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Abstract

In this paper we propose a new methodology for determining approximate Nash
equilibria of non-cooperative bimatrix games and, based on that, we provide an efficient
algorithm that computes 0.3393-approximate equilibria, the best approximation till
now. The methodology is based on the formulation of an appropriate function of pairs
of mixed strategies reflecting the maximum deviation of the players’ payoffs from the
best payoff each player could achieve given the strategy chosen by the other. We then
seek to minimize such a function using descent procedures. As it is unlikely to be
able to find global minima in polynomial time, given the recently proven intractability
of the problem, we concentrate on the computation of stationary points and prove
that they can be approximated arbitrarily close in polynomial time and that they
have the above mentioned approximation property. Our result provides the best € till
now for polynomially computable e-approximate Nash equilibria of bimatrix games.
Furthermore, our methodology for computing approximate Nash equilibria has not
been used by others.

1 Introduction

Ever since it was proved that the problem of finding exact Nash equilibria is intractable in
the sense that it is PPAD-complete even for 2-player games [1], attention has been focused
on finding e-approximate such equilibria for € > 0. In this respect, simple algorithms have
recently been provided for finding approximate equilibria for constant ¢ = % and € = % (
3], [4] ) for general bimatrix games (and for positively normalised payoff matrices) based on
examining small supports of 1 or 2 for either player. The best known result so far provides

0.38-approximate Nash equilibria of normalised bimatrix games in polynomial time ( [2] ).
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Furthermore, it has been shown ( [5] ) that the more general approximation problem of
finding a fully polynomial time approximation scheme for any € > 0, has similar complexity
with the problem of finding exact Nash equilibria.

For a different, stronger, notion of approximation, i.e. the well supported approximate
Nash equilibria, the best known result so far provides 0.658-approximate well supported
equilibria for normalised bimatrix games in polynomial time ( [6] ).

Most of the reported investigations of finding approximate equilibria for constant e are
based on the examination of small supports of the strategy sets of the players and the
algorithms presented are based on brute force search over all such supports.

In this work we adopt a different approach that does not rely on any pre-specified small
supports neither on an indiscriminate search over all small support strategies. We define
an equivalent optimization problem in the strategy spaces of both players and attempt to
obtain a local optimum of a specific function that measures the maximum deviation of the
players’ payoffs from the best payoff each player could achieve given the strategy chosen by
the other. We do so through a descent procedure along feasible directions in the strategy
spaces of both players simultaneously. Feasible descent directions are computed by solving
linear programming problems. Also, by solving similar linear programs we can determine
whether or not there is a descent direction at any given point in the strategy spaces. If a
descent direction does not exist, then we have reached a stationary point. We prove that
at any stationary point of that function we obtain strategy pairs such that at least one of
them is an 0.3393-approximate Nash equilibrium. We also prove that an almost stationary
point of the function can be reached in polynomial time with respect to the input data of
the game, and that point suffices to get arbitrarily close to 0.3393.

2 Definitions and notation

Let R, C denote the m by n row and column players’ payoff matrices respectively, for m,n
any positive integers. We assume that both payoff matrices are positively normalized, i.e.
all their entries belong to [0,1] (without loss of generality any game can be equivalently
transformed to a positively normalized game by appropriate shifting and scaling each one of
the payoff matrices).

Let us denote by e the k-dimensional column vector having all its entries equal to 1 (for
positive integer k ). Let

Ar={u:u€ R, u>0eu=1}

be the k-dimentional standard simplex (superscript 7 denotes transpose).
Also, for any vector u € R*, we define the following :

supp(u) = {i € (1,k) : u; # 0}
being the support index subset of u € R* and also

suppmazx(u) = {i € (1,k) : w; > u; Vj € (1,k)}



being the index subset where all entries are equal to the maximum entry of v € RF.
We also denote by
mazx(u) = {u; : u; > uj, for all j}

the value of the maximum entry of the vector and by
mazg(u) = {u;,i € S:u; > uy forall j € S}

the value of the maximum entry of the vector within an index subset S C (1, k).
Finally, we denote by S the complement of an index set S, i.e. S = {i € (1,k),i ¢ S}.
The problem of finding an e-approximate Nash equilibrium in the game (R, C'), for some
e > 0, is to compute a pair of strategies T in A,, and 7§ in A,, such that the following
relationships hold :

"Ry <T"Ry+eforal z €A,
and

TCy<zT Cy+eforallyec A,

3 Optimization formulation

Key to our approach is the definition of the following continuous function mapping A,, x A,
into [0,1] :
f(z,y) = maz{max(Ry) — 2" Ry, max(C"z) — 2" Cy} (1)

It is evident that f(x,y) > 0V (z,y) € A,, x A, and that exact Nash equilibria of
(R, () correspond to pairs of strategies such that f(x,y) = 0. Furthermore, e- approximate
equilibria correspond to strategy pairs that satisfy f(x,y) < e. This function represents the
maximum deviation of the players’ payoffs from the best payoff each player could achieve
given the strategy chosen by the other.

The function f(x,y) is not jointly convex with respect to both x and y. However, it is
convex in x alone, if y is kept fixed and vice versa.

Let us define the two ingredients of the function f(x,y) as follows :

fr(z,y) = maz(Ry) — " Ry

and

fo(z,y) = max(C7z) — 27Cy

From any point in (z,y) € A,, x A, we consider variations of f(x,y) along feasible
directions in both players’ strategy spaces of the following form :

o f3] )

where, 0 <€ < 1,(2,y') € A,, x A, (the vectors in brackets are m + n - dimensional
column vectors).



The variation of the function along such a feasible direction is defined by the following
relationship:

Df(z,y, 2",y €) = flx+e(@ —x),y + ey —y)) — flz,y)

We have derived an explicit formula for Df(x,y,2’,y',€) (see Appendix), which is a
piecewise quadratic function of € and the number of switches of the linear terms of the
function is at most m + n. Therefore, for fixed (2/,y’) this function can be minimized with
respect to € in polynomial time. Furthermore, there always exists a positive number, say
€*, such that for any € < €* the coefficient of the linear term of this function of € coincides
with the gradient, as defined below. The number ¢* generally depends on both (z,y) and
(«',y').(See Appendix A.3).

We define the gradient of f at the point (z,y) along an arbitrary feasible direction
specified by another point (2’,y’) as follows:

1
Df(z,y,a',y) = lim =D f(z,y, 2", ¢/, €)
e—0 €

The gradient D f(z,y,x’,y’) of f at any point (z,y) € A,, x A, along a feasible direction
(determined by another point (z/,y') € A,, X A,,) provides the rate of decrease (or increase)
of the function along that direction. For fixed (x,y), Df(z,y,2’,y’) is a convex polyhedral
function in (2’,¢'). In fact we have derived the explicit form of Df(x,y,2’,y’) as the maxi-
mum of two linear forms in the (z/,y) space (see the derivations below and in the Appendix
A.1). At any point (x,y) we wish to minimize the gradient function with respect to (2’,y’) to
find the steepest possible descent direction, or to determine that no such descent is possible.

Let us define the following index sets:

Sr(y) = suppmazx(Ry) and Sc(x) = suppmazx(C7x)
By definition, Sg(y) C (1,m) and S¢(x) C (1,n).
From the Appendix A.1 we get :
(a) It fR(:I"vy) = fC($7y> then

Df(:l?,y,x/,y/) = ma$(Tl(I7yax/ay/)aT2(x>y>x/>y/)) - f(x>y)

where

my(y') = max(Ry') over the subset Sgr(y)
and

mao(z") = max(C7x") over the subset So(x)
and

Tl (Iv Y, ZE'/, y/) =m (y/) - ITRy/ - (I,)TRy + ITRy



and
To(z,y, 2", y') = ma(2') — 2" Ry’ — (x1)"Cy + 27 Cy

(b) If fr(z,y) > fo(z,y) then

Df(z,y,2',y") = Ti(z,y,2,y) — f(z,y)

and

(c) I fr(z,y) < fo(z,y) then

Df(x,y,2',y) = Ta(x,y,2",y") — f(x,y). In the cases (b) and (c) the functions 77 and
T5 are as defined in case (a).

The problem of finding D f(z,y) as the minimum over all (2/;y") € A,, x A, of the
function D f(x,y,2’,y’), is a linear programming problem.

This problem can be equivalently expressed as the following mini-max problem by in-
troducing appropriate dual variables (we derive it for (z,y) such that fr(x,y) = fo(z,y)
since this is the most interestng case and the cases where the two terms are different can be
reduced to this by solving an LP, as we shall see below) as follows :

Minimize (over 2/, ¢y’ ) the maximum (over w, z, p ) of the function

/
(1= )16t | Y |
where :
(a) the maximum is taken with respect to dual variables w, z, p such that :
w € Ap, supp(w) C Sg(y) and z € A, supp(z) C Sc(x) and p € [0, 1].
(b) The minimum is taken with respect to (z/,y') € A, x A, and
(c) the matrix G(z,y) is the following (m + n) by (m + n) matrix :

Gla,y) = R—e,2R —eny"R™ + epnen 2" Ry ]

—e,x"C' + ene, 27 Cy C™—eyCT

The probability vectors w and z play the role of price vectors (or penalty vectors) for
penalizing deviations from the support sets Sg(y) and Sc(z), and the parameter p plays the
role of a trade-off parameter between the two parts of the function f(z,y).

Solving the above mini-max problem we obtain w, z, p, 2’ and 3’ that are all functions of
the point (x,y) and take values in their respective domains of definition. Let us denote by
V(z,y) the value of the solution of the mini-max problem at the point (z,y). The solution
of this problem yields a feasible descent direction (as a matter of fact the steepest feasible
descent direction) for the function f(x,y) if Df(z,y) = V(z,y)— f(z,y) < 0. Following such
a descent direction we can perform an appropriate line search with respect to the parameter
e and find a new point that gives a lower value of the function f(z,y). Applying repeatedly
such a descent procedure we will eventually reach a point where no further reduction is
possible. Such a point is a stationary point that satisfies D f(z,y) > 0.

In the next section we examine the approximation properties of stationary points. In
fact, we prove that given any stationary point we can determine pairs of strategies such that
at least one of them is a 0.3393-approximate Nash equilibrium.
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4 Approximation properties of stationary points

Let us assume that we have a stationary point (z*,y*) of the function f(z,y). Then, based
on the above analysis and notation, the following relationship should be true :

Df(z",y") = V(2" y") = f(a",y") 2 0

Let (w*, z*) € A, x Ay, p* € [0, 1] be a solution of the linear mini-max problem (with
matrix G(z*,y*) ) with respect to the dual variables corresponding to the pair (z*,y*). Such
a solution should satisfy the relations supp(w*) C Sgr(y*) and supp(z*) C Sc(x*).

Let us define the following quantities:

A= min {(w* — )" Ry'}

y":supp(y")CSR(z*)

and
= min 7T =y}
a w’:supp(r’)CSc(y*){ ( v}

At any point (x*, y*) these quantities basically define the rates of decrease (or increase) of
the function f along directions of the form (1—e¢)(z*, y*)+e(x*,y’) and (1—e)(z*, y*)+e(2’, y*),
i.e. the rates of decrease that are obtained when we keep one player’s strategy fixed and move
probability mass of the other player into his own maximum support, towards decreasing his
own deviation from the maximum payoff he can achieve.

Let us define a pair of strategies (Z,9) € A,, X A, as follows:

) :{ (@, y7) it (" y) < £(3,9)

(Z,7 ,otherwise

where

* 1 * p=A % :
(U ey S o ey A\ < .

1 A— * ok .
(2,9) = { Elﬂ—uw* tinmeh ) Az p

We now express the main result of this paper in the following theorem :

Theorem 1 The pair of strategies (&,7) defined above, is a 0.3393-approximate Nash equi-
librium.

Proof:
From the definition of (#,7) we have :

f(@,9) <min{f(z",y"), f(Z, )} (2)

Using the stationarity condition for (z*, y*) we obtain :
@ y") V(' y)
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But V (z*,y*) is less than or equal to
P EL+ (1= p")Es
where
Ey = (W Ry — 2" Ry’ — 2" Ry* + *" Ry")
and
Ey = (2""C"2 — 2" Cy — 2" Cy* + 2" Cy*)

and this holds V(2/,y') € A, X A,
Setting ' = x* and ¥’ : supp(y’) C Sc(x*) in the above inequality we get :

f@™,y") < p*A (3)
Next, setting ' = y* and 2’ : supp(z’) C Sr(y*) in the same inequality, we get :

f®y") < (1= p")p. (4)

Now using the definition of the strategy pair (Z,7) above and exploiting the inequalities

*

— )T Rz > A, since supp(2*) C Se(x*)

*

wC(" — y*) > p,since supp(w*) C Sr(y*)

(w

we obtain: (assume A > p)

1 A — g
fr(Z,9) = max{Rg}—féTjo:max{Rz*}—<1+)\_Mw*+1+)\ﬁﬂx*> Rz*
1 T A=
* * *R*
1+)\_uw Rz 1+)\_,ux z
A < l—u.
I14A—p ~14+A—p

= max{Rz"} —

< max{Rz*} — 2" Rz* —

Similarly, setting D = C7T,

fo(#,9) = max{Dz} —i"Cy

1 A—p 1 T A—p T
= — D * 7D* - *C*_i*o*
max{1+)\_u w—|—1+)\_u :E} 1+)\_uw z 1+)\_,uat z
- - Dwy 4+ - " Dy — — — 5 To —
1+>\_Mmax{ w}+1+)\_,umax{ z*} 1+>\_’uw 2
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A—p

—m maX{DZIf*}

1
= m(max{Dw*} —wTCy*) — m(w*TC’z* —w?Cy*)
L—p
T+ XA—pu

From the above relationships we obtain:

- 1—p
< — for A >
(A similar inequality can be obtained if A < p and we interchange A\ and p)
In all cases, combining inequalities (3), (4), (5) and using the definition of (z,y) above,
we get the following:

f(ae,mSmin{p*A,(l—p*)u, L— ming), 1} }

6
1+ max{\, u} — min{\, p} (©6)
We can prove that the quantity in (6) cannot exceed the number 0.3393 for any p*, A\, u €
[0, 1]. For the proof see Appendix A.2.
This concludes the proof of our main Theorem.

5 Descent Procedure

A stationary point of any general Linear Complementarity problem can be approximated ar-
bitrarily close in polynomial time via the method of Y. Ye [8]. We give here an alternative
approach, directly applicable to our problem.

We present here an algorithm for finding a pair of stategies that achive the 0.3393
approximation bound. The algorithm is based on a descent procedure of the function
f(z,y), (x,y) € A,, x A, and consists of the following steps:

(set b =0.3393)

1. Start with an arbitrary (z,y) = (zo,v0) in A, X A, (e.g. the uniform distribution ).
Produce another pair (x, y) with lower value of f(z,y) and for which fr(x,y) = fo(x,y)
as follows :

(a) If fr(xo,v0) > fo(xo,yo), keep yo fixed and solve the LP :
minimize (over z € A,, ) the

max(Ryy) — x” Ryo

under the constraints :



max(C"x) — " Cyg < max(Ryo) — 2" Ry
(b) If fr(zo,vy0) < fo(zo,v0), keep g fixed and solve the LP :
minimize (over y € A,, ) the
maz(C"xy) — x¢" Cy
under the constraints :
maz(Ry) — xo" Ry < maz(C"xy) — x¢" Ry

2. Solve the linear minimax problem with the matrix G(z,y) as defined in section 3.
Compute the value of V(z,y), the pair of strategies (z’,y), the index sets Sg(y) C
(1,m), Sc(x) C (1,n), the vectors w, z, the parameter p, and the values of A, as
defined in sections 3 and 4 for the current point (z,y). Also determine the pair of
strategies (Z,7) as defined in section 4.

3. If at least one of the following conditions is true, stop and exit — a pair of strategies
achieving the approximation bound b has been found.

(i) V(z,y) — f(z,y) > 0 (stationary condition: either f(z,y) or f(z,7) is < b)
(i) f(z,y) <b
(i) (2.9) <0
(iv) f(z',y) <b
(v) f(@'y) <b
(vi) flz,y) <0

4. If none of the conditions of step 3 is satisfied, compute the minimum with respect of
e of the function f(z + e(2’ — x),y + €(y’ — y)) along the direction specified by the
pair (2',y’) found in step 2, and set (z,y) = (z + €(2’ — x),y + €(y' — y)) (such a
minimization with respect to € can be performed in polynomial time, as mentioned
earlier, since the number of switches of the linear terms of the piecewise quadratic
function cannot exceed m + n).

Furthermore, if for the new pair (x,y) we have fr(x,y) # fo(x,y), solve the LP
specified in Step 1 and compute the new (x,y) with lower value of the function f(x,y)
and for which fr(z,y) = fo(z,y).

Go to Step 2.

End of descent.

In regard to the number of steps that are required for convergence and exit, we pro-
vide a convergence analysis in AppendixA.3 that shows that the algorithm converges in a
polynomial number of iterations.



6 The complexity of our algorithm

Our algorithm is basically the procedure descent of the function f(z,y). This takes at most
q(n)TP(n) time to run (when n > m ) where 77, P(n) is the time to solve a linear program
of size n and ¢(n) is a polynomial.

An arbitrary point (z,y) € A,, X A, can be used to initialize the algorithm.

7 Discussion and future work

It is known from Bellare and Rogaway ( [7] ) that (even in a weaker sense) there is no
polynomial time p - approximation of the optimal value of the problem min{z™Qz, s.t. Bx =
b,0 < x < e} for some p € (0,3), unless P = NP. Of course, here p is a multiplicative
relative accuracy and the reduction that they use involves matrices that are different from
the ones in our case. However, this gives evidence that going below % in the approximation of
equilibria will probably require a radically different approach (if any), perhaps probabilistic.
We are currently working on this.
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A Appendix

A.1 Appendix A.1
Using the definitions for any (x,y) € A, x A, ie:

fr(x,y) = max(Ry) — 2" Ry
fo(z,y) = max(CTz) — 27Cy
f(l’, y) = max{fR(x, y)7 fc(SL’, y>}

we have, for any (2/,y') € A, x A, and any € € [0, 1] that :
Df(z,y, 2"y €) = flx +e(@’ —2),y + ey —y)) = f(z,y)

This can be written as (analytically)

max{fR(x—l—e(x/—:L’),y—l—e(y’—y)), fc(SL’—FE(SL’/—LL’),y—l—E(y/—y))} —max{fR(:c,y), fc(x,y)}

and this is actually maxz (K7, K3) where

Ky =eDfr+ Afr— € Hfr — (1 — e)maz{0, fo(z,y) — frlz,y)}

and also
Ky = eDfo + Ao — €H fo — (1 — e)max{0, fr(z,y) — fe(x,y)}

where now the functions D fr, Afr, H fr, Dfc, Afc, H fc are defined below.

Dfr(z,y,2',y') = {maz(Ry )overSgr(y)} — 2" Ry’ — 2" Ry + 2" Ry — f(x,y)

and

HfR(I, Y, ZE'/, y/) = (‘(LJ - z)TR(y/ - y)

and

Dfc(z,y, 2’ y') = {max(C"z )overSc(z)} — 2"Cy' — 2" Cy + 27 Cy — f(x,y)
and

Hfo(x,y,2',y) = (2 —2)"C(y —vy)

In order to define Afg, Afc we remind the reader that Sg(y) = suppmax(Ry) and that
Sc(x) = suppmax(CTx) and we will also use their complements :

Skr(y) being the complement of Sg(y) in the index set {1, m} and
Sc(z) being the complement of S¢(z) in the index set {1,n}
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Let now

M, be the maximum of Ry over Sg(y)
M, be the maximum of Ry’ over Sg(y)
and

M, be the maximum of C"x over Sc(x)
M, be the maximum of C"z" over S¢(x)

Finally Afr(z,y,2',y',€) is the maximum of
( 0, max over Sg(y) of (I(y,y’) + J(y) )) where

10, 5') = el(Ry' — emMy) + (Myem — Ry)) and
J(y) = —(Mye,, — Ry)

Also finally Afo(x,y,2',y',€) is also the maximum of
(( 0, max over Sc(x) of (I(x,z') + J(x) )) where

I(z,2") =e((C™2" — e, M) + (Mpe, — C"x)) and
J(x) = —(M,e, — C"x)

From the above equations, the gradient at the point (z,y) € A,, X A,, along a feasible di-
rection specified by a (z/,y’) € A, xA,, can be determined by letting € go to 0 and get finally :

max(D fr, Dfc) it fr(z,y) = fo(z,y)
Df(l',y,l’l,y,): DfR 1ffR(x,y)>fc(x,y)
ch if fR(x7y) < fC(x7y)
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A.2 Appendix A.2
/\u

We first notice that min{p*A, (1 — p*)u} < ;‘ Indeed, if we assume that p*A > °£ and
(1—p)p > 2 b for some p*, A, p € [0, 1], Wewouldhavep > 34 and (1—p)> m,a

contradiction. So

o A 1 — min{\, u}
f(Z,9) < min {)\—i-/i 1 4+ max{\, u} — min{\, ,u}}

Set 11 = min{A, u}. For u < 1 and since u < A, we have A+ < % < § < 0.3393.

Also, for p > 2 Wehavel—,u<—and1+—)\”—§ 1+3/\ < 3 < 0.3393, smce>\>,u> 2,
Consider now cases for Wthh < < It 1 <p< )\ < g then M < % <1 3 < 0.3393.
For p, A such that % < p < % < A, let us deﬁne £ =& Obv10usly, % < &< 1. Set

“w

b = 0.3393.
Let us assume that there are p and A satisfying the above relationships and also satisfy:

Al 1—p
Ay a —" oy
I I SR

Expressing these inequalities in terms of £ and A we get:

£(1—-10)
Witd) TSt e

Since b < %, the above inequality is equivalent to:

E1=D)(1—=b1+6) =1+ >0 & —&(1—b)+E(1—2b) — b > 0.

It can be verified by direct calculation that the discriminant of the above quadratic is 0

for b = 0.3393 and the inequality becomes —b(1 — b) (§ - 2;&3617))2 > 0, a contradiction.

Actually ,the constant b is the smallest real solution of the equation

4b(1 — b)(1 + b*) = 1.

The bound is attained at p = 0.582523 and A = 0.81281.
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A.3 Appendix A.3

Let (x,y) be the current pair of strategies obtained during the descent procedure, for which
none of the conditions of step 3 of the algorithm is satisfied. Then, we should have:

Viz,y) <b< f(z,y)

Indeed, since V(x,y) is always < min{pA, (1 — p)u}, if V(z,y) was > b we would also

JO . SO —min(\,
have f(Z,7) < b, since f(Z,7) is always < 1+mai(/\ u)( Hﬁ(/\’u

] and b is the maximum value for

min{pA, (1 — p)u, 1+mai(;1$(’\n’in W) } as proven before.

We also have:
flate(a =), y+e(y' —y) = f(,y) = e(V(z,y)— f(2,y))+max{A fr— €’ H fr, Afo—€*H [}

where H fr, H fc, Afr, Afc are as defined in appendix A.1.

The quantitites Afr, Afc are both piecewise linear convex functions of € and are equal
to 0 for € < €%, where €* is given by ¢* = min{e}, €5, 1} and €] is the minimum over i € Sg(y)
of:

max(Ry) — (Ry);

f 3
max(Ry) — (Ry); + (Ry'); — maxs,(, (Ry) , for some i € Sg(y)

and €} is the minimum over j € S¢(x) of :

max(CTx) — (CTx);
max(CTz) — (CTx); + (CT2'); — maxg, @) (CTa’)

, for some j € S¢(x)

It is pointed out that the terms max(Ry) — (Ry); for i € Sgr(y) are always positive and
at least one of them is > f(z,y), since f(z,y) = X5, (,) vi(max(Ry) — (Ry);). The same is
true for the terms max(CTx) — (CTx); for j € Sc(x). Furthermore, the above expressions

for ¢* are active only for those indices i € (1,m), j € (1,n), i € Sg(y), j € Sc(z) for which
(Ry'); — maxg, ) (Ry') > 0 and (CT2’); — maxg,(; (CT ’) > 0. If no such indices exist for
the (2/,y’) pair of strategies, then the correspondlng value of € should be equal to 1.

The quantities H fr, H fc appearing in the quadratic terms of €, are both bounded (in
absolute value) by 2. So, the minimum possible descent that can be achieved is given by the
following relationship :

fla+e@ —a),y+ey —y) — flz,y) = e(V(z,y) — f(2,y))

—min(H fr, Hfo) < e (V(z,y) — f(2,9)) +26%, 0 < e < €

Defining the new value of f as f,e, and dropping the arguments (for simplicity) we get

Joew =b < (L= e)(f =) +e(V =) +2¢
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Minimizing with respect to ¢, for € < €*, we get:

1_b—V>_(f—b)2+(b—V)2
1 8

f=Vv

if € >
yife> —

fnew_bg(f_b)<

f=Vv
4

Foew —b< (F=b)(1 =€) = (b—V)e* + 27, if € <

In the first case above, we obtain a significent reduction of f,., — b if €* is larger than
f_TV. In the second case, the reduction depends on how small €* is.

If the value of ¢* is small , then there is an index i* € Si(y) or an index j* € S¢(z) such
that the entry (Ry);- or (CTz);+ , is close to the maximum support of the vector Ry , or CTx.
Such entries can be incorporated into the sets Sg(y), Sc(x) by appropriately augmenting the
supports of the vectors w, z in the formulation of the linear minimax problem described in
Section 3.

Furthermore , it is not possible to encounter more than m + n — 2 such steps in a
row without meeting one of the termination conditions of the algorithm , particularly the
condition f(z,y) < b, since , if all the differences of the form max(Ry) — (Ry)i,i € Sg(y)
are small | then f(x,y) is also small.

From the above, we deduce that a termination condition of the algorithm can be ap-
proached as closely as desired , in polynomial time.
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