
Computing 1/3-approximate Nash equilibria of bimatrix

games in polynomial time ∗

Haralambos Tsaknakis † Paul G. Spirakis † ‡

May 22, 2007

Abstract

In this paper we propose a methodology for determining approximate Nash equilib-
ria of non-cooperative bimatrix games and, based on that, we provide a polynomial time
algorithm that computes 1

3 + 1
p(n) -approximate equilibria , where p(n) is a polynomial

controlled by our algorithm and proportional to its running time. The methodology
is based on the formulation of an appropriate function of pairs of mixed strategies re-
flecting the maximum deviation of the players’ payoffs from the best payoff each player
could achieve given the strategy chosen by the other. We then seek to minimize such
a function using descent procedures. As it is unlikely to be able to find global minima
in polynomial time, given the recently proven intractability of the problem, we concen-
trate on the computation of local minima and prove that they can be approximated
arbitrarily close in polynomial time and that they have the above mentioned approxi-
mation property. Our result provides the best ε till now for polynomially computable
ε-approximate Nash equilibria of bimatrix games.

1 Introduction

Ever since it was proved that the problem of finding exact Nash equilibria is intractable in
the sense that it is PPAD-complete even for 2-player games [1], attention has been focused
on finding ε-approximate such equilibria for ε > 0. In this respect, simple algorithms have
recently been provided for finding approximate equilibria for constant ε = 3

4
and ε = 1

2
( [3]

, [4] ) for general bimatrix games (and for positively normalised payoff matrices) based on
examining small supports of 1 or 2 for either player. The best known result so far provides
0.38-approximate Nash equilibria of normalised bimatrix games in polynomial time ( [2] ).
Furthermore , it has been shown ( [5] ) that the more general approximation problem of
finding a fully polynomial time approximation scheme for any ε > 0 , has similar complexity
with the problem of finding exact Nash equilibria.

∗This work has been partially supported by the IST Programme of the European Union DELIS
†Research Academic Computer Technology Institute, RACTI , Greece , Email:

{tsaknak,spirakis}@cti.gr
‡Dept. of Computer Eng. and Informatics , Patras Univ. , Patras Greece

1

Electronic Colloquium on Computational Complexity, Report No. 67 (2007)

ISSN 1433-8092




For a different, stronger, notion of approximation, i.e. the well supported approximate
Nash equilibria, the best known result so far provides 0.658-approximate well supported
equilibria for normalised bimatrix games in polynomial time ( [6] ).

Most of the reported investigations of finding approximate equilibria for constant ε are
based on the examination of small supports of the strategy sets of the players and the
algorithms presented are based on brute force search over all such supports.

In this work we adopt a different approach that does not rely on any pre-specified small
supports neither on an indiscriminate search over all small support strategies. We define
an equivalent optimization problem in the strategy spaces of both players and attempt to
obtain a local optimum of a specific function that measures the maximum deviation of the
players’ payoffs from the best payoff each player could achieve given the strategy chosen by
the other. We prove that at any local minimum of that function we obtain a strategy pair
that is an 1

3
-approximate Nash equilibrium. We also prove that an almost local minimum of

the function can be reached in polynomial time with respect to the input data of the game
, and that point suffices to get arbitrarily close to 1

3
.

2 Definitions and notation

Let R, C denote the m by n row and column players’ payoff matrices respectively , for m, n
any positive integers. We assume that both payoff matrices are positively normalized , i.e.
all their entries belong to [0, 1] (without loss of generality any game can be equivalently
transformed to a positively normalized game by appropriate shifting and scaling each one of
the payoff matrices).

Let us denote by ek the k-dimensional column vector having all its entries equal to 1 (for
positive integer k ). Let

∆k = {u : u ∈ Rk, u ≥ 0, eτ
ku = 1}

be the k-dimentional standard simplex (superscript τ denotes transpose).
Also , for any vector u ∈ Rk , we define the following :

supp(u) = {i ∈ (1, k) : ui 6= 0}

being the support index subset of u ∈ Rk and also

suppmax(u) = {i ∈ (1, k) : ui ≥ uj ∀j ∈ (1, k)}

being the index subset where all entries are equal to the maximum entry of u ∈ Rk.
We also denote by

max(u) = {ui : ui ≥ uj, for all j} (1)

the value of the maximum entry of the vector.
The problem of finding an ε-approximate Nash equilibrium in the game (R, C) , for some

ε ≥ 0 , is to compute a pair of strategies x in ∆m and y in ∆n such that the following
relationships hold :

2



xτRy ≤ xτRy + ε for all x ∈ ∆m

and

xτCy ≤ xτCy + ε for all y ∈ ∆n

3 Optimization formulation

Key to our approach is the definition of the following function mapping ∆m ×∆n into [0, 1] :

f(x, y) = max{max(Ry) − xτRy, max(Cτx) − xτCy}

It is evident that f(x, y) ≥ 0 ∀ (x, y) ∈ ∆m × ∆n and that exact Nash equilibria of
(R, C) correspond to pairs of strategies such that f(x, y) = 0 . Furthermore, ε- approximate
equilibria correspond to strategy pairs that satisfy f(x, y) ≤ ε . This function represents the
maximum deviation of the players’ payoffs from the best payoff each player could achieve
given the strategy chosen by the other.

The function f(x, y) is not jointly convex with respect to both x and y . However , it is
convex in x alone , if y is kept fixed and vice versa.

Let us define the two ingredients of the function f(x, y) as follows :
fR(x, y) = max(Ry) − xτRy
and
fC(x, y) = max(Cτx) − xτCy
From any point in (x, y) ∈ ∆m × ∆n we consider variations of f(x, y) along feasible

directions in both players’ strategy spaces of the following form :

(1 − ε)

[

x
y

]

+ ε

[

x′

y′

]

where , 0 ≤ ε ≤ 1, (x′, y′) ∈ ∆m × ∆n

(the vectors in brackets are m + n - dimensional column vectors).
The variation of the function along such a feasible direction is given by the following

relationship :

Df(x, y, x′, y′, ε) = f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y)

Considering sufficiently small values of ε (that will be examined later ) and ignoring
second order terms in the above relationship , the gradient at the point (x, y) along an
arbitrary direction specified by another point (x′, y′) has been derived as follows :

Df(x, y, x′, y′) = lim(for ε → 0) of ((
1

ε
)Df(x, y, x′, y′, ε)

Let us now define :

3



SR(y) = suppmax(Ry) and SC(x) = suppmax(Cτx)

From the Appendix we get :
(a) If fR(x, y) = fC(x, y) then

Df(x, y, x′, y′) = max(T1(x, y, x′, y′), T2(x, y, x′, y′)) − f(x, y)

where

m1(y
′) = max(Ry′) over the subset SR(y)

and
m2(x

′) = max(Cτx′) over the subset SC(x)

and

T1(x, y, x′, y′) = m1(y
′) − xτRy′ − (x′)τRy + xτRy

and

T2(x, y, x′, y′) = m2(x
′) − xτRy′ − (x′)τCy + xτCy

(b) If fR(x, y) > fC(x, y) then
Df(x, y, x′, y′) = T1(x, y, x′, y′) − f(x, y)
and
(c) If fR(x, y) < fC(x, y) then
Df(x, y, x′, y′) = T2(x, y, x′, y′) − f(x, y) . In the cases (b) and (c) the functions T1 and

T2 are as defined in case (a).
The problem of finding Df(x, y) as the minimum over all (x′, y′) ∈ ∆m by ∆n of the

function Df(x, y, x′, y′) , is a linear programming problem.
This problem can be equivalently expressed as the following mini-max problem by intro-

ducing appropriate dual variables (we derive it for (x, y) such that fR(x, y) = fC(x, y) since
the cases where the two terms are different can be reduced to this by solving an LP , as we
shall see below) :

Minimize (over x′, y′ ) the maximum (over w, z, ρ ) of the function

[ρwτ , (1 − ρ)zτ ]G(x, y)

[

y′

x′

]

where :
(a) the maximum is taken with respect to dual variables w, z, ρ such that :
w ∈ ∆m, supp(w) ⊂ SR(y) and z ∈ ∆n, supp(z) ⊂ SC(x) and ρ ∈ [0, 1] .
(b) The minimum is taken with respect to (x′, y′) ∈ ∆m by ∆n , and
(c) the matrix G(x, y) is the following (m + n) by (m + n) matrix :

4



G(x, y) =

[

R − emxτR −emyτRτ + emem
τxτRy

−enxτC + enen
τxτCy Cτ − enyτCτ

]

Solving the above mini-max problem we obtain w, z, ρ, x′ and y′ that are all functions of
the point (x, y) and take values in their respective domains of definition. Let us denote by
V (x, y) the value of the solution of the mini-max problem at the point (x, y) . The solution
of this problem yields a feasible descent direction (as a matter of fact the steepest feasible
descent direction) for the function f(x, y) if Df(x, y) = V (x, y)−f(x, y) < 0 . Following such
a descent direction we can perform an appropriate line search with respect to the parameter
ε and find a new point that gives a lower value of the function f(x, y) . Applying repeatedly
such a descent procedure we will eventually reach a point where no further reduction is
possible. Such a point is a local minimum (or stationary point ) that satisfies Df(x, y) ≥ 0 .

In order to control the number of repetitions of the descent procedure , we do the following
(without loss of generality , let us assume that n ≥ m ) :

Procedure descent ( p (n) )
(Note : here p(n) is a suitably chosen polynomial in n , e.g. p(n) = nα, α > 1 ) .
1. Start with an arbitrary (x, y) = (x0, y0) in ∆m × ∆n (e.g. the uniform distribution ).

Produce another pair (x, y) with lower value of f(x, y) and for which fR(x, y) = fC(x, y) as
follows :

(a) If fR(x0, y0) > fC(x0, y0) , keep y0 fixed and solve the LP :
minimize (over x ∈ ∆m ) the

max(Ry0) − xτRy0

under the constraint :

max(Cτx) − xτCy0 ≤ max(Ry0) − xτRy0

(b) If fR(x0, y0) < fC(x0, y0) , keep x0 fixed and solve the LP :
minimize (over y ∈ ∆n ) the

max(Cτx0) − x0
τCy

under the constraint :

max(Ry) − x0
τRy ≤ max(Cτx0) − x0

τRy

2. Compute the value V (x, y) and the corresponding (x′, y′) by solving the linear mini-
max problem (with the matrix G(x, y) as defined above).

3. If V (x, y) − f(x, y) < 0 but V (x, y) − f(x, y) > − 1
p(n)

stop (almost local minimum)
and exit.

Also , if V (x, y − f(x, y) ≥ 0 , then stop (local minimum) and exit.
4. If the conditions in step 3 are not satisfied , compute the minimum with respect

to ε of the function f(x + ε(x′ − x), y + ε(y′ − y)) along the direction in the (x, y) space

5



specified by the (x′, y′) found in step 2 , until the first breakpoint of the variable ε , and set
(x, y) = (x+ ε(x′−x), y + ε(y′−y)) . (Notice that the number of breakpoints for ε one needs
to consider for finding the global minimum of f(x + ε(x′ − x), y + ε(y′ − y)) with respect to
ε is of the order of O(n) (see the formula in the Appendix)). Furthermore , if for the new
(x, y) we have fR(x, y) 6= fC(x, y) , solve the LP specified in step 1 and compute the new
(x, y) with lower value of the function f(x, y) and for which fR(x, y) = fC(x, y) .

Go to step 2 .
end of descent .

4 Approximation properties of local minima

Let us assume that we have a local minimum (x?, y?) of the function f(x, y) . Then , based
on the above analysis and notation , the following relationship should be true :

Df(x?, y?) = V (x?, y?) − f(x?, y?) ≥ 0

Let (w?, z?) ∈ ∆m × ∆n, ρ? ∈ [0, 1] be a solution of the linear mini-max problem (with
matrix G(x?, y?) ) with respect to the dual variables corresponding to the pair (x?, y?) . Such
a solution should satisfy the relations supp(w?) ⊂ SR(y?) and supp(z?) ⊂ SR(x?) .

Let us define a pair of strategies (x̂, ŷ) ∈ ∆m × ∆n as follows :

(x̂, ŷ) =

{

(x?, y?), if f(x?, y?) ≤ f(w?, z?)
(w?, z?) , otherwise

}

We now express the main result of this paper in the following theorem :

Theorem 1 The pair of strategies (x̂, ŷ) defined above , is a 1
3

- approximate Nash equilib-
rium.

proof
From the definition of (x̂, ŷ) we have :

f(x̂, ŷ) ≤ min{f(x?, y?), f(w?, z?)} (2)

Using the stationarity condition for (x?, y?) we obtain :

f(x?, y?) ≤ V (x?, y?)

But V (x?, y?) is less than or equal to

ρ?E1 + (1 − ρ?)E2

where

E1 = (w?τRy′ − x?τRy′ − x′τRy? + x?τRy?)

6



and

E2 = (z?τCτx′ − x?τCy′ − x′τCy? + x?τCy?)

and this holds ∀(x′, y′) ∈ ∆m × ∆n

Setting x′ = x? and y′ : supp(y′) ⊂ SC(x?) in the above inequality we get :

f(x?, y?) ≤ ρ?λ (3)

where λ is the minimum over all y′ : supp(y′) ⊂ SC(x?) of the quantity :

{(w? − x?)τRy′}

Next , setting y′ = y? and x′ : supp(x′) ⊂ SR(y?) in the same inequality , we get :

f(x?, y?) ≤ (1 − ρ?)µ (4)

where µ is the minimum over all x′ : supp(x′) ⊂ SR(y?) of the quantity :

{x′τC(z? − y?)}

Now , since supp(z?) ⊂ SC(x?) , we have (w? − x?)τRz? ≥ λ which implies :

max(Rz?) − w?τRz? ≤ max(Rz?) − x?τRz? − λ ≤ 1 − λ

Similarly , since supp(w?) ⊂ SR(y?) , we have w?τC(z? − y?) ≥ µ which implies :

max(Cτw?) − w?τCz? ≤ max(Cτw?) − w?τCy? − µ ≤ 1 − µ

From the last two inequalities we deduce :

f(w?, z?) ≤ 1 − min(λ, µ) (5)

Combining inequalities (3) , (4) , (5) and the definition of (x̂, ŷ) , we get :

f(x̂, ŷ) ≤ min{ρ?λ, (1 − ρ?)µ, 1 − min(λ, µ)} (6)

By straightforward calculation , the right hand side of the above inequality (6 ) cannot
exceed the number 1

3
for any ρ?, λ, µ ∈ [0, 1] , which proves our claim that (x̂, ŷ) is 1

3
-

approximate Nash equilibrium.
This concludes the proof of our main Theorem .
Now , if we have an almost local minimum (xd

?, yd
?) instead of an exact one , the

stationarity condition (used in the proof of the theorem) becomes :

f(xd
?, yd

?) ≤ V (xd
?, yd

?) +
1

p(n)

Following the same steps of the proof as above , with all quantities determined by such
a point (xd

?, yd
?) , the inequalities (3) and (4 ) are modified as :

7



f(xd
?, yd

?) ≤ ρd
?λd +

1

p(n)

and

f(xd
?, yd

?) ≤ (1 − ρd
?)µd +

1

p(n)

Also , inequality (5 ) remains the same with respect to the quantities λd, µd . Therefore
, using the inequality (6 ) with these bounds we end up with a 1

3
+ 1

p(n)
- approximate

equilibrium.

5 The complexity of our algorithm

Our algorithm is basically the procedure descent of the function f(x, y) . This takes at most
p(n)TLP (n) time to run (when n ≥ m ) where TLP (n) is the time to solve a linear program
of size n.

An arbitrary point (x, y) ∈ ∆m × ∆n can be used to initialize the algorithm.

6 Discussion and future work

It is known from Bellare and Rogaway ( [7] ) that (even in a weaker sense) there is no
polynomial time µ - approximation of the optimal value of the problem min{xτQx, s.t.Bx =
b, 0 ≤ x ≤ e} for some µ ∈ (0, 1

3
) , unless P = NP . Of course , here µ is a multiplicative

relative accuracy and the reduction that they use involves matrices that are different from
the ones in our case. However , this gives evidence that going below 1

3
in the approximation of

equilibria will probably require a radically different approach (if any) , perhaps probabilistic.
We are currently working on this.

References

[1] X. Chen , X. Deng . Settling the complexity of 2-player Nash equilibrium . In Proc. of
the 47th IEEE Symp. on Foundations of Comp. Sci. (FOCS 06) , pp. 261-272 , 2006.

[2] C. Daskalakis , A. Mehta , C. Papadimitriou . Progress in approximate Nash Equilibria
. In Proc. of the 8th ACM Conf. on Electronic Commerce (EC ’07) , 2007 (to appear).

[3] C. Daskalakis , A. Mehta , C. Papadimitriou . A note on approximate Nash equilibria
. In Proc. of the 2nd workshop on the Internet and Network Economics (WINE ’06) ,
vol. 4286 LNCS , pp. 297-306 , Springer , 2006.

[4] S. Kontogiannis , P. Panagopoulou , P. G. Spirakis Polynomial algorithms for approxi-
mating Nash equilibria in bimatrix games . In Proc. of the 2nd workshop on the Internet
and Network Economics (WINE 2006) , vol. 4286 LNCS , pp. 282-296 , Springer , 2006.

8



[5] X. Chen , X. Deng and S. Teng . Computing Nash Equilibria : Approximation and
smoothed complexity. In Proc. of the 47th IEEE Symp. on Foundations of Comp. Sci.
(FOCS 06) , pp. 603-612 , IEEE Press , 2006.

[6] S. Kontogiannis , P. G. Spirakis . Efficient algorithms for constant well supported ap-
proximate equilibria of bimatrix games . ICALP 2007 (to appear).

[7] M. Bellare , P. Rogaway . The complexity of approximating a nonlinear program. Math-
ematical Programming , 69:429-441 , 1995.

9



A Appendix

Using the definitions for any (x, y) ∈ ∆m × ∆n i.e :

fR(x, y) = max(Ry) − xτRy

fC(x, y) = max(Cτx) − xτCy

f(x, y) = max{fR(x, y), fC(x, y)}

we have , for any (x′, y′) ∈ ∆m × ∆n and any ε ∈ [0, 1] that :

Df(x, y, x′, y′, ε) = f(x + ε(x′ − x), y + ε(y′ − y)) − f(x, y)

This can be written as (analytically)

max{fR(x+ ε(x′−x), y + ε(y′−y)), fC(x+ ε(x′−x), y + ε(y′−y))}−max{fR(x, y), fC(x, y)}

and this is actually max(K1, K2) where

K1 = εDfR + ΛfR − ε2HfR − (1 − ε)max{0, fC(x, y) − fR(x, y)}

and also

K2 = εDfC + ΛfC − ε2HfC − (1 − ε)max{0, fR(x, y) − fC(x, y)}

where now the functions DfR, ΛfR, HfR, DfC, ΛfC , HfC are defined below.

DfR(x, y, x′, y′) = {max(Ry′)overSR(y)} − xτRy′ − x′τRy + xτRy − f(x, y)

and

HfR(x, y, x′, y′) = (x′ − x)τR(y′ − y)

and

DfC(x, y, x′, y′) = {max(Cτx′)overSC(x)} − xτCy′ − x′τCy + xτCy − f(x, y)

and

HfC(x, y, x′, y′) = (x′ − x)τC(y′ − y)

In order to define ΛfR, ΛfC we remind the reader that SR(y) = suppmax(Ry) and that
SC(x) = suppmax(Cτx) and we will also use their complements :

S̄R(y) being the complement of SR(y) in the index set {1, m} and

S̄C(x) being the complement of SC(x) in the index set {1, n}
Let now

10



My be the maximum of Ry over SR(y)

My′ be the maximum of Ry′ over SR(y)

and

Mx be the maximum of Cτx over SC(x)

Mx′ be the maximum of Cτx′ over SC(x)

Finally ΛfR(x, y, x′, y′, ε) is the maximum of
( 0 , max over S̄R(y) of (I(y, y′) + J(y) )) where

I(y, y′) = ε((Ry′ − emMy′) + (Myem − Ry)) and

J(y) = −(Myem − Ry)

Also finally ΛfC(x, y, x′, y′, ε) is also the maximum of
(( 0 , max over S̄C(x) of (I(x, x′) + J(x) )) where

I(x, x′) = ε((Cτx′ − enMx′) + (Mxen − Cτx)) and

J(x) = −(Mxen − Cτx)

From the above equations , the gradient at the point (x, y) ∈ ∆m×∆n along a feasible di-
rection specified by a (x′, y′) ∈ ∆m×∆n can be determined by letting ε go to 0 and get finally :

Df(x, y, x′, y′) =











max(DfR, DfC) if fR(x, y) = fC(x, y)
DfR if fR(x, y) > fC(x, y)
Dfc if fR(x, y) < fC(x, y)











11

 
http://eccc.hpi-web.de/
 
ECCC
 ISSN 1433-8092



