

∏
ki)-sparse strategy to achieve equilibrium:

Corollary 1.5 Let G = (T1, T2, . . . , T`, k1, k2, . . . , k`−1, n) be an `-player game where
∏`−1

i=1 ki < n. Given
G, p∗1, . . . , p

∗

`−1 there exists a deterministic polynomial-time procedure to compute p̂` such that (p∗1, p
∗

2, . . . ,

p∗`−1, p̂`) is a Nash equilibrium for G and |supp(p̂`)| ≤ k =
∏`−1

i=1 ki.

These bounds are tight.

1.3.1 Games of small rank

Perhaps the most significant technical contribution in this paper pertains to a generalization of the “unbal-
anced” games that we saw above, namely, games of small rank. This is a broad class of games (encompassing
some natural examples – see Section 6.3) for which sparse equilibria are known to exist.

For 2-player games with rank-k payoff matrices, Lipton et al. describe an enumeration algorithm that finds
(k + 1)-sparse strategies in O(nk+1) time. We improve dramatically on this bound but we must relax the
problem in two ways: first, we compute an ε-equilibrium rather than an exact one; second we require that the
payoff matrices be presented as a low-rank decomposition, with entries up to precision B (limited precision
makes sense since we are only considering ε-equilibria).

Theorem 1.6 Let G = (R, C, n) be a two player game such that R and C have rank at most k. Furthermore,
let R = R1R2, C = C1C2 be a decomposition of R, C with R1, R2, C1, C2 containing integer entries in [−B, B].
Then, for every ε > 0, there is a deterministic procedure P running in time (4B2k/ε)2kpoly(|G|) that returns
a 4ε-Nash equilibrium (p, q) with |supp(p)|, |supp(q)| ≤ k + 1.

To the best of our knowledge, Theorem 1.6 provides the first efficient “fixed-parameter” algorithm to this
problem in the sense that the running time is polynomial in the input size n and some function f(k, 1/ε, B).
The closest parallel to our result is by Kannan and Theobald [KT07] who consider a somewhat different
definition of “rank” for two-player games: in their definition, the sum of the payoff matrices is required to
have small rank. In that case, they present an algorithm that finds an ε-equilibrium in a rank k 2-player game
in O(n2k+o(1)B2) time. Their algorithm relies on results of Vavasis for solving indefinite quadratic programs
[Vav92] and does not seem to generalize to ` > 2 players.

Our algorithm is (arguably) simpler, and moreover, it easily generalizes to ` > 2 players, where small rank
games still are guaranteed to have sparse equilibria. In the `-player setting, we give an O(((2B)`k`/ε)k`(`−1))poly(n`)
time deterministic procedure that computes such a sparse ε-equilibrium, when the payoff tensors are presented
as a rank-k decomposition with entries up to precision B.

All of the algorithms for low-rank games rely on enumerating potential equilibria distributions in a basis
dictated by the small rank decomposition. This seems like a technique that may be useful for algorithmic
questions regarding low-rank games beyond those we have considered in this paper.

3

1.4 Outline

The rest of the paper is structured as follows. Section 2 goes over some preliminary definitions and lemmas.
Section 3 presents algorithms for finding small-support strategies for single-round games, obtaining approx-
imate Nash equilibria. In Section 4, we look at the multiple-round case and present a randomness-efficient
variant of the adaptive online algorithm of Freund and Schapire. Games in which some players have very few
strategies are discussed in Section 5 while our new algorithms for ε-equilibria in games with small rank are
described in Section 6.

2 Preliminaries

Definition 2.1 For a finite strategy set S we define ∆(S) to be the set of probability distributions over S,
i.e, all vectors p = (ps)s∈S satisfying

∑
s∈S ps = 1 with each ps ∈ [0, 1]. A mixed strategy p is an element

of ∆(S). The support of a mixed strategy p ∈ ∆(S) is the set supp(p) given by supp(p) = {s ∈ S|ps > 0}. A
mixed strategy p is k-sparse if |supp(p)| = k.

In this paper, we will concern ourselves with games that can be specified by payoff matrices (or tensors)
whose entries denote the payoff upon playing the corresponding strategy tuple. We will also assume, unless
otherwise specified, that these entries are bounded and can be scaled to lie in [−1, 1].

Definition 2.2 An `-player finite game G is a tuple (T1, . . . , T`, n1, n2, . . . , n`) where Ti is the (n1×. . .×n`)
`-dimensional payoff tensor with Ti(s1, . . . , s`) denoting the payoff to player i when the pure strategy `-tuple
(s1, . . . , s`) is played in the game.

For ease of presentation, in the rest of this paper we will often restrict ourselves to `-player games where
n1 = n2 = . . . = n` = n, which we denote by G = (T1, . . . , T`, n). We often refer to players by their payoff
tensors. For example, for the two-player game G = (R, C, n) we will refer to the row player as R and the
column player as C. All vectors are thought of as row vectors.

Definition 2.3 In an `-player game G = (T1, T2, . . . , T`, n1, n2, . . . , n`), we denote by Ti(p1, . . . , p`) the payoff
to the i-th player when the ` players play mixed strategies p1, . . . , p`, i.e.,

Ti(p1, . . . , p`) =
∑

i1∈[n1],...,i`∈[n`]

pi1pi2 . . . pi`
Ti(i1, i2, . . . , i`).

If we substitute some a ∈ [nj] for pj we understand that to mean the distribution that places weight 1 on a
and 0 everywhere else.

The following definition is standard:

Definition 2.4 Let G = (T1, . . . , T`, n1, . . . , n`) be an `-player. An l-tuple (p∗1, . . . , p
∗

`) with each p∗i ∈ ∆([ni])
is an ε-equilibrium for G if: for every i and every p ∈ ∆([ni]),

Ti(p
∗

1, . . . , p
∗

i−1, p, p∗i+1, . . . , p
∗

`) ≤ Ti(p
∗

1, . . . , p
∗

i−1, p
∗

i , p
∗

i+1, . . . , p
∗

`) + ε.

A Nash equilibrium is an ε-equilibrium for ε = 0.

Let G be an `-player game. It is well-known that given the supports of the ` different p∗i in a Nash equilibrium,
one can find the actual distributions by linear programming. We will use a similar fact repeatedly:

Lemma 2.5 Let G = (T1, T2, . . . , T`, n) be an `-player game, and let (p∗1, p
∗

2, . . . , p
∗

`) be a Nash equilib-
rium. Given G and p∗1, p

∗

2, . . . , p
∗

`−1 one can find a distribution q in deterministic polynomial time for which
(p∗1, p

∗

2, . . . , p
∗

`−1, q) is also a Nash equilibrium.

4

Proof. Once we know the distributions p∗1, . . . , p
∗

`−1 in order to find a Nash equilibrium strategy q for player
T`, we first determine the Nash equilibrium support for T` by considering the set

T = {r | ∀r′, T`(p
∗

1, . . . , p
∗

`−1, r) ≥ T`(p
∗

1, . . . , p
∗

`−1, r
′)}

We now find q satisfying the following linear program:

∑n
i=1 qi = 1

qi ≥ 0; i = 1, . . . , n

qi = 0; i /∈ T

T`(p
∗

1, . . . , p
∗

j−1, i, p
∗

j+1, . . . , p
∗

`−1, q) ≥ T`(p
∗

1, . . . , p
∗

j−1, i
′, p∗j+1, . . . , p

∗

`−1, q); i | p∗j i
> 0;

j = 1, . . . , ` − 1;

i′ = 1, . . . , n

From Nash’s result [Nas51], we know that a solution to this linear program exists and this is the desired q.

3 Sparsifying Nash equilibria deterministically

In this section we give deterministic algorithms for “sparsifying” Nash equilibria (in the process turning them
into ε-equilibria). In this way, a player with limited access to randomness, but who has access to an equilibrium
mixed strategy, is able to produce a small strategy that can then be played.1

3.1 Two-players

Lipton et al proved:

Theorem 3.1 (Lipton et al) Let G = (R, C, n) be a two-player game, and let (p∗, q∗) be a Nash equilibrium
for G. There is a polynomial-time randomized procedure P such that with probability at least 1/2, the pair
(P (G, p∗), P (G, q∗)) is an O(log n/ε2)-sparse ε-equilibrium for G.

The algorithm P is very simple: it amounts to sampling uniformly from the given equilibrium strategy.
The analysis applies Chernoff bounds to show that the sampled strategies present the opposing players with
approximately (within ε) the same weighted row- and column- sums, and hence comprise an ε-equilibrium.
In our setting, since the players have limited randomness they cannot afford the above sampling (it requires
at least as much randomness as simply playing (p∗, q∗)), so we derandomize the algorithm using an expander
walk.

Theorem 1.1 (restated). Let G = (R, C, n) be a two-player game, and let (p∗, q∗) be a Nash equilibrium

for G. For every ε > 0, there is a deterministic procedure P running in time poly(|G|)1/ε2 such that the pair
(P (G, p∗, 1), P (G, q∗, 2)) is an O(log n/ε2)-sparse 4ε-equilibrium for G.

Before proving the theorem we will give a convenient characterization of ε-equilibrium:

Lemma 3.2 Let G = (R, C, n) be a 2-player game. Define

Tp = {i|(pC)i ≥ max
r

(pC)r − ε}

Sq = {j|(RqT)j ≥ max
t

(RqT)t − ε}.

If supp(p) ⊆ Sq and supp(q) ⊆ Tp, then (p, q) is an ε-equilibrium for G.

1The question of how the player may obtain an equilibrium mixed strategy is a separate and well-studied topic, but not the

focus of this work.

5

Proof. Consider an arbitrary p′ ∈ ∆([n]). Since p′RqT is a convex combination of the (Rq)j , it is at
most maxj(Rq)j . And, since p is a convex combination of the (Rq)j , with supp(p) ⊆ Sq, we have pRqT ≥

maxj(Rq)j − ε. Thus p′RqT ≤ pRqT + ε. Similarly, for an arbitrary q′ ∈ ∆([n]), we have pCq
′T ≤ maxi(pC)i,

and pCqT ≥ maxi(pC)i − ε since supp(q) ⊆ Tp. Thus pCq
′T ≤ pCqT + ε. These two conditions guarantee

that (p, q) is an ε-equilibrium.

We will use the Chernoff bound for random walks on an expander:

Theorem 3.3 (Gillman [Gil93]) Let H be an expander graph with second largest eigenvalue λ and vertex
set V , and let f : V → [−1, 1] be arbitrary with E[f] = µ. Let X1, X2, . . . , Xt be the random variables induced
by first picking X1 uniformly in V and X2, . . . , Xt by taking a random walk in H from X1. Then

Pr

[∣∣∣∣∣
1

t

∑

i

f(Xi) − µ

∣∣∣∣∣ > δ

]
< e−O((1−λ)δ2t).

Proof. [Proof of Theorem 1.1] When we are given G and p∗, we perform the following steps.
First, construct a multiset S of [n] for which uniformly sampling from S approximates p∗ to within ε/n.

This can be done with |S| ≤ O(n/ε). Denote by p̃ the distribution induced by sampling uniformly from S. We
identify S with the vertices of a constant-degree expander H , and we can sample S′ ⊆ S by taking a walk of
length t = O(log n/ε2) steps in H . Note that this requires O(log |S|+O(t)) = O(log n/ε2) random bits. Let p′

be the probability distribution induced by sampling uniformly from S′. By Theorem 3.3 (and using the fact
that C has entries in [−1, 1]), for each fixed i,

Pr[|(p′C)i − (p̃C)i| ≥ ε] ≤ e−O(ε2t) < 1/n. (1)

By a union bound |(p′C)i − (p̃C)i| ≤ ε for all i with non-zero probability. This condition can be checked given
G, p∗, and so we can derandomize the procedure completely by trying all choices of the random bits used in
the expander walk.

When we are given G and q∗, we perform essentially the same procedure (with respect to R and q∗), and
in the end we output a pair p′, q′ for which:

|(p′C)i − (p̃C)i| ≤ ε ∀i

|(Rq
′T)j − (Rq̃T)j | ≤ ε ∀j

We claim that any such (p′, q′) is an 4ε-equilibrium, assuming (p∗, q∗) are an equilibrium. Using the fact that
C, R have entries in [−1, 1], and the fact that our multiset approximations to p∗, q∗ have error at most ε/n in
each coordinate, we obtain:

|(p̃C)i − (p∗C)i| ≤ ε ∀i

|(Rq̃T)j − (Rq∗T)j | ≤ ε ∀j

Define (as in Lemma 3.2):

Tp′ = {i|(p′C)i ≥ max
i

(p′C)i − 4ε}

Sq′ = {j|(Rq
′T)j ≥ max

j
(Rq

′T)j − 4ε}.

Now, w ∈ supp(p′) implies w ∈ supp(p∗) which implies (Rq∗T)w = maxj(Rq∗T)j (since (p∗, q∗) is a Nash
equilibrium). From above we have that maxj(Rq′T)j ≤ maxj(Rq∗T)j + 2ε and that (Rq′T)w ≥ (Rq∗T)w − 2ε.
So (Rq′T)w ≥ maxj(Rq′T)j − 4ε, and hence w is in Sq′ . We conclude that supp(p′) ⊆ Sq′ . A symmetric
argument shows that supp(q′) ⊆ Tp′ . Applying Lemma 3.2, we conclude that (p′, q′) is a 4ε-equilibrium as
required.

6

Since an equilibrium can be found efficiently by Linear Programming in the two player zero-sum case, we
obtain as a corollary:

Corollary 1.2 (restated). Let G = (R, C, n) be a two-player zero-sum game. For every ε > 0, there is

a deterministic procedure running in time poly(|G|)1/ε2 that outputs a pair (p∗, q∗) that an O(log n/ε2)-sparse
ε-equilibrium for G.

3.2 Three or more players

We extend the algorithm above to make it work for games involving three or more players.

Theorem 3.4 Let G = (T1, T2, . . . , T`, n) be an `-player game, and let (p∗1, p
∗

2, . . . , p
∗

`) be a Nash equilibrium

for G. For every ε > 0, there is a deterministic procedure P running in time poly(|G|)1/ε2 , such that the tuple
(P (G, p∗1, 1), P (G, p∗2, 2), . . . , P (G, p∗` , `)) is an O((` log n)/ε2)-sparse 4ε-equilibrium for G.

Proof. The proof is almost identical to that of Theorem 1.1. When given (G, p∗1, 1) P samples t = O(((` −
1) logn + log `)/ε2) strategies from player 1’s multiset of strategies after identifying it with a constant-degree
expander H and doing a t-step random walk on it. Let p̃1 be the distribution obtained by sampling uniformly
from the original multiset of strategies and p̂1 the distribution induced by sampling from the t strategies picked
from the random walk. For some fixing of (i2, . . . , i`) and j the Chernoff bound in (1) now becomes

Pr[|Tj(p̂1, i2, . . . , i`) − Tj(p̃1, i2, . . . , i`)| ≥ ε] ≤ e−O(ε2t) < 1/(`n`−1)

By a union bound on all `n`−1 possible fixings for (i2, . . . , i`) and all j,

|Tj(p̂1, i2, . . . , i`) − Tj(p̃1, i2, . . . , i`)| < ε

with positive probability. As before, we can derandomize the procedure completely by trying all choices of
the random bits used in the expander walk.

Essentially the same procedure gives us p̂2, p̂3, . . . , p̂`. To show that (p̂1, . . . , p̂`) constitute a 4ε-equilibrium,
consider the set S1 = {i | T1(i, p̂2, . . . , p̂`) ≥ maxi T1(i, p̂2, . . . , p̂`) − 4ε}. Define Sj analogously with respect
to Tj . It suffices to show that supp(p̂j) ⊆ Sj for all j. We sketch the argument for p̂1; symmetric arguments
hold with respect to p̂j for all j.

By the same thread of reasoning as in the two-player case, for any w ∈ supp(p̂1), T1(w, p̂2, . . . , p̂`) ≥
T1(w, p∗2, . . . , p

∗

`) − 2ε and since supp(p̂1) ⊆ supp(p∗1),

T1(w, p∗2, . . . , p
∗

`) = max
i

T1(i, p
∗

2, . . . , p
∗

l) ≥ max
i

T1(i, p̂2, . . . , p̂`) − 2ε.

Combining the two inequalities, we get T1(w, p̂2, . . . , p̂`) ≥ maxi T1(i, p̂2, . . . , p̂`) − 4ε.

4 Limited randomness in repeated games

So far we have looked at optimizing the amount of randomness needed in single-round games where players
execute their strategies only once. In this section, we investigate multiple-round games and in particular, the
adaptive multiplicative weight algorithm of Freund and Schapire [FS99] for which we describe randomness-
efficient modifications. In particular, we show that by using almost-pairwise independent random variables it
is possible to achieve close to the same quality of approximation as in [FS99].

Note that we make crucial use of the full power of [FS99] – i.e., their guarantee still holds if the column
player changes his play in response to the particular randomness-efficient sampling being employed by the row
player:

Theorem 1.3 (restated). Let M be the n × n-payoff matrix for a two-player zero-sum T -round game
with entries in {0, 1}. For any ε < 1/2 and constant δ, there exists an online randomized algorithm R using

7

O(log n + log log T + log(1/ε)) random bits with the following property: for any arbitrary sequence Q1, . . . , QT

of mixed strategies played (adaptively) by the column player over T rounds, R produces a sequence of strategies
S1, . . . , ST such that with probability at least 1 − δ:

1

T

T∑

i=1

M(Si, Qi) ≤
1

T
min

P

T∑

i=1

M(P, Qi) + O

(√
log n

T
+ ε

)

Proof. Our randomized online algorithm R is a modification of Freund and Schapire’s multiplicative-weight
adaptive algorithm [FS99]. For a game with payoff matrix M where both players have n strategies belonging
to a strategy-set S, and for a sequence of mixed strategies (P1, P2, . . . , PT) over T rounds for the first player
described by

Pi+1(s) =

(
βM(s,Qt)

∑
s pi(s)βM(s,Qt)

)
pi(s) (2)

where β = 1/(1 +
√

2 logn/T), the Freund-Schapire algorithm offers the following guarantee on the expected
payoff over T rounds:

Lemma 4.1 ([FS99])

1

T

T∑

t=1

M(Pt, Qt) ≤ min
P

1

T

T∑

t=1

M(P, Qt) + O

(√
log n

T

)
(3)

Running the Freund-Schapire algorithm requires Ω(T log n) random bits in order to select a strategy from
each distribution but we can optimize on this by using almost pairwise independent random variables.

As we did in the proof of Theorem 1.1 in Section 3.1, we can approximate any distribution Pt by a uniform
distribution St drawn from a multiset of size O(n/ε) that approximates Pt to within ε/n and suffer at most
O(ε) error. Therefore, under the uniform distribution over vertices s ∈ Si for all i = 1, . . . , T :

M(Pi, Qi) − O(ε) ≤ E[M(S, Qi)] ≤ M(Pi, Qi) + O(ε)

Definition 4.2 [AGHP92] Let Zn ⊆ {0, 1}n be a sample space and X = x1 . . . xn be chosen uniformly from
Zn. Zn is (ρ, k)-independent if for any positions i1 < i2 < . . . < ik and any k-bit string t1 . . . tk, we have

∣∣∣Pr
X

[xi1xi2 . . . xik
= t1 . . . tk] − 2−k

∣∣∣ ≤ ρ

Alon et al [AGHP92] give efficient constructions of (ρ, k)-independent random variables over {0, 1}n that we
can suitably adapt to obtain T (ρ, 2)-independent random variables S1, . . . , ST over a larger alphabet of size
O(n/ε) using O(log n + log(1/ρ) + log(1/ε) + log log T) random bits.

The following lemma is key to the remainder of the proof and a proof of the lemma follows immediately
afterwards.

Lemma 4.3 Let S1, . . . , ST be (ρ, 2)-independent random variables. Then, for any δ:

Pr
S1,...,ST

[
1

T

T∑

i=1

M(Si, Qi) ≥
1

T
E

[
T∑

i=1

M(Si, Qi)

]
+

√
1

δ

(
1

T
+

2ρn2

ε2

)]
≤ δ

Setting ρ = O(δε6/n2) in Lemma 4.3 gives us:

Pr
S1,...,ST

[
1

T

T∑

i=1

M(Si, Qi) ≥
1

T
E

[
T∑

i=1

M(Si, Qi)

]
+ ε

]
≤ δ (4)

8

Therefore with probability at least 1 − δ over the choice of randomness of S1, . . . , ST

1

T

T∑

i=1

M(Si, Qi) ≤
1

T
E

[
T∑

i=1

M(Si, Qi)

]
+ ε ≤

1

T

T∑

i=1

M(Pi, Qi) + O(ε)

Finally by application of Lemma 4.1 we have with probability at least 1 − δ

1

T

T∑

i=1

M(Si, Qi) ≤
1

T
min

P

T∑

i=1

M(P, Qi) + O

(√
log n

T

)
+ O(ε) (5)

Note that by our choice of ρ, we require O(log n + log log T + log(1/ε)) random bits. This completes the proof
of the theorem.

Proof. (Of Lemma 4.3) The proof is essentially a variation of the Chebyshev tail inequality for (δ, 2) inde-
pendent random variables. Let Z =

∑
i M(Si, Qi). Then,

Pr

[
1

T
Z ≥

1

T
EZ + λ

]
≤ Pr

[∣∣∣∣
1

T
Z −

1

T
EZ

∣∣∣∣ ≥ λ

]

= Pr

[
1

T 2
(Z − E[Z])

2
≥ λ2

]

≤
1

T 2

σ2(Z)

λ2
(6)

We bound σ2(Z) as follows:

σ2 = E

(∑

T

M(Si, Qi) − E[M(Si, Qi)]

)2

=
∑

T

σ2 (M(Si, Qi)) + 2
∑

i,j∈[T]

(E [M(Si, Qi)M(Sj , Qj)] − E [M(Si, Qi)] E [M(Sj, Qj)])

=
∑

T

σ2 (M(Si, Qi)) +

2
∑

i,j∈[T]

 ∑

si∈Si,sj∈Sj

M(si, Qi)M(sj , Qj) Pr[Si = si, Sj = sj] − E [M(si, Qi)] E [M(sj , Qj)]

≤
∑

T

σ2 (M(Si, Qi)) +

2
∑

i,j∈[T]

 ∑

si∈Si,sj∈Sj

M(si, Qi)M(sj , Qj)(Pr[Si = si] Pr[Sj = sj] + δ) − E [M(Si, Qi)] E [M(Sj , Qj)]

(By virtue of (δ, 2)-independence of Si, Sj)

≤
∑

T

σ2 (M(Si, Qi)) + 2
∑

i,j∈[T]

(
δn2/ε2 + E [M(Si, Qi)] E [M(Sj , Qj)] − E [M(Si, Qi)] E [M(Sj , Qj)]

)

(There are at most (n/ε) possible strategies in the multisets Si, Sj)

≤ T max
j

σ2
j + 2δn2T 2/ε2

Let σ0 = maxj σj . Then,

σ2(Z) ≤ Tσ2
0 + 2δT 2n2/ε2 ≤ T + 2δT 2n2/ε2 (7)

Substituting in (6) and setting λ =
√

1
α

(
1
T + 2δn2

ε2

)
we get the desired inequality.

9

5 Unbalanced games

In this section we will look at what happens when one of the players (perhaps as a consequence of having
limited randomness) is known to have very few – k – available strategies, while the other player has n � k
available strategies. In such a game does there exist a k-sparse strategy for the second player? We prove that
this is indeed the case. The main technical tool we’ll need is Carathéodory’s Theorem. Since many of the
results we obtain depend on the constructive feature of the theorem we record below such a proof.

Theorem 5.1 (Carathéodory’s Theorem, constructive version) Let v1, v2, . . . , vn be vectors in a k-
dimensional subspace of Rm where n ≥ k + 1, and suppose

v =

n∑

i=1

αivi with
∑

i

αi = 1 and αi ≥ 0 for all i (8)

Then there exist α′

1, . . . , α
′

n for which v =
∑n

i=1 α′

ivi with
∑

i α′

i = 1 and α′

i ≥ 0 for all i, and |{i : α′

i > 0}| ≤
k + 1. Moreover the α′

i can be found in polynomial time, given the αi and the vi.

Proof. We write a linear combination involving the n − 1 ≥ k vectors (v1 − vn), . . . , (vn−1 − vn) as follows

n−1∑

j=1

tβj(vj − vn) = 0 (9)

for some arbitrary t that we shall define later. Let βl = −
∑n−1

j=1 βj . Adding (8), (9) we get

n∑

j=1

(αj + tβj)vj = v (10)

Now, we set t = minj −αj/βj, say without loss of generality −α1/β1. Rewriting (10),

n∑

j=2

(αj − α1βj/β1)vj = v (11)

Furthermore, (αj − α1βj/β1) > 0 for all j = 2, . . . , l and
∑n

j=2(αj − α1βj/β1) = 1. Hence, we have expressed
v as a convex combination in (n − 1) vectors from {v1, . . . , vn}. We proceed in this manner, until we are no
longer able to write a linear combination in k vectors as was done in (9). This procedure takes poly(n) time.

The main theorem in this section is below. We state it for two players for simplicity, and extend it to `
players later.

Theorem 1.4 (restated). Let G = (R, C, k, n) be a two-player game. Given p∗ for which there exists a q∗

such that (p∗, q∗) is a Nash equilibrium, we can compute in deterministic polynomial time q′ for which (p∗, q′)
is a Nash equilibrium and |supp(q′)| ≤ k.

Proof. We would like to apply Carathéodory’s Theorem as was done to obtain a similar result in [LMM03]
but we will need to modify our application since Carathéodory’s Theorem applies to linear subspaces whereas
the Nash equilibrium strategies define an affine subspace. By Lemma 2.5 given G, p∗ we can construct a q
such that (p∗, q) is also a Nash equilibrium. Consider the column vector u given by

u = RqT =

n∑

i=1

qimi

where mi is the i-th column vector in R. Since R is a k × n matrix, u is in the span of column vectors
m1, . . . , mn that lie in a k-dimensional subspace of Rk. Since (p∗, q) is a Nash-equilibrium, for all i ∈ supp(q):

p∗mi = max
j

p∗mj = w∗

10

This is an additional linear constraint on the mis and hence m1, . . . , mn lie in a (k − 1)-dimensional affine
subspace A. Since u is a convex combination of the mi’s,

p∗u = p∗

(
n∑

i=1

qimi

)
=

n∑

i=1

qi(p
∗mi) = w∗

∑

qi>0

qi = w∗

and hence u also lies in A. Define m′

i = mi − w∗1k, where 1k is the all-ones column vector. Then for all
i ∈ supp(q), p∗m′

i = 0. Therefore

u′ = u − w∗1k =
∑

qi>0

qim
′

i

lies in a (k − 1)-dimensional subspace of Rk. Applying Carathéodory’s theorem 5.1, u′ can thus be rewritten
as a convex combination:

u′ =
∑

i

q′im
′

i

where |supp(q′)| ≤ k. It follows that

u = u′ + w∗1k =
∑

i

q′im
′

i + w∗1k =
∑

i

q′i(m
′

i + w∗1k) =
∑

i

q′imi

We claim that (p∗, q′) is the desired Nash equilibrium. This is true because supp(q′) ⊆ supp(q∗), and for each
j ∈ supp(p∗), R(q′)T = RqT and hence supp(p∗) ⊆ {j : (R(q′)T)j = maxs(R(q′)T)s}.

The following theorem extends the result above to the general `-player game where `−1 players play sparse
strategies.

Corollary 1.5 (restated). Let G = (T1, T2, . . . , T`, k1, k2, . . . , k`−1, n) be an `-player game where
∏`−1

i=1 ki <
n. Given G, p∗1, . . . , p

∗

`−1 there exists a deterministic polynomial-time procedure to compute p̂` such that

(p∗1, p
∗

2, . . . , p∗`−1, p̂`) is a Nash equilibrium for G and |supp(p̂`)| ≤ k =
∏`−1

i=1 ki.

Proof. The proof is similar to that of Theorem 1.4. Applying Lemma 2.5, we obtain p` such that (p∗1, . . . , p
∗

`−1, p`)
is a Nash equilibrium for G. Consider the k × n matrix T−` formed by choosing each of T1, . . . , T`−1’s strate-
gies. T−` is of rank at most k < n. As in proving Theorem 1.4, we observe that the column vector u = T−`p

′

`

is in the span of column vectors m−`
1 , . . . , m−`

n that lie in a (k − 1)-dimensional affine subspace following the
same line of argument with respect to (p∗1, . . . , p

∗

`−1) imposing a constraint on the mi’s. Translating back and
forth between the linear and affine subspace and applying Carathéodory’s Theorem we get p′`, supp(p′`) ≤ k
the Nash equilibrium strategy for T`. The algorithm runs in time polynomial in n`.

In Theorem 5.2, we also show that these bounds are tight (for small values of k) in that we show examples

of games for which there exist Nash equilibria where the `-th player requires support k =
∏`−1

i=1 ki.

Theorem 5.2 For every n, ` ≥ 2, and k1, . . . k`−1 such that k =
∏`−1

i=1 ki < n, there exists an `-player game
G = (T1, T2, . . . , T`, k1, k2, . . . , k`−1, n) for which the following hold:

1. There exists a Nash equilibrium (p∗1, p
∗

2, . . . , p
∗

`) with |supp(p∗i)| = ki for i = 1, 2, . . . , `−1 and |supp(p∗`)| =

k < n. And, there is no p` with |supp(p`)| <
∏`−1

i=1 ki = k such (p∗1, p
∗

2, . . . , p
∗

`−1, p`) is a Nash equilibrium.

Proof. (Sketch) For each Ti; i = 1, . . . , ` we set values as follows. For some lexicographical ordering of
J = {(v1, . . . , v`−1) | 1 ≤ vr ≤ kr; 1 ≤ r ≤ ` − 1} given by α1, α2, . . . , αk we set

Ti(αj , j) =

{
1 1 ≤ j ≤ k; 1 ≤ i ≤ `,

0 otherwise.
(12)

Let (p∗1, p
∗

2, . . . , p
∗

`) be the mixed strategy `-tuple where for each i = 1, . . . , `−1 p∗i is the uniform distribution
on the set of strategies {vi | 1 ≤ vi ≤ ki}. Then, (p∗1, . . . , p

∗

`) specifies a Nash equilibrium for G. This is easy

11

to see since the payoff to Ti upon playing p∗i in response to (p∗1, . . . , p
∗

i−1, p
∗

i+1, . . . , p
∗

`) is 1/k for i = 1, . . . , `
and 0 for any other strategy. Hence, Ti has no incentive to deviate unilaterally to any other strategy that will
increase his payoff. Since this holds true for all i = 1, . . . , ` (p∗1, . . . , p

∗

`) is a Nash equilibrium.

Next, suppose that T` decides to play a strategy with support k′ < k =
∏`−1

i=1 ki. Then, there is some
1 ≤ j < k such that j is not included in T`’s support. Corresponding to j is some (v∗1 , . . . , v∗`−1) according
to the lexicographical ordering described above. By leaving out v∗i from its support and redistributing that
weight onto other strategies, Ti has increased its payoff from 1/k to 1/k′. Hence such a strategy cannot be an
equilibrium.

6 Finding sparse ε-equilibria in low-rank games

We now consider games of rank k, which is a significant generalization of the “unbalanced” games in the
previous section. Indeed, rank k games are perhaps the most general class of games for which sparse equilibria
are guaranteed to exist. In this section we give algorithms to compute sparse ε-equilibria in this setting.

6.1 Two player case

Since we are computing ε-equilibria, we only expect the game specification to be given up to some fixed
precision. We will be working with rank k matrices M expressed as M1M2 (where M1 is a n × k matrix and
M2 is a k×n matrix). Such a decomposition can be found efficiently via basic linear algebra. In the following
theorem we take M1 and M2, specified up to fixed precision, as our starting point.2 As the example in §6.3
illustrates, such a decomposition is already available for many natural games. Our convention for expressing
fixed precision entries will be to require them to be integers in the range [−B, B] for a bound B.

Theorem 1.6 (restated). Let G = (R, C, n) be a two player game such that R and C have rank at
most k. Furthermore, let R = R1R2, C = C1C2 be a decomposition of R, C with R1, R2, C1, C2 containing
integer entries in [−B, B]. Then, for every ε > 0, there is a deterministic procedure P running in time
(4B2k/ε)2kpoly(|G|) that returns a 4ε-Nash equilibrium (p, q) with |supp(p)|, |supp(q)| ≤ k + 1.

Lipton et al. showed that there exist (k + 1)-sparse Nash equilibria in this setting and this implies an
enumeration algorithm to find an equilibrium in time approximately nk+1poly(|G|). Our algorithm shows
that the problem is “fixed parameter tractable” [Ces05, DF99, DFS97] where ε, the rank k and precision B
are the parameters.

Proof. Note that the payoff to the row-player when (p, q) is the strategy tuple for the game which is given
by pRqT can now be written as pR1R2q

T and likewise for the column player. The first step in our algorithm
is to “guess” a collection of vectors to within δ = ε/(2Bk) precision. We describe the “correct” guess relative
to an (arbitrary) Nash equilibrium (p∗, q∗) for G. Let p∗

′

= p∗C1, q
∗
′

= R2q
∗T . Note that from our choice of

C1, R2 it holds that p∗
′

, q∗
′

satisfy −B ≤ p∗
′

i , q∗
′

i ≤ B; i = 1, . . . , k. The algorithm is as follows:

1. Guess a p̃′ such that for all i = 1, . . . , k |p∗
′

i − p̃′i| ≤ δ. Similarly, guess q̃′ such that for all i = 1, . . . , k

|q∗
′

i − q̃′i| ≤ δ.

2. Let αs = (p̃′C2)s and βt = (R1q̃
′T)t. Set S = {s|maxr αr − 2ε ≤ αs ≤ maxr αr} and T = {t|maxr βr −

2ε ≤ βt ≤ maxr βr}.

2We note that computing M1, M2 of fixed precision such that M1M2 approximates M is not necessarily always possible or

straightforward. We state our theorem in this way to avoid these complications, a detailed discussion of which would be beyond

the scope of this paper.

12

3. Find a feasible solution p̄ to the following linear program

|(p̄C1)j − p̃′j | ≤ δ; j = 1, . . . , k (13)

p̄i ≥ 0; i = 1, . . . , n (14)

p̄i = 0; i /∈ T (15)
n∑

i=1

p̄i = 1 (16)

and a feasible solution q̄ to the analogous linear program in which the first set of constraints is

|(R2q̄
T)j − q̃′j | ≤ δ; j = 1, . . . , k.

4. v = p̄C1 is a convex combination of the rows of C1, all of which lie in a k-dimensional subspace. From
Carathéodory’s Theorem (Theorem 5.1), we can find p̂ with supp(p̂) ⊆ supp(p) for which |supp(p̂)| ≤ k+1
and v = p̂C1.

5. Similarly u = R2q̄
T is a convex combination of the columns of R2, all of which lie in a k-dimensional

subspace. Applying Carathéodory’s Theorem again, we find q̂ with supp(q̂) ⊆ supp(q) for which
|supp(q̂)| ≤ k + 1 and u = R2q̂

T .

6. Return p̂, q̂.

Correctness follows from the next two claims:

Claim 6.1 A feasible solution to the linear programs formulated in step 3 of the algorithm exists.

Proof. (Of Claim 6.1) We claim that if (p∗, q∗) is a Nash equilibrium for G then p̄ = p∗ is a feasible solution
to the first LP and q̄ = q∗ is a feasible solution to the second LP.

Assume p̃′ and q̃′ are the correct guesses. We need to show that supp(p∗) ⊆ T and supp(q∗) ⊆ S. Since
p̃′ is a correct guess, p∗

′

= p∗C1 satisfies |p∗
′

j − p̃′j | ≤ δ. Therefore, p∗ satisfies (13). Similarly for q̃′ we have

|q∗
′

j − q̃′j | ≤ δ and so q∗ satisfies (13) in the LP for q.

Consider r ∈ supp(p∗) and (R1q̃
′T)r. Since |q̃′j − q∗

′

j | ≤ ε/(2Bk) for all j = 1, . . . , k, we get

(R1q
∗
′T)r − ε ≤ (R1q̃

′T)r ≤ (R1q
∗
′T)r + ε (17)

Moreover p∗ is a Nash equilibrium strategy and r ∈ supp(p∗). Therefore,

max
t

(R1q̃
′T)t − ε ≤ (R1q

∗
′T)r = maxt(R1q

∗
′T)t ≤ max

t
(R1q̃

′T)t + ε (18)

Combining (17) and (18),

max
t

(R1q̃
′T)t − 2ε ≤ (R1q̃

′T)r ≤ max
t

(R1q̃
′T)t + 2ε

and the right hand side can be simplified to yield:

max
t

(R1q̃
′T)t − 2ε ≤ (R1q̃

′T)r ≤ max
t

(R1q̃
′T)t.

Hence r ∈ T and supp(p∗) ⊆ T . Similarly, we can show that supp(q∗) ⊆ S.

Claim 6.2 (p̂, q̂) as returned by the algorithm is a 4ε-equilibrium.

13

Proof. (Of Claim 6.2) We need to show that for any p′, q′, (p̂, q̂) satisfy

p̂Rq̂T ≥ p′Rq̂T − 4ε,

p̂Cq̂T ≥ p̂Cq′T − 4ε

Now,

p̂Cq̂T = ((p̂C1)C2) q̂T

By our choice of p̂ in step 4. of the algorithm, p̂C1 = p̄C1. So,

p̂Cq̂T = (p̄C1)C2q̂
T

≥ (p̃′ − δ1k)C2q̂
T from (13)

= p̃′C2q̂
T − δ1kC2q̂

T

≥ p̃′C2q̂
T − ε (19)

Since supp(q̂) ⊆ supp(q̄) and supp(q̄) contains only s for which (p̃′C2)s ≥ maxr(p̃
′C2)r − 2ε we obtain

p̃′C2q̂
T ≥ max

r
(p̃′C2)r − 2ε

≥ max
r

((p̄C1 − δ1k)C2)r − 2ε from (13)

≥ max
r

(p̂C1C2)r − 3ε

≥ p̂Cq
′T − 3ε for any q′ (20)

Combining (19) and (20),
p̂Cq̂T ≥ p̂Cq′T − 4ε

Similarly, p̂Rq̂T ≥ p′Rq̂T − 4ε for any p′.

We analyze the run-time for the algorithm above in terms of the support parameter k and number of
strategies n, and B. The first step of the algorithm where we “guess” p̃′ requires exhaustively going through
all possible choices for each component of p̃′ in the interval [−B, B] in steps of δ, and similarly for guessing q̃′.
This takes time (2B/δ)2k = (4B2k/ε)2k. For each choice of (p̃′, q̃′), we will need to solve the linear program
above which takes poly(|G|) time. The applications of Carathéodory’s Theorem also take poly(|G|) and so the
running time is as claimed and this completes the proof of the theorem.

6.2 Three or more players

In this section, we will look at obtaining approximate Nash equilibria for low-rank games with three or more
players. This direction does not seem to have been studied before, and the previously known algorithms for
low-rank games [KT07] don’t seem to extend to more than 2 players.

We begin by stating some definitions related to tensor rank.

Definition 6.3 An arity-l tensor T with dimension n has a p-decomposition if it can be expressed as:

T =
∑p

i=1 t
(i)
1 ⊗ t

(i)
2 ⊗ . . . ⊗ t

(i)
l where each t

(i)
j is an n × 1 vector (i.e. it is the sum of p pure tensors).

It will be convenient to aggregate the information in a p-decomposition of such a tensor T into a `-tuple

(Ci1, Ci2, . . . , Ci`) where each Cij is an n× p matrix whose columns are given by
(
t
(1)
ij , . . . , t

(p)
ij

)
. We will refer

to the r-th row of a matrix Cij as Cij(r). We will also define � to be the component-wise product of vectors:

Definition 6.4 For two vectors v, w ∈ Rn, define (v � w) to be the vector (v1w1, v2w2, . . . , vnwn) ∈ Rn.

The following inequality will be useful in obtaining a result for the extension to three or more players.

14

Lemma 6.5 Let x1, x2, . . . , x`, x̃1, x̃2, . . . , x̃` ∈ Rk be vectors satisfying |xi − x̃i| ≤ δ and furthermore, let
|x̃i| ≤ B for all i = 1, . . . , `. Then,

〈x1, (x̃2 � . . . � x̃`)〉 − δ`k(B + δ)`−1 ≤ 〈x1, (x2 � x3 � . . . � x`)〉 ≤ 〈x1, (x̃2 � . . . � x̃`)〉 + δ`k(B + δ)`−1

Proof.

〈x1, (x2 � x3 � . . . � x`)〉 ≥ 〈x1, (x̃2 − δ1k) � x3 � . . . � x`〉

≥ 〈x1, x̃2 � x3 � . . . � x`〉 − δ(B + δ)`−2〈x1, 1k〉

≥ 〈x1, x̃2 � x3 � . . . � x`〉 − δk(B + δ)`−1

...

≥ 〈x1, x̃2 � . . . � x̃`〉 − (` − 1)δk(B + δ)`−1

≥ 〈x1, x̃2 � . . . � x̃`〉 − δ`k(B + δ)`−1

The other side of the inequality can be similarly shown.

We begin by generalizing Lipton et al. [LMM03] to the multiplayer case. The following theorem shows
that low rank games in the multiplayer case have sparse Nash equilibria; in the next section we give nontrivial
algorithms to find approximate equilibria with this sparsity.

Corollary 6.6 Let G = (T1, . . . , T`, n) be an `-player game, and suppose Ti has rank ki. Then there exists a

Nash equilibrium (p∗1, . . . , p
∗

`) with |supp(p∗i)| ≤ 1 +
∑`

j=1 kj for all i.

Proof. Let (q1, . . . , q`) be a Nash equilibrium for G and let (Ci,1, . . . , Ci,`) be the tensor decomposition for
Ti. Given q1, . . . , q`, we can define vectors in Rn:

w1 = (C1,1(q2C1,2 � q3C1,3 � · · · � q`C1,`)T)
w2 = (C2,2(q1C2,1 � q3C2,3 � · · · � q`C2,`)T)
w3 = (C3,3(q1C3,1 � q2C3,2 � · · · � q`C3,`)T)

...
w` = (C`,`(q1C`,1 � q2C`,2 � · · · � q`−1C`,`−1)T)

(21)

By the definition of a Nash equilibrium, the following conditions are satisfied:

supp(q1) ⊆ {v : (w1)v = max
u

(w1)u}

supp(q2) ⊆ {v : (w2)v = max
u

(w2)u}

...

supp(q`) ⊆ {v : (w`)v = max
u

(w`)u}.

And indeed any (q̂1, . . . , q̂`) satisfying these conditions (when the wi are defined relative the the q̂i) is a Nash
equilibrium.

Set s =
∑`

j=1 kj . Now, by Carathéodory’s Theorem there exists q̂1 ∈ Rn with supp(q̂1) ⊆ supp(q1) and
|supp(q̂1)| ≤ s + 1 for which:

q̂1 (C2,1|C3,1|C4,1| · · · |C`,1) = q1 (C2,1|C3,1| · · · |C`,1) ,

since the right-hand-side is a convex combination of vectors in Rs′

for s′ ≤ s. Similarly, there exists q̂2 ∈ Rn

with supp(q̂2) ⊆ supp(q2) and |supp(q̂2)| ≤ s + 1 for which:

q̂2 (C1,2|C3,2|C4,2| · · · |C`,2) = q2 (C1,2|C3,2|C4,2| · · · |C`,2) ,

since the right-hand-side is a convex combination of vectors in Rs′

for s′ ≤ s.
A symmetric argument gives us a sparse q̂i from each qi. Moreover, these q̂i produce precisely the same

vectors w1, w2, . . . , w` via (21). And, since supp(q̂i) ⊆ supp(qi) for all i, the strategies q̂i satisfy the above
conditions for being a Nash equilibrium, assuming the original qi did.

15

We now turn to algorithms for finding sparse approximate equilibria, with three or more players. We first
consider the case when the tensor decomposition is known. This is not an unnatural assumption: in §6.3, we
describe a class of games for which the tensor decomposition is naturally given by the description of the payoff
functions.

Theorem 6.7 Let G = (T1, . . . , T`, n) be an `-player game, and suppose we are given a k-decomposition of
Ti = (Ci1, . . . , Ci`) where each of the Cij is an n × k matrix with integer values in [−B, B] for i, j = 1, . . . , `.
Then for every ε > 0, there is a deterministic procedure P running in time

(
(2B)`k`/ε

)k(`−1)`
poly(|G|)

that returns a 4ε-Nash equilibrium (p1, p2, . . . , p`) with |supp(pi)| ≤ 1 + `k for all i.

Proof. As in the two player case, our first step is to “guess” a collection of vectors to within δ = ε
k`(2B)`−1

precision. We describe the “correct” guess relative to an (arbitrary) Nash equilibrium (p1, . . . , p`) for G.

1. Let (p′11, . . . , p
′

1`) = (p1C11, p2C12, . . . , p`C1`) be an `-tuple of 1 × k vectors. Note that since all entries
in (C11, C12, . . . , C1`) lie in [−B, B], entries in (p′11, . . . , p

′

1`) also lie in [−B, B].

2. Guess an (` − 1)-tuple (p̃′12, . . . , p̃
′

1`) such that

|(p′1i)j − (̃p′1i)j | ≤ δ i = 2, . . . , `; j = 1 . . . , k

3. For C11(r), the r-th row in C11 let

αr =

(
C11

(
p̃′12 � p̃′13 � . . . � p̃′1`

)T
)

r

; r = 1, . . . , n

S1 =
{
r|max

t
αt − 2ε ≤ αr ≤ max

t
αt

}

4. By repeating steps 1 through 3 on T2, . . . , T` we can similarly obtain S2, . . . ,S`.

5. Find (p̄1, . . . , p̄`) satisfying the following linear program

|(p̄jCmj)r − (p̃mj)r| ≤ δ r = 1, . . . , k; j = 1 . . . , `;

m = 1, . . . , j − 1, j + 1, . . . , ` (22)

(p̄j)i ≥ 0; i = 1, . . . , n; j = 1, . . . , ` (23)
n∑

i=1

(p̄j)i = 1; j = 1, . . . , ` (24)

(p̄j)i = 0; i /∈ Sj ; j = 1, . . . , ` (25)

6. Let Di = (C1,i | C2,i | . . . | Ci−1,i | Ci+1,i | . . . | C`,i) for i = 1, . . . , `. v = p̄iDi is a convex combination of
column vectors in Di that are in an `k-dimensional subspace. Apply Carathéodory’s Theorem (Theorem
5.1) to obtain p̂i such that v = p̂iDi for i = 1, . . . , ` and supp(p̂i) ≤ `k + 1.

7. Return (p̂1, . . . , p̂`).

As before, in order to prove the correctness of the above algorithm we postulate the following claims:

Claim 6.8 A feasible solution to the linear program formulated in step 5 of the algorithm exists.

16

Proof. (Of Claim 6.8) We will show that (p̄1 = p∗1, p̄2, . . . , p̄` = p∗`), the Nash equilibrium strategies for

T1, . . . , T` satisfy the linear program. Since p∗
′

i = p∗i C11 satisfies |p∗
′

i [j] − p̃′mi[j]| ≤ δ for j = 1, . . . , k and for
m = [`] − {i}, p∗i satisfies (22). (23) and (24) follow from p̄i being a probability distribution. So, it suffices
to show that p∗1, . . . , p

∗

` satisfy (25), i.e. for any r ∈ supp(p∗i), r ∈ supp(Si). We will show this to be true for

i = 1; it symmetrically follows for i = 2, . . . , `. Note that |p̃′1i| ≤ B and |p∗i C1i − p̃′1iC1i| ≤ δ. Then, applying
Lemma 6.5 gives us

(
C11(p

∗

2C12 � . . . � p∗`C1`)
T
)
r
− ε ≤

(
C11(p̃′12 � . . . � p̃′1`)

T
)

r
≤
(
C11(p

∗

2C12 � . . . � p∗`C1`)
T
)
r
+ ε

and likewise,

max
t

(
C11(p̃′12 � . . . � p̃′1`)

T
)

t
− ε ≤

(
C11(p

∗

2C12 � . . . � p∗`C1`)
T
)
r
≤ max

t

(
C11(p̃′12 � . . . � p̃′1`)

T
)

t
+ ε

Combining these two equations,

max
t

(
C11(p̃′12 � . . . � p̃′1`)

T
)

t
− 2ε ≤

(
C11(p̃′12 � . . . � p̃′1`)

T
)

r
≤ max

t

(
C11(p̃′12 � . . . � p̃′1`)

T
)

t

Hence r ∈ S1.

Claim 6.9 (p̂1, . . . , p̂`) as returned by the algorithm is a 4ε-equilibrium.

Proof. (Of Claim 6.9) For the strategy tuple (p1, . . . , p`) and given a decomposition of Ti = (Ci1, . . . , Ci`),
the payoff to player i given by Ti(p1, . . . , p`) may be expressed as

Ti(p1, . . . , p`) = piCii

(
p1Ci1 � p2Ci2 � . . . � pi−1Ci(i−1) � pi+1Ci(i+1) � . . . p`Ci`

)T

Put this way, we need to show that for any (p′1, . . . , p
′

`), p̂1, . . . , p̂l returned by the algorithm satisfy

p̂iCii (p̂1Ci1 � . . . p̂i−1Ci,i−1 � p̂i+1Ci,i+1 . . . � p̂`Ci`)
T ≥ p′iCii (p̂1Ci1 � . . . � p̂`Ci`)

T − ε

for i = 1, . . . , `. We will prove this for i = 1, the proof follows symmetrically for i = 2, . . . , `. First, we note
that from the application of Carathéodory’s theorem in step 6,

p̂1C11 (p̂2C12 � . . . � p̂`C1`)
T

= p̂1C11 (p̄2C12 � . . . � p̄`C1`)
T

(26)

Then, applying Lemma 6.5

p̂1C11 (p̄2C12 � . . . � p̄`C1`)
T

≥ p̂1C11

(
p̃′12 � . . . � p̃′1`

)T

− ε (27)

By the same argument as before, since we picked only those r in supp(p̂1) ⊆ S1 such that
(

C11

(
p̃′12 � . . . � p̃′1`

)T
)

r

≥ max
r

(
C11

(
p̃′12 � . . . � p̃′1`

)T
)

r

− 2ε

we get

p̂1C11

(
p̃′12 � . . . � p̃′1`

)T

≥ max
r

C11(r)
(
p̃′12 � . . . � p̃′1`

)T

− 2ε (28)

Applying Lemma 6.5 and from Carathéodory’s Theorem,

max
r

(
C11

(
p̃′12 � . . . � p̃′1`

)T
)

r

≥ max
r

(
C11 (p̄2C12 � . . . � p̄`C1`)

T
)

r
− ε

= max
r

(
C11 (p̂2C12 � . . . � p̂`C1`)

T
)

r
− ε

≥ p′1C11 (p̂2C12 � . . . � p̂`C1`)
T
− ε for any p′1 (29)

Combining (26)–(29),

p̂1C11 (p̂2C12 � . . . � p̂`C1`)
T
≥ p′1C11 (p̂2C12 � . . . � p̂`C1`)

T
− 4ε for any p′1

17

The total number of guesses made in step 2. of the procedure is k(`− 1)` (k guesses for each component of
the (` − 1) different vectors in step 2, repeated ` times in step 4.). Each component is within [−B, B] and is
guessed to δ accuracy, so the guessing takes time

(2B/δ)k(`−1)` = (2B(k`(2B)`−1)/ε)k(`−1)` =
(
(2B)`k`/ε

)k(`−1)`

For each guess, we solve a linear program, taking time poly(|G|), for a total running time as claimed. This
completes the proof of the theorem.

6.3 An example of games with known low-rank tensor decomposition

Many natural games are specified implicitly (rather than by explicitly giving the tensors) by describing the
payoff function, which itself is often quite simple. In such cases, the tensor ranks may be significantly smaller
than n, and moreover, a low-rank decomposition into components with bounded entries can often be derived
from the payoff functions.

One prominent example is simple `-player congestion games as described in [FPT04, Pap05]. Such a game
is based on a graph G(V, E) with n vertices and m edges. Each player’s strategy set corresponds to a subset
Sp ⊆ 2E , the set of all subsets of edges. We define the payoff accruing to some strategy l-tuple (s1, . . . , s`) as
U(s1, . . . , s`) = −

∑
e ce(s1, . . . , s`) where ce(s1, . . . , s`) = |{i|e ∈ si, 1 ≤ i ≤ `}| is thought of as the congestion

on paths s1, . . . , s`. Let G = (T1, . . . , T`, N = 2m) be the game corresponding to the situation described above
where for i = 1, . . . , ` and strategy tuple (s1, . . . , s`), Ti(s1, . . . , s`) = −

∑
e ce(s1, . . . , s`).

Theorem 6.10 For i = 1, . . . , ` Ti as defined above is of rank at most `m. Furthermore, an explicit `m-
decomposition (Ci1, Ci2, . . . , Ci`) for Ti exists where Cij are n × k matrices with entries in {−1, 0, 1}.

Proof. In order to give an `m-decomposition of T1 say, we need to construct (C1, . . . , C`) where Ci, i = 1, . . . , `
are n× (`m) matrices. Consider the tensors {Ti,j}i=1,...,`,j=1,...,m that are described as follows: fix some si to
be the strategy for player i. For all ej ∈ E(G), j = 1, . . . , m such that ej ∈ si let

Ti,j(s
′

1, . . . , s
′

i−1, si, s
′

i+1, . . . , s
′

`) = −1

where s′1, . . . , s
′

i−1, s
′

i+1, . . . , s
′

` ∈ 2E. Then, T1 =
∑`

i=1

∑m
j=1 Ti,j . This follows easily since each tuple

(s1, . . . , s`) in some Ti,j contributes −1 to T1(s1, . . . , s`) iff ej ∈ si. Summing over all Ti,j for i = 1, . . . , `,
ej contributes exactly −cej

(s1, . . . , s`) to T1(s1, . . . , s`) from the definition of cej
(s1, . . . , s`) above. Summing

over all j = 1, . . . , m we obtain the total contribution from all the edges. Next, we claim that each Ti,j

is a rank-1 tensor. Indeed, Ti,j = v1,j ⊗ . . . ⊗ v`,j where vk,j = 1N the all-ones N × 1 column vector for
k = 1, . . . , i − 1, i + 1, . . . , ` and vi,j is the N × 1 column vector given by:

vi,j [k] =

{
−1 ej ∈ sk;

0 otherwise.

for k = 1, . . . , N .

7 Conclusions

There are many other interesting questions that are raised by viewing game theory through the lens of requiring
players to be randomness-efficient. In this paper, we have framed some of the initial questions that arise and
have provided answers to several of them. In particular, we have exploited the extensive body of work in
derandomization to construct deterministic algorithms for finding sparse ε-equilibria (which can be played
with limited randomness), and for playing repeated games while reusing randomness across rounds. The
efficient fixed-parameter algorithms we describe for finding ε-equilibria in games of small rank significantly

18

improve over the standard enumeration algorithm, and to the best of our knowledge, they are the first such
results for games of small rank.

The notion of resource-limited players has been an extremely useful one in game theory, and we think that
it is an interesting and natural question in this context to consider the case in which the limited computational
resource is randomness. These considerations expose a rich and largely untapped area straddling complexity
theory and game theory.

References

[AGHP92] N. Alon, O. Goldreich, J. Hastad, and R. Peralta. Simple constructions of almost k-wise indepen-
dent random variables. Random Structures and Algorithms, (3):289–304, 1992.

[CD05] X. Chen and X. Deng. 3-NASH is PPAD-complete. Electronic Colloquium on Computational
Complexity (ECCC), (134), 2005.

[CD06] X. Chen and X. Deng. Settling the Complexity of Two-Player Nash Equilibrium. In Foundations
of Computer Science (FOCS 2006), pages 261–272. IEEE Computer Society, 2006.

[CDT06] X. Chen, X. Deng, and S.-H. Teng. Computing Nash Equilibria: Approximation and Smoothed
Complexity. In Foundations of Computer Science (FOCS 2006), pages 603–612. IEEE Computer
Society, 2006.

[Ces05] M. Cesati. Compendium of parameterized problems. http://bravo.ce.uniroma2.it/home/

cesati/research/compendium/, 2005.

[DF99] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[DFS97] R.G. Downey, M.R. Fellows, and U. Stege. Parameterized complexity: A framework for systemat-
ically confronting computational intractability. In Proceedings of the First DIMATIA Symposium,
1997.

[DGP06] C. Daskalakis, P.W. Goldberg, and C.H. Papadimitriou. The complexity of computing a Nash
equilibrium. In Symposium on Theory of Computing (STOC 2006), pages 71–78, 2006.

[DP05] C. Daskalakis and C.H. Papadimitriou. Three-player games are hard. Electronic Colloquium on
Computational Complexity (ECCC), (139), 2005.

[FPT04] A. Fabrikant, C.H. Papadimitriou, and K. Talwar. The complexity of pure-strategy equilibria. In
Symposium on Theory of Computing (STOC 2004), pages 604–612, 2004.

[FS96] Y. Freund and R. Schapire. Game theory, on-line prediction and boosting. In COLT 1996, pages
325–332, 1996.

[FS99] Y. Freund and R. Schapire. Adaptive game playing using multiplicative weights. Games and
Economic Behavior, 29:79–103, 1999.

[Gil93] D. Gillman. A Chernoff bound for random walks on expander graphs. In Foundations of Computer
Science (FOCS 1993), pages 680–691. IEEE, 1993.

[GP06] P.W. Goldberg and C.H. Papadimitriou. Reducibility among equilibrium problems. In Symposium
on Theory of Computing (STOC 2006), pages 61–70, 2006.

[KT07] R. Kannan and T. Theobald. Games of fixed rank: A hierarchy of bimatrix games. In ACM-SIAM
Symposium on Discrete Algorithms, 2007.

[LMM03] R.J. Lipton, E. Markakis, and A. Mehta. Playing large games using simple strategies. In EC
’03: Proceedings of the 4th ACM conference on Electronic commerce, pages 36–41, New York, NY,
USA, 2003. ACM Press.

19

[LY94] R.J. Lipton and N.E. Young. Simple strategies for large zero-sum games with applications to
complexity theory. In STOC ’94: Proceedings of the twenty-sixth annual ACM symposium on
Theory of computing, pages 734–740, New York, NY, USA, 1994. ACM Press.

[MvN44] O. Morgenstern and J. von Neumann. Theory of Games and Economic Behavior. Princeton
University Press, 1944.

[Nas51] J.F. Nash. Non-cooperative games. Annals of Mathematics, 54:286–295, 1951.

[Pap05] C.H. Papadimitriou. Computing Correlated Equilibria in Multi-Player Games. In Proceedings of
the 37th Annual ACM Symposium on Theory of Computing, pages 49–56, May 2005.

[Vav92] S.A. Vavasis. Approximation algorithms for indefinite quadratic programming. Math. Program.,
57:279–311, 1992.

20

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

