Electronic Colloquium on Computational Complexity, Report No. 62 (2007)

The Tensor Product of Two Good Codes Is Not Necessarily
Robustly Testable*

Oded Goldreichf Or Meir?
July 2007

Abstract

Given two codes R, C, their tensor product R ® C' consists of all matrices whose rows are
codewords of R and whose columns are codewords of C. The product R ® C is said to be
robust if for every matrix M that is far from R ® C' it holds that the rows and columns of
M are far from R and C respectively. Ben-Sasson and Sudan (ECCC TR04-046) have asked
under which conditions the product R ® C' is robust.

Paul Valiant (APPROX-RANDOM 2005) gave an example of two linear codes with con-
stant relative distance whose tensor product is not robust. However, one of those codes has
a sub-constant rate. We show that this example can be modified so that both codes have
constant rate and relative distance.

1 Introduction

An error correcting code is said to be locally testable if there is a test that can check whether a
given string is a codeword of the code, or rather far from the code, by reading only a constant
number of symbols of the string. Locally Testable Codes (LTCs) were first explicitly studied by
Goldreich and Sudan [4] and since then few constructions of LTCs were suggested (See [3] for a
survey of those constructions).

Eli Ben-Sassson and Madhu Sudan [1] suggested using the tensor product operation for the
construction of LTCs. Given two codes R, (', their tensor product R ® C' consists of all matrices
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whose rows are codewords of R and whose columns are codewords of C'. If R and C are locally
testable, we would like R ® C to be locally testable. Ben-Sasson and Sudan suggested using the
following test for testing the tensor product R ® C.

The Row/Column Test Choose a random row (or column) and accept iff it is a codeword of
R (C, respectively).

In order to study the conditions under which R ® C' is locally testable, Ben-Sasson and Sudan
introduced the notion of “robust” tensor product. The tensor product R ® C' is said to be robust
if for every matrix M that is far from R ® C' it holds that the rows and coluns of M are far from
R and C respectively. It is not hard to see that if both R and C' are locally testable and R ® C'is
robust then R ® C' is locally testable.

This gives rise to the question in which cases the tensor product is robust. Paul Valiant gave an
example of two linear codes whose tensor product is not robust [6], and his example was extended
in [2]. However, in the example of Valiant, one of the codes is of sub-constant rate. In this note,
we show that the example of Valiant can be changed so that both codes have constant rate. Using
Theorem 2 of [2], it follows that there exists a linear code of constant rate and relative distance,
whose tensor product with itself is not robust.

We also give a new proof for the correctness of Valiant’s example, that gives a new intuition for
why this example works. Our proof is based on the reverse direction of the “Rectangle Method”
presented by Meir [5].

2 Preliminaries

Let R,C' denote binary linear codes with block lengths m,n and relative distances dg,dc. The
Tensor Product R C C {0,1}"™ is the linear code that consists of all the binary n x m matrices
whose rows are codewords of R and whose columns are codewords of C'.

For any binary n x m matrix M we denote by 6(M) the relative distance of M to R® C. We
also denote by drow (M) the average relative distance of a row of M to R, and define 0] similarly.

Finally, we denote by p(M) the average of drow (M), 6.,1(M), that is

oy = 0 00

We say that R ® C' is a-robust if for every M it holds that p(M) > « - §(M).
In this note we show an example of codes C7,(Cy with constant rate and constant relative
distance such that C; ® C is not a-robust for any constant a.



3 The codes

Let C,C, be two random linear codes with parameters (with high probability) [n, k= %n, d= ﬁn} )
for n that is divisible by 100. Let Gy, G, be their generating matrices. Let H = G1 G,. We claim
that H has rank k: On one hand, the columns of H are linear combinations of rows of G, so
its rank can be at most k. On the other hand, both G| and G, are matrices of rank £ and have
k rows, so each of them contains a full rank k x k submatrix, denote those submatrices K, K,
respectively. Now, note that K K, is a submatrix of Gf G,, so the rank of H is at least k. It
follows that the rank of H is exactly k, and the columns of H therefore span C}.

Let H'° be the n x 10n matrix that consists of 10 consecutive copies of H and let I'° be the
n-rank identity matrix with each column duplicated to appear 10 times consecutively. That is, I
is a matrix of the form

([ 19 19
11 10 0 0 00 0
00 0 11 100 0

241 00 000 0 :

: : 00 ...0
000000 0 0 11 1
\

We define the code Cy to be the space spanned by the rows of Gy = H + I'°. We show that C,
has a constant rate and constant relative distance and that Cy ® C is not robust.

4 Required properties

The dual code of C; is a random linear code with rate %, and since % <1—-H (Wlo) it follows that
with high probability this dual has distance d = ﬁn.

Let S be the set of n-bit vectors that consist of {5 “homogenous” blocks of 10 bits. By “ho-
mogenous” we mean that in each block all the bits are equal. Formally:

S = {LU c {0, 1}” V0O<i < %, 1 Sj < 10, T10i+5 — xlOi—l—j—I—l}
Note that the zero vector is in S.
1

We show that with high probability any nonzero codeword of Cj is 55-far from S. For any
v € {0,1}*, observe that vG, is a uniformly distributed vector in {0,1}" over random choices of



G,. We denote by B, (s,d) the Hamming Ball with center s and radius d in {0, 1}" and note that

PrlA(vGy, 8) <d] < > Pr[A(vGy,s) <d|

Q
(]
’[\3_‘
=
L
=

By the union bound we obtain that
gr [A(C\{0},5) < d] < |Gyl -27%%" = 2k=08n — 9=0.0n

And thus with high probability C,\{0} is 55-far from S.

5 The rate of (5

We shall show that the rank of (G5 is at least k, and therefore the rate of (5 is at least % (since
(5 has block length 10n). Recall that H has rank k (see Section 3), and therefore so does H'°. Tt
follows that there are k independent rows of H'°. Let I denote the indices of those rows.

Take any m < k rows wy, ..., w,, of G5 whose indices are in I. For each ¢ we write w; = u; + v;
where u; and v; are rows of H'? and I'° respectively. Recall that uy, ..., u,, are independent, since
they were chosen in /. We have that

i=1 i=1 i=1
We make the following observations:
1. Each row of H is a codeword of Cj,.

2. Each row u; of H'® consists of 10 consecutive copies of a row of H, denote it u}. Thus, the
left summand ()", u;) consists of 10 consecutive copies of v = (>".", u}). Note that u’ is
a codeword of Cy, and that it is non-zero because the rows w4, ..., u,, are independent.
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3. Every row of I'° consists of 10 blocks of length n, each of which is an element of S. Clearly,
S is closed under addition, and therefore every linear combination of rows of % is a con-
catenation of 10 elements of S. In particular, the right summand ()", v;) is concatenation
of 10 elements of S.

4. Tt follows that the sum (D" w;) consists of 10 blocks of length n, each of which is the sum
of ' and an element of S. Since «’ is a non-zero codeword of Cy, the sum of v with an
element of S can not be zero (see Section 4) and therefore (3 .", w;) is non-zero.

This implies that the rows of G5 whose indices are in I are independent, so GG has rank at least k.

6 The distance of (5

We shall show that the distance of C5 is at least 10d, so its relative distance is ﬁ. Let ¢ = vGy
be any nonzero codeword of C5. If vH = 0, then since the columns of H span ', it must be that
v is a codeword of the dual of C;. Thus the weight of v must be at least d (see Section 4) and so
vGy = vI'% must have weight of at least 10d.

Suppose that vH # 0, and let us denote x = vH. We proceed as in the analysis of the rate of

C5: Observe that

1. z is a codeword of G|.
2. vH1' is a concatenation of 10 copies of x

3. vI!¥ is the concatenation of 10 elements of S.

It follows that ¢ = vH' +vI!° consists of 10 blocks, each of them is the sum of z with an element
of S. The string x is a non-zero codeword of Cy, so by Section 4 it differs on at least d coordinates
from every element of S. It follows that the weight of ¢ is at least 10d.

7 The non-robustness of Cs ® C

In this section we review the proof of Paul Valiant to the non-robustness of Cy ® C';. We now
consider (G5 as a n x 10n matrix, which is not a codeword of Cy ® C'1, and show that that it is far
from C5 ® C while its rows and columns are close to Cy and C;. That is, G5 is a counter-example
to the robustness of Cy ® C.

Every row of G is a codeword of Cy, so drow(G2) = 0. Furthermore, every column of H!Y =
Gy — I}V is a codeword of C1, 50 8.4](G2) = =. We thus have that p(G) < 5-.



Claim 7.1

Proof Consider an arbitrary M € Cy; ® C. Every row of Gy — M is a codeword of C5. Fur-
thermore, each column of Gy — I'° — M is a codeword of C, so the rank of Gy — I'° — M is at
most k. This implies that the rank of Gy — M must be at least n — k: Otherwise, the rank of
—I% = (Gy — I!° — M) + (M — G3) would have been less than n (since rank is sub-additive and
the ranks of Gy — M and M — G, are equal).

Thus, there are at least n — k non-zero rows in G5 — M, each of which is a codeword of C5. Each
of those non-zero rows of Gy — M has weight of at least d. It follows that A(Gsy, M) > (n—k)d, so

: (n—k)d
= >
0(Go) MECHBCh {0(G2 M)} 2 10n2
As required. |
This implies that Cy ® C is at most a(n)-robust for
10n on 2500
a(n) = = <
2(n —k)d %n . Wlon n

which is sub-constant.

8 Alternative proof for the non-robustness of C; ® (

We give an alternative proof that Co®C) is not robust, (See Section 5 of [5]). For any nx10n matrix
M, let Mg denote the matrix obtained from decoding every row of M to nearest codeword of (5,
and let M be defined similarly for the columns and C;. Suppose that C5 ® C] is a-rboust. Then
for ag = %501 dc,« and for every matrix M that satisfies p(M) < ag we have that Mgz and M agree
on the coordinates in a rectangle U x V, where U C [n], V C [10n], [U| > (1 — 15) - n = 0.99n,
V| > (1 - 15) -n=29.9n. We call such rectangle large.

Claim 8.1. There is no large rectangle U x V' on which (Gs3), and (Gs). agree.

Proof Let U and V the sets such that U x V' is a large rectangle. Observe that (G3), = G2 and
(Go)p = H'O =Gy — 1'%, s0 (G2)p — (G2) = I,°. We show that I” has an entry with value 1 in
UxV.

We know that every column of I'° contains exactly one entry with value 1, so the total number
of entries with value 1 contained in the columns of V is [V|. We also know that every row of I°
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contains exactly ten entries with value 1, so there are at least % |V | rows that contain 1’s in their
intersection with V. Now, note that - [V'| > n — |U], and thus the rows containing entries with
value 1 in their intersection with V can not all be in [n] \U. It follows that I'° has 1 on at least
one of the coordinates in U x V| as required. [

Using Claim 8.1, it is straightforward to show that Cy @ C is not robust. However, the
quantative bound we get for the robustness of Cy ® C is little weaker from the one we get in
Section 7. We write the details below, so the bounds can be compared.

Claim 8.2. Cy ® C} is at most o(n)-robust for a(n) = 2229
Proof Suppose that Cy ® C is a-robust for a > 220 Tt follows that for

s 5 g1, 1 1 30000 1
609 75700 100 0 2n

Qp —

we have that for any matrix M that satisfies p(M) < «ag we have that Mg and Mo agree on a
large rectangle. Recall that p(Gs) = 5= < a, so it follows that (Gs), and (G»). agree on a large
rectangle, contradicting Claim 8.1. |

We comment that the bound derived in Claim 8.2 is not optimal. A stronger bound can be
derived by analyzing more carefully the relative distance of C; and Cj.
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