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Abstract

Given two error correcting codes R,C, their tensor product R ⊗ C is the error correcting

code that consists of all matrices whose rows are codewords of R and whose columns are

codewords of C. The code R⊗ C is said to be robust if, for every matrix M that is far from

R⊗C, it holds that the rows and columns of M are far from R and C respectively. Ben-Sasson

and Sudan (ECCC TR04-046) asked under which conditions the product R⊗C is robust. So

far, a few important families of tensor products were shown to be robust, and a counter-

example of a product that is not robust was also given. However, a precise characterization

of codes whose tensor product is robust is yet unknown.

In this work, we highlight a common theme in the previous works on the subject, which

we call �The Rectangle Method�. In short, we observe that all proofs of robustness in the

previous works are done by constructing a certain �rectangle�, while in the counterexample

no such rectangle can be constructed. We then show that a rectangle can be constructed if

and only if the tensor product is robust, and therefore the proof strategy of constructing a

rectangle is complete.

1 Introduction

An error correcting code is said to be locally testable if there is a test that can check whether a
given string is a codeword of the code, or rather far from the code, by reading only a constant
number of symbols of the string. Locally Testable Codes (LTCs) were �rst systematically studied
by Goldreich and Sudan [GS06] and since then several constructions of LTCs were suggested (See
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[Gol05] for an extensive survey of some constructions, as well as [Din07, BSS08, Mei09] for a few
later constructions).

Ben-Sassson and Sudan [BSS06] suggested using the tensor product operation for the construc-
tion of LTCs. Given two linear error correcting codes R,C, their tensor product R⊗C is the code
that consists of all matrices whose rows are codewords of R and whose columns are codewords of
C. If R and C are locally testable, we would like R⊗ C to be locally testable. [BSS06] suggested
using the following test for testing the tensor product R⊗ C.

The Row/Column Test Choose a random row (or column) and accept i� it is a codeword of
R (C, respectively).

In order to study the conditions under which R⊗C is locally testable, Ben-Sasson and Sudan
introduced the notion of �robust� tensor product (which is a special case of the notion of robustness
of [BSGH+06, DR06]). The tensor product R⊗C is said to be robust if, for every matrix M that
is far from R ⊗ C, it holds that the rows and coluns of M are far from R and C respectively. It
is not hard to see that if both R and C are locally testable, and R ⊗ C is robust, then R ⊗ C is
locally testable.

This gives rise to the question in which cases the tensor product is robust. [BSS06] showed
that the tensor product of three codes or more (C1⊗C2⊗C3⊗ . . .) is robust under a more general
notion of robustness, and their work was imroved in [Vid11]. As for the tensor product of two
codes, it was proven that for three important families of codes that their tensor product is robust:
The Reed-Solomon codes (this is the bivariate low degree test of [PS94]), �smooth� and �weakly
smooth� LDPC codes [DSW06, BSV09b], and �semi-LTCs� [BSV09a]1. In addition, [Val05] showed
an example of codes whose tensor product is not robust, and his example was extended in [CR05]
and in [GM07].

In this work, we highlight a common theme in all of those papers. We observe that all proofs of
robustness share a common proof strategy, which we call �The Rectangle Method� and consists of
constructing a �large rectangle�. This gives rise to the question of whether this strategy is complete
- that is, can it always be used to prove robustness. We answer this question positively, by showing
that a �large rectangle� can be constructed for every robust tensor product.

We make the notation required to continue the discussion in Section 2. We describe the
rectangle method and our results in detail in Section 3, and prove our results in Sections ?? and
4. We review the proof that the existence of a �large rectangle� implies robustness in Section 5.

1The work of [BSV09a] uses a little di�erent notion of robustness, but it is relevant for our work as well.
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2 Preliminaries

For any two binary strings x, y of the same length, we denote by δ(x, y) the relative Hamming
distance between x and y. We say that x and y are τ -close if δ(x, y) ≤ τ , and otherwise we say
that they are τ -far.

2.1 Error Correcting Codes

We review the basics of error correcting codes [MS88]. A linear code C is linear subspace of {0, 1}n,
where n is called the block length of C. The vectors of C are called codewords. The code C has
relative distance δC if for any two distinct codewords c1 6= c2 ∈ C it holds that δ(c1, c2) ≥ δC .

2.2 Tensor Product Codes

Let R,C denote linear codes with block lengthsm,n and relative distances δR, δC respectively. The
tensor product R ⊗ C ⊆ {0, 1}n·m is the linear code that consists of all the binary n×m matrices
whose rows are codewords of R and whose columns are codewords of C. It is well known that the
relative distance of R⊗ C is δR · δC .

For any binary n×m matrix M , we denote by δR⊗C(M) the relative distance of M to R⊗C,
and by M the codeword of R ⊗ C that is closest to M . We denote by MR the matrix that is
obtained by replacing each row ofM with the nearest codeword of R, and de�neMC similarly. We
also denote by δrow(M) the average relative distance of a row ofM to R, and de�ne δcol similarly.
Note that δrow = δ(M,MR) and that δcol = δ(M,MC). Finally, we denote by ρ(M) the average
of δrow(M) and δcol(M), that is,

ρ(M)
def
=
δrow(M) + δcol(M)

2

We can now state the de�nition of robustness.

De�nition 2.1. We say that R⊗C is α-robust if for every M it holds that ρ(M) ≥ α · δR⊗C(M).

We turn to state a few easy and useful facts. The following trivial fact upper bounds δrow(M)
and δcol(M) in terms of ρ(M).

Fact 2.2. It holds that

δrow(M) ≤ 2 · ρ(M)

δcol(M) ≤ 2 · ρ(M)

The following fact is a triangle inequality for robustness.
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Fact 2.3. Let M1 and M2 be n×m binary matrices. Then,

ρ(M1) ≤ ρ(M2) + δ(M1,M2)

Proof. It su�ces to prove that

δrow(M1) ≤ δrow(M2) + δ(M1,M2)

δcol(M1) ≤ δcol(M2) + δ(M1,M2)

The �rst inequality can be obtained by applying the triangle inequality of Hamming distance
to each row of M1 and M2 separately, and the second inequality can be obtained similarly for
columns. �

The following fact is an easy corollary of the two facts above.

Fact 2.4. For every matrix M we have

ρ(MR) ≤ 3ρ(M)

ρ(MC) ≤ 3ρ(M)

Proof. We prove only for MR:

ρ(MR) ≤ ρ(M) + δ(M,MR) = ρ(M) + δrow(M) ≤ ρ(M) + 2ρ(M) = 3ρ(M)

The required inequality follows. �

3 The Rectangle Method

Proofs for robustness of R⊗C usually go along the following line: They �rst prove that there exists
α0 ∈ (0, 1) such that for every matrix M that satis�es ρ(M) < α0, the matrices MR and MC agree
on a large rectangle. That is, for every matrix M such that ρ(M) < α0 there exists sets U ⊆ [m],
V ⊆ [n] of sizes |U | > (1 − 1

2
δR) ·m, |V | > (1 − 1

2
δC) · n, such that MR and MC agree on every

coordinate in U ×V . The argument then uses a known property of tensor products, asserting that
if MR and MC agree on a such a large rectangle, then ρ(M) ≥ 1

8
δ(M) (For completeness, a proof

of this fact is given in Section 5). The conclusion is that R⊗ C is α-robust for α = min{α0,
1
8
}.

In this work, we prove that this strategy is �complete�; that is, it can always prove the robustness
of R⊗C, provided that R⊗C is indeed robust. We prove this by showing that if the code is robust
and for a matrix M it holds that ρ(M) is small, then there exists a large rectangle on which MR

and MC agree.
More formally, consider the following two conditions on a tensor product of codes:
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1. There exists α0 such that for every matrix M that satis�es ρ(M) < α0 there exist sets
U ⊆ [n], V ⊆ [m] of sizes |U | > (1− 1

2
δC)n, |V | > (1− 1

2
δR)m such that MR and MC agree

on every coordinate in U × V .

2. There exists α such that R⊗ C is α-robust.

The following theorem, which says that Condition 1 implies Condition 2, is already known.

Theorem 3.1. If Condition 1 holds with a given value of α0, then Condition 2 holds with α
def
=

min{α0,
1
8
}.

The possible novelty of this work is the following theorem, which says that Condition 2 implies
Condition 1, and therefore those conditions are equivalent.

Theorem 3.2. If Condition 2 holds with a given value of α, then Condition 1 holds with α0
def
=

1
6
· δR · δC · α.

We prove Theorem 3.2 in Section 4. For the sake of completeness, we also include the proof of
Theorem 3.1 in Section 5

4 Proving that a large rectangle can always be found

In this section, we prove Theorem 3.2. That is, we prove that if R ⊗ C is robust, then for every
matrix M whose rows and columns are su�ciently close to R and C respectively, there exists a
large rectangle on which MR and MC agree. The proof proceeds in two steps: We �rst show that
given M as above, it holds that M = MR = MC (see Claim 4.1). We then show that this implies
the existence of a large rectangle, thus proving Theorem 3.2: The idea that underlies the proof of
Theorem 3.2 is that the equality M = MR = MC implies that MR and MC must be very close to
M . ThusMR andM must agree on many rows, andMC andM must agree on many columns. We
can therefore choose the rectangle to be the intersection of the rows on which MR and M agree
with the columns on which MC and M agree.

Claim 4.1. Suppose that R ⊗ C is α-robust, and let α0
def
= 1

6
· δR · δC · α. Then, for every matrix

M that satis�es ρ(M) < α0, it holds that M = MR = MC.

Proof. We only prove that if ρ(M) < α0 then M = MR, and the proof that M = MC is similar.
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We have the following:

δ(M,MR) ≤ δ(M,M) + δ(M,MR) + δ(MR,MR)

(By de�nition of δrow) = δR⊗C(M) + δrow(M) + δR⊗C(MR)

(Since R⊗ Cis α-robust) ≤ 1

α
· ρ(M) + δrow(M) +

1

α
· ρ(MR)

(By Fact 2.2) ≤ 1

α
· ρ(M) + 2 · ρ(M) +

1

α
· ρ(MR)

(By Fact 2.4) ≤ 1

α
· ρ(M) + 2 · ρ(M) +

3

α
· ρ(M)

=

(
2 +

4

α

)
· ρ(M)

<

(
2 +

4

α

)
· α0

Now, observe that
(
2 + 4

α

)
· α0 ≤ δR · δC . Thus, M and MR are codewords of R ⊗ C whose

relative distance is less than the relative distance of R ⊗ C, which is δR · δC . It therefore holds
that M = MR. �

We turn to prove Theorem 3.2, restated below.

Theorem (3.2, restated). Suppose that R⊗C is α-robust, and let α0
def
= 1

6
·δR·δC ·α. Then, for every

matrix M that satis�es ρ(M) < α0, there exist sets U ⊆ [n], V ⊆ [m] of sizes |U | > (1 − 1
2
δC)n,

|V | > (1− 1
2
δR)m, such that MR and MC agree on every coordinate in U × V , and .

Proof of Theorem 3.2 Let M be such that ρ(M) < α0, so by Claim 4.1 it holds that M =
MR = MC . We �rst observe that this implies that M and MR are close, since

δ(MR,M) = δ(MR,MR)

= δR⊗C(MR)

(Since R⊗ Cis α-robust) ≤ 1

α
· ρ(MR)

(By Fact 2.4) ≤ 3

α
· ρ(M)

<
1

2
· δR · δC

Furthermore, every row of MR and every row of M are codewords of R, and therefore every
row of MR is either equal to the corresponding row of M or they di�er on at least δR-fraction of
the coordinates. It follows that MR and M must agree on more than

(
1− 1

2
δC

)
-fraction of the
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rows, or otherwise they would disagree on 1
2
· δR · δC of the coordinates. Similarly, it can be shown

MC and M must agree on more than
(
1− 1

2
δR

)
-fraction of the columns. Now take U to be the

set of rows on which MR agrees with M , and take V to be the set of columns on which MC agrees
with M . We have that MR and MC both agree with M on U × V , and therefore they agree with
each other on U × V . �

5 Proving that a large rectangle implies robustness

For completeness, we review the proof (originally given in [DSW06]) of Theorem 3.1, which says
that the existence of a large rectangle implies robustness. In order to prove the theorem, it su�ces
to prove the following result.

Proposition 5.1. Let M be matrix and suppose there exist U ⊆ [n],V ⊆ [m] of sizes |U | >
(1 − 1

2
δC)n, |V | > (1 − 1

2
δR)m, such that MR and MC agree on the coordinates in U × V . Then,

δR⊗C(M) < 8 · ρ(M).

The rest of this section is devoted to proving Proposition 5.1. Let M be as in the proposition.

Claim 5.2. There exists a codeword N ∈ R⊗ C that agrees with MR and MC on U × V .

Proof. Let R′ and C ′ denote the codes obtained from projecting the codewords of R,C to the
coordinates in V and U respectively, and let ΠR : R→ R′ and ΠC : C → C ′ be the corresponding
projections. Observe that ΠR is a bijection: ΠR is surjective by the de�nition of R′. As for showing
that ΠR is injective, note that if two codewords of R are projected to the same codeword of R′,
then they must agree on more than

(
1− 1

2
δR

)
of the coordinates and therefore must be equal.

Similarly, it can be shown that ΠC is a bijection.
Let M ′ denote the matrix obtained by projecting MR or MC to U × V (Since the two matrices

agree on U × V , the matrix M ′ is well de�ned). Observe that M ′ is a codeword of R′ ⊗C ′. Next,
let M ′′ be the matrix obtained by applying Π−1

R to each row of M ′, and observe that M ′′ is a
codeword of R ⊗ C ′ that agrees with M ′ on U ⊗ V . Finally, let N be the matrix obtained by
applying Π−1

C to each column of M ′′, and observe that N is a codeword of R⊗C that agrees with
M ′ on U ⊗ V . Therefore, N is the required codeword of R⊗ C. �

Claim 5.3 ([DSW06]). δ(MR, N) = δcol(MR).

Proof. We show that for each i ∈ [m], the codeword of C that is closest to the i-th column of MR

is the i-th column of N , and this will imply the required equality. For each row, MR and N either
agree on it or di�er on at least δR-fraction of its coordinates. Since we know N and MR agree on
U × V , they must agree on all the rows in U . This implies that in every column, MR and N agree
on more than

(
1− 1

2
δC

)
-fraction of the coordinates, and therefore the decoding of each column of
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MR to the nearest codeword of C must result in the corresponding column of N . That is, we have
that (MR)C = N . It follows that δ(MR, N) = δcol(MR), as required. �

Proof of Proposition 5.1. It holds that

δ(M,N) ≤ δ(M,MR) + δ(MR, N)

(By De�nition of δrow) = δrow(M) + δ(MR, N)

(By Claim 5.3) = δrow(M) + δcol(MR)

(By Fact 2.2) ≤ 2ρ(M) + 2ρ(MR)

(By Fact 2.4) ≤ 2ρ(M) + 6ρ(M)

= 8ρ(M)

The proposition follows. �
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