
A Combinatorial Geometric Approach to

Linear Image Matching?

Christian Hundt1?? and Maciej Lískiewicz2

1 Institut für Informatik, Universität Rostock, Germany
2 Institut für Theoretische Informatik, Universität zu Lübeck, Germany

Abstract. The problem of image matching is to find for two given digital images A and B an
admissible transformation that converts image A as close as possible to B. This problem becomes hard
if the space of admissible transformations is too complex. Consequently, in many real applications, like
the ones allowing nonlinear elastic transformations, the known algorithms solving the problem either
work in exponential worst-case time or can only guarantee to find a local optimum. In this paper
we study the image matching problem for affine transformations, an important class of functions,
from the image matching point of view, and we give a generic exhaustive search algorithm solving
the problem in polynomial time. Next, we apply the algorithm for some important subclasses of
affine transformations like translations, rotations, scalings, and linear transformations and we prove
lower and upper bounds for the corresponding search spaces. Furthermore we extend the results to
projective transformations which are a natural generalization of affine transformations.

1 Introduction

Image matching is a canonical problem in image processing and in many other related fields like
computer vision, medical imaging, pattern recognition, and digital watermarking. In general, the
Image Matching Problem (IMP, for short) is that of finding for two given digital images A

and B and some space F of admissible transformations, a transformation f ∈ F that changes
A closest to B under some image distortion measure. The problem was intensively studied both
experimentally and theoretically by using different approaches ranging from discrete methods to
techniques based on continuous analysis (for an overview we refer to [5, 4, 13, 17, 16, 1] and the
references therein).

We model a digital image A in a standard way as a two dimensional array over the finite set of
integers Σ = {0, 1, . . . , σ} where each item Aij represents a gray value of the pixel with coordinates
(i, j). For simplicity’s sake, assume −n ≤ i, j ≤ n, and let Aij = 0, if either |i| > n or |j| > n. We let
N = {−n, . . . , 0, . . . , n} and call N×N the support of the image A. The pixel (i, j) is a unit square
in the real plane

�2 with the geometric center point (i, j). Thus the pixels for A cover a square area
of size (2n + 1)× (2n + 1) with the geometric center point (0, 0). A transformation f of an image
A is an arbitrary injective mapping f :

�2 → �2. Transformations of particular importance from
the image matching point of view fulfill some additional constraints like smoothness and elasticity.
Specifically such functions as rotations, scalings, translations, affine and some nonlinear elastic
transformations play an important role in this area. Applying a transformation f on A we get the
image f(A), which is a two dimensional array over Σ with indices ranging in the same interval as
in A. The gray value of the pixel (i, j) in f(A) is equal to the value of the pixel (i′, j′) of the image
A such that f−1(i, j) lies in the unit square with the geometric center point (i′, j′) (for an example
see Fig. 1). For two images A and B of the same size the distortion between A and B is measured
by

∑

δ(Aij , Bij) where δ(a, b) is a function charging mismatches, for example, δ(a, b) = |a − b|.
? Supported by DFG research grant RE 672/5-1.

?? The work on this paper was done during the stay of the first author at the University of Lübeck.

Electronic Colloquium on Computational Complexity, Report No. 66 (2007)

ISSN 1433-8092

-3 -2 -1 1 2 3-3 -2 -1 1 2 3

1

-3

-2

-1

2

3

-3 -2 -1 1 2 3-3 -2 -1 1 2 3

1

-3

-2

-1

2

3

f

f

f (-1,1)
-1

A: f(A):

Fig. 1. Image A and the transformed image f(A). The gray value of the pixel (−1, 1) in f(A) is equal to the value
of the pixel (−1, 1) of A since in �2 the point (−1, 1) is the closest one to the point f−1(−1, 1).

The Image Matching Problem is hard if the set of admissible transformations F is too
complex. Subsequently, known image matching algorithms for optimal or approximate solutions
for classes such as nonlinear elastic transformations (see e.g. [18]) use exponential resources. In [15]
Keysers and Unger have proved that the decision problem corresponding to the Image Matching

Problem for this important class of transformations is NP-complete, thus giving evidence that
the known exponential time algorithms are justified.

On the other hand, allowing only translations, rotations and scalings the problem becomes
tractable [16, 10, 11, 1–3, 12]. For example, restricting the problem to rotations the Image Match-

ing Problem can be solved in time O(n4) which is quadratic with respect to to the input size [2].
The situation changes drastically if one enlarges the class of transformations to all affine transfor-
mations, which will be denoted Fa in this paper. Image matching under affine transformations has
been intensively studied both experimentally and theoretically. In image processing, for example,
the classical approach to the problem is to transform the images A and B into a space where
certain affine distortions correspond to simple transformations like translations. The advantage
of such an approach is that image matching can be easily done by exhaustive search in the set
of translations. Though the methods work quite efficiently for specific classes, they do not work
for arbitrary affine transformations and it is still open what is the computational complexity of
image matching for this class of transformations. Recently we have given a partial solution to
this problem [12] proving that the image matching under affine transformations can be solved in
polynomial time.

In this paper we investigate the Image Matching Problem for some classes of affine trans-
formations. An affine transformation f ∈ Fa is a function f(x, y) = M · (x, y)T + t with M an
invertible (2 × 2)-matrix and t a vector in

�2. We give a generic exhaustive search algorithm
solving the Image Matching Problem for Fa in polynomial time and prove some combinato-
rial bounds on the size of the search space. Next, we apply the algorithm for other important
subclasses of Fa like translations (Ft), scalings (Fs), rotations (Fr), combined scalings and rota-
tions (Fsr) and linear transformations (Fl) and we prove lower and upper bounds for the size of
the corresponding search spaces. Finally we extend the polynomial search strategy to projective
transformations Fp which are a natural and important generalization of affine transformations.

The main contribution of this paper is a new general exhaustive search technique for image
matching under some specific transformations like Fa, Fp or its subclasses and a combinatorial

2

method for the analysis of the size of the corresponding search spaces. For any injective function f :
�2 → �2 in some specific space F ⊆ Fp of admissible transformations, we define the corresponding
coordinate mapping γ : N ×N → N ×N which for any coordinate (i, j) in f(A) determines the
coordinate (i′, j′) in A. Thus, the mapping γ is a discrete representation of f which uniquely
describes f(A). We denote the set of all coordinate mappings γ corresponding to functions f ∈ F
by Γn(F).

Our exhaustive search algorithm has to search the space Γn(F) to solve IMP under transfor-
mations F . But there are two difficulties in this approach:

1. how to enumerate efficiently all elements in Γn(F) and

2. how to estimate the size of Γn(F)?

Both problems seem to be highly nontrivial even for such simple transformations like rotations
(see e.g. [1]). In this paper we present a powerful geometrical approach to solve both problems.
The presented techniques work for the classes of affine transformations, projective transformations
as well as for important subclasses such as translations, scalings, rotations, combined scalings and
rotations, and linear transformations. The table below summarizes our main results.

Admissible Cardinality of Complexity
transformations Notation search space of the IMP Remarks

Projective Fp Ω(n12) ∩ O(n24) O(n24)

Affine Fa Ω(n12) ∩ O(n18) O(n18) (a)

Linear Fl Ω(n10) ∩ O(n12) O(n12)

Scalings and rotations Fsr Ω(n5) ∩ O(n6) O(n6)

Rotations Fr Θ(n3) O(n3 log n) (b)

Scalings Fs Θ(n2) O(n3)

Translations Ft Θ(n2) O(n4)

Table 1. The cardinalities of search spaces Γn(F) and the complexities of our image matching algorithms for
particular admissible transformations F : from projective transformations to translations. Remarks: (a) In [12] it
has been given the first algorithm solving IMP for Fa in polynomial time. (b) The lower bound Ω(n3) has been
shown in [1]; In this paper we show a new proof for this bound and give an algorithm solving the IMP under
rotations almost optimal.

The paper is organized as follows. In Section 2 some basic preliminaries and definitions are
given. Section 3 discusses structural properties of the search spaces Γn(F). In Section 4 we give
the general exhaustive search algorithm for image matching and apply it to affine transformations.
In the subsequent Sections 5, 6, and 7 we show how the algorithm may be used for the subclasses
of affine transformations like translations, rotations, scalings, and linear transformations and we
prove there lower and upper bounds for the corresponding search spaces.

2 Preliminaries

Let A be an image with support N ×N and let f be an arbitrary injective function f :
�2 → �2.

Define for g = f−1 the mapping γg : N × N → N × N ∪ {⊥} which determines for any pixel
coordinate (i, j) in f(A) the corresponding coordinate (i′, j′) in A:

γg(i, j) =

{

[g(i, j)] if [g(i, j)] ∈ N ×N ,

⊥ otherwise.

3

Here, ⊥ is an extra symbol and [(x, y)] := ([x], [y]) denotes rounding all components of a vector
(x, y) ∈ �2. We formally define the image f(A) as follows: for any (i, j) ∈ N ×N the gray value
of the pixel (i, j) in f(A) is equal to the value of the pixel γg(i, j) in A if γg(i, j) 6= ⊥; Otherwise,
we let the value equal 0.

We assume that there is a function δ : Σ × Σ → � , measuring differences in gray values.
In this paper we assume the evaluation of δ(a, b) has constant costs. Then for images A and B

with support N × N we measure the distortion ∆(A,B) between A and B as the sum of pixel
differences, i.e.,

∆(A,B) =
∑

(i,j)∈N 2 δ(Aij , Bij).

Obviously, the costs for the computation of ∆(A,B) is in O(n2). Furthermore, in this paper we
will assume that elementary arithmetic operations have unit costs.

We call the following optimization problem the Image Matching Problem (IMP) for F :

Problem 1. For a given reference image A and a distorted image B, both of the same size (2n +
1) × (2n + 1), find an injective transformation f ∈ F minimizing the distortion ∆(f(A), B).

In this paper we are mainly interested in affine transformations Fa and some of their important
subclasses as well as projective transformations. Affine transformations f have the form: f(x, y) =
M · (x, y)T + t where M is an invertible (2 × 2)-matrix and t a vector in

�2. Clearly, for all
affine transformations the matrix M = (a1 a2

a3 a4
) contains the four parameters a1 to a4 and the

vector t = (a5

a6
) the two additional parameters a5 and a6. Hence, each affine transformation

can be characterized by a six dimensional vector (a1, . . . , a6)
T and thus

�6 can be seen as a
parameter space for Fa. A six dimensional vector u = (a1, . . . , a6)

T defines in a natural way
an affine transformation gu if the matrix defined by a1 to a4 is invertible. To avoid problems
with exceptional vectors we denote by (

�6)a the subset of
�6 which contains only the parameter

vectors encoding invertible matrices.

Though the image f(A) is described by the transformation f the pixel values of f(A) are
determined by the inverse transformation f−1. Similarly as in [12] this fact is stressed by using
g for f−1. Denote by F−1

a the set of all inverse transformation for Fa. Notice that, according to
our definition, Fa is closed under inversion, i.e., F−1

a = Fa, which means that each inverse affine
transformation is an affine transformation itself.

To solve IMP we have to search F−1
a for a transformation that minimizes the distortion.

Hence we call F−1
a the search space of IMP. The search space cannot be enumerated though

the set {f(A) | f ∈ Fa} can be. Thus we give a discretization transferring F−1
a into a discrete

counterpart, which we will denote by Γn(Fa). We define the discretization Γn(F) for an arbitrary
class F of injective functions f :

�2 → �2 as follows. Let Γn = {γ : N ×N → N ×N ∪ {⊥}}.
Then

Γn(F) = {γf−1 ∈ Γn | f ∈ F}.
Because we have already established a connection between Fa and (

�6)a it is straightforward to
connect also Γn(Fa) to (

�6)a. For all u in (
�6)a let γx denote the mapping γg for the transfor-

mation g that corresponds to the point u.

For our geometrical approach we need some further definitions. Let H be a set of hyperplanes
in
�d. Any plane

H : a1x1 + a2x2 + . . . + adxd = b

in H divides
�d into two subspaces:

H+ = {x ∈ �d | a1x1 + . . . + adxd ≥ b} and H− = {x ∈ �d | a1x1 + . . . + adxd < b}.

4

Furthermore, we let
h0 = {x ∈ �d | a1x1 + . . . + adxd = b}

and define h+ = H+ \ h0 and h− = H−.
For convenience we will allow, that hyperplanes of H can coincide with each other, i.e., that

H can contain H1 : a1x1 + a2x2 + . . . + adxd = b and H2 : â1x1 + â2x2 + . . . + âdxd = b̂ which
describe the same hyperplane in the space

�d. Nevertheless, we will assume that H contains
both representations of the hyperplane: H1 and H2. By H̃ we mean the subset of H obtained by
removing all duplicate hyperplanes. Particularly, the case that H1 and H2 (as defined above) both
belong to H̃ is not possible. We say that H is simple if every d hyperplanes of H have a unique
point in common and any d + 1 hyperplanes have no point in common.

For a finite set of hyperplanes H = {H1,H2, . . . ,Ht} consider the following two kinds of
partition of

�d into convex subspaces determined by the hyperplanes in H:

1. C(H) = {C ⊆ �d | C =
⋂t

i=1 Hsi

i for some s1, . . . , st ∈ {+,−}}.
2. A(H) = {C ⊆ �d | C =

⋂t
i=1 hsi

i for some s1, . . . , st ∈ {+,−, 0}}.
It is obviously the case that A(H) = A(H̃) and |C(H)| ≤ |A(H̃)|.

We call the elements of C(H) cells and the elements of A(H̃) faces. A cell (face) is called a k-cell
(k-face) if its dimension is k. A face ϕ is said to be subface of another face ϕ′ if the dimension of
ϕ is one less than the dimension of ϕ′ and ϕ is contained in the boundary of ϕ′. If ϕ is a subface
of ϕ′ then we also say that ϕ and ϕ′ are incident and that ϕ′ is a superface of ϕ.

The incidence graph I(H̃) of A(H̃) is defined as follows: each face ϕ of H̃ contains a node
v(ϕ) in I(H̃) that represents ϕ. If two faces ϕ and ϕ′ are incident upon each other then v(ϕ) and
v(ϕ′) are connected by an edge. The incidence graph is described in detail in [7] (see also [6]).

Let x be a point in
�d. Then by CH(x) we denote the cell in C(H) that contains x.

3 Structural Properties of the Search Space

In this section we will present our basic techniques to determine the structure of the search space
for specific classes of transformations. The techniques are general and we will show how they
work for translations, scalings, rotations, combined scalings and rotations, linear transformations,
and affine transformations. Instead of proving the structural properties of search spaces for every
class separately, in this section we will just give a proof for the most general case, i.e. for affine
transformations Fa and in the subsequent sections we will show how to adapt this generic proof
for the specific subclasses. For projective transformations the structural properties of the search
space are similar but not equal and we will handle this case in Section 7.

The following definition relates the set Γn(F) with the set of cells defined by a set H of
hyperplanes:

Definition 1. Let F ⊆ Fa be a class of injective functions and let H be a finite set of hyperplanes
in
�d. We say that

Γn(F) ∼= C(H)

if and only if for all u, u′ ∈ �d with gu, gu′ ∈ F−1 it is true: γgu
= γgu′

⇔ CH(u) = CH(u′).

To characterize the search space Γn(Fa) we define the following hyperplanes. For all i, j ∈ N
and i′, j′ ∈ [−n − 1, n + 1] let

Xiji′ : ix1 + jx2 + x5 + (0.5 − i′) = 0 and

Yijj′ : ix3 + jx4 + x6 + (0.5 − j′) = 0

5

be hyperplanes in
�6. We denote by Ha,n the set of all planes Xiji′ and Yijj′ for all i, j ∈ N and

i′, j′ ∈ [−n − 1, n + 1]. Now we are ready to give the main result of this section.

Theorem 1. Γn(Fa) ∼= C(Ha,n).

Before we give the proof note that by the theorem it suffices to estimate the number of cells
in C(Ha,n) to get a bound on the cardinality of Γn(Fa). To get an upper bound on |C(Ha,n)| we
will estimate |A(H̃a,n)|. The limitations for i, j, i′ and j′ imply that the number of planes in H̃a,n

is in O(n3). Any set H of O(n3) hyperplanes partitions (
�6)a into at most

∑6
k=0

∑6
`=k

(|H|
`

)(

`
k

)

=
O(|H|6) = O(n18) faces. This gives that the cardinality of Γn(Fa) is in O(n18), which is polynomial
in n. For detailed information on hyperplanes and the corresponding partitions of the space

�d

we refer the reader to Edelsbrunner [6] or de Berg et al. [9] and to the next section.

Proof (of Theorem 1). To analyze the space Γn(Fa) we define the set Ra to be the following
equivalence relation on (

�6)a × (
�6)a:

Ra = {(u1, u2) | u1, u2 ∈ (
�6)a and γu1

= γu2
}.

Thus the relation Ra partitions F−1
a into subsets of transformations of equal discrete counterparts.

The following lemma gives the major structural property of Ra.

Lemma 1. Two vectors u, v ∈ (
�6)a belong to the same equivalence class of Ra if and only if for

all i, j ∈ N and any i′, j′ ∈ [−n − 1, n + 1] the vectors u and v belong to the same half-subspace
according to the partition of (

�6)a with the hyperplane Xiji′, respectively Yijj′.

Proof. Let u = (a1, . . . , a6) and v = (b1, . . . , b6) be two parameter vectors from (
�6)a. By defini-

tion u and v belong to the same equivalence class in Ra, if and only if γu equals γv.

=⇒: Let γu = γv hold but for the contradiction assume that there is at least one (i, j) ∈ N×N
and i′, j′ ∈ [−n − 1, n + 1] such that with respect to Xiji′ or Yijj′, u and v belong to different
half-spaces of (

�6)a. Let without loss of generality assume that Xiji′(u) < 0 and Xiji′(v) ≥ 0.
Then it holds that

1. ia1 + ja2 + a5 + (0.5 − i′) < 0 and

2. ib1 + jb2 + b5 + (0.5 − i′) ≥ 0.

But this means that

1. [a1i + a2j + a5] < i′ and

2. [b1i + b2j + b5] ≥ i′

which implies that γu and γv differ at least for the argument (i, j). An analogous proof holds for
the case when u and v are separated by Yijj′.

⇐=: Let for all (i, j) ∈ N × N and i′, j′ ∈ [−n − 1, n + 1] the vectors u and v belong to the
same half-space of (

�6)a with respect to Xiji′ and Yijj′ but assume that there exist (i, j) ∈ N ×N
such that γu(i, j) = (i′1, j

′
1) 6= (i′2, j

′
2) = γv(i, j). Without loss of generalization assume that i′1 and

i′2 differ and

1. a1i + a2j + a5 < i′1 − 0.5,

2. b1i + b2j + b5 ≥ i′2 − 0.5, and

3. i′1 < i′2 which implies that

4. a1i + a2j + a5 < i′2 − 0.5

6

Notice that either i′1 or i′2 must be in N since otherwise γu(i, j) = γv(i, j) = ⊥. Hence, if i′2 ≤ n+1
then u and v belong to different subspaces according to plane Xiji′

2
and else u and v are still

separated by Xiji′ with i′ = (n + 1). Analogously proof holds for the case when j′1 and j′2 differ.ut

Obviously the points u which represent inverse affine transformations g = f−1 with equal
discretizations γg fall together in cells of (

�6)a which are defined by the set Ha,n of hyperplanes.
Thus, every such cell of (

�6)a gives a unique discrete affine transformation. This concludes the
proof of the theorem. ut

4 The Polynomial Time Exhaustive Search Algorithm

In the previous section we have shown that the set of all coordinate mappings Γn(Fa) correspond-
ing to affine transformations f is isomorph to C(Ha,n), the set of all cells determined by the set
Ha,n of hyperplanes. To solve the IMP for Fa we will use this characterization and instead of
searching Γn(Fa) directly, we will perform an exhaustive search of C(Ha,n) choosing for each con-
vex cell in C(Ha,n) one representative point (a1, . . . , a6) of (

�6)a encoded by rational numbers of
length O(log n). The point represents an inverse transformation g of f . Hence, using the mapping
γg the distortion between f(A) and B can be computed easily. The property above guarantees
that in this way all coordinate mappings corresponding to affine transformations will be tested.

To search the set C(Ha,n) one can in fact search A(H̃a,n) since for each cell C in C(Ha,n) there
exists at least on face ϕ of A(H̃a,n) which is contained in C. Our algorithm performs the searching
of A(H̃a,n) traversing the corresponding incidence graph I(H̃) described in Section 2.

The algorithm below solves the image matching problem for affine transformations but, as
will be shown in the next sections, it also enables an efficient image matching for some other
classes of transformations. Therefore, the description of the algorithm is general in the sense that
it can handle any class of transformations which can be characterized by an appropriate set H of
hyperplanes in

�d. In the algorithm below, we will assume that the set H consists of hyperplanes
Xiji′ and Yijj′, for all i, j ∈ N ×N , and −n − 1 ≤ i′, j′ ≤ n + 1 and that every Xiji′ and Yijj′ is
a hyperplane in

�d that depends on parameters i, j, i′ and i, j, j′, respectively.

Theorem 2 (see e.g. [6]). The incidence graph I(H̃) for the set H̃ of m hyperplanes in
�d

contains O(md) nodes and edges. Moreover, I(H̃) can be constructed in O(md) time.

In a standard implementation of I(H̃) each node v(ϕ) is a record containing some auxil-
iary information and two lists containing pointers to all subfaces and superfaces. In our setting
the following additional auxiliary information are stored for every node v(ϕ): coordinates of a
representative point p(ϕ) of ϕ and a set Planes(ϕ) of hyperplanes in H.

The coordinates of a representative point p(ϕ) of a 0-face ϕ is just the vertex ϕ itself, i.e., we get
p(ϕ) := ϕ in this case. If ϕ1, ϕ2, . . . , ϕt are the subfaces of ϕ and t ≥ 2, then p(ϕ) := 1

t

∑t
`=1 p(ϕ`).

Without loss of generality, we will assume that t ≥ 2 for every ϕ; if not we add some artificial
border hyperplanes. Note that p(ϕ) can be encoded by rational numbers of length O(log n). The
sets Planes are defined as follows. For all d-faces ϕ we let Planes(ϕ) := ∅. If ϕ is a (d − 1)-face
determined by the hyperplane h then Planes(ϕ) := {Xiji′ , Yijj′ ∈ H | Xiji′ = h and Yijj′ = h}. If
ϕ1, ϕ2, . . . , ϕt are the superfaces of a k-face ϕ, with k < d−1, then Planes(ϕ) :=

⋃t
`=1 Planes(ϕ`).

To solve the image matching problem for given images A and B under Fa an exhaustive
search algorithm can work as follows: visit systematically all faces of the incidence graph I(H̃), for
H = Ha,n and for each face ϕ estimate the distortion between f(A) and B for some f determined
by ϕ. Notice that for all points u of ϕ the discretizations γu are equal to each other. Particularly,
they are equal for all points u ∈ ϕ which represent inverse affine transformations g = f−1 we are

7

looking for. Thus to compute pixelvalues of f(A) and to estimate the distortion between f(A) and
B the algorithm can use γu for an arbitrary u ∈ ϕ, e.g., u = p(ϕ). The result of the algorithm is
the function f of minimum distortion. The time complexity of such a method is at least the size
of the graph I(H̃) times O(n2), where the last term describes the cost of distortion estimation.
However, using our approach we can improve this complexity for specific transformations. In fact,
when considering Fsr, Fl, Fa or Fp our algorithm works in time linear in the size of I(H̃) and
for Fs the advantage is O(n). For Ft no improvement is achieved.

Our algorithm performs depth first search of the graph I(H̃). The algorithm works as follows.
Visiting a node v(ϕ) the algorithm stores the current distortion value between f(A) and B for f

determined by p(ϕ). Next, traversing from ϕ to an incident (sub or super)face ϕ′ the algorithm
updates only the pixel values of f(A), coordinates of which correspond to the parameters of
hyperplanes we have just left or entered when traversing from ϕ to ϕ′. Speaking more precisely,
if f ′ is a function determined by p(ϕ′) then the only difference between f ′(A) and f(A) are the
pixel values of coordinates (i, j) such that i, j are the parameters of hyperplanes we have just left
or entered. Thus, to compute the distortion between f ′(A) and B, it is enough to update only
the pixel values for those coordinates.

Now we are ready to give a complete algorithm solving IMP for Fa. For input images A and
B we call the procedure IM(A,B) below for F := Fa and with the set of hyperplanes H := Ha,n.

Procedure IM(A,B); /* Image Matching for the admissible transformations F */

Input: Images A and B of size (2n + 1) × (2n + 1).
Output: Transformation f = argminf ′∈F{∆(f ′(A), B)}.
Parameter: The set of hyperplanes H in

�d.

1. Procedure SEARCH(v(ϕ)); /* Depth first searching */

2. begin
3. mark node v(ϕ) as visited;
4. for each neighbor v(ϕ′) of v(ϕ) do
5. if v(ϕ′) not visited then begin
6. UPDATE(ϕ,ϕ′); SEARCH(v(ϕ′)); UPDATE(ϕ′, ϕ);
7. end;
8. end;
9. begin /* Procedure IM */

10. let H̃ := {h|h = Xi,j,i′ or h = Yi,j,j′ for some i, j, i′j′};
11. construct the incidence graph I(H̃);

12. let ϕ0 be a face of A(H̃) which corresponds to the identity mapping;
13. let ϕopt := ϕ0; err,min err := ∆(A,B) and let T := A;
14. for all −n ≤ i, j ≤ n do x[i, j] := i; y[i, j] := j;

15. set all nodes in I(H̃) as not visited;
16. call SEARCH(v(ϕ0)); /* find ϕopt */

17. g :=SELECTF(ϕopt); /* get g ∈ F with representative in ϕopt */

18. return f := g−1;
19. end.

The procedure UPDATE is called with two incident faces ϕ1 and ϕ2 and starts with global
variables err,A,B and T such that for the representative point u = p(ϕ1) of ϕ1, Tij = Aγu(i,j)

for all −n ≤ i, j ≤ n, and ∆(T,B) = err. The procedure updates T and err for the face ϕ2

and if err < min err then it modifies min err := err and ϕopt := ϕ2. The time complexity of
UPDATE’s execution with parameters ϕ1 and ϕ2 is proportional to the cardinality of Planes(ϕ2)

8

if ϕ2 is a subface of ϕ1 and to the cardinality of Planes(ϕ1), otherwise. Below we give the complete
algorithm for the procedure UPDATE.

Procedure UPDATE(ϕ1, ϕ2);
Input: Two incident faces ϕ1 and ϕ2.
Global Variables: ϕopt,min err, err,A,B and T such that for the representative point u = p(ϕ1)

of ϕ1, T [i, j] = A[γu(i, j)] for all −n ≤ i, j ≤ n, and ∆(T,B) = err.
Task: Update T and err for the face ϕ2 and if err < min err then update min err and ϕopt.

1. begin
2. initialize empty stack S;
3. if ϕ2 is a subface of ϕ1 then begin
4. for all Xiji′ ∈ Planes(ϕ2) do
5. if Xiji′(p(ϕ1)) < 0 then x[i, j] := i′; PUSH((i, j), S);
6. for all Yijj′ ∈ Planes(ϕ2) do
7. if Yijj′(p(ϕ1)) < 0 then y[i, j] := j′; PUSH((i, j), S);
8. end
9. else if ϕ2 is a superface of ϕ1 then begin

10. for all Xiji′ ∈ Planes(ϕ1) do
11. if Xiji′(p(ϕ2)) < 0 then x[i, j] := i′ − 1; PUSH((i, j), S);
12. for all Yijj′ ∈ Planes(ϕ1) do
13. if Yijj′(p(ϕ2)) < 0 then y[i, j] := j′ − 1; PUSH((i, j), S);
14. end;
15. while not EMPTY(S) do begin
16. (i, j) :=POP(S); temp := T [i, j];
17. if −n ≤ x[i, j], y[i, j] ≤ n then T [i, j] := A[x[i, j], y[i, j]] else T [i, j] := ⊥;
18. err := err − δ(temp,B[i, j]) + δ(T [i, j], B[i, j]);
19. end;
20. if err < min err then min err := err; ϕopt := ϕ2;
21. end.

Remark 1. To stress that we mean an instruction and not the mathematical notation we used
A[i, j] instead of Aij for accessing the pixel (i, j) of an image A in the UPDATE procedure.

The function SELECTF(ϕopt) of the main algorithm returns an (invertible) g ∈ F whose
representative is in ϕopt. Thus, in case F = Fa the function returns g ∈ ϕopt ∩ (

�6)a. A natural
candidate for such a representative is the point (a1, . . . , a6) = p(ϕopt). But a problem occurs when
the matrix M = (a1 a2

a3 a4
) is singular. In Section 5.4 we will discuss how to solve this problem for lin-

ear transformations. The same method can be used for affine transformations in a straightforward
way.

Lemma 2. Let τH(n) denote the worst-case time complexity of the procedure IM on input im-
ages of support {−n, . . . , n} × {−n, . . . , n} working with the parameter H. Then for all sets of
hyperplanes H,H′ in

�d such that |H| = |H′| and H′ is simple it is true τH(n) ≤ τH′(n).

Proof (Sketch). Consider any simple set of planes H′ over
�d. Notice that H′ has no coincideing

planes. It is well known (see [6]) that for any set H of planes without coinciding planes and
|H| = |H′| it is true |A(H)| ≤ |A(H′)|. Hence, simple plane sets are responsible for the maximum
sets A(H). Furthermore, let SH be an arbitrary schedule for the depth first search of IM for I(H̃),
i.e., the order in which the faces of A(H̃) are visited. We denote by c(SH) the computational

9

costs for the specific schedule SH. It easy to see that in fact c(SH) grows linearly with respect to
the number of pixels updated during the depth first search. If H contains no coinciding planes
then the costs c(SH) are in O(|A(H)|) since with every visited face exactly two pixel have to be
updated during the depth first search.

Now assume that H contains coinciding planes. Imagine that we change H slightly to Ĥ
by converting all coinciding planes to a set of parallel non-coinciding planes which have pairwise
distance of at most δ. We choose δ in a way such that each set of the new parallel planes intersects
exactly and in the same order the planes that have been intersected by the original coinciding
planes. Obviously Ĥ does not contain coinciding planes anymore. Also we modify the schedule
SH to SĤ in the following way: If there are three consecutive ϕ1, ϕ2 and ϕ3 in SH and in

�d the
faces ϕ1 and ϕ3 are separated by a set of k coinciding planes of H represented by the face ϕ2,
then by the separation of

�d with Ĥ between ϕ1 and ϕ3 there are 2k + 1 new faces. We insert
into SĤ between ϕ1 and ϕ3 all the 2k + 1 associated faces instead of ϕ2.

The new schedule is at most as expensive as the former. For that see that by traversing in depth
first search manner in SH from ϕ1 to ϕ3 over ϕ2 gives k pixel updates. Equivalently traversing from
ϕ1 to ϕ3 over the k new into SĤ inserted planes also gives k updates. Subsequently, c(SH) ≤ c(SĤ).

Furthermore, since Ĥ contains no coinciding planes it must be true by the above observations
that c(SĤ) ≤ c(SH′) for any simple set H′ with optimal travering schedule c(SH′).

Consequently, for all schedules SH and for all simple sets H′ of planes it holds that c(SH) ≤
c(SH′). Since in worst case the running time of IM is affected exclusively by the depth first search
of A(H̃) the statement follows. ut

Thus, to give an upper bound on the time complexity of the image matching procedure IM
for Fa it is enough to analyze the time complexity for IM working with any simple set H′ of the
cardinality |H′| = |Ha,n| = O(n3). Using Theorem 2 one can construct the incidence graph for
H̃′ in time O(|H̃′|6) = O(n18). Moreover, the size of I(H̃′) is in O(n18) and thus, the depth first
search can be done in time O(n18), too. Since for the simple set H′ each single execution of the
procedure UPDATE can be done in constant time, this proves the following.

Theorem 3. The Image Matching Problem for affine transformations can be solved in time
O(n18).

5 Image Matching under some Special Affine Transformations

In this section we will analyse subsets F? of affine transformations, for ? ∈ {t, s, sr, l}, with
respect to the complexity of their search spaces C(H?,n). Generally an affine transformation
f(x, y) = M · (x, y)T + t with an invertible (2 × 2)-matrix M and

�2-vector t is completely
described by the components a1 to a6 of the matrix M and vector t. In the following the subsets
of affine transformation are described by limitations to the parameters a1 to a6.

In each case we identify the subset of parameters for inverse transformations, the form of the
associated discretizations, and construct the relevant set of hyperplanes H?,n. Afterwards we use
the generic proof of Theorem 1 to provide the equivalence Γn(F?) ∼= C(H?,n) and next we give
bounds for the cardinalities |A(H̃?,n)| that play a crucial role in estimating the computational
complexity of the exhaustive search algorithm of Section 4 used for the set F? and H?,n.

In the following subsections we will for the sake of space savings move the proofs and auxilliary
lemmas to the appendix and instead provide only the main results. To get an efficient searching
strategy for rotations we modify the approach above and discuss it in detail in the next section.
Likewise we delegate projective transformations to a separate section.

10

5.1 Translation

The easiest case we consider is when the set Ft ⊂ Fa contains all translations with M the identity
matrix, t =

(

t1
t2

)

and t1, t2 ∈ � . Hence, we consider the two dimensional subspace (
�2)t of (

�6)a
which has a1 = a4 = 1, a2 = a3 = 0, a5 = t1, a6 = t2, and t1, t2 ∈ �

. We will use the simple
case of translations to illustrate how the definitions of affine transformations can be transfered
to a specific subclass. In the following subsections we will reduce this technical transfer. Like
in each considered case it holds that F−1

t = Ft, since we only consider subclasses of Fa which
are closed under inversion. From the restricted versions of M and t we get the following form of
discretizations γg for g ∈ F−1

t

γg(i, j) =

{

([i + t1], [j + t2]) if ([i + t1], [j + t2]) ∈ N ×N ,

⊥ otherwise.

In the subspace of (
�2)t the planes in Ha,n have a simpler description and thus we regard the

set Ht,n. For all i, j ∈ N and all i′, j′ ∈ [−n − 1, n + 1] we have in Ht,n the planes

Xiji′ : x1 + i + 0.5 − i′ = 0 and

Yijj′ : x2 + j + 0.5 − j′ = 0

For this set of planes we get the following characterization.

Lemma 3. Γn(Ft) ∼= C(Ht,n).

Proof. Since we only consider points in (
�2)t the relation Ra given in the proof of Theorem 1 is

restricted to the relation Rt on (
�2)t×(

�2)t defined as follows: a pair u = (t1, t2) and v = (t′1, t
′
2)

of points in (
�2)t is in Rt iff the pair of U = (1, 0, 0, 1, t1 , t2) and V = (1, 0, 0, 1, t′1 , t

′
2) is in Ra.

By applying the generic proof of Lemma 1 with the restrictions to Rt and Ht,n we can conclude
the following. Two vectors u, v ∈ (

�2)t belong to the same equivalence class of Rt if and only if
for all i, j ∈ N and any i′, j′ ∈ [−n−1, n+1] the vectors u and v belong to the same half-subspace
according to the partition of (

�2)t with the hyperplane Xiji′ , respectively Yijj′. ut
Lemma 4. |C(Ht,n)| ∈ Θ(n2).

Proof. Consider the planes in Ht,n and let H1
t,n = {Xiji′ |i ∈ N , i′ ∈ [−n − 1, n + 1]} and H2

t,n =
{Yijj′ |j ∈ N , j′ ∈ [−n − 1, n + 1]}. Obviously, two planes from Ht,n are parallel if they are either
both in H1

t,n or in H2
t,n and otherwise orthogonal. Hence, H̃t,n forms a two dimensional grid

A(H̃t,n). It is easy to see that |H̃1
t,n| = |H̃2

t,n| = 4n + 2. Hence, the number of 2-, 1- and 0-faces
is in O(n2). For a lower bound see that the number of 2-faces and by that the number of 2-cells
is also in Ω(n2). Hence, the number of cells is in Θ(n2). ut
Theorem 4. The Image Matching Problem for translations can be solved in time O(n4).

Proof. We get the running time of O(n4) applying the generic exhaustive search algorithm of
Section 4 for Ht,n, i.e., running the procedure IM(A,B) with parameter H := Ht,n. The statement
follows from the following facts

1. The structure A(H̃t,n) can be constructed in time O(n2) (in fact, one can construct this set
straightforwardly, without using the general approach of Theorem 2).

2. The DFS search of A(H̃t,n) visits O(n2) faces. Each time a new face is visited O(n2) planes
have to be considered and hence, an equal number of pixels are changed in the UPDATE
procedure.

3. Translations are always invertible and by that each point in (
�2)t represents an invertible

transformation. Hence, SELECTFt
(ϕopt) simply computes in constant time the transformation

g associated to the point p(ϕopt). ut

11

5.2 Scaling

In the case when the set of transformations is restricted to scalings Fs, we have M = (s 0
0 s) and

t = (0
0) for any s ∈ �

. We get the search space of inverse scaling transformations F−1
s = Fs.

Hence, if we consider s as the only parameter for g, then we have a one dimensional subspace
�

s

of (
�6)a. The discretizations for g ∈ F−1

s are of the form

γg(i, j) =

{

([is], [js]) if ([is], [js]) ∈ N ×N ,

⊥ otherwise.

The planes in Ha,n have a simpler description and we regard the set Hs,n: For all i, j ∈ N and all
i′, j′ ∈ [−n − 1, n + 1] we have in Hs,n the planes

Xiji′ : ix + 0.5 − i′ = 0 and

Yijj′ : jx + 0.5 − j′ = 0

Modifying the proof Theorem 1 for Fs (we replace there the relation Ra by the intersection of Ra

and
�

s ×
�

s and the space
�

a by
�

s) the following holds:

Lemma 5. Γn(Fs) ∼= C(Hs,n).

Lemma 6. |C(Hs,n)| ∈ Θ(n2).

Proof. To prove the quadratic bound on the cardinality of C(Hs,n) we use the following:

Fact 1 Let i ∈ N and i′ ∈ N . The number of coprime pairs (2i′ − 1, 2i) is in Θ(n2).

Proof. The absolute value of 2i′ − 1 or 2i are natural numbers between 1 and 2n. By Theorem
330 in [8] there are already at least 24

π2 n2 coprime pairs in [1, 2n]. Anyway, since 2i′ − 1 is always
odd and 2i even we consider only a quarter of all pairs over [1, 2n]. Because pairs of even numbers
cannot be coprime on the other hand only three quarter of all pairs are candidates to be coprime.
Even if any remaining not coprime pair is included in the quarter of pairs we consider there are
more than 2

5n2 coprime pairs left. Hence, the number is in Θ(n2). ut
Notice that Xiji′ = Yjii′. Hence, for H̃s,n we may consider only the planes Xiji′ , i, j ∈ N , i′ ∈

[−n − 1, n + 1]. Furthermore, for all i ∈ N , all i′ ∈ [n − 1, n + 1] it holds that for all j1, j2 ∈ N
the plane Xij1i′ equals the plane Xij2i′ . Denote by sii′ the point in

�
with Xiji′(sii′) = 0 for all

i, j ∈ N and all i′ ∈ [−n − 1, n + 1], hence, sii′ = 2i′−1
2i

. The number of points s ∈ �
+ with the

property that there exist i ∈ N and i′ ∈ [−n − 1, n + 1] such that s = sii′ is one less the number
of 1-faces and equal to the number of 0-faces in A(H̃s,n). We can determine that number if we
only consider the number of points sii′ where numerator and denominator are coprime. By Fact
1 this number is in Thus, the upper bound for the number of cells is the number of 1- and 0-faces
and the lower bound the number of 1-faces which proves the lemma.Θ(n2). ut
Theorem 5. The Image Matching Problem for scalings can be solved in time O(n3).

Proof. We solve the problem running the exhaustive search procedure IM(A,B) with the param-
eter H := Hs,n. Because the considered space is one dimensional and we have Θ(n2) planes the
set A(H̃s,n) can be constructed easily in time O(n2). The DFS search strategy degrades to simple
linear search. During the search each plane in Hs,n is considered once and thus altogether O(n3)
pixels are updated. SELECTFs

simply computes s = p(ϕopt). If s 6= 0 SELECTFs
computes in

constant time g the transformation associated to s. If otherwise s = 0 then ϕopt is an interval of
positive length because sii′ 6= 0 holds for all i ∈ N and i′ ∈ [−n − 1, n + 1]. SELECTFs

chooses
for ϕ̂opt the positive subinterval of ϕopt and computes ŝ = p(ϕ̂opt) in constant time. Afterwards
SELECTFs

proceeds like before and sets ĝ the transformation associated to ŝ. ut

12

5.3 Scaling and Rotation

Considering scalings and rotations together we get Fsr ⊂ Fa where M =
(

s cos φ s sinφ
−s sinφ s cos φ

)

and

t = (0
0) with s, φ ∈ �

. The search space is F−1
sr = Fsr and we consider the two dimensional

parameter subspace with parameters φ and s. We substitute x = s cos φ and y = s sin φ and
by that we get the two dimensional parameter space (

�2)sr over x, y ∈ �
. The corresponding

discretizations are of the form

γg(i, j) =

{

([ix + jy], [jx − iy]) if ([ix + jy], [jx − iy]) ∈ N ×N ,

⊥ otherwise.

The set Hsr,n contains the planes

Xiji′ : ix + jy + 0.5 − i′ = 0 and

Yijj′ : jx − iy + 0.5 − j′ = 0

for all i, j ∈ N and all i′, j′ ∈ [−n − 1, n + 1]. For visualization see in Figure 2 the space (
�2)sr

partitioned by the planes in H̃sr,2 (for the moment ignore the circle). The following can be shown
by an appropriate modification of the proof of Theorem 1 (we replace there the relation Ra by
Rsr as follows: any pair u, v ∈ (

�2)sr is in Rsr iff the pair (U, V) with U = (x, y,−y, x, 0, 0) and
V = (x′, y′,−y′, x′, 0, 0) is in Ra).

Fig. 2. The space � 2 partitioned by Hsr,2 or Hr,2 respectively. In the first case the complexity of IMP is determined
by the number of cells the space � 2 is cut into. In the second case the number of segments on the unit circle
determines the problem’s complexity.

Theorem 6. Γn(Fsr) ∼= C(Hsr,n).

13

Lemma 7. |C(Hsr,n)| ∈ Ω(n5) ∩ O(n6).

Proof. To deliver the proof we introduce the following two facts:

Fact 2 Let Hn = {H|H : ix + jx + 0.5 − i′ = 0, i, j, i′ ∈ N} be a set of planes in
�2 over x and

y. Then the cardinality of H̃n is in Θ(n3).

Proof. The upper bound is trivial by the choice of i, j, i′ ∈ N . For the lower bound see that two
choices i1, ji, i′1 and i2, j2, i′2 represent the same plane if and only if there is α ∈ � with i1 = αi2,
j1 = αj2 and i′1 − 0.5 = α(i′2 − 0.5). This is never the case if we consider only those triples i,
j, i′ with i and j coprime. By Theorem 330 in [8] there are at least 6

π2 n2 pairs i and j that are
coprime. If i and j are coprime, i′ can be chosen arbitrarily and hence, the statement follows. ut

Fact 3 Let Hn = {H|H : ix + jy + 0.5 − i′ = 0, i, j, i′ ∈ N} be a set of planes. The space
�2 is

partitioned by Hn into τ(n) cells such that τ(n) ∈ Ω(n5) ∩ O(n6).

Proof. Since H̃n is a set of two dimensional planes, the number of faces in A(H̃sr,n) is bounded

from above by
∑2

k=0

∑2
`=k

(|H|
`

)(

`
k

)

which is in O(|H̃n|2) = O(n6) by Fact 2. See [6] for this result.
Hence, the upper bound for the number of cells is also O(n6).

For a lower bound on the number of cells we give a lower bound on the number of 2-faces in
A(H̃sr,n). Consider the subset H′

n of planes in Hn with i = 0. Obviously for the plane H ∈ H′
n

with i′, j ∈ N it holds that y = 2i′−1
2j

. Hence, the planes in H′
n are parallel to the x-axis and

by Fact 1 |H̃′
n| = Ω(n2). Hence, H̃′

n divides
�2 into Ω(n2) slices S1, . . . , St such that the sum

of the 2-faces which are contained in the slices gives the number of 2-faces in
�2. We show that

every slice contains Ω(n3) 2-faces. Therefore imagine for k ∈ {1, . . . , t} a plane `k which is parallel
to the x-axis, contained in Sk and intersecting the y-axis at an irrational coordinate. The plane
`k intersects a certain subset of the 2-faces in the slice Sk and no 2-face of any other slice. The
number of 2-faces intersected by `k is one bigger than the number of intersection points between
`k and planes from H̃n. Intersetion between planes in H̃n happens only at rational coordinates and
intersection between planes in H̃n and `k only at irrational coordinates and thus, both kinds of
intersection cannot fall together. Subsequently, each plane in H̃n intersects `k at a unique point.
It is easy to see that all but Θ(n2) (those which are parallel to `k) planes in H̃n intersect `k.
Hence, by Fact 2 the number of intersection points on `k and by that the number of 2-faces in Sk

is in Ω(n3). By the quadratical number of slices this gives the lower bound Ω(n5) of 2-faces. ut

Opposite to the case where only rotations are considered (see Section 6) here each two dimen-
sional point defines a valid transformation containing both rotation and scaling parameter. Thus,
we have to estimate the number of cells in (

�2)sr defined by the planes Hsr,n (see Figure 2). Like
before Xiji′ = Yj(−i)i′ and we only have to consider the planes Xiji′ , i, j ∈ N , i′ ∈ [−n − 1, n + 1].
For this subset Fact 3 fits and the statement follows. ut

Theorem 7. The Image Matching Problem for Fsr can be solved in time O(n6).

Proof. We apply the exhaustive search procedure IM(A,B) with parameter H := Hsr,n. The
considered space is two dimensional and we have Θ(n3) planes. Hence, A(H̃sr,n) can be constructed
in time O(n6) by Theorem 2. Then the procedure IM(A,B) performs DFS search on A(H̃sr,n) and
visits each of the O(n6) faces. Like described in Section 4 the number of pixels updated during the
whole searching is O(n6). The argumentation for this follows again from the fact that the worst
case for pixel updates would occure when Hsr,n was simple. In that case we would have one pixel
update for each visited face and in such a simple partition are O(n6) faces.

14

Like in scalings alone any transformation can be inverted if and only if s 6= 0. Hence, in the
case of s 6= 0 SELECTFsr

simply computes g the transformations asociated to s and φ. Else, since
no plane intersects the origin, ϕopt is a face arround the origin of positive area. SELECTFsr

sets
ϕ̂opt to be the positive subarea of ϕopt and computes in constant time another representative ĝ

for ϕ̂opt. ut

5.4 Linear Transformations

In linear transformations, which differ from affine transformation only by restricting t to the zero
vector, we have Fl ⊂ Fa. However, we already have the matrix M = (a1 a2

a3 a4
) with a1, a2, a3, a4 ∈ � .

In that case the search space is F−1
l = Fl and we consider the subspace (

�4)l of (
�6)a. The

restrictions imply discretizations of the form

γg(i, j) =

{

([ia1 + ja2], [ia3 + ja4]) if ([ia1 + ja2], [ia3 + ja4]) ∈ N ×N ,

⊥ otherwise,

and Hl,n is the set which contains the planes

Xiji′ : ix1 + jx2 + 0.5 − i′ = 0 and

Yijj′ : ix3 + jx4 + 0.5 − j′ = 0

for all i, j ∈ N and i′, j′ ∈ [−n− 1, n + 1]. Again, modifying the proof of Theorem 1 for for linear
transformations we get:

Lemma 8. Γn(Fl) ∼= C(Hl,n).

Lemma 9. |C(Hl,n)| ∈ Ω(n10) ∩ O(n12).

Proof. We consider the four dimensional parameter space (
�4)l with parameters a1, a2, a3 and

a4 and its partition into cells by Hl,n. Notice that for all i, j ∈ N and i′, j′ ∈ [−n − 1, n + 1] the
plane Xiji′ is independent from a3 and a4 and the plane Yijj′ independent from a1 and a2. Let

H1
l,n = {Xiji′ |i, j ∈ N , i′ ∈ [−n − 1, n + 1]} and

H2
l,n = {Yijj′|i, j ∈ N , j′ ∈ [−n − 1, n + 1]}.

Obviously each plane in H1
l,n is orthogonal to each plane in H2

l,n and vica versa. We can also look
at H1

l,n and H2
l,n as plane sets for the two dimensional space

�2 and consider the correponding
partitions. Because H1

l,n and H2
l,n are orthogonal it follows that there is a one-to-one correpon-

dence between cells in (
�4)l defined by Hl,n and pairs (C1, C2) of cells in

�2 where C1 is defined
by the planes in H1

l,n and C2 by H2
l,n.

Both H1
l,n and H2

l,n fit Lemma 3. Hence, the number of cells in each two dimensional setting
is in Ω(n5) ∩ O(n6) and thus, Hl,n partitions (

�4)l into Ω(n10) ∩ O(n12) cells. ut

Theorem 8. In the case of linear transformation the running time of exhaustive search IM(A,B)
with parameter H := Hl,n is in O(n12).

Proof. In this case the considered space is four dimensional and we have Θ(n3) planes. This
implies that the incidence graph I(H̃l,n) can be constructed in time O(n12) by Theorem 2. The
DFS search of the graph is done in time O(n12) and during the whole searching O(n12) pixels are
updated which follows from the argumentation of Section 4.

15

Some of the faces ϕ of the arrangement A(H̃l,n) contain vectors (a1, a2, a3, a4) which do not
correpond to an invertible transformation and thus SELECTFl

cannot just return g simply as
p(ϕopt) (as usually we mean that (a1, a2, a3, a4) corresponds to linear transformation g = Mx

iff M = (a1 a2
a3 a4

)). Obviously g is singular if the associated matrix M contains rows which are
linearly dependent to each other. Thus, g can be inverted iff it is not part of the three dimensional
hypersurface Z : a1a4 − a2a3 = 0.

We will first show that each face ϕ in A(H̃l,n) contains a representative g which can be inverted
iff ϕ is at least one dimensional. Notice that Z is only three dimensional and thus every 4-face
trivially fulfills the statement. Let ϕ be at least a 1-face. Since a1 and a2 are independent from
a3 and a4 we can assume without loss of generality that a3 and a4 are fixed and there is at least
one degree of freedom in a1 and a2. Assume that v = (a1, a2, a3, a4)

T is in Z and a1 and a2 can
be chosen independently in the face ϕ. Then even a small change to either a1 or a2 moves v out
of Z. Otherwise, assume that the choice of a1 determines a2 and ϕ is completely contained in Z.
Then obviously a1 = αa2 with α = a3

a4
. Since in this case ϕ must be contained in a plane this

implies that there must be at least one plane which containes the origin. However, Hl,n does not
contain such a plane and hence, ϕ cannot be contained in Z.

If ϕopt is a 0-face and the only representative cannot be inverted then SELECTFl
would fail.

However, we can filter out such face already during the depth first search of the incidence graph.
Even more, we can do this in constant time since the test whether g is invertible or not can be
done in constant time. This test step does not occur explicitely in the listing in Section 4 for the
sake of comprehensibility.

Now, assume that ϕopt is a d-face, with d > 0 and let g be the transformation associated
to p(ϕopt). If g is invertible then we are done. If not, SELECTFl

searches a new representative
corresponding to an invertible ĝ solving the following linear programs.

Let h1, . . . , hr be planes which determine the boundary of ϕopt, i.e., let h1, . . . , hr be a minimum
set such that ϕopt =

⋂r
i=1 hsi

i for some appropriate values si ∈ {+,−, 0}. For example, if ϕopt is
a 4-face and ϕ1, . . . , ϕr denote all subfaces of ϕopt then this set is defined by h1, . . . , hr such that
for every i with 1 ≤ i ≤ r, hi is a plane from Planes(ϕi). To determine h1, . . . , hr in the general
case, one has to consider additionally planes form Planes(ϕopt). Now, let

c1,1a1 + c1,2a2 + c1,3a3 + c1,4a4 ≤ d1

. . .

ct,1a1 + ct,2a2 + ct,3a3 + ct,4a4 ≤ dt

be a system of linear inequalities that describes the intersection
⋂r

i=1 hsi

i . We define the system
as follows: for any h0 = {x ∈ �4 | c1x1 + c2x2 + c3x3 + c4x4 = d} we get two inequalities:
c1a1 + c2a2 + c3a3 + c4a4 ≤ d and −c1a1 − c2a2 − c3a3 − c4a4 ≤ −d, for h− = {x ∈ �4 | c1x1 +
c2x2 + c3x3 + c4x4 < d} we get the inequality c1a1 + c2a2 + c3a3 + c4a4 ≤ d− δ and for h+ = {x ∈
�4 | c1x1 + c2x2 + c3x3 + c4x4 > d} we get −c1a1 − c2a2 − c3a3 − c4a4 ≤ −d − δ, where δ is an
appropriate small constant (such a constant exists since we consider ϕopt of dimension at least 1).
By the definition of Hl,n it is true that for every i with 1 ≤ i ≤ t either ci,1 = 0 and ci,2 = 0 or
ci,3 = 0 and ci,4 = 0.

We will define four similar linear programs which differ only in single relation symbols denoted
by ./1, ./2 and ./3. Define the symbols for each program according to the following table:

linear program ./1 ./2 ./3

1 ≤ > <

2 ≤ > >

3 ≥ < <

4 ≥ < >

16

The goal funtions of the programs are empty since we look only for a valid solution. The constraints
of the linear programs are as follows:

I ∀i ∈ {1, . . . , t} with ci,3 = ci,4 = 0: ci,1a
′
1 + ci,2a

′
2 − αdi ./1 0,

II ∀i ∈ {1, . . . , t} with ci,1 = ci,2 = 0: ci,3a3 + ci,4a4 ≤ di,
III α ./2 0,
IV a′1 − a3 = 0, a′2 − a′4 = 0 and a4 − a′4 ./3 0.

At least one of the programs has a solution (a′1, a
′
2, a3, a4, a

′
4, α) and the vector (a1, a2, a3, a4) with

a1 =
a′

1

α
and a2 =

a′

2

α

1. belongs to the face ϕopt (see equations in (I), (II) and (III)) and
2. is not in Z (by the equations in (IV) αa1 = a3 but αa2 6= a4).

Thus, the transformation ĝ associated to (a1, a2, a3, a4) is valid and invertible.
The four linear programs can be solved, e.g., by Karmarkar’s algorithm [14]. The algorithm’s

runtime is O(m3.5L) where m is the number of variables and L the number of bits to store the
input. Since each face is bounded by at most O(n3) planes we have t ∈ O(n3). This implies that
in our case L = O(n3 log n) and furthermore m is constant. Subsequently, the total runtime of
the procedure SELECTFl

is in O(n3 log n). In fact, since only a valid and no optimal solution is
searched, the runtime is even much smaller. ut

Remark 2. Since affine transformations contain all combinations of linear transformation and
translations, this analysis gives also a corresponding lower bound for affine transformations that
is Ω(n12).

6 Rotation

In this section we consider a set of transformation which is in a certain sense different to the
previously introduced classes. In the case of rotations we have the set Fr ⊂ Fa with M =
(

cos φ sinφ
− sinφ cos φ

)

and t = (0
0) and φ ∈ �

. The search space is F−1
r = Fr over the only parameter φ.

Thus we consider only a one dimensional subspace
�

r of (
�6)a.

The major problem with rotations is that F−1
r is not partitioned by planes. If we define

x = cos φ and y = sin φ then the discretizations have the form

γg(i, j) =

{

([ix + jy], [jx − iy]) if ([ix + jy], [jx − iy]) ∈ N ×N ,

⊥ otherwise.

This gives us for Hr,n the set of surfaces

Xiji′ : ix + jy + 0.5 − i′ = 0 and

Yijj′ : jx − iy + 0.5 − j′ = 0

for all i, j ∈ N and all i′, j′ ∈ [−n − 1, n + 1]. But these are no planes because they depend on
the sin and cos of φ. However, if we regard x and y for parameters of F−1

r instead of φ then
Hr,n contains only planes. But this introduces a number of problems which led us to consider
rotation separately. One is that we have to consider only vectors (x, y) with x2 + y2 = 1, hence,
the subspace of interest is the unit circle.

Concerning this subspace the mechanism of the planes remains the same. Two vectors (x, y)
and (x′, y′) on the unit circle correspond to the same discrete version of a rotation iff they are not

17

separated by any plane Xiji′ or Yijj′, i, j ∈ N , i′, j′ ∈ [−n − 1, n + 1]. This leads to the question
how many segments the unit circle is cut into by the planes in Hr,n. We show the space

�2

together with the unit circle and the planes Hr,2 in Figure 2. See how the planes cut the circle
into segments.

Lemma 10. The set Hr,n of planes in
�2 partitions the unit circle into Θ(n3) segments.

Proof. Consider the planes in H̃r,n. We have Xiji′ = Yj(−i)i′ and thus, have in H̃r,n only planes
Xiji′ , i, j ∈ N , i′ ∈ [−n − 1, n + 1]. For all i, j ∈ N and all i′ ∈ [−n − 1, n + 1] denote by
siji′ = (x, y) the point in

�2 at which Xiji′ intersects the unit circle, if such a point exists. Hence,
Xiji′(siji′) = 0 and x2 + y2 = 1. The coordinates (x, y) of point siji′ are as follows:

x = i(i′ − 0.5) ± j
√

i2 + j2 − (i′ − 0.5)2

i2 + j2
y = j(i′ − 0.5) ± i

√

i2 + j2 − (i′ − 0.5)2

i2 + j2
.

The number of points s ∈ �2 on the unit circle with the property that there exist i, j ∈ N and
i′ ∈ [−n − 1, n + 1] such that siji′ = s equals the number S(n) of segments the unit circle is cut
into.

The cardinality of the subset of H̃r,n containing the planes intersecting the unit circle gives
the upper bound for S(n). Hence, S(n) is in O(n3). For all i, j ∈ N and i′ ∈ [−n − 1, n + 1]
consider the coordinates (x, y) of siji′ . The plane Xiji′ intersects the unit circle, if and only if the
term under the square root is positive or zero, i.e., if the inequality i2 + j2 ≥ (i′ − 0.5)2 holds. We
count the number of planes which intersect the unit circle. For each i′ ∈ [−n−1, n+1] we consider
only those pairs i, j ∈ [1, n] which are coprime and max{i, j} ≥ i′. By this we assure that we do
not count a plane twice and that i2 + j2 ≥ (i′ − 0.5)2. By Theorem 330 in [8] for each i′ there are
at least 6

π2 n2 − 6
π2 i′2 −O(i′ log i′) coprime pairs for (i, j) which correspond to intersecting planes.

This gives that at least 6
π2 n3 −O(n2 log n)− 6

π2

∑n
i′=1 i′2 ∈ Ω(n3) planes intersect the unit circle.

It remains to show that the planes intersect the unit circle at different points. Since the
planes have natural numbers as coefficients they intersect each other at coordinates with rational
components. We show that intersection between unit circle and planes occurs only at coordinates
with irrational components and hence, each plane intersects the circle at two unique points. The
intersection coordinates are irrational if and only if the term

√

i2 + j2 − (i′ − 05)2 is irrational.
Assume that there are natural numbers p and q such that p

q
=

√

i2 + j2 − (i′ − 05)2. We let b

be the natural number for which b = i2 + j2 − i′2 − i′, and hence p = q
√

b − 0.25. Subsequently, q

has to be a multiple of 2 and we let q = 2q′. It follows that p = q′
√

4b − 1. The square root of a
natural number is either irrational or itself a natural number and thus we can assume q′ = 1. By
that it follows that p2 ≡ −1 mod 4. This contradicts the assumption of p and q being natural.ut

From the lemma follows that there exist Θ(n3) possible rotations of a n × n image. However,
due to the fact that there are subspaces which contain only one representative with irrational
coordinates IMP for Fr cannot be solved in the usual way. For this setting, we will, instead of
computing the rotation angle, compute the image f(A) which is a rotation of A and most similar
to B. Also, we cannot use the algorithm of Sections 4 but propose a new strategy:

We compute the segments on the unit circle in their clockwise order. To omit the precision
problems with the intersection points we can compute in a clockwise order which plane is respon-
sible for the end of the current segment and the start of the next one. This gives the sequence
Sr,n = (H1, . . . ,Ht). Each Hi, 1 ≤ i ≤ t represents a subset of planes which coincide in

�2.

Lemma 11. The computation of a sequence Sr,n = (H1, . . . ,Ht) listing in clockwise order the
subsets of planes in Hr,n intersecting the unit circle is feasible in time O(n3 log n).

18

Proof (Sketch). The central concept in computing Sr,n is to sort the planes of Hr,n that intersect
the unit circle C one by one into the list Sr,n. The test for intersection between a plane Hiji′ and C
can be archieved by computing whether i2 + j2 ≥ (i′ − 0.5)2 holds. Since we assume arithmetical
operations to have unit costs this needs only contant time.

Notice that in Hr,n are no tangents of C because i2 + j2 = (i′ − 0.5)2 never holds. Hence, each
intersecting plane has two occurences in Sr,n. To determine the order of the intersecting planes in
Sr,n we apply in each step binary search. During the binary search we recursively have to decide
the following situation: Let Sr,n = (H1,H2, . . .) be an initial order of planes intersecting C and let
H be the plane which should be inserted. Assume we know that there is an intersection p of plane
H with C between the intersections pa and pb of Ha and Hb with C. Furthermore let c =

⌊

a+b
2

⌋

.
Does H intersect C between pa and pc the intersection of planes in Hc and C or between pc and
pb?

The test can basically be implemented by checking the side of Hc for a specific point on
H. However, the determination of that point and some special cases introduce a lot of case
differentiations and make the presentation very technical. Nevertheless, the test can be done in
constant time. The special case of H coinciding with the planes in Hc should be mentioned.
Depending on whether H and the planes in Hc add the vectors (x, y) in

�2 with H(x, y) = 0 to
the same side distinguishes the cases when H is simply inserted into Hc or starts a new set in
Sr,n.

By binary search we can insert one plane into Sr,n with O(log n) tests. Since we have Θ(n3)
planes intersecting C this gives a preprocessing time of O(n3 log n). ut

After Sr,n has been built the actual optimization can be done very easy. In fact one simply
has to traverse the segments on the unit circle and check each time whether the current image
f(A) is closer to B then the previous ones. Like in the algorithm of Sections 4 it is possible to
compute f(A) gradually.

Theorem 9. Image Matching on Fr is feasible in time O(n3) with O(n3 log n) preprocessing
steps.

Proof. For the preprocessing see Lemma 11. Like in Section 4 we will now give a more efficient
way to gradually obtain f(A) by traversing the segments on the unit circle in a Sr,n manner.

By Lemma 1 all vectors on the unit circle within one segment correpond to the same f(A).
Consider two neighbouring segments s1 and s2 on the unit circle and let f1(A) and f2(A) be the
corresponding rotated versions of A. Notice that s1 and s2 might be separated from eachother by
multiple planes. Thus, let Hs1,s2

be the set of planes separating s1 from s2.
For simplicities sake denote by γs1

and γs2
the discreted representations of the rotations shared

by all vectors on s1 or s2 respectively. It is easy to see that f1(A)ij and f2(A)ij can potentially
be different iff γs1

6= γs2
which is only the case iff there exits c ∈ [−n− 1, n + 1] and Xijc ∈ Hs1,s2

or Yijc ∈ Hs1,s2
.

Subsequently, if we knew f1(A) and Hs1,s2
we could compute f2(A) efficiently by only updating

the set of pixels P = {(ij) | ∃c ∈ [−n − 1, n + 1],Xijc ∈ Hs1,s2
∨ Yijc ∈ Hs1,s2

} in f1(A). It is
easy to see that by the definition of ∆ also the difference ∆(f2(A), B) can be computed just by
updating ∆(f1(A), B) on the set of pixels P .

We will now see that during the transversal of all segments there is a total of only O(n3) pixel
updates. Let Sr,n = (H1, . . . ,Ht) be the order of planes computed in preprocessing. Obviously each
plane in Hr,n can occur at most in two sets of Sr,n. Furthermore, for any set Hi ∈ Sr,n, 1 ≤ i ≤ t

each plane of Hi stands for exactly one pixel to update. Since the number of planes is in Θ(n3)
the number of updates is in O(n3) when traversing Sr,n. Since the complexity of updating one
pixel in f(A) and in ∆(f(A), B) is constant, the whole optimization procedure is in O(n3). ut

19

7 Projective Transformations

Projective transformations Fp are a generalization of affine transformations. For projective trans-
formation it holds that, f ∈ Fa if f(x, y) = (a

c
, b

c
)T with (a, b, c)T = M · (x, y, 1)T and M =

(a1 a2 a3

a4 a5 a6

a7 a8 1

)

an invertible (3× 3)-matrix. Like in all previously considered case here also F−1
p = Fp.

For M we can choose eight parameters a1 to a8 and thus have an eight dimensional parameter
space (

�8)p with the exceptional vectors where either the corresponding matrix M is not invert-
ible or there exist i, j ∈ N such that a7i + a8j + 1 = 0. From M we get the following form of
discretizations γg for g ∈ F−1

p

γg(i, j) =

{([

a1i+a2j+a3

a7i+a8j+1

]

,
[

a4i+a5j+a6

a7i+a8j+1

])

if
([

a1i+a2j+a3

a7i+a8j+1

]

,
[

a4i+a5j+a6

a7i+a8j+1

])

∈ N ×N ,

⊥ otherwise.

Like in all previous sections we can define a set of planes Hp,n which contains for all i, j ∈
N , i′, j′ ∈ [−n − 1, n + 1] the planes:

Xiji′ : ix1 + jx2 + x3 + (0.5i − ii′)x7 + (0.5j − ji′)x8 + (0.5 − i′)x9 = 0 and

Yijj′ : ix4 + jx5 + x6 + (0.5i − ij′)x7 + (0.5j − jj′)x8 + (0.5 − j′)x9 = 0

However, an analogous version of Theorem 1 for projective transformations is not true in this
setting. Anyway, the following weaker version of the Theorem can be established for projective
transformation. We say that

Γn(Fp) ≺ C(Hp,n)

if and only if for all u, u′ ∈ �8 with gu, gu′ ∈ F−1
p it is true: CH(u) = CH(u′) ⇒ γgu

= γgu′
.

Theorem 10. Γn(Fp) ≺ C(Ha,n).

Proof. We again define the set Rp to be the following equivalence relation on (
�8)p × (

�8)p

Rp = {(u1, u2) | u1, u2 ∈ (
�8)p and γu1

= γu2
}.

Thus the relation Rp partitions F−1
p into subsets of transformations of equal discrete counterparts.

The following lemma gives the major structural property of Rp.

Lemma 12. Two vectors u, v ∈ (
�8)p belong to the same equivalence class of Rp if for all i, j ∈ N

and any i′, j′ ∈ [−n − 1, n + 1] the vectors u and v belong to the same half-subspace according to
the partition of (

�8)p with the hyperplane Xiji′, respectively Yijj′.

Proof. Let u = (a1, . . . , a8) and v = (b1, . . . , b8) be two parameter vectors from (
�8)p. By defini-

tion γu equals γv, iff u and v belong to the same equivalence class in Rp. We show that if u and
v belong to the same half-subspace then γu = γv.

Let γu 6= γv hold but for the contradiction assume that for all (i, j) ∈ N × N and i′, j′ ∈
[−n − 1, n + 1] u and v belong to the same half-space of (

�8)p with respect to Xiji′ and Yijj′.
There exist (i, j) ∈ N × N such that γu(i, j) = (i′1, j

′
1) 6= (i′2, j

′
2) = γv(i, j). Without loss of

generalization assume that i′1 ≤ i′2 − 1. This means that

1. a1i+a2j+a3

a7i+a8j+1 < i′1 + 0.5 and

2. i′2 − 0.5 ≤ b1i+b2j+b3
b7i+b8j+1 .

20

It is easy to see that all planes Xiji′ with fixed i and j have a common subspace Zij . Hence any
two planes Xiji′

1
and Xiji′

2
intersect in the linear subspace where x7i + x8j + 1 = 0.

Lets first consider the easier case when u and v are both on the same side of the linear subspace
Zij , hence, either a7i+a8j+1 > 0 and b7i+b8j+1 > 0 or a7i+a8j+a9 < 0 and b7i+b8j+b9 < 0.
In that case we substitute i′1 by i′2 − 1 in the first inequality and get

1. ia1 + ja2 + a3 + (0.5i − ii′2)a7 + (0.5j − ji′2)a8 + (0.5 − i′2) < 0 as well as
2. ib1 + jb2 + b3 + (0.5i − ii′2)b7 + (0.5j − ji′2)b8 + (0.5 − i′2) ≥ 0

or with switched relation symbols, respectively. Thus, the plane Xiji′
2

separates u and v.
Now consider the case of u and v being on opposite sides of Zij : x7i+x8j +1 = 0. Then there

exist only two possibilities for u and v being placed in the same half-subspace of the plane Xiji′

for all i′ ∈ [−n− 1, n + 1]. If Xiji′(u) ≥ 0 and Xij(i′+1)(u) < 0 then it is not possible to place v on
the opposite side of the space Zij such that neither Xiji′ nor Xij(i′+1) separates u and v because
Xiji′ and Xij(i′+1) ”cross” in Zij .

Hence, the only way to place u and v properly is when Xiji′(u) < 0 and Xiji′(v) < 0 or
Xiji′(u) ≥ 0 and Xiji′(v) ≥ 0 for all i′ ∈ [−n − 1, n + 1]. Obviously, in that case it is not possible
that γu(i, j) = (i′, j′) with i′ ∈ N because this would imply that u is in the space between Xiji′

and Xij(i′+1). The same holds for v. Subsequently, γu(i, j) = ⊥ = γv(i, j) must hold which is a
contradiction.

An analogous proof holds for the case when j′1 and j′2 differ. ut

ut

Like in affine transformations the planes in (
�8)p separate classes of different projective trans-

formations. However, there may be several cells which represent the same projective transforma-
tion. Despite this by the theorem it still suffices to estimate the number of cells in C(Hp,n) to get
bound on the cardinality of Γn(Fp).

Lemma 13. |C(Hp,n)| ∈ O(n24).

Proof. The limitations for i, j, i′ and j′ imply that the number of planes in H̃p,n is in O(n3).

Any set H of O(n3) planes partitions (
�8)p into at most

∑8
k=0

∑8
`=k

(|H|
`

)(

`
k

)

= O(|H|8) = O(n24)
cells. ut

Finally, we can also solve IMP efficiently for the general class of projective transformation.
Anyway, the algorithm presented in Section 4 calls as a last step SELECTFp

which should com-
putes for the optimum class ϕopt a representative g with an invertible 3× 3 matrix. This is much
harder then in linear and affine transformation and we cannot give any efficient solution for that
problem. Instead we will assume that SELECTFp

simply returns g even if it is not invertible.

Theorem 11. The Image Matching Problem for projective transformations can be solved in
time O(n24).

8 Conclusions and Future Work

In this work we analyzed the Image Matching Problem with respect to several subclasses of affine
transformations as well as the more general case of projective transformations. We introduced a
general polynomial time searching strategy which takes advantage of the search space structure
common among the covered classes of transformations. To provide precise bounds for the running
time of the searching algorithm we examined the complexity of the search space structure for

21

each class of transformations. As a consequence we showed sharp bounds for translations Θ(n2),
scalings Θ(n2) and rotations Θ(n3). We also gave narrow bounds for combined scalings and
rotations Ω(n5)∩O(n6), and for linear transformations Ω(n10)∩O(n12). We did not improve the
upper bound for affine transformations O(n18) but could give a nontrivial lower bound of Ω(n12).
Finally, we analyzed projective transformation and showed O(n24) as an upper bound.

We conjecture that the lower bound for the structural complexity of the search space of
combined scalings and rotations is Ω(n6). This would also imply the lower bound of Ω(n12) for
the search space complexity of linear transformations. The other great challenge in this area is
to close the gap between the lower and the upper bound for the search space complexity of affine
and projective transformations.

References

1. A. Amir, A. Butman, M. Crochemore, G. Landau, and M. Schaps, Two dimensional pattern matching with
rotations, Theor. Comput. Sci. 314(1-2): 173-187 (2004).

2. A. Amir, O. Kapah, and D. Tsur, Faster Two Dimensional Pattern Matching with Rotations, in Proc. CPM
2004, LNCS 3109, pages 409-419, 2004.

3. A. Amir and E. Chencinski, Faster 2-Dimensional Scaled Matching, Proc. CPM 2006, LNCS 4009, 200-210, 2006.
4. Brown, L.G.: A survey of image registration techniques. ACM Computing Surveys 24(4) (1992) 325-376.
5. Cox, I. J., Bloom, J.A., Miller, M.L.: Digital Watermarking, Principles and Practice. Morgan Kaufmann, San

Francisco, California (2001).
6. Herbert Edelsbrunner: Algorithms in Combinatorial Geometry. Springer Verlag (1987).
7. Edelsbrunner, H., O’Rouke, J., Seiel, R.: SIAM Journal on Computing. Vol. 15(2), (1986) 341-363.
8. Hardy, G. H., Wright E. M.: An Introduction to the Theory of Numbers. Oxford University Press (1954)
9. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry, Algorithms and

Applications. Springer Verlag (2000)
10. K. Fredriksson and E. Ukkonen, A rotation invariant filter for two dimensional string matching, In Proc. 9th

Combinatorial Pattern Matching (CPM’98), LNCS 1448, pages 118-125, 1998.
11. K. Fredriksson, G. Navarro, and E. Ukkonen, Optimal exact and fast approximate two dimensional pattern

matching allowing rotations. In Proc. CPM 2002, LNCS 2373, pages 235-248, 2002.
12. C. Hundt and M. Lískiewicz, On the Complexity of Affine Image Matching, in Proc. International Symposium

on Theoretical Aspects of Computer Science (STACS), LNCS 4393, Springer-Verlag 2007, pp. 284-295.
13. Kasturi, R., Jain, R.C.: Computer Vision: Principles. IEEE Computer Society Press, Los Alamitos, 1991.
14. Karmarkar, N.: A new polynomial time algorithm for linear programming. Combinatorica 4(4) (1984), 373-395.
15. Keysers, D., Unger, W.: Elastic image matching is NP-complete. Pattern Recognition Letters 24, 2003, 445-453.
16. G. M. Landau and U. Vishkin, Pattern matching in a digitized image. Algorithmica, 12(3/4): 375-408, 1994.
17. Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2, 1998, 1-36.
18. Uchida, S., Sakoe, H.: A monotonic and continuous two dimensional warping based on dynamic programming.

In: Pattern Recognition. Volume 1. (1998) 521-524

22

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

