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Abstract

Given two codes R,C, their tensor product R⊗C consists of all matrices whose rows are

codewords of R and whose columns are codewords of C. The product R ⊗ C is said to be

robust if for every matrix M that is far from R ⊗ C it holds that the rows and columns of

M are far from R and C respectively. Ben-Sasson and Sudan (ECCC TR04-046) have asked

under which conditions the product R⊗ C is robust.

Paul Valiant (APPROX-RANDOM 2005) constructed two linear codes with constant rel-

ative distance whose tensor product is not robust. However, one of those codes has a sub-

constant rate. We show that this construction can be modi�ed such that both codes have

both constant rate and constant relative distance. We also provide an alternative proof for the

non-robustness of the tensor product of the codes of Valiant, based on the inverse direction

of the �rectangle method� that was presented by the second author (ECCC TR07-061). We

believe that this proof gives an additional intuition for why this construction works.

1 Introduction

An error correcting code is said to be locally testable if there is a test that can check whether a
given string is a codeword of the code, or rather far from the code, by reading only a constant
number of symbols of the string. Locally Testable Codes (LTCs) were �rst systematically studied
by Goldreich and Sudan [GS06] and since then several constructions of LTCs were suggested
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(See [Gol05] for an extensive survey of some constructions, as well as [Din07, BSS08, Mei09] for a
few later constructions).

Ben-Sassson and Sudan [BSS06] suggested using the tensor product operation for the construc-
tion of LTCs. Given two linear error correcting codes R,C, their tensor product R⊗C is the code
that consists of all matrices whose rows are codewords of R and whose columns are codewords of
C. If R and C are locally testable, we would like R⊗ C to be locally testable. [BSS06] suggested
using the following test for testing the tensor product R⊗ C.

The Row/Column Test. Choose a random row (or column) and accept i� it is a codeword of
R (C, respectively).

In order to study the conditions under which R⊗C is locally testable, Ben-Sasson and Sudan
introduced the notion of �robust� tensor product (which is a special case of the notion of robustness
of [BSGH+06, DR06]). The tensor product R⊗C is said to be robust if, for every matrix M that
is far from R ⊗ C, it holds that the rows and coluns of M are far from R and C respectively. It
is not hard to see that if both R and C are locally testable, and R ⊗ C is robust, then R ⊗ C is
locally testable.

This gives rise to the question in which cases the tensor product is robust. Paul Valiant
[Val05] constructed two linear codes whose tensor product is not robust, and this construction was
extended in [CR05]. However, one of the codes constructed by [Val05] has sub-constant rate. In
this note, we show the construction of [Val05] can be modi�ed such that both codes have constant
rate. Using Theorem 2 of [CR05], it follows that there exists a linear code of constant rate and
relative distance, whose tensor product with itself is not robust.

In addition, we provide an alternative proof for the non-robustness of the tensor product of the
codes of [Val05]. We believe that our alternative proof gives an additional intuition for why this
construction works. Our proof is based on the inverse direction of the �rectangle method� that was
presented in [Mei07].

Organization. The rest of this work is organized as follows. In Section 2, we provide the required
preliminaries. In Section 3, we describe our construction of the aforementioned codes, and show
that they have the required rate and relative distance. In Section 4, we adapt the proof of [Val05]
to show that the tensor product of our codes is not robust. Finally, In Section 5, we provide the
alternative proof that the tensor product of our codes is not robust.

2 Preliminaries

For any two binary strings x, y of the same length, we denote by δ(x, y) the relative Hamming
distance between x and y. We say that x and y are τ -close if δ(x, y) ≤ τ , and otherwise we say
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that they are τ -far.

2.1 Error Correcting Codes

We review the basics of error correcting codes [MS88]. A linear code C is linear subspace of {0, 1}n,
where n is called the block length of C. The vectors of C are called codewords. The code C has
relative distance δC if for any two distinct codewords c1 6= c2 ∈ C it holds that δ(c1, c2) ≥ δC . It
is well-known that C has relative distance δC if and only if every non-zero codeword c ∈ C has at
least δC fraction of non-zero coordinates.

A generator matrix for C is a matrix G whose rows form a basis of C. The dual code C⊥ is the
code de�ned by

C⊥
def
= {v : 〈v, c〉 = 0 for every c ∈ C}

where the inner product is over GF(2).
We are usually interested in in�nite families of codes. An in�nite family of codes C = {Ck}k is

an in�nite sequence of codes such that the code Ck has dimension k. We say that the family C
has block length n(k) (where n : N → N) if the code Ck has block length n(k) for every k, and
say that the family has rate rC (for rC ∈ (0, 1)) if for every k it holds that k

n(k)
≥ rC . Finally,

the family C has relative distance δC (for δC ∈ (0, 1)) if for every k it holds that Ck has relative
distance at least δC .

2.2 Tensor Product Codes

Let R,C denote linear codes with block lengthsm,n and relative distances δR, δC respectively. The
tensor product R ⊗ C ⊆ {0, 1}n·m is the linear code that consists of all the binary n×m matrices
whose rows are codewords of R and whose columns are codewords of C. It is well known that the
relative distance of R⊗ C is δR · δC .

For any binary n×m matrix M , we denote by δR⊗C(M) the relative distance of M to R⊗C.
We also denote by δrow(M) the average relative distance of a row of M to R, and de�ne δcol
similarly. Finally, we denote by ρ(M) the average of δrow(M) and δcol(M), that is,

ρ(M)
def
=
δrow(M) + δcol(M)

2

We can now state the de�nition of robustness.

De�nition 2.1. We say that R⊗C is α-robust if for every M it holds that ρ(M) ≥ α · δR⊗C(M).

Now, let R = {Rk}kC = {Ck}k be two in�nite families of codes. We say that the in�nite family
{Rk ⊗ Ck}k is α-robust (for α ∈ (0, 1)) if for every k ∈ N it holds that Rk ⊗ Ck is α-robust.
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3 The codes

Our main result in this work is the following.

Theorem 3.1. There exists two in�nite families of codes R = {Rk}kC = {Ck}k such that both
R and C have rate and relative distance at least 1

1000
, but the in�nite family {Rk ⊗ Ck}k is not

α-robust for any constant α ∈ (0, 1).

Fix k ∈ N. The rest of this section is devoted to describing the construction of the codes Rk

and Ck, and establishing their rate and relative distance. We will show that the in�nite family
{Rk ⊗ Ck}k is not α-robust for any constant α ∈ (0, 1) in Sections 4 and 5.

With a slight abuse of notation, we abbreviate R
def
= Rk and C

def
= Ck. Let n

def
= 100 · k. We

choose the code C to be an arbitrary code with dimension k, block length n, and relative distance
at least 1/100, such that the dual code C⊥ has relative distance at least 1/100 as well. The
existence of such code existence can be established rather easily using the probabilistic method.
In order to construct the code Rm we de�ne some additional notation.

Notation 3.2. Let S ⊆ {0, 1}n be the set of vectors that consist of n
10

�homogenous� blocks of 10
bits (recall that n is divisible by 10). By �homogenous� we mean that in each block all the bits
are equal.

In order to construct the code R, we use the following code D, whose existence can be estab-
lished rather easily using the probabilistic method.

Fact 3.3. There exists a code D with dimension k and block length n, such that every non-zero
codeword of D is 1

100
-far from every vector in S.

Now, let GC and GD be k × n generator matrices of C and D respectively. We de�ne J
def
=

GT
C ·GD. Let J

10 be the n× 10n matrix that consists of 10 consecutive copies of J and let I10
n be

the n-rank identity matrix with each column duplicated to appear 10 times consecutively. That
is, I10

n is a matrix of the form

n





10︷ ︸︸ ︷
1 1 . . . 1
0 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 0 0

10︷ ︸︸ ︷
0 0 . . . 0
1 1 . . . 1
0 0 . . . 0
...

...
...

...
0 0 0 0

. . .

10︷ ︸︸ ︷
0 0 . . . 0
0 0 . . . 0
...

...
...

...
0 0 . . . 0
1 1 . . . 1


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We de�ne the code R to be the space spanned by the rows of the matrixM = J10 +I10
n . It remains

to show that R has dimension k and relative distance at least 1/1000. We will actually show a
better bound, namely, that R has relative distance at least 1/100. The following two claim and
corollaries will be useful for both ends.

Claim 3.4. The matrix J has rank k.

Proof. On one hand, the columns of J are linear combinations of rows of GC , so its rank can be
at most k. On the other hand, both GC and GD are matrices of rank k and have k rows, so each of
them contains a full rank k×k submatrix, denote those submatrices KC , KD respectively. Observe
that the matrix KT

C ·KD has full rank, i.e., has rank k. Now, note that KT
C ·KD is a submatrix of

GT
C ·GD, so the rank of J is at least k. It follows that the rank of J is exactly k. �

Corollary 3.5. The columns of J span the code C.

Proof. The corollary follows immediately from the facts that the columns of J are linear combi-
nations of rows of GC and that J has rank k. �

Corollary 3.6. The matrix J10 has rank k.

3.1 The dimension of R

We �rst show that R has dimension k. Since J10 has rank k, it has k independent rows u1, . . . , uk ∈
{0, 1}10n. Let w1, . . . , wk be the corresponding rows of M , and let v1, . . . , vk be the corresponding
rows of I10

n . We prove that the rows w1, . . . , wk of M are linearly independent, and this will imply
that R has dimension at least k (since R is spanned by the rows of M).

Let wi1 , . . . , wim for m ≤ k be a subset of w1, . . . , wk. We show that the sum wi1 , . . . , wim is
non-zero. Since this will hold for any choice of wi1 , . . . , wim , this will show that w1, . . . , wk are
independent. We �rst observe that

m∑
j=1

wij =
m∑

j=1

uij +
m∑

j=1

vij

We now make two observations:

Claim 3.7. The sum
∑m

j=1 uij consists of 10 concatenated copies of a non-zero codeword of the
code D.

Claim 3.8. The sum
∑m

j=1 vij consists of 10 concatenated vectors from the set S.
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Since by Fact 3.3, every non-zero codeword of D is 1/100-far from every vector in S, it holds
that the sum

m∑
j=1

wij =
m∑

j=1

uij +
m∑

j=1

vij

has 1/100 fraction of non-zero coordinates, and in particular it is a non-zero vector, as required.
It remains to prove Claims 3.7 and 3.8. The proof of Claim 3.8 is trivial. To see that Claim 3.7
holds, observe that:

1. Every row of J
def
= GT

C ·GD is a linear combination of rows of GD.

2. Therefore, every row of J is a codeword of D.

3. Hence, every row of J10 consists of 10 concatenated copies of a codeword of D.

This concludes the proof that R has dimension k.

3.2 The distance of C2

We show that every non-zero codeword of R has at least 1/100 fraction of non-zero coordinates,
and this will imply that R has relative distance at least 1/100. Let c be any nonzero codeword
of R. Since R is spanned by the rows of M , there exists a non-zero vector v ∈ {0, 1}n such that
c = v ·M . Now, recall that M = J10 + I10

n . We consider two cases: the case where v · J10 = 0, and
the case where v · J10 6= 0.

The case where v · J10 = 0. If v · J10 = 0, then in particular it holds that v · J = 0. Recall that
by Corollary 3.5, the columns of J span C. Thus, the assumtion that v · J = 0 implies that v is
orthogonal to all the codewords in C, or in other words, v ∈ C⊥.

Since, by assumption, C⊥ has relative distance at least 1/100, it follows that v has at least
1/100 fraction of non-zero coordinates. This implies, in turn, that v ·I10

n has at least 1/100 fraction
of non-zero coordinates. Finally, it holds that

c = v ·M = v · J10 + v · I10
n = v · I10

n ,

and therefore c has 1/100 fraction of non-zero coordinates, as required.

The case where v · J10 6= 0. Denote d
def
= v · J . We proceed as in the proof that C2 has

dimension k. Observe that

1. d is a non-zero codeword of D.
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2. v · J10 is a concatenation of 10 copies of d

3. v · I10
n is the concatenation of 10 elements of S.

It follows that
c = v ·M = v · J10 + v · I10

n

consists of 10 blocks, each of them is the sum of d with an element of S. Since d is a non-zero
codeword of D, so by Fact 3.3 it holds that d is 1/100 far from every vector of S. It follows that
c has at least 1/100 fraction of non-zero coordinates..

4 The non-robustness of R⊗ C
In this section, we prove that R⊗ C is not α-robust for any constant α ∈ (0, 1) using a variant of
the proof of [Val05]. To this end, we show that the matrix M that was constructed as part of the
de�nition of R in Section 3 is a counter-example to the robustness of R⊗C. In other words, M is
a n× 10n matrix that it is far from R ⊗ C, while the rows and columns of M are close to R and
C.

Every row of M is a codeword of R, so δrow(M) = 0. Furthermore, every column of J10 =
M − I10

n is a codeword of C, so δcol(M) = 1
n
. We thus have that ρ(G2) ≤ 1

2n
. We now observe the

following.

Claim 4.1. It holds that

δR⊗C(M) ≥ 99

100
Proof. Consider an arbitrary N ∈ R⊗C. Every row of M −N is a codeword of R. Furthermore,
each column of M − I10

n − N is a codeword of C, so the rank of M − I10
n − N is at most k.

This implies that the rank of M − N must be at least n − k: Otherwise, the rank of −I10
n =

(M − I10
n −N) + (N −M) would have been less than n (since rank is sub-additive and the ranks

of M −N and N −M are equal).
Thus, there are at least n−k non-zero rows in M −N , each of which is a codeword of R. Each

of those non-zero rows of M −N has at least 1/100 fraction of non-zero coordinates, i.e., at least
n/10 non-zero coordinates. It follows that M and N di�er on at least (n− k) · n/10 coordinates,
so

δR⊗C(M) = min
N∈R⊗C

{δ (M,N)} ≥ (n− k) · n/10

10n2
≥ 99

100
,

as required. �

It follows that

ρ(M) ≤ 100

198 · n
· δR⊗C(M),

and therefore R⊗ C is not α-robust for any constant α ∈ (0, 1).
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5 An alternative proof for the non-robustness of R⊗ C
In this section, we prove that R⊗C is not α-robust for any constant α ∈ (0, 1) using the rectangle
method of [Mei07]. For any n× 10n matrix N , let NR denote the matrix obtained from decoding
every row of N to nearest codeword of R, and let NC be de�ned similarly for the columns and C.
We say that NR and NC agree on a large rectangle if there exist sets U ⊆ [n], V ⊆ [10n] such that
|U | ≥ 0.99 · n, |V | ≥ 9.9 · n, and such that NR and NC agree on all the entries in U × V . The
following fact is a corollary of [Mei07].

Fact 5.1. R ⊗ C is α-robust only if for every n× 10n matrix N that satis�es ρ(M) < 1
60000

· α it
holds that NR and NC agree on a large rectangle.

Thus, in order to prove that R ⊗ C is not α-robust for every constant α ∈ (0, 1), it su�ces to
prove that for every constant α0 ∈ (0, 1) there exists a matrix N with ρ(N) ≤ α0 such that NR

and NC do not agree on a large rectangle. As in Section 4, the matrix N we will use will be the
matrix M that was constructed as part of the de�nition of R in Section 3. Recall that ρ(M) ≤ 1

2n
.

We now prove the following claim, which will conclude the proof that R⊗ C is not α-robust.

Claim 5.2. MR and MC do not agree on a large rectangle.

Proof. Let U and V be sets such that |U | ≥ 0.99 · n, |V | ≥ 9.9 · n. Observe that MR = M and
MC = J10 = M − I10

n , so MR −MC = I10
n . We show that I10

n has an entry with value 1 in U × V ,
and therefore MR and MC do not agree on U × V .

We know that every column of I10
n contains exactly one entry with value 1, so the total number

of entries with value 1 contained in the columns of V is |V |. We also know that every row of I10
n

contains exactly ten entries with value 1, so there are at least 1
10
|V | rows that contain 1's in their

intersection with V . Now, note that 1
10
|V | > n − |U |, and thus the rows containing entries with

value 1 in their intersection with V can not all be in [n] \U . It follows that I10
n has 1 on at least

one of the coordinates in U × V , as required. �
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