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Abstract

Given linear two codes R, C, their tensor product R ® C consists of all matrices whose
rows are codewords of R and whose columns are codewords of C. The product R ® C is said
to be robust if for every matrix M that is far from R ® C it holds that the rows and columns
of M are far from R and C respectively. Ben-Sasson and Sudan (ECCC TR04-046) have
asked under which conditions the product R ® C is robust. During the last few years, few
important families of tensor products were shown to be robust, and a counter-example of a
product that is not robust was also given. However, a precise characterization of codes whose
tensor product is robust remains unknown.

In this note we highlight a common theme in the above papers, which we call “The Rectan-
gle Method”. In short, we observe that all proofs of robustness in the above papers are done by
constructing a “rectangle”, while in the counterexample no such rectangle can be constructed.
We then show that a rectangle can be constructed if and only if the tensor product is robust,
and therefore the proof strategy of constructing a rectangle is complete.

1 Introduction

An error correcting code is said to be locally testable if there is a test that can check whether a
given string is a codeword of the code, or rather far from the code, by reading only a constant
number of symbols of the string. Locally Testable Codes (LTCs) were first explicitly studied by
Goldreich and Sudan [5] and since then few constructions of LTCs were suggested (See [4] for an
extensive survey of those constructions).
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Ben-Sassson and Sudan [1]| suggested using the tensor product operation for the construction
of LTCs. Given two linear codes R, C, their tensor product R ® C consists of all matrices whose
rows are codewords of R and whose columns are codewords of C'. If R and C' are locally testable,
we would like R ® C to be locally testable. Ben-Sasson and Sudan suggested using the following
test for testing the tensor product R ® C.

The Row/Column Test Choose a random row (or column) and accept iff it is a codeword of
R (C, respectively).

In order to study the conditions under which R ® C' is locally testable, Ben-Sasson and Sudan
introduced the notion of “robust” tensor product. The tensor product R ® C' is said to be robust
if for every matrix M that is far from R ® C' it holds that the rows and coluns of M are far from
R and C respectively. It is not hard to see that if both R and C' are locally testable and R ® C'is
robust then R ® C' is locally testable.

This gives rise to the question in which cases the tensor product is robust. Ben-Sasson and
Sudan managed to show that the tensor product of three codes or more (C; ® Co®C3®. . .) is robust
under a more general notion of robustness. As for the tensor product of two codes, it was proven
that for two important cases that the tensor product is robust: The case of Reed-Solomon codes
(this is the bivariate low degree test of Polishchuk and Spielman [6]), and the case of “smooth”
LDPC codes [3]. In addition, Paul Valiant gave an example of codes whose tensor product is not
robust [7], and his example was extended in [2].

In this note we highlight a common theme in all of those papers. We observe that all proofs of
robustness share a common proof strategy, which we call “The Rectangle Method” and consists of
constructing a “large rectangle”. This gives rise to the question of whether this strategy is complete
- that is, can it always be used to prove robustness. We answer this question positively, by showing
that a “large rectangle” can be constructed for every robust tensor product.

We make the notation required to continue the discussion in Section 2. We describe the
rectangle method and our results in detail in Section 3, and prove our results in Sections 4 and 5.
We review the proof that the existence of a “large rectangle” implies robustness in Section 6.

2 Preliminaries

Let R, C denote binary linear codes with block lengths m,n and relative distances dg, dc. For any
two binary strings =,y (|z| = |y|), we denote by d(x,y) the relative Hamming distance between x
and y. The Tensor Product R ® C' C {0,1}"™ is the linear code that consists of all the binary
n X m matrices whose rows are codewords of R and whose columns are codewords of C.

For any binary n x m matrix M we denote by d(M) the relative distance of M to R® C, and
by M the codeword of R ® C nearest to M. We also denote by drow(M) the average relative
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distance of a row of M to R, and define . similarly. Finally, we denote by p(M) the average of
5r0w(M), 6C01(M)’ that is

Srow (M) + 0.1 (M)
p(M) = e
The trivial observation that drow (M) < 2p(M) and d.,(M) < 2p(M) will be useful later.

We say that R ® C' is a-robust if for every M it holds that p(M) > « - §(M). We also denote
by Mg the matrix that is obtained by replacing each row of M with the nearest codeword of R,

and define M similarly.

3 The Rectangle Method

Proofs for robustness of R ® C usually go along the following line: They first prove that there
exists a constant ag such that for every matrix M that satisfies p(M) < o, the matrices M and
M¢ agree on a large rectangle. That is, for every matrix M such that p(M) < «q there exists
sets U C [m], V C [n], |U| > (1 —dg)m, |V]| > (1 — d¢)n, such that Mg and M agree on every
coordinate in U x V. The argument then uses a known property of tensor products, asserting that
if My and Mc agree on a such a large rectangle, then p(M) > $6(M) (For completeness, a proof
of this fact is given in Section 6). The conclusion is that R ® C' is a-robust for & = min{ay, }-

In this note we prove that this strategy is “complete”; that is, it can always prove the robustness
of R ® C, provided that R @ C' is indeed robust. We prove this by showing that if the code is
robust and a matrix M has very small p(M ), then there exists a large rectangle on which Mg and
M agree.

To summarize, consider the following two conditions on a tensor product of codes:

1. There exists a constant ag such that for every matrix M that satisfies p(M) < «ap there exist
sets U C [n], V C [m] such that Mg and M agree on every coordinate in U x V, where
|U| > (1 —dc)n, |[V]| > (1 —dg)m.

2. There exists a constant « such that R ® C' is a-robust.

It is a known fact that the Condition 1 implies Condition 2, and the proofs of robustness usually
work by proving that the tensor product satisfies Condition 1, and then conclude that Condition
2 holds. The possible novelty of this note is that we prove that Condition 2 implies Condition 1,
so they are equivalent.

We prove that Condition 2 implies Condition 1 in Section 5. For the sake of completeness, we
also review the proof that Condition 1 implies Condition 2 in Section 6

The equivalence between the conditions holds also when « and « are sub-constants. The exact
quantative relation is that Condition 1 with oy implies Condition 2 with a = min {ay, 1}, and
that Condition 2 with  implies Condition 1 with o = $6rdca.
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4 'Triangle inequality for robustness

We will begin with reviewing the following useful inequality: For every two matrices M;, My we
have that
p(My) < p(Mz) + 6(My, Mo) (1)

Inequality 1 results from averaging the two following inequalites:
drow (My) < drow (Ma) + 6(My, My) (2)

5001(M1) < 6C01(M2> + 5(M1, Mg) (3)

We will only prove Inequality 2, and the proof of Inequality 3 is similar. Inequality 2 follows by
applying the usual triangle inequality of distances for each row separately, details follow.

For every 1 < i < n we denote by M} and M} the i-th row of M; and M, respectively. With
a slight abuse of notation, we denote by dz(M?) the relative distance of the i-th row of M to R,
and by 6(M;, Mj) the relative distance between the i-th rows of M; and M,. We now have that

1< :
orow(M1) = EZ&%(MD
=1

IA

LS (w08 + 005 21

=1
1 <& . 1 <& o
= =D Or(My)+ = o(M], My)
=1 =1
= drow(Ms) + 0(My, Ms)

This completes the proof of Inequality 1.
We mention that Inequality 1 yields the following useful conclusion:

Fact 4.1. For every matriz M we have
p(Mg) < 3p(M)
p(Mc) < 3p(M)
Proof We prove only for Mp:
p(Mg) < p(M) + 0(M, Mg) = p(M) + drow (M) < p(M) + 2p(M) = 3p(M)

Where the first equality is due to the definition of Mp. [



5 Proving that a large rectangle can always be found

We prove that if R®C' is robust then for every matrix M whose rows and columns are close enough
to R and C, there exists a large rectangle on which Mz and M agree. The proof proceeds in two
steps: We first show that M = My = M (see Claim 5.1). We then show that this implies the
existence of a large rectange (see Claim 5.2): The idea is that M = My = My implies that Mgy
and M must be very close to M. Thus Mz and M must agree on many rows, and Mo and M
must agree on many columns. We can therefore choose the rectangle to be the intersection of the
rows on which My and M agree with the columns on which My and M agree.

Claim 5.1. If R® C is a-robust, there exists a constant on such that for every matriz M with
p(M) < ay, we have that M = Mg = M. Furthermore, we can choose a; = %535004.

Proof Suppose that R ® C' is a-robust for some constant a > 0. We first show that there exists
a constant o; > 0 such that p(M) < «; implies that M = Mpz. It can be shown similarly for
M = Mg, and by choosing o; to be small enough we will obtain M = My = Mo whenever
p(M) < ay. So, assume that p(M) < «; for some constant «; that will be chosen later. We have
the following:

(M, Mpg)

IN

§(M, M) + 6(M, Mg) + 6(Mg, Mg)
d(M) + drow (M) + 0(Mg)

" p(M) + 20(M) + ~p(Mz)

IA

IN

~p(M) + 20(M) + 2 p(M)
_ <2 N g) (M)
(2 N g) o

Where the first equality uses 6(M, Mg) = drow (M) (by definition of Mg), the second inequality
uses drow (M) < 2p(M) and p(M) > ad(M), p(Mr) > ad(Mg) (By the a-robustness of R®C') and
the third inequality uses p(Mg) < 3p(M) (Fact 4.1). Now, if we choose oy such that (2+ 2) a; <
Srec = Ordc, we shall obtain that M = My for any matrix M such that p(M) < a;. Note that
choosing o = %535(;a satisfies (2 + %) a1 < Ogrge- [ |

<

Claim 5.2. If R® C is a-robust, then for every matriz M that satisfies M = Mp = Mc and
p(M) < tadgdc, there exist sets U C [n], V C [m] such that My and Mc agree on every coordinate
inU XV, and |U| > (1 —=dc)n, |[V|> (1 —dg)m.



Proof Let M be such that M = My = Mc and p(M) < 30gdca. We know that

— - 1 3
(S(MR,M) = 5(MR,MR) = 5(MR) < ap(MR) < ap(M) < 5R(SC

where the first inequality uses p(Mp) > a - §(Mp) and the second inequality uses p(Mp) < 3p(M)
(by Fact 4.1).

Furthermore, every row of My and every row of M are codewords of R, and therefore every
row of Mp, is either equal to the corresponding row of M or they differ on at least Jz-fraction of
the coordinates. It follows that Mz and M must agree on more than (1 — d¢)-fraction of the rows,
or otherwise they would disagree on drdc- of the coordinates. Similarly it can be shown Ms and
M must agree on more than (1 — §p)-fraction of the columns. Now take U to be the set of rows
on which Mp agrees with M, and take V to be the set of columns on which M agrees with M.
We have that My and M both agree with M on U x V, and therefore they agree with each other
on U x V. [

By combining the two last claims and choosing
1 . 1
g = 6535004 < min {oq, 5045350}

we get that p(M) < ap implies the existence of a large rectangle for M, as required.

6 Proving that a large rectangle implies robustness

For the sake of completeness, we review the proof (given in [3]) that the existence of a large
rectangle implies robustness. Let M be matrix and suppose there exist U C [n],V C [m] such that
Mp and M agree on the coordinates in U x V' and such that |U| > (1 — d¢)n,|V| > (1 — dg)m.
We shall show this implies that §(M) < 8p(M).

Claim 6.1 ([1]). There exists a legal codeword N that agrees with Mr and Mc on U x V.

Proof Let R’ and C’ denote the codes obtained from projecting the codewords of R,C to the
coordinates in V' and U respectively. Let M’ denote the matrix obtained by projecting Mg or M¢
to U x V (Since the two matrices agree on U x V', the matrix M’ is well defined).

Observe that the projection from R to R’ is actually a bijection: The projection is surjective
by the definition of R’. As for the projection being injective, note that if two codewords of R
are projected to the same codeword of R', then they must agree on more than (1 — dg) of the
coordinates and therefore must be equal. Similarly the projection from C' to C’ is a bijection.

This implies that the projection from R ® C to R’ ® C' (obtained by projecting codewords of
R® C to U x V) is one-to-one. Since R® C' and R’ ® C" are linear spaces of the same dimension
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(dim R - dim C) , it follows that this projection is a bijection between R ® C to R’ @ C’. Now,
note that M’ is a legal codeword of R’ ® C’, so it follows that there exists a codeword N of R® C
whose projection to U x V equals M’. [ |

Claim 6.2 ([3]). (S(MR,N) = 6COZ(MR)'

Proof We shall show that if we decode each of the columns of My to the nearest codeword of
C, we will get N. For each row, Mg and N either agree on it or differ on at least dx-fraction
of its coordinates. Since we know N and Mg agree on U x V, they must agree on all the rows
in U. This implies that in every column, My and N agree on more than (1 — d¢)-fraction of the
coordinates, and therefore the decoding of each column of Mg to the nearest codeword of C' must
result in the corresponding column of N. That is, we have that (Mg), = N. It follows that
6(Mg, N) = 0051 (Mg), as required. |

The inequality 6(M) < 8p(M) now follows by
6(M,N) < 6(M, Mg) + 6(Mg, N) < drow(M) + 2p(Mg) < 2p(M) + 6p(M) = 8p(M)

where the second inequality uses (M, Mg) = drow(M) (by definition of drow) and 6(Mg, N) =
Scol(MRr) < 2p(Mpg) (by Claim 6.2) . The third inequality follos from drow (M) < 2p(M) and from
p(Mpg) < 3p(M) (By fact 4.1).
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