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Abstract

A basic question in complexity theory is whether the computational resources required for solving k
independent instances of the same problem scale as k times the resources required for one instance. We
investigate this question in various models of classical communication complexity.

We define a new measure, the subdistribution bound , which is a generalization of the well-studied
rectangle or corruption bound in communication complexity. We prove that the one-way version of this
bound tightly captures the one-way public-coin randomized communication complexity of any relation.
More importantly, we show that the bound satisfies the strong direct product property under product
distributions, for both one- and two-way communication. This way we recover and generalize, in one
shot, several recent results on the direct product question, including those due to Klauck et al. [KvdW04],
Beame et al. [BPSW07], Gavinsky [Gav06], and de Wolf [dW06].

The simplicity and broad applicability of our technique is perhaps an indication of its potential to
solve yet more challenging questions regarding the direct product problem.
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1 Introduction

Consider two parties, Alice and Bob, who wish to communicate (classically) to solve several instances of
the same computational problem. The problem is modeled as a relation f ⊆ X ×Y ×Z, and Alice receives
an input x ∈ X , and Bob an input y ∈ Y. The goal is to find an element z ∈ Z that satisfies the
relation, i.e., z is such that (x, y, z) ∈ f . Given a communication protocol to solve f , a straightforward
method for solving k instances of f is to run the protocol independently on each problem instance. This
method has complexity that scales as k times the complexity of the original protocol. Moreover, when the
protocol is randomized, and is guaranteed to succeed with probability at least 2/3, then the probability
of simultaneously succeeding on all k instances is only guaranteed to be at least (2/3)k. A basic question
in complexity theory is whether this method of solution is essentially optimal. A proof of its optimality is
called a strong direct product theorem.

Direct product results and their variants appear in many different areas of complexity theory, ranging from
hardness amplification in the theory of pseudo-randomness (see, e.g., [GNW95]), to parallel repetition
in interactive proof systems (see, e.g., [Raz98, CSUU07]), to time-space tradeoffs in concrete models of
computation (for some recent examples, see [Aar04, KvdW04]).

Although they seem highly plausible, it is well-known that strong direct product results fail to hold for sev-
eral modes of communication and computation. We concentrate on the setting of communication complex-
ity. For example, testing the equality of k = log n pairs of n-bit strings with a constant-error private-coin
communication protocol has complexity O(k log k + log n) = O(log n log log n) (see, e.g., [KN97, Exam-
ple 4.3, page 43]), where we might expect a complexity of Ω(k log n) = Ω(log2 n). Similarly, Shaltiel [Sha03]
gives an example for which a strong direct product result fails to hold for average case (i.e., distributional)
communication complexity.

Notwithstanding the abovementioned counterexamples, various forms of direct product result have been
discovered in special cases. Early attempts at the question can be found in [IRW94], and the references
therein. Parnafes, Raz, and Wigderson [PRW97] prove a direct product result for “collections” of protocols.
In their result the bound on the success probability, however, is only shown to behave like 2−Ω(k/c) for
the communication complexity c of the problem at hand. Shaltiel [Sha03] proves a strong direct product
property in cases where the discrepancy method is used under the uniform distribution; Klauck, Špalek,
and de Wolf [KvdW04] prove it for the quantum communication complexity of Set Disjointness; Beame,
Pitassi, Segerlind, and Wigderson [BPSW07] prove it in cases where the rectangle or corruption bound is
tight under product distributions; and Gavinsky [Gav06] proves it for the one-way complexity of a certain
class of relational problems. The result by Beame et al. for instance allows the conclusion that solving
k instances of Set Disjointness with communication complexity o(k

√
n) has success probability 2−Ω(k).

Recently, de Wolf [dW06] proved a strong direct product theorem for the one-way public-coin randomized
communication complexity of the Index function. This can also be used to handle the one-way complexity
of Set Disjointness via a reduction.

Whether the strong direct product theorem holds in general for public-coin randomized protocols remains
a frustrating open question in communication complexity theory. Research on weaker types of property,
namely the direct sum or the weak direct product property, has met with better success.

A direct sum theorem states that solving k instances with constant probability of success incurs at least
k times the cost of solving 1 instance. (A strong direct product theorem would show that even with
probability of success that is exponentially small in k, the cost would be k times the cost of solving one
instance.) Direct sum results have met with better success than general strong direct product theorems.

For deterministic protocols it is known that k times the square root of the deterministic complexity of a
function f is needed to compute k instances of f (see, e.g., [KN97, Exercise 4.11, page 46]). It is also
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straightforward to show that the deterministic one-way communication complexity of every function f has
the direct sum property. For randomized protocols, Chakrabarti, Shi, Wirth, and Yao [CSWY01] give a
lower bound for the direct sum problem in the simultaneous message (SMP) model in terms of “information
cost”. This has also been extended to two-way classical and quantum communication [BYJKS04, JRS03b].

Jain, Radhakrishnan, and Sen [JRS05b] show a tight direct sum theorem for the one-way and SMP models
for both quantum and randomized classical communication, along with a weak direct sum result for two-
way communication. In other work, Jain, Radhakrishnan, and Sen [JRS03a] give a direct sum type lower
bound for bounded round private-coin protocols in terms of the average case communication complexity
under product distributions. Harsha, Jain, McAllester, and Radhakrishnan [HJMR07] have strengthened
the latter lower bound by reducing to a large extent its dependence on the number of rounds. Recently,
Pǎtraşcu and Thorup [PT06] used direct sum type results to prove improved lower bounds for approximate
near-neighbour search in the cell probe model.

Another type of result is a weak direct product theorem. In such a result one shows that the success proba-
bilty of solving k instances of a problem with the resources needed to solve one instance (with probability
2/3) goes down exponentially with k. Klauck [Kla04] shows such a result for the rectangle/corruption
bound under arbitrary distributions, leading to the conclusion that solving k instances of Set Disjointness

with communication complexity o(n) is possible only with success probability 2−Ω(k).

In this article, we define a new measure of hardness of computing a function (and more generally a relation)
in a distributed fashion, which we call its subdistribution complexity . In fact, subdistribution complexity
is a relaxation of the well-studied rectangle/corruption bound from communication complexity. It gives
us a better handle on the direct product problem without weakening the rectangle bound. In the setting
of public-coin randomized one-way communication, we show that this measure tightly characterizes the
communication complexity of any relation. More importantly, we show that subdistribution complexity
satisfies the strong direct product property under product distributions. In particular, we recover strong
direct product theorems for problems whose complexity is captured by the rectangle/corruption bound
under product distributions.

Our proof of the strong direct product property belongs to a line of work based on the powerful substate
theorem due to Jain, Radhakrishnan, and Sen [JRS02], and a closely related notion, the relative co-min-
entropy of two distributions (we present formal definitions and statements in Section 2.4). It provides a
simple and uniform information-theoretic explanation of recent works due to Beame et al. [BPSW07] (and a
consequence of their result independently due to Klauck et al. [KvdW04, Theorem 20]), Gavinsky [Gav06],
and de Wolf [dW06], simultaneously improving and generalizing the last two. Our methods also extend
to give a lower bound for the simultaneous message passing model. These consequences are perhaps an
indication of the wider applicability of the subdistribution approach.

Finally we investigate some applications of our results. Gavinsky [Gav06] used a strong direct prod-
uct theorem to show that quantum protocols for relations such as one based on the hidden matching
problem [BYJK04] need a certain minimum amount of entanglement to be computable optimally by one-
way protocols with classical communication. This shows that unlike public randomness, the amount of
entanglement cannot be decreased to being sublinear in the input length without either worsening the
communication complexity or changing the protocol massively. By employing our theorem for one-way
communication we strengthen this result and remove some logarithmic factors in the bounds. Beame et
al . [BPSW07] use their direct product theorem to establish a bound for the disjointness problem in a
restricted number on the forehead model of multiparty communication complexity. A larger lower bound
for Set Disjointness in the one-way version of this model follows from a result due to Wigderson [BHK01,
Section 9.3] on a layered pointer jumping problem. We give a simpler proof based on our direct product
result, in terms of a larger class of functions.

2



Organization of the paper

We follow standard terminology and notation in communication complexity. For completeness, this is
summarized in Section 2.1. We define our notation, and review basic information theory in Section 2.4. In
Section 3, we present a characterization of one-way communication complexity in terms of what we call the
one-way subdistribution bound. In Section 4 we present direct product results in the setting of two-way
communication, and describe how this extends to one-way and SMP protocols as well. In Section 5 we
present some applications of our direct product theorems. Some proofs are deferred to the appendix.

2 Preliminaries

2.1 Communication complexity

In this section we briefly describe the model of communication complexity. For a comprehensive introduc-
tion to the subject we refer the reader to the text by Kushilevitz and Nisan [KN97].

We consider the two-party model of communication. Let X ,Y,Z be finite sets, and let f ⊆ X × Y × Z
be a relation. In a two-party communication protocol the parties, say Alice and Bob, get inputs x ∈ X
and y ∈ Y respectively. They alternately send messages to each other with the goal of determining an
element z ∈ Z such that (x, y, z) ∈ f . We assume that for every (x, y) ∈ X × Y given as input, there is at
least one z ∈ Z such that (x, y, z) ∈ f .

2.2 One-way communication

We first consider the one-way model of communication, in which there is a single message, from Alice to
Bob at the end of which Bob determines the answer z from the single message from Alice, and his input y.
(In the one-way protocols we consider, the single message is always from Alice to Bob.) Let 0 ≤ ε < 1/3,
and let µ be a probability distribution on X × Y. We let D

1,µ
ε (f) represent the distributional one-way

communication complexity of f under µ with expected error ε, i.e., the communication of the best private-
coin one-way protocol for f , with distributional error (average error over the coins and the inputs) at most
ε under µ. We note that D

1,µ
ε (f) is achieved by a deterministic one-way protocol, and will henceforth

restrict ourselves to deterministic protocols in the context of distributional communication complexity. We
let R

1,pub
ε (f) represent the public-coin randomized one-way communication complexity of f with worst case

error ε, i.e., the communication of the best public-coin randomized one-way protocol for f with error for
each input (x, y) being at most ε. The analogous quantity for private coin randomized protocols is denoted
by R1

ε(f). The following is a consequence of the min-max theorem in game theory [KN97, Theorem 3.20,
page 36].

Lemma 2.1 (Yao principle) R
1,pub
ε (f) = maxµ D

1,µ
ε (f).

The communication complexity of a relation may reduce significantly when µ is restricted to product

distributions over X × Y. We define R
1,[]
ε (f)

∆
= maxµ product D

1,µ
ε (f).

The VC-dimension of a boolean function f is an important combinatorial concept and has close connections
with the one-way communication complexity of f .

Definition 2.1 (Vapnik-Chervonenkis (VC) dimension) A set S is said to be shattered by a set G
of boolean functions from S to {0, 1}, if ∀R ⊆ S,∃gR ∈ G such that ∀s ∈ S, (s ∈ R) ⇐⇒ (gR(s) = 1).
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Let f : X × Y → {0, 1} be a boolean function. For all x ∈ X let fx : Y → {0, 1} be defined as fx(y)
∆
=

f(x, y),∀y ∈ Y. Let F ∆
= {fx : x ∈ X}. Then the Vapnik-Chervonenkis dimension of f is defined as

VC(f)
∆
= maxS⊆Y {|S| : S is shattered by F}.

Kremer, Nisan, and Ron [KNR99, Theorem 3.2] relate VC-dimension to communication complexity. The
tighter dependence (stated below) of the communication complexity on the error ε in the communication
protocol appears in Ambainis, Nayak, Ta-Shma, and Vazirani [ANTSV99, Theorem 1.1].

Theorem 2.2 ([KNR99, ANTSV99]) Let f : X×Y → {0, 1} be a boolean function, and let ε ∈ (0, 1/2).
Then there is a universal constant κ0 such that

(1 − H2(ε)) · VC(f) ≤ R1,[]
ε (f) ≤ κ0 ·

1

ε
log

1

ε
· VC(f),

where H2(p) = −p log2 p − (1 − p) log2(1 − p) is the binary entropy function defined on [0, 1].

2.3 Two-way communication and the SMP model

Next we consider two-way protocols, which are defined analogously. These allow communication between
Alice and Bob over multiple rounds at the end of which both parties output the same element z ∈ Z that
depends upon the transcript of the protocol alone. Following Kushilevitz and Nisan [KN97], we assume Alice

and Bob disregard their inputs when they determine their output. This is unlike in one-way protocols,
where we (necessarily have to) allow Bob to determine his output from Alice’s message and his input . The

relevant complexity measures for this model are denoted D
µ
ε (f), R

[]
ε (f), R

pub
ε (f), Rε(f) etc. (without the

superscript ‘1’). Lemma 2.1 holds for two-way protocols mutatis mutandis.

A two-way communication protocol in which the two parties consider their inputs for the computation of
their respective outputs may be converted into the form above. One party may send an additional message
consisting of his/her output. The consequent increase in communication complexity is at most log |Z|.
We also consider the Simultaneous message passing (SMP) model of communication. In this model, Alice

and Bob receive inputs x ∈ X and y ∈ Y respectively. They each send one message to a third party, called
the “referee”. The goal of the referee is to output an element z ∈ Z such that (x, y, z) ∈ f . In the SMP
model, by public coin protocols we mean protocols in which Alice, Bob and the referee all have access to

the same source of random coins. The relevant complexity measures are denoted D
‖,µ
ε (f), R

‖,pub
ε (f) etc.

Lemma 2.1 also holds for SMP protocols mutatis mutandis.

2.4 Information theory

In this section we present some information theoretic notation, definitions and facts that we use in
our proofs. For an introduction to information theory, we refer the reader to the text by Cover and
Thomas [CT91]. Most of the facts stated in this section without proof may be found in this book.

All logarithms in the article are taken with base 2. For an integer t ≥ 1, [t] represents the set {1, . . . , t}.
For square matrices P,Q, by Q ≥ P we mean that Q − P is positive semi-definite. For a matrix A, ‖A‖1

denotes its `1 norm.

Specializing from the quantum case, we view a discrete probability distribution P as a positive semi-definite
trace one diagonal matrix indexed by its (finite) sample space. For a distribution P with support on set X ,
and x ∈ X , P (x) denotes the (x, x) diagonal entry of P , and P (E) =

∑

x∈E P (x) denotes the probability
of the event E ⊆ X . For a random variable X, we sometimes also let X represent its distribution.
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Let X ,Y be sets and let P be a distribution with support on X × Y. For x ∈ X , we define P (x) =
∑

y∈Y P (x, y), the probability of x in the marginal distribution on X ; P (y) is similarly defined for y ∈ Y.

Further, if y ∈ Y occurs with probability P (y) > 0, we define P (x|y) = P (x,y)
P (y) , the conditional probability

given the event X × {y}. The distribution P is said to be a product distribution if there are distributions
PX , PY on X ,Y respectively such that P = PX ⊗ PY , where ⊗ denotes the tensor product operation.
Equivalently, for a product distribution, P (x, y) = P (x) · P (y).

For distributions P,Q, S(P ‖Q)
∆
= Tr(P log P−P log Q) is called the relative entropy or the Kullback-Leibler

divergence between them. It is known that relative entropy is jointly convex in its arguments.

Lemma 2.3 Let P1, P2, Q1, Q2 be probability distributions. Then for r ∈ [0, 1],

S(rP1 + (1 − r)P2) ‖ rQ1 + (1 − r)Q2) ≤ rS(P1 ‖Q1) + (1 − r)S(P2 ‖Q2).

Relative entropy satisfies the following chain rule:

Lemma 2.4 (Chain rule for relative entropy) Let M1, . . . ,Mk and N1, . . . , Nk be collections of ran-
dom variables. For 1 ≤ i ≤ k, let M̃i represent the random variable M1 . . . Mi−1. Similarly define Ñi.
Then

S(M1 . . . Mk ‖N1 . . . Nk) =

k
∑

i=1

Em∼M̃i
[S(Mi|M̃i = m ‖Ni|Ñi = m)].

Lemma 2.5 Let M1M2 be random variables and let N1N2 be mutually independent random variables.
Then

S(M1M2 ‖N1N2) ≥ S(M1 ‖N1) + S(M2 ‖N2).

Proof: Using the chain rule (Lemma 2.4), the independence of N1 and N2, and finally convexity (Lemma 2.3),
we have

S(M1M2 ‖N1N2) = S(M1 ‖N1) + Em∼M1[S(M2|M1 = m ‖N2|N1 = m)]

= S(M1 ‖N1) + Em∼M1[S(M2|M1 = m ‖N2)]

≥ S(M1 ‖N1) + S(M2 ‖N2),

as claimed.

For distributions P,Q, with support on set X , we define

S∞(P ‖Q)
∆
= inf{c : Q ≥ P/2c},

as the relative co-min-entropy of P with respect to Q. This quantity measures what scaling of a distribution
“sits inside” another. Note that the relative co-min-entropy of P with respect to the uniform distribution
on X is precisely log |X | − H∞(P ), where H∞(P ) = minx log 1

P (x) is the min-entropy of P .

The following fact is a special case of Theorem 1(7) in [JRS05a]. It follows directly from the monotonicity
of the logarithm function.

Lemma 2.6 Let P,Q be distributions. Then S(P ‖Q) ≤ S∞(P ‖Q).

The substate theorem [JRS02, Proposition 1] gives us a powerful operational characterization of relative
entropy.
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Lemma 2.7 (Substate theorem) Let P,Q be probability distributions over the same finite sample space
such that S(P ‖Q) ≤ c. Then for all r > 1, there exist distributions Pr such that ‖P − Pr‖1 ≤ 2

r and

(1 − 1
r ) Pr

2r(c+1) ≤ Q ⇔ S∞(Pr ‖Q) ≤ r(c + 1) + log r
r−1 .

The following fact is readily verified:

Lemma 2.8 If P,Q are distributions on the same sample space such that ‖P − Q‖1 ≤ ε, then for any
event E, we have |P (E) − Q(E)| ≤ ε/2.

The following fact may be verified from the definition of relative co-min-entropy.

Lemma 2.9 Let X1,X2, Y1, Y2 be random variables. Then S∞(X1 ‖Y1) ≤ S∞(X1X2 ‖Y1Y2).

Random variables X,Y,Z form a Markov chain, represented as X → Y → Z, iff for all x, y, the conditional
random variable Z|(XY = xy) is equal to Z|(Y = y). The following lemma may be verified readily from
this definition.

Lemma 2.10 If X → Y → Z is a Markov chain, then so is Z → Y → X.

We use various forms of the Markov inequality from probability theory [CT91] in our arguments without
proof.

3 A characterization of one-way communication complexity

In this section we present new, tight upper and lower bounds for randomized one-way communication
complexity in terms of what we call the one-way subdistribution bound.

We start with some definitions. Let f ⊆ X × Y × Z be a relation. Let 0 ≤ ε ≤ 1/3.

Definition 3.1 Let λ, µ be distributions on X × Y.

1. ε-monochromatic: We say that the distribution λ is ε-monochromatic for f if there exists z ∈ Z
such that PrXY ∼λ[(X,Y, z) ∈ f ] ≥ 1 − ε.

2. one-way ε-monochromatic: We call λ one-way ε-monochromatic for f if there is a function g :
Y → Z such that PrXY ∼λ[(X,Y, g(Y )) ∈ f ] ≥ 1 − ε.

3. one-message-like: We call λ one-message-like for µ if for all (x, y) ∈ X × Y, whenever λ(x) > 0,
we have µ(x) > 0 and λ(y|x) = µ(y|x).

This definition is motivated by properties of distributions that arise in (one-way) communication protocols.
The distribution λ is one-way ε-monochromatic precisely when there is a one-way communication protocol
for f with zero communication cost and distributional error at most ε under λ. Suppose P is a deterministic
one-way protocol for f , with a single message from Alice to Bob. Let X,Y denote random variables with
joint distribution µ, corresponding to Alice and Bob’s inputs respectively. For any message string m
in P, we may readily verify that the conditional distribution XY |(M = m) is one-message-like for µ.
Furthermore, suppose the distributional error made by P is at most ε. Then, for any δ ∈ (0, 1], the
distribution of XY |(M = m) is one-way ε

δ -monochromatic for f with probability at least 1 − δ over the
messages m.

We now define the subdistribution bounds on one-way communication complexity.
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Definition 3.2 (One-way subdistribution bound & one-way product subdistribution bound)

For a distribution µ over X × Y, let sub1
B(f, ε, µ)

∆
= minλ S∞(λ ‖µ), where λ ranges over all distributions

which are both one-message-like for µ and one-way ε-monochromatic for f . We define the one-way subdis-

tribution bound as sub1
B(f, ε)

∆
= maxµ sub1

B(f, ε, µ), where µ ranges over all distributions on X ×Y. When
the maximization is restricted to product distributions µ, we refer to the quantity as the one-way product

subdistribution bound sub
1,[]
B (f, ε).

Remark: First, in the above definition, the subscript B is used to emphasize the fact that that in the
definition of one-way ε-monochromatic, we allow for different values of output depending upon Bob’s input
in a zero-communication protocol for f under distribution λ. Second, note that a distribution λ which is
one-way for a product distribution µ is itself a product distribution. Third, if we took the distribution λ
to range over µ conditioned upon one-way rectangles (i.e., rectangles of the form S × Y, where S ⊆ X ),
then we would get a one-way variant of the rectangle or corruption bound in communication complexity
as introduced by Yao, and applied by Razborov and others. (See, e.g., Beame et al. [BPSW07] for a
formal definition of the bound.) We elaborate on the precise connection between the rectangle bound and
subdistribution bound in Section 4.

Moving on to our characterization theorem, we now show that the one-way communication complexity of
a relation is always larger than the subdistribution bound.

Lemma 3.1 Let f ⊆ X × Y × Z be a relation. Let 0 ≤ ε ≤ 1/3 and k > 0 be non-negative real numbers.
Then

R
1,pub

ε(1−2−k)
(f) ≥ sub1

B(f, ε) − k.

Proof: For any distribution µ on X × Y, we show

D
1,µ
ε(1−2−k)

(f) ≥ sub1
B(f, ε, µ) − k. (1)

Maximizing over µ, and appealing to the Yao min-max principle (Lemma 2.1) and the definition of sub1
B(f, ε)

we get our bound.

Let c
∆
= sub1

B(f, ε, µ). If bc − kc ≤ 0, Eq. (1) holds vacuously. Otherwise, let P be a deterministic one-way
protocol with communication bc − kc. Let the random variables X,Y with joint distribution µ represent
the inputs of Alice and Bob respectively. Let M represent the correlated random variable corresponding

to Alice’s message. For a message string m with pm
∆
= Pr[M = m] > 0 let εm denote the probability of

error of P conditional on M = m. Let M be the set of messages m such that pm > 2−c. Since there are
at most 2c−k messages, we get that

∑

m/∈M pm ≤ 2−k. Let λm be the distribution of XY |(M = m). For
m ∈ M, we have S∞(λm ‖µ) < c. Since λm is one-message-like for µ, from the definition of sub1

B(f, ε, µ)
we have εm > ε. Hence the overall error of the protocol P is > ε(1 − 2−k). Therefore, by its definition
D

1,µ
ε(1−2−k)

(f) > bc − kc, which is the communication in P.

For the other direction, we first show that for a relation f with low subdistribution complexity, any
distribution µ may be decomposed into a small number of one-message-like distributions that are one-
way ε-monochromatic for f .

Lemma 3.2 Let f ⊆ X × Y × Z be a relation, 0 ≤ ε < 1, and c
∆
= sub1

B(f, ε). For any distribution µ on
X × Y, and δ ∈ (0, 1], there exists an integer r ≥ 1, distributions {λj , j ∈ [r + 1]} on X × Y and numbers
{pj , j ∈ [r + 1], 0 ≤ pj ≤ 1} such that:

1. ∀j ∈ [r + 1], λj is one-message-like for µ and one-way ε-monochromatic for f ,
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2. µ =
∑r+1

j=1 pjλj ,

3. pr+1 ≤ δ, and

4. For j ∈ [r], pj > 2−cδ and r < 2c

δ .

Proof: By hypothesis, c = sub1
B(f, ε) = maxν sub1

B(f, ε, ν). This means for every distribution ν there exists
a distribution θν with the properties that θν is one-message-like for ν, one-way ε-monochromatic for f , and
S∞(θν ‖ ν) ≤ c.

We obtain the distributions λ1, . . . , λr+1 in the decomposition of µ inductively:

• Let µ1
∆
= µ, λ1

∆
= θµ1 and p1

∆
= 2−S∞(λ1 ‖µ).

• Suppose for some j ≥ 1, the distributions λ1, . . . , λj have been obtained. Let qj+1
∆
=

∥

∥

∥
µ − ∑j

k=1 pkλk

∥

∥

∥

1
,

and µj+1
∆
= 1

qj+1

(

µ − ∑j
k=1 pkλk

)

.

In case qj+1 > δ, we let λj+1
∆
= θµj+1 and pj+1

∆
= qj+12

−S∞(λj+1 ‖µj+1) and move to j + 2.

In case qj+1 ≤ δ we stop the process and let λj+1
∆
= µj+1, pj+1

∆
= qj+1 and r

∆
= j.

Part 1 of the lemma is immediate from our construction and the following properties of the ‘one-message-
like’ relation. Let ν, σ, τ be distributions over X × Y.

• If σ is one-message-like for ν, and p ≥ 0 is such that pσ ≤ ν, the distribution ν−pσ
‖ν−pσ‖1

is also one-

message-like for ν.

• The distributions that are one-message-like for a fixed distribution ν form a convex set. I.e., if σ, τ are
one-message-like for ν, the distribution pσ + (1− p)τ is also one-message-like for ν for any 0 ≤ p ≤ 1.

• The ‘one-message-like’ relation is transitive. I.e., if σ is one-message-like for τ , and τ is one-message-
like for ν, then σ is one-message-like for ν.

Parts 2 and 3 of the lemma may be verified from our construction. For Part 4 we note that for any 1 ≤ j ≤ r,

pj = qj 2−S∞(λj ‖µj) > δ2−c.

Since
∑r

j=1 pj ≤ 1, we get r < 2c/δ.

Using the above decomposition of distributions, we can design efficient protocols for relations with small
subdistribution complexity.

Lemma 3.3 Let f ⊆ X ×Y × Z be a relation, and 0 ≤ ε ≤ 1/6 and 0 < δ ≤ 1/6. Then,

R
1,pub
ε+δ (f) ≤ sub1

B(f, ε) + log
1

δ
+ 2.

Proof: We show that for every distribution µ on X × Y,

D
1,µ
ε+δ(f) ≤ sub1

B(f, ε) + log
1

δ
+ 2. (2)

The result then follows from the Yao min-max principle (Lemma 2.1).

We exhibit a private coin protocol P for f whose distributional error under µ is at most ε + δ and

communication is at most c + log(1/δ) + 2, where c
∆
= sub1

B(f, ε). From P we also get a deterministic
protocol with the same communication and distributional error. This implies Eq. (2).
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In the protocol P, Alice and Bob start with their inputs XY in distribution µ. Using the decomposition
of µ as given by Lemma 3.2, we define a random variable M that is correlated with XY . We then argue
that M may be produced from the knowledge of X alone, and therefore be used as a message to derive a
protocol with small distributional error.

Let µ =
∑

j∈[r+1] pjλj with pj, λj and r as given by Lemma 3.2 for δ as in the statement of this lemma.
The random variable M has support in [r + 1]. The joint distribution of XY M is defined by

Pr[XY M = (x, y, j)] = pj λj(x, y),

for (x, y, j) ∈ X ×Y × [r + 1]. Note that Pr[M = j] = pj and the distribution of XY |(M = j) is λj . Since
for all j, the distribution λj is one-message-like for µ, we have Y |(X = x,M = m) = Y |(X = x) for all
x,m. Hence M → X → Y is a Markov chain. From Lemma 2.10, Y → X → M is also a Markov chain.
Therefore, the random variable M is a function of X alone, and Alice can generate it using private coins.

To summarize the protocol P, on input x, Alice generates message M as above using private coins, and
sends it to Bob. From the construction of XY M , on receiving message j, Bob knows that the conditional
distribution on XY is λj . On each λj with j ∈ [r] we can ensure that the error of P is at most ε since λj is
one-way ε-monochromatic. On message r + 1, which occurs with probability at most δ, the error may be
as large as 1. Therefore P has distributional error at most ε+ δ on µ. The communication in P is bounded
by dlog(r + 1)e ≤ c + log(1/δ) + 2.

Combining the bounds in Lemmata 3.1 and 3.3 with standard probability amplification techniques, we get
our characterization of one-way communication complexity in terms of the subdistribution bound.

Theorem 3.4 Let f ⊆ X ×Y ×Z be a relation and let 0 ≤ ε ≤ 1/6. There are universal constants κ1, κ2

such that

sub1
B(f, ε) − 1 ≤ κ1 · R1,pub

ε (f) ≤ κ2

[

sub1
B(f, ε) + log

1

ε
+ 2

]

.

Remark: From proofs of Lemma 3.3 and Lemma 3.1, we also conclude that for a distribution µ such
that sub1

B(f, ε) = sub1
B(f, ε, µ) we have D

1,µ
ε (f) = Θ(sub1

B(f, ε, µ)) (for a constant ε). However for other

distributions, sub1
B(f, ε, µ) may be much smaller than D

1,µ
ε (f). As an example consider the function f :

{0, 1}n×{0, 1}n → {0, 1} defined as f(x, y)
∆
= x1∨

⊕n
i=2 xi∧yi. While the one-way communication required

for computing this function with distributional error at most 1/5 under the uniform distribution U is Ω(n),
we have sub1

B(f, 0,U) ≤ 1. This is because the distribution with x1 = 1 and remaining bits uniform has 0
error and sits in U with a scaling of 1/2.

The proof of Theorem 3.4 readily adapts to give a similar relationship between R
1,[]
ε (f) and sub

1,[]
B (f, ε).

Theorem 3.5 Let f ⊆ X ×Y ×Z be a relation and let 0 ≤ ε ≤ 1/6. There are universal constants κ1, κ2

such that

sub
1,[]
B (f, ε) − 1 ≤ κ1 · R1,[]

ε (f) ≤ κ2

[

sub
1,[]
B (f, ε) + log

1

ε
+ 2

]

.

Since the one-way distributional communication complexity under product distributions of a boolean func-
tion is captured by its VC-dimension (Theorem 2.2) both quantities in the above theorem are of the same
order as the VC-dimension of f (for constant ε). The precise dependence on ε may be inferred from the
preceding theorems.

Corollary 3.6 Let f : X × Y → {0, 1} be a boolean function. Let 0 ≤ ε ≤ 1/6 be a constant. Then

R
1,[]
ε (f) = Θ(sub

1,[]
B (f, ε)) = Θ(VC(f)).
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4 Direct product theorems for classical communication

4.1 Two-way protocols

Let f ⊆ X ×Y ×Z be a relation. We define a two-way subdistribution bound under product distributions
in a manner analogous to the one-way bound.

Definition 4.1 (Two-way product subdistribution bound) Let µ be a product distribution on X ×
Y, and ε ∈ [0, 1]. Let sub[](f, ε, µ)

∆
= minλ S∞(λ ‖µ), where λ ranges over all product distributions

that are ε-monochromatic for f . We define the two-way product subdistribution bound as sub[](f, ε)
∆
=

maxµ product sub[](f, ε, µ).

Remark: It is important to restrict λ to product distributions in the definition of sub[](f, ε, µ), even
when µ is product. Otherwise, the quantity is at most 1 for boolean functions, even with ε = 0: consider
the possibly non-product distribution λ that results from conditioning upon f−1(1) or f−1(0), whichever
has higher probability under µ. The distribution λ is 0-monochromatic for f , and sits well inside µ, since
the event on which we condition has probability ≥ 1

2 .

To state the precise connection between the subdistribution bound and the rectangle/corruption bound
from communication complexity, we define the latter bound precisely. A rectangle in X ×Y is a subset of
the form S × T , where S ⊆ X , T ⊆ Y. For a distribution µ, and an event R, let µR denote the conditional

distribution of µ given the event R. For a (possibly non-product) distribution µ, define rec(f, ε, µ)
∆
=

minR S∞(µR ‖µ), where R ranges over all rectangles in X ×Y such that µR is ε-monochromatic for f . The
rectangle bound maximized over all distributions is well-known to be a lower bound for two-way randomized
communication complexity (see [BPSW07, Section 3] for a precise formulation of this bound). When the
maximization is restricted to product distributions µ, we get the two-way product rectangle bound rec[](f, ε).
This may be substantially smaller than the unrestricted bound, but is still known to give strong bounds
for certain functions. For example, for f = DISJn, the set disjointness problem on n-bit inputs, R

pub

1/3(f) =

Θ(n) = rec(f, 1/3) [KN97, Section 4.6, Lemma 4.49], whereas rec[](f, 1/3) and R
[]
1/3(f) are both O(

√
n log n)

and at least Ω(
√

n) [BFS86]. It is open whether randomized communication complexity may be super-
polynomially larger than distributional communication complexity under product distributions [KN97,
Open Problem 3.26], as is the corresponding question between the two rectangle bounds.

The two-way product subdistribution bound is a relaxation of the two-way product rectangle bound.
Nevertheless, the rectangle bound rec(f, ε, µ) is approximately equal to sub[](f, ε, µ), for any product dis-
tribution µ.

Lemma 4.1 Let µ be a product distribution on X × Y and let δ ∈ (0, 1). Then

rec(f, ε, µ) ≥ sub[](f, ε, µ) ≥ rec
(

f,
ε

δ2
, µ

)

− log 1
(1−δ)2

.

We defer the proof of the lemma to Appendix A.

Let f ⊆ X × Y × Z be a relation. We define the k-fold product of f , f⊗k ⊆ X k × Yk × Zk as f⊗k ∆
=

{(x1, . . . xk, y1, . . . , yk, z1, . . . , zk) : ∀i ∈ [k], (xi, yi, zi) ∈ f}. This relation captures k independent instances
of the relation f . We show that the two-way product subdistribution bound satisfies the direct product
property by considering f and its k-fold product.
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Theorem 4.2 Let ε, δ ∈ (0, 1/6), k be a positive integer, and let q
∆
= (1 − ε/2)(1−δ)k. Let µ

∆
= µA ⊗ µB be

any product distribution on X × Y such that sub[](f, ε, µ) > 48
δε . Then,

sub[](f⊗k, 1 − 2q, µ⊗k) >
δε

16
· k · sub[](f, ε, µ).

Proof: Let c
∆
= sub[](f, ε, µ) and l

∆
= δε

16 ·k · c. Let λ
∆
= λA ⊗λB be a product distribution on X k ×Yk, such

that S∞(λ ‖ µ⊗k) ≤ l. Let XY be joint random variables distributed according to λ. For i ∈ [k], let Xi, Yi

represent the components of X,Y respectively in the ith coordinate. The symbol 1 denotes a sequence of
appropriate length of ones (that is implied by the context).

We show that for any output string z = z1 . . . zk ∈ Zk, the distributional error under λ is greater than 1−2q.
Formally, define boolean random variables Si such that Si = 1 iff the output in the ith coordinate is correct,
i.e., (Xi, Yi, zi) ∈ f ; Si = 0 otherwise. We show the following.

Lemma 4.3 PrXY ∼λ[S1 . . . Sk = 1] ≤ 2q.

This lemma directly implies our theorem.

Proof of Lemma 4.3: Let t
∆
= d(1 − δ)ke. Our goal is to identify t indices i1, . . . , it ∈ [k] such that for

each sucessive index ij in this sequence, the probability, conditioned upon success on the previous j − 1
coordinates, that the protocol succeeds with output zij for the coordinate ij is bounded by 1 − ε

2 . (This
implies our lemma.) We do this by choosing the coordinate ij such that the marginal distribution of XY
in that coordinate “sits well” inside µ, and is a product distribution. We ensure that this property holds
even when we condition on success in the previous coordinates. Ensuring a product distribution involves
conditioning on the inputs to one party (say, Bob) in the previous coordinates. As a consequence, we only
identify the required t coordinates for all but a small fraction of “atypical” values for the conditioned input
variables. We elaborate on this below.

For a string y ∈ Yk and i ∈ [k], let yi denote the substring in the ith coordinate of y. We extend this
notation to a subset of coordinates I = {i1, . . . , ij} ⊆ [k] as yI = yi1 . . . yij (where the coordinates in the
subset are always taken in a canonical order). Similarly for x ∈ X k.

In the interest of readability, we sometimes use non-standard notation in our arguments below. For a
subset I ⊆ [k], we abbreviate XIYI as XYI . Similarly, we write XYi for XiYi. The subscript (I, w),
where I ⊆ [k] and w ∈ Y |I|, indicates conditioning on the event YI = w. For example, XYi,(I,w) is the
random variable XiYi conditioned upon the event YI = w.

Let X ′Y ′ be distributed according to µ⊗k. We identify a set BI ⊆ Y |I| of “atypical” inputs substrings for
Bob for each subset I. Let w ∈ BI ⊆ Y |I|, iff

S∞(XY(I,w) ‖ X ′Y ′
(I,w)) > l + 2k.

In Appendix A we bound the probability that Bob’s input has an atypical substring.

Lemma 4.4 PrXY ∼λ[ (∃I ⊂ [k]) YI ∈ BI ] < 2−k.

Inputs with substrings in a set BI are precisely the ones for which we are not able to carry out the line of
argument outlined above.

We also identify a set LI ⊆ Y |I| of “lucky” input substrings for Bob, for each I ⊆ [k] of size less
than t. Let w ∈ LI iff Pr[SI = 1|YI = w] < 2−k. Since 2−k ≤ q, for such lucky substrings we already
have Pr[S1 . . . Sk = 1|YI = w] < q.

The following lemma captures the main step in our proof.
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Lemma 4.5 Let I ⊆ [k] be of size less than t,and let w ∈ Y |I|. Then, either

1. The substring w ∈ BI , i.e., S∞(XY(I,w) ‖X ′Y ′
(I,w)) > l + 2k, or

2. The substring w ∈ LI , i.e., Pr[SI = 1 | YI = w] < 2−k, or

3. There exists an i ∈ [k] − I, such that Pr[Si = 1 | SI = 1, YI = w] < 1 − ε
2 .

Below we sketch how this implies Lemma 4.3; the technical details are deferred to Appendix A. Lemma 4.5
allows us to select t indices on which the success probability of the protocol is bounded appropriately, so
long as parts 1 and 2 are not satisfied. Part 1 is satisfied only for a 2−k fraction of inputs, and we ignore
these. As we successively add indices to I = {j1, j2, . . . , jm}, if for any value of m ≤ t, part 2 of the
Lemma 4.5 holds, then, in that “branch of conditioning” on the value of YI , the probability of success on
all k coordinates is bounded by 2−k. If part 2 does not hold for any m ≤ t − 1, then we keep choosing the
indices as given by part 3. As long as Bob’s input Y does not contain an atypical substring, either part 2
or 3 hold. Therefore we get that the probability of success on all k instances is at most q + 2−k. Along
with Lemma 4.4 this implies that Pr[S1 · · ·Sk = 1] < 2q.

For the final piece of the argument we prove a key property of sub-distributions.

Lemma 4.6 Let 0 < η < 1/2 and ζ ≤ 1. Let µ
∆
= µA ⊗ µB and ω

∆
= ωA ⊗ ωB be product distributions on

X × Y. If S(ω ‖µ) < η · sub[](f, ζ, µ), and sub[](f, ζ, µ) > 9
η , then any zero-communication protocol for f

with output u ∈ Z has error at least ζ − 4η under ω, i.e., PrXY ∼ω[(X,Y, u) 6∈ f ] ≥ ζ − 4η.

Proof: Suppose sub[](f, ζ, µ) = d, S(ωA ‖µA) = sA and S(ωB ‖µB) = sB. Note that S(ω ‖µ) = sA + sB <

ηd. Let r
∆
= 1/2η. Applying Lemma 2.7 to ωA and ωB separately, we get a distribution ω′ = ω′

A ⊗ ω′
B

with ‖ω − ω′‖1 ≤ 4/r and S∞(ω′ ‖µ) ≤ r(sA + sB + 2) + 2 log r
r−1 < d. This implies, from definition of

sub[](f, ζ, µ) = d, that any zero-communication protocol with output u ∈ Z has error > ζ under ω′. Since
‖ω − ω′‖1 ≤ 4/r = 8η, Lemma 2.8 tells us that the protocol has error at least ζ − 4η under ω.

Proof of Lemma 4.5: We follow the previously described non-standard notation for conditional random
variables. In addition, a superscript ‘1’ indicates conditioning on the event SI = 1, with I and SI as in
the statement of the lemma.

To prove the lemma, we show that when parts 1 and 2 are false, part 3 holds. By hypothesis, we have

S∞(XY(I,w) ‖ X ′Y ′
(I,w)) ≤ l + 2k

⇒ S∞(XY 1

(I,w) ‖ X ′Y ′
(I,w)) ≤ l + 3k, since Pr[SI,(I,w) = 1] ≥ 2−k;

⇒ S∞(XY 1

(I,w),[k]−I ‖ X ′Y ′
[k]−I) ≤ l + 3k, from Lemma 2.9;

⇒ S(XY 1

(I,w),[k]−I ‖ X ′Y ′
[k]−I) ≤ l + 3k, from Lemma 2.6;

⇒ ∑

i∈[k]−I S(XY 1

i,(I,w) ‖ X ′Y ′
i ) ≤ l + 3k, from Lemma 2.5;

⇒ ∃(i ∈ [k] − I) S(XY 1

i,(I,w) ‖ X ′Y ′
i ) ≤ l+3k

k−(1−δ)k < εc
8

(3)

In the third inequality, we also used the independence of X ′Y ′
I and X ′Y ′

[k]−I. The last inequality follows

from l = δε
16kc and the assumption that sub[](f, ε, µ) = c > 48

δε .

We show in Appendix A that:

Lemma 4.7 The distribution of the random variables XY 1

i,(I,w) is product on X × Y.

Lemma 4.6 tells us that the error in the ith coordinate is therefore at least ε − ε
2 ≥ ε

2 . This implies part 3
of the lemma.

The direct product property of the subdistribution bound tranlates to a similar result for the communication
complexity of two-way protocols. Its proof appears in Appendix A.

12



Theorem 4.8 Let f ⊆ X × Y × Z be a relation. Let ε, δ ∈ (0, 1/6) and k be a positive integer. Let

q
∆
= (1 − ε/2)(1−δ)k . Suppose sub[](f, ε) > 48

δε . Then,

R
pub
1−3q(f

⊗k) ≥ R
[]
1−3q(f

⊗k) > k ·
[

δε

16
· sub[](f, ε) − 1

]

.

The two-way product rectangle bound (for constant error) for Set Disjointness, and therefore the product
subdistribution bound, is Ω(

√
n) [BFS86]. As a consequence, there is a constant κ such that any two-way

protocol for its k-fold product with communication at most κk
√

n has success probability at most 2−Ω(k).

4.2 One-way protocols

We now explain how the same ideas as in the previous section lead to a direct product result for one-way
communication. The primary difference in this case is that the output of the protocol cannot in general
be inferred from the single message sent by Alice. To handle this, we define a variant of the product
subdistribution bound which is symmetric with respect to Alice and Bob.

Definition 4.2 (One-way symmetric product subdistribution bound) Let f ⊆ X × Y × Z be a

relation. Let µ
∆
= µA ⊗ µB be a product distribution on X × Y. Let sub1,[](f, ε, µ)

∆
= minλ S∞(λ ‖µ), where

λ ranges over all (product) distributions that are one-message-like for µ and ε-monochromatic for f . We

define the one-way symmetric product subdistribution bound as sub1,[](f, ε)
∆
= maxµ sub1,[](f, ε, µ), where

µ ranges over all product distributions on X × Y.

Note that a distribution that is one-message-like for a product distribution is itself a product distribution.

The following relationships between the one-way symmetric product subdistribution bound and the one-
way product subdistribution bound are straightforward and we state them without proof.

Lemma 4.9 Let f ⊆ X ×Y × Z be a relation. Let µ
∆
= µA ⊗ µB be a distribution on X × Y. Then

1. sub1,[](f, ε, µ) ≥ sub
1,[]
B (f, ε, µ), sub1,[](f, ε) ≥ sub

1,[]
B (f, ε).

2. sub
1,[]
B (f, ε, µ) + log |Z| ≥ sub1,[](f, ε, µ), sub

1,[]
B (f, ε) + log |Z| ≥ sub1,[](f, ε).

We arrive at the following direct product result for one-way symmetric product subdistribution bound
along the lines of Theorem 4.2.

Theorem 4.10 Let f ⊆ X × Y × Z be a relation. Let 0 < ε, δ < 1/6 and k be a positive integer. Let

q
∆
= (1 − ε/2)(1−δ)k . Let µ

∆
= µA ⊗ µB be any product distribution on X × Y such that sub1,[](f, ε, µ) > 48

δε .
Then

sub1,[](f⊗k, 1 − 2q, µ⊗k) >
δε

16
· k · sub1,[](f, ε, µ).

This implies the following direct product result for one-way communication.

Corollary 4.11 Let f ⊆ X × Y × Z be a relation. Let 0 < ε, δ < 1/6 and k be a positive integer. Let

q
∆
= (1 − ε/2)(1−δ)k . Suppose sub[](f, ε) > 48

δε . Then,

R
1,pub
1−3q (f

⊗k) ≥ R
1,[]
1−3q(f

⊗k) > k ·
[

δε

16
· sub

1,[]
B (f, ε) − log |Z| − 1

]

.
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This combined with Theorem 3.6 subsumes the strong direct product result due to de Wolf [dW06] for the
one-way randomized communication complexity of Index. Similar results for other functions like Set Dis-

jointness and Inner product, whose one-way communication complexity is captured by their VC-dimension,
then follow.

In fact for a complete function f : X × Y → Z, we can avoid the loss of the log |Z| term.

Theorem 4.12 Let f : X ×Y → Z be a complete function. Let 0 < ε, δ < 1/6 and k be a positive integer.

Let q
∆
= (1 − ε/2)(1−δ)k. There are universal constants γ0, γ1 > 0 such that if sub[](f, ε) > γ0

δε . Then,

R
1,pub
1−3q(f

⊗k) ≥ R
1,[]
1−3q(f

⊗k) ≥ sub
1,[]
B (f⊗k, 1 − 2q) − k > k ·

[

δε

γ1
· sub

1,[]
B (f, ε) − 1

]

.

The proof will be included in the full version of this article.

4.3 SMP protocols

Subdistribution bounds are also relevant for the SMP model, as sketched in this section.

Definition 4.3 For distributions θ, µ with support in X×Y, we say θ is one-message-like for µ with respect
to Alice if for all x ∈ X if θ(x) > 0, then µ(x) > 0, and (∀y)µ(y|x) = θ(y|x). Similarly we say θ is one-
message-like for µ with respect to Bob if for all y ∈ Y, if θ(y) > 0, then µ(y) > 0, and (∀x)µ(x|y) = θ(x|y).

Definition 4.4 (SM-like) We call a distribution λ with support in X × Y SM-like for µ, if there exists
a distribution θ such that θ is one-message-like for µ with respect to Alice and λ is one-message-like for θ
with respect to Bob.

We define the SM-subdistribution bound as follows.

Definition 4.5 (SM-subdistribution bound) Let sub‖(f, ε, µ)
∆
= minλ S(λ ‖µ), where λ ranges over all

distributions which are SM-like for µ and ε-monochromatic for f . Define sub‖(f, ε)
∆
= maxµ sub‖(f, ε, µ),

where µ ranges over all distributions on X ×Y. When the maximization is over only product distributions
we get the SM product subdistribution bound sub‖,[](f, ε).

We now state a direct product theorem for SMP protocols in terms of this SM-product subdistribution
bound.

Theorem 4.13 Let f ⊆ X × Y × Z be a relation. Let 0 < ε, δ < 1/6 and k be a positive integer. Let

q
∆
= (1 − ε/2)(1−δ)k . There are universal constants γ0, γ1 > 0 such that if sub‖,[](f, ε) > γ0

δε . Then,

R
‖,pub
1−3q (f

⊗k) ≥ R
‖,[]
1−3q(f

⊗k) ≥ sub‖,[](f⊗k, 1 − 2q) − k

> k ·
[

δε

γ1
· sub‖,[](f, ε) − 1

]

.

The proof follows along the lines of Theorem 4.2 and Theorem 4.8 and is omitted.
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5 Applications

5.1 Entanglement versus communication

Some of the most important questions in quantum communication concern the power of entanglement.
Here we consider quantum communication complexity, as introduced by Yao [Yao93], and investigated
extensively thereafter. For definitions concerning quantum computing we refer the reader to Nielsen and
Chuang’s monograph [NC00].

There are several models of quantum communication complexity: with entanglement and quantum com-
munication, with entanglement and classical communication, and without entanglement but with quantum
communication. Due to the phenomenon of quantum teleportation [BBC+93], any protocol with shared
entanglement and c qubits of quantum communication may be converted to a protocol with an additional c
shared EPR-pairs, and a total of 2c classical communication.

We are interested in the question whether the quantum communication complexity can be reduced drasti-
cally by allowing prior entanglement. So far only small savings in the quantum communication complexity
are known when entanglement is allowed. Basically, superdense coding [BW92] allows us to compress clas-
sical messages by a factor of 2 when entanglement is available, hence saving a factor of 2 in the quantum
communication complexity for the model with entanglement. Also, entanglement can be used like public
randomness, leading to additive Θ(log n) savings for some functions, e.g., Equality. This gives rise to the
question as to how much entanglement is actually necessary to compute a function optimally.

In the analogous situation for public randomness, Newman [New91] shows that O(log n) public random
bits are enough to compute any function with optimal communication complexity. His proof is a black
box simulation, in the sense that is does not change the protocol, but rather chooses uniformly at random
from a polynomial-size set of strings and runs the protocol with this randomness. Can the amount of
entanglement be reduced in the same way for quantum protocols? Jain et al. [JRS05b] showed that in fact
such a black box approach does not work. Recently, Gavinsky [Gav06] showed a stronger statement. He
showed that there is a relation that can be computed with O(k log n) communication and entanglement in
a simultaneous message passing protocol, while every one-way protocol with o(k/ log n) entanglement and
only classical messages needs communication Ω(k

√
n/ log n). Hence trying to work with less entanglement

increases the communication complexity, or requires drastic changes to the protocol, e.g., going from
classical to quantum messages.

Gavinsky derives his result using a direct product theorem for the one-way communication complexity of
a certain class of relations. Here we follow the same approach, but use our direct product theorem for
one-way communication complexity to get stronger trade-offs.

We begin by defining the relation used in the result. Recall that a perfect matching is an undirected graph
in which there is one and only one edge incident on each vertex.

Definition 5.1 (Boolean Hidden Matching) In the boolean hidden matching problem BHMn, Alice

gets a string x ∈ {0, 1}2n, and Bob gets a perfect matching M on 2n vertices. Bob is required to output an
edge {j, k} in M along with the bit xj ⊕ xk.

Bar-Yossef, Jayaram, and Kerenidis [BYJK04] show that there is a large gap between the classical and
quantum one-way complexity of the relation BHMn.

Theorem 5.1 ([BYJK04]) The one-way quantum communication complexity (with no error and with
no prior shared entanglement) of the boolean hidden matching relation BHMn is O(log n). Moreover,

R
1,[]
1/3(BHMn) = Ω(

√
n).
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As mentioned above, with quantum teleportation we can implement the quantum protocol for BHMn as a
one-way protocol with O(log n) shared EPR-pairs and O(log n) classical communication.

Like Gavinsky, we show that a certain amount of entanglement is necessary to preserve the optimal com-
munication complexity of the k-fold product of Boolean Hidden Matching.

Theorem 5.2 The relation BHM⊗k
n , with input length Θ(kn log n), can be computed exactly (with no error)

by a one-way quantum protocol with prior entanglement in the form of O(k log n) shared EPR-pairs, and
(classical) communication O(k log n). There is a constant γ > 0 such that any one-way quantum protocol
which has an entangled state on γk qubits needs classical communication Ω(k

√
n).

Proof: By Theorem 5.1 and the remark following it, BHM⊗k
n can be computed by a one-way protocol with

no error with O(k log n) EPR-pairs and using O(k log n) bits of classical communication.

From our direct product theorem for one-way classical protocols, Theorem 4.11, there is a constant d > 0
such that

R
1,pub

1−2−dk(BHM⊗k
n ) ≥ R

1,[]

1−2−dk(BHM⊗k
n ) > Ω(k(

√
n − 2 log n − 2)) = Ω(k

√
n). (4)

Suppose we are given a one-way protocol for BHM⊗k
n with entanglement ρ over dk/2 qubits, classical

communication c, and error at most 1/3. The initial state of the protocol is the entangled state given
to Alice and Bob, in tensor product with their inputs. The entire computation of the protocol (unitary
operations and measurements) followed by the acceptance criterion is captured by a POVM element E
that depends upon the input alone, and acts on the entangled state. The probability of acceptance is
then Tr(Eρ). We replace the entangled state by the maximally mixed state over dk/2 qubits. This
decreases the success probability of the protocol to no worse than (2/3) ·2−dk/2 > 2−dk. This holds because
any quantum state ρ on l qubits (formally a positive semidefinite 2l × 2l matrix with trace 1) “sits inside”
the maximally mixed state Ul with probability at least 2−l, i.e., Ul − 2−lρ ≥ 0.

An l-qubit maximally mixed state is physically and computationally equivalent to the uniform distribution
on l-bit strings. This is a product distribution. As a result, we are left with a private-coin randomized
protocol for BHM⊗k

n with classical communication c and success probability > 2−dk. From Eq. (4) we
conclude that c = Ω(k

√
n).

If we choose k = np for some constant p > 0, we get a polynomial gap between the two bounds in the
theorem, when the entanglement used is reduced only slightly (from Θ(np log n) to O(np)).

5.2 Multiparty communication

Beame et al. [BPSW07] apply their strong direct product theorem for the corruption/rectangle bound
under product distributions to get a lower bound in the number on the forehead model of multiparty
communication complexity. In the number on the forehead (NOF) model with three players, called Alice,
Bob, and Charlie, each player receives exactly two of inputs from amongst the three x, y, z ∈ X × Y × Z.
They wish to compute an output w ∈ W such that (x, y, z, w) satisfy a relation f . Player Alice receives
inputs x, z, Bob y, z, and Charlie x, y. In effect, each player has an input written on her/his forehead, which
is not visible to her/him. However, the player can see the inputs written on the other players’ foreheads.
The three parties may have access to different patterns of communication channel.

Consider the case when x, y, z ∈ {0, 1}n and the players wish to compute three-player Set Disjointness, i.e.,
they would like to accept iff

∨n
i=1(xi ∧ yi ∧ zi) = 0. Beame et al. show that this task needs communi-

cation Ω(n1/3) for randomized protocols with error at most 1/3, when the communication is restricted as
follows: Charlie sends one message to Alice or Bob, and the remaining communication is only between Alice
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and Bob. No superlogarithmic bounds are known in the case in which all pairs of players can communicate
with each other throughout the protocol. Such lower bounds would have strong consequences, as described
in [BPSW07]. In the one-way version of this model there are two messages, the first from Charlie to Alice,
and the second from Alice to Bob, who then produces the output. A lower bound of Ω(

√
n) in this model for

Set Disjointness follows from a result due to Wigderson [BHK01, Section 9.3]. De Wolf [dW06] shows how
to infer this lower bound from a strong direct product theorem for the one-way communication complexity
of Index.

Our direct product results give us such lower bounds for general relations. Below, we describe the particular
case boolean functions for the one-way NOF model (although still not in the full generality in which this
kind of argument applies).

Let gn be a family of functions on {0, 1}n. We consider the three-party NOF communication complexity
of gn(x ∧ y ∧ z), where u ∧ v is the n-bit string whose ith coordinate is ui ∧ vi. We say that gn is l-self-
reducible, if its n-bit input can be partitioned into l+1 blocks w1, . . . , wl+1, each of size bn/(l + 1)c, so that
for each i ∈ [l], gbn/(l+1)c(wi) equals the value of the function gn when evaluated on an input w̃i described
next. The input w̃i consists of 0s in all blocks except the ith and the (l + 1)th. The ith block equals wi,
and the (l + 1)th block is some fixed string, possibly with 1s and may depend upon the block number i.

Clearly, gn = ORn, the logical OR of n bits, gives us three-player Set Disjointness, and is l-self-reducible
for every l. Other well-studied functions like an AND of

√
n ORs of

√
n variables each (called Tribesn) also

fall in this class.

Theorem 5.3 Let fn(x, y, z) = gn(x∧ y ∧ z), and hn(x, y) = gn(x∧ y), where gn is l-self-reducible. Every
bounded error randomized one-way three-party NOF protocol (in which Charlie sends a message to Alice,
who sends a message to Bob) for fn needs communication Ω(min{l,VC(hbn/(l+1)c)}).

Proof: The idea behind the proof is the same as in the work of De Wolf [dW06] and Beame et al. [BPSW07],
and we only sketch it here.

Given a bounded error one-way three-party randomized NOF protocol Π for fn, we derive a one-way
protocol Π′ for computing the l-fold product of hbn/(l+1)c. The protocol Π′ is such that for every sequence

of l inputs, it correctly computes at least (1 − ν)l instances with probability 2Ω(−l), where ν is a small
constant. Its communication complexity is l times that of Π.

Suppose Alice and Bob get l instances {(ui, vi)} of hbn/(l+1)c. To compute the function value for all of these
simultaneously, they concatenate their inputs into n-bit strings x, y the first l blocks of which are given by
the l respective inputs, and the remaining block in each is set to the all 1s string.

If in protocol Π, Charlie sends a message of length ≥ αl (for some small constant α) to Alice, the theorem
holds. Otherwise, this communication is at most l. Charlie’s message only depends upon x, y, but not on z.
To solve the ith instance in the protocol Π′, Alice and Bob construct z = zi as follows. They set the ith
block of zi ∈ {0, 1}n to the all 1s string, the (l + 1)th block according to the l-self-reduction, and the
remaining blocks to 0. Using the inputs x, y, zi to Π, they compute an output for the ith instance ui, vi.
The net communication from Alice to Bob is at most l times the communication c in Π.

By the l-self-reducibility property of gn, we have hbn/(l+1)c(ui, vi) = gn(x∧y∧zi). Since for every input the
protocol Π makes an error with probability at most a small constant ν, the expected number of instances
out of the given l for which Π′ incorrectly computes the answers is ≤ νl. By the Markov inequality, the
probability that more than 2νl instances are incorrectly computed is at most 1/2. Replacing Charlie’s
message by a uniformly random l-bit string, we get that with probability at least 2−(αl+1), Alice and Bob

solve at least (1 − 2ν)l instances correctly.
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Corollary 4.11 implies that even for the relaxed notion of correctness described above, the probability
of success is bounded by 2−Ω(l). (The corallary implies that for any fixed subset of size (1 − 2ν)l, the
probability of being simultaneously correct on all indices in the subset is at most 2−Ω(l). A union bound
over all subsets of size at least (1− 2ν)l now gives us the required variant of the theorem, when ν is small
enough.)

Combining all these pieces of argument, provided α is sufficiently small, we get that lc ≥ Ω(l·R1,[]
1/3(hbn/(l+1)c)) =

l · Ω(VC(hbn/(l+1)c)).

The function gn = ORn is
√

n-self-reducible, and the corresponding bivariate function hn has VC-dimension n.
Hence the one-way randomized NOF complexity of three-party Set Disjointness is Ω(

√
n). Similarly, Tribesn

is
√

n-self-reducible, and the corresponding VC-dimension is n −√
n. Therefore, the one-way randomized

NOF complexity of Tribesn is also Ω(
√

n).

Similar results can be shown in the model where Charlie sends a message to Alice, and then Alice and Bob

engage in a two-party protocol.

Theorem 5.4 Let fn(x, y, z) = gn(x ∧ y ∧ z), and hn(x, y) = gn(x ∧ y), where gn is l-self-reducible.
Every bounded error randomized three-party NOF protocol as described above for fn needs communication
Ω(min{l, sub[](hbn/(l+1)c, 1/3)}).

In particular, we get the Ω(n1/3 lower bound for Set Disjointness.
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A Proofs of some lemmas and theorems

Proof of Lemma 4.1: Let µ = µA ⊗µB be a product distribution on X ×Y. By definition, rec(f, ε, µ) ≥
sub[](f, ε, µ). For the second inequality we argue as follows. Consider any ε-monochromatic product
distribution λ = λA⊗λB along with an output z ∈ Z which makes it ε-monochromatic. View λ as a convex
combination of distributions λx on {x}×Y. Note that the marginal distribution of λx on Y is λB for all x.
Using the Markov Inequality, we get a subset S ⊆ X such that λA(S) ≥ 1 − δ and for each x ∈ S, the
distribution λx is (ε/δ)-monochromatic for the same output z. Therefore, the distribution π = µA,S ⊗ λB ,
where µA,S is the distribution on X conditioned upon event S, is also (ε/δ)-monochromatic for f with
output z. Similarly we identify a subset T ⊆ Y such that λB(T ) ≥ 1 − δ, and each distribution πy

on X × {y} with marginal µA,S on X is (ε/δ2)-monochromatic for every y ∈ T .

Thus, we get a rectangle R = S × T with probability λ(R) ≥ (1 − δ)2 such that the distribution µR,
the distribution µ conditioned on R, is (ε/δ2)-monochromatic. Moreover, if S∞(λ‖µ) = c, then µ(R) ≥
λ(R) · 2−c ≥ (1 − δ)2 · 2−c. In other words, rec(f, ε/δ2, µ) ≤ c + log 1

(1−δ)2
. Minimizing over all such λ, we

see that rec(f, ε/δ2, µ) ≤ sub[](f, ε, µ) + log 1
(1−δ)2

.

Proof of Lemma 4.4: Let w ∈ BI for some I ⊆ [k]. Since

S∞(XY(I,w) ‖ X ′Y ′
(I,w)) > l + 2k,

20



there exist x, y ∈ X k × Yk with yI = w such that

1

2l+2k
· Pr[X = x, Y = y | YI = w] > Pr[X ′ = x, Y ′ = y | Y ′

I = w].

Since S∞(λ ‖ µ⊗k) ≤ l we have, Pr[X = x, Y = y] ≤ 2l · Pr[X ′ = x, Y ′ = y]. Combining these, we get

Pr[YI = w] < 2−2k · Pr[Y ′
I = w].

Summing up over all possibilities for w, we get

Pr[YI ∈ BI ] < 2−2k.

Therefore, by the union bound over subsets I,

Pr[ (∃I ⊆ [k]) YI ∈ BI ] <
∑

I⊆[k]

2−2k < 2−k.

Proof of Lemma 4.3: Here we rigorously complete the proof of this lemma following the informal sketch
in Section 4.1.

In order to bound Pr[S1 . . . Sk = 1], we recursively define a subset J = {j1, . . . , jt} ⊆ [k] of size t for
every y ∈ Yk. The set J depends upon Bob’s input y, and therefore is a random variable correlated
with XY . For the purposes of analysis, we also introduce boolean random variables Am, Lm, for m ∈ [t].

Since S∞(λ‖µ) ≤ l, parts 1 and 2 of Lemma 4.5 are false (with the I = ∅ and w set to the null string).
Let j1 be the smallest index given by part 3 of the lemma. We set J = {j1}, A1 = 0 = L1.

Suppose indices I = {j1, . . . , jm} have been defined for input y for some m ∈ [t]. If yI ∈ BI ∪LI , i.e., part 1
or 2 of Lemma 4.5 is satisfied with w = yI , then we extend I arbitrarily to a subset J of size t containing I.
If part 1 is satisfied we define Ap = 1, Lp = 0 for all p > m. If part 2 is, then we set Lp = 1, Ap = 0
for all p > m. Otherwise, we let jm+1 be the smallest index i given by part 3 of Lemma 4.5 for I as
above and w = yI , and set Am+1 = 0 = Lm+1. Thus, the random variables Ap, Lp are monotonically
non-decreasing functions that indicate if parts 1 or 2 were satisfied at any point in the recursive definition
of J . In particular, they indicate if the input y is atypical or is lucky.

Lemma 4.4 tells us that Pr[At = 1] ≤ Pr[ (∃I ⊆ [k]) YI ∈ BI ] < 2−k. Since

Pr[S1 . . . Sk = 1]

= Pr[S1 . . . Sk = 1, At = 1] + Pr[S1 . . . Sk = 1, At = 0]

< 2−k + Pr[S1 . . . Sk = 1, At = 0],

if we show that
Pr[S1 . . . Sk = 1, At = 0] < q + 2−k, (5)

we would get a bound of q + 2−k+1 ≤ 2q as required to prove our lemma.

Now,

Pr[S1 . . . Sk = 1, At = 0]

= Pr[S1 . . . Sk = 1, At = 0, Lt = 1] + Pr[S1 . . . Sk = 1, At = 0, Lt = 0]

< 2−k + Pr[S1 . . . Sk = 1, At = 0, Lt = 0], (6)

since Lt = 1 implies that there is a subset J as defined above such that

Pr[S1 . . . Sk = 1, At = 0, Lt = 1] ≤ EYJ
Pr[SJ = 1|YJ ] < 2−k.
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We bound the second term in Eq. (6) by an inductive argument. We show that for all m ∈ [t],

Pr[Sj1 . . . Sjm = 1, Am = 0, Lm = 0] < (1 − ε/2)m. (7)

This is true for m = 1 by virtue of Lemma 4.5. Assume that Eq. 7 holds for some m ≥ 1. Then,

Pr[Sj1 . . . Sjm+1 = 1, Am+1 = 0, Lm+1 = 0]

=
∑

w∈Ym

Pr[Sjm+1 = 1 | Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0, Yj1 · · ·Yjm = w]

×Pr[Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0, Yj1 · · · Yjm = w]

< (1 − ε/2) ·
∑

w∈Ym

Pr[Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0, Yj1 · · ·Yjm = w]

= (1 − ε/2) · Pr[Sj1 . . . Sjm = 1, Am+1 = 0, Lm+1 = 0]

≤ (1 − ε/2) · Pr[Sj1 . . . Sjm = 1, Am = 0, Lm = 0]

< (1 − ε/2)m+1.

Here, we invoked part 3 of Lemma 4.5 in the first inequality, the monotone non-decreasing property of Ap, Lp

in the penultimate step, and the induction hypothesis in the final step. This proves that the second term
in Eq. (6) is bounded by q, and therefore Eq. (5) holds.

Proof of Lemma 4.7: Recall that XY ∼ λ = λA ⊗ λB, and therefore are in a product distribution.
Therefore, XY(I,w) = XY |(YI = w) = X ⊗ (Y |(YI = w)) are in a product distribution. Also SI |(YI = w) =

1 is the event (XI , w, zI ) ∈ f⊗|I|. So XY 1

(I,w) = XY |(YI = w,SI = 1) are also in a product distribution.
Consequently, the marginal of these random variables on the ith coordinate is also in a product distribution.

Proof of Theorem 4.8: The first inequality follows from the definitions. For the second inequality con-
sider a product distribution µ such that sub[](f, ε) = sub[](f, ε, µ). Arguing as in the proof of Lemma 3.1,
and noting that the the conditional distribution of the inputs given any message is still a product distri-
bution, we get

D
µ⊗k

1−2q−2−k(f⊗k) > sub[](f⊗k, 1 − 2q, µ⊗k) − k.

Since q ≥ 2−k, we get:

R
[]
1−3q(f

⊗k) ≥ D
µ⊗k

1−3q(f
⊗k) ≥ D

µ⊗k

1−2q−2−k(f⊗k)

> sub[](f⊗k, 1 − 2q, µ⊗k) − k

>
δε

16
· k · sub[](f, ε) − k.

The last inequality above follows from Theorem 4.2.

Proof of Theorem 4.11: The first inequality follows from the definitions. For the second inequality con-
sider a product distribution µ such that sub1,[](f, ε) = sub1,[](f, ε, µ). Arguing as in the proof of Lemma 3.1,
we get

D
1,µ⊗k

1−2q−2−k(f⊗k) > sub
1,[]
B (f⊗k, 1 − 2q, µ⊗k) − k.

22



Now since q ≥ 2−k, we get

R
1,[]
1−3q(f

⊗k) ≥ D
1,µ⊗k

1−3q (f⊗k) ≥ D
1,µ⊗k

1−2q−2−k(f⊗k)

> sub
1,[]
B (f⊗k, 1 − 2q, µ⊗k) − k

≥ sub1,[](f⊗k, 1 − 2q, µ⊗k) − k log |Z| − k (8)

>
δε

16
· k · sub1,[](f, ε, µ) − k log |Z| − k (9)

=
δε

8
· k · sub1,[](f, ε) − k log |Z| − k

≥ k ·
[

δε

8
· sub

1,[]
B (f, ε) − log |Z| − 1

]

. (10)

The Eq. (9) follows from Theorem 4.10. Eq. (8) and (10) follow from Lemma 4.9.
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