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Abstract

The isomorphism problem for planar graphs is known to be effi-
ciently solvable. For planar 3-connected graphs, the isomorphism prob-
lem can be solved by efficient parallel algorithms, it is in the class AC1.

In this paper we improve the upper bound for planar 3-connected
graphs to unambiguous logspace, in fact to UL ∩ coUL. As a conse-
quence of our method we get that the isomorphism problem for ori-
ented graphs is in NL. We also show that these problems are hard for
logspace.

1 Introduction

The graph isomorphism problem (GI) is one of the most challenging prob-
lems today. No polynomial time algorithm is known for it, even with ex-
tended resources like randomization or on quantum computers. On the
other hand, it is not known to be NP-complete and there are good reasons
to conjecture that it is in fact not complete.

For some restricted classes of graphs, efficient algorithms for GI are
known. For example for trees [AHU74] or for graphs with bounded de-
gree [Luk82]. We are interested in planar graphs. In 1966, Weinberg [Wei66]
presented an O(n2)-algorithm for testing isomorphism of planar 3-connected
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graphs. This algorithm was improved and extended by Hopcroft and Tar-
jan [HT74] to an O(n log n)-algorithm for the planar graph isomorphism
problem (planar-GI). Then Hopcroft and Wong [HW74] showed that it is
solvable in linear time. Since the constant hidden in the linear time bound is
very large, the problem has been reconsidered under a more practical point
of view [KHC04]. The parallel complexity of planar-GI has been studied by
Miller and Reif [MR91] and Ramachandran and Reif [RR94]. They showed
that planar-GI is in AC1.

Grohe and Verbitsky [GV06] gave an alternative way to show that planar-
GI is in AC1. They proved for a class G of graphs, that if every graph of G
is definable in a finite-variable first order logic within logarithmic quan-
tifier depth, then the isomorphism problem for G is in AC1. Then Ver-
bitsky [Ver07] showed that planar 3-connected graphs are definable with
15 variables and quantifier depth O(log n) which leads to a 14-dimensional
Weisfeiler-Lehman algorithm.

In the above papers on planar-GI, the authors consider first 3-connected
graphs. The reason is a result due to Whitney [Whi33] that every planar
3-connected graph has precisely two embeddings on a sphere, where one
embedding is the mirror image of the other. Moreover, one can efficiently
compute these embeddings. Weinberg [Wei66] used these embeddings to
compute a code for a graph, such that isomorphic graphs will have the same
code. We call a code with this property a canonical code for the graph.

Some of the subroutines in the above algorithms have complexity below
AC1. Allender and Mahajan [AM00] showed that planarity testing is in
symmetric logspace, SL. Since SL = L [Rei05], planarity testing is com-
plete for logspace. Furthermore Allender and Mahajan [AM00] showed that
a planar embedding can be computed in logspace. Also the connectivity
structure of a (undirected) graph can be computed in logspace [NTS95].
Hence a natural question is whether planar-GI is in logspace.

While this question will remain open, we considerably improve the up-
per bound for planar-GI for 3-connected graphs in Section 3, namely from
AC1 to unambiguous logspace, in fact to UL ∩ coUL. Like Weinberg,
we construct codes for the given graphs. In order to use only logarithmic
space, our code is constructed via a spanning tree, which depends on the
planar embedding of the graph. A crucial tool in the construction of the
spanning tree is based on a recent result by Bourke, Tewari, and Vinod-
chandran [BTV07] that the reachability problem for planar directed graphs
is in UL ∩ coUL. They built on work of Reinhard and Allender [RA00]
and Allender, Datta, and Roy [ADR96]. We argue in Section 4 that their
algorithm can be modified to not just solve reachability questions but to
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compute distances between nodes in UL ∩ coUL.
The embedding of a planar graph can be represented as a rotation

scheme. Intuitively this gives the edges in clockwise or counter clockwise
order around each node such that it leads to a planar drawing of the graph.
Rotation schemes have also been considered for non-planar graphs. We talk
of a oriented graph in this case. We extend our results to the isomorphism
problem for oriented graphs. There one has given two graphs G and H and
a rotation scheme for each of the graphs. One has to decide whether there
is an isomorphism between G and H that respects the rotation schemes. In
Section 5 we show that the problem is in NL.

With respect to lower bounds, GI is known to be hard for DET [Tor04],
where DET is the class of problems that are NC1-reducible to the deter-
minant defined by [Coo85]. In fact, already the isomorphism problem for
tournament graphs is hard for DET [Wag07]. We show in Section 6 that the
isomorphism problem for planar 3-connected graphs is hard for logspace.

2 Preliminaries

By L we denote the languages computable by a logspace bounded Turing
machine. For nondeterministic Turing machines, the class is called NL. A
nondeterministic Turing machine is called unambiguous, if it has at most
one accepting computation on any input. By UL we denote the languages
computable by unambiguous logspace bounded Turing machines. NL is
closed under complement [Imm88, Sze88], but this is open for UL.

The functional version of L is denoted by FL. It is known that FL-
functions are closed under composition, i.e. FL ◦FL = FL. The proof goes
by recomputing bits of the function value of the first function each time
such a bit is needed by the second function. The same argument works
when we consider functions that are computed by unambiguous logspace
bounded Turing machines. If we call the class FUL, then this says that
FUL ◦FUL = FUL. We need a further property of UL:

Lemma 2.1 LUL∩coUL = UL ∩ coUL.

Proof . Let M be a logspace oracle Turing machine with oracle A ∈ UL ∩
coUL. Let M0,M1 be (nondeterministic) unambiguous logspace Turing
machines such that L(M0) = A and L(M1) = A. An unambiguous logspace
Turing machine M ′ for L(M,A) works as follows on input x:

Simulate M on input x. If M asks an oracle question y, then
nondeterministically guess whether the answer is 0 or 1.
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• If the guess is answer 0, then simulate M0 on input y. If
M0 accepts, then continue the simulation of M with oracle
answer 0. If M0 rejects then reject and halt.

• If the guess is answer 1, then simulate M1 on input y. If
M1 accepts, then continue the simulation of M with oracle
answer 1. If M1 rejects then reject and halt.

Finally accept iff M accepts.

Note that M ′ is unambiguous because M0 and M1 are unambiguous and of
the two guessed oracle answers always exactly one guess is correct. �

Let G = (V,E) be an undirected graph with vertices V = V (G) and
edges E = E(G). The neighbours of v ∈ V are Γ(v) = {u | (v, u) ∈ E }.
By Ev we denote the edges going from v to its neighbors, Ev = { (v, u) |
u ∈ Γ(v) }. By d(u, v) we denote the distance between nodes u and v in G,
which is the length of a shortest path from u to v in G.

A graph is connected if there is a path between any two vertices in
G. A vertex v ∈ V is an articulation point if G − v is not connected. A
pair of vertices u, v ∈ V is a separation pair if G − u, v is not connected.
A biconnected graph contains no articulation points. A 3-connected graph
contains no separation pairs.

A rotation scheme for a graph G is a set ρ of permutations, ρ = { ρv | v ∈
V }, where ρv is a permutation on Ev that has only one cycle (which is called
a rotation). Let ρ−1 be the set of inverse rotations, ρ−1 = { ρ−1

v | v ∈ V }.
A rotation scheme ρ describes an embedding of graph G in the plane. We
call G together with ρ an oriented graph. If the embedding is planar, we
call ρ a planar rotation scheme. Note that in this case ρ−1 is a planar
rotation scheme as well. Allender and Mahajan [AM00] showed that a planar
rotation scheme for a planar graph can be computed in logspace.

If a planar graph is in addition 3-connected, then there exist precisely
two planar rotation schemes [Whi33], namely some planar rotation scheme ρ

and its inverse ρ−1. This is a crucial property in our isomorphism test.

3 Planar 3-Connected Graph Isomorphism

In this section we prove the following theorem.

Theorem 3.1 The isomorphism problem for planar, 3-connected graphs is
in UL ∩ coUL.
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In 1966, Weinberg [Wei66] presented an O(n2) algorithm for testing iso-
morphism of planar 3-connected graphs. The algorithm computes a canon-
ical form for each of the two graphs. This is a coding of graphs such that
these codings are equal iff the two graphs are isomorphic. For a graph G,
the algorithm starts by constructing a code for every edge of G and any of
the two rotation schemes. Of all these codes, the lexicographical smallest
one is the code for G.

For a designated edge (s, t) and a rotation scheme ρ for G, the code
is constructed roughly as follows. Every undirected edge is considered as
two directed edges. Now one can define an Euler tour based on some rules
for selecting the next edge. Basically, the rules distinguish between the
case whether a vertex or edge was already visited or not. The next edge
to consider is chosen to the left or right of the actual edge according to ρ.
Define edge (s, t) to be the start of the tour. The code consists of the nodes
as they appear on the tour, where the names are replaced by the order of
their first appearance on the tour. That is, the code starts with (1, 2) for
the edge (s, t) and every later occurrence of s or t on the tour is replaced
by 1 or 2, respectively.

Weinberg’s algorithm doesn’t work in logspace, because one has to store
the vertices and edges already visited. We show how to construct a different
code in unambiguous logspace. Let (s, t) be a designated edge and ρ be a
rotation scheme for G. Our construction makes three steps.

1. First we compute a canonical spanning tree T for G. This is a spanning
tree which depends on (s, t), ρ, and G, but not on the way these inputs
are represented.

2. Next we construct a canonical list L of all edges of G. To do so,
we traverse T and enumerate the edges of T and their neighbor edges
according to ρ. The list L does not depend on the representation of G,
ρ or T .

3. Finally we rename the vertices depending on the position of their first
occurrence in the list L and get a code word for G with respect to
(s, t) and ρ.

We will see that the spanning tree in step 1 can be computed in (the
functional version of) UL ∩ coUL. The list and the renaming in step 2
and 3 can be computed in logspace, L. Therefore the composition of the
three steps is in UL ∩ coUL.
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The overall algorithm has to decide whether two given graphs G and H

are isomorphic. To do so we fix (s, t) and ρ for G and cycle through all
edges of H as designated edge and the two possible permutation schemes
of H. Then G and H are isomorphic iff we find a code for H that matches
the code for G. It is not hard to see that this outer loop is in logspace.
Therefore the isomorphism test stays in UL ∩ coUL.

Step 1: Construction of a canonical spanning tree

We show that the following problem can be solved in unambiguous logspace.

• Input: An undirected graph G = (V,E), a rotation scheme ρ for G,
and a designated edge (s, t) ∈ E.

• Output: A canonical spanning tree T ⊆ E of G.

Recall that by a canonical spanning tree we mean that T does not depend
on the input representation of ρ or G, any representation will result in the
same spanning tree T .

The idea to construct the spanning tree is to traverse G with a breath-
first search starting at node s. The neighbors of a node are visited in the
order given by the rotation scheme ρ. Since the algorithm should work in
logspace, we cannot afford to store all the nodes that we already visited, as
in a standard breath-first search. We get around this problem by working
with distances between nodes.

We start with the nodes at distance 1 from s. That is, write (s, v) on the
output tape, for all v ∈ Γ(s). Now let d ≥ 2 and assume that we have already
constructed T up to nodes at distance ≤ d − 1 to s. Then we consider the
nodes at distance d from s. Let w be a node with d(s,w) = d. We have to
connect w to the tree constructed so far. We do so by computing a shortest
path from s to w. Ambiguities are resolved by using the first feasible edge
according to ρ.

We start with (s, t) as the actual edge (u, v).

• If d(u,w) > d(v,w), then (u, v) is the first edge encountered that is on
a shortest path from u to w. Therefore we go from u to v and start
searching the next edge from v. As starting edge we take the successor
of (v, u). That is, ρv(v, u) is the new actual edge.

• If d(u,w) ≤ d(v,w), then (u, v) is not on a shortest path from u to w.
Then we proceed with ρu(u, v) as the new actual edge.
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After d− 1 steps in direction of w the node v of the actual edge (u, v) is a
predecessor of w on a shortest path from s to w. Then we write (v,w) on
the output tape. The following pseudo-code summarizes the algorithm.

for all v ∈ Γ(s) do output (s, v)
for d← 2 to n− 1 do

for all w ∈ V such that d(s,w) = d do

(u, v)← (s, t)
for k ← 1 to d− 1 do

while d(u,w) ≤ d(v,w) do (u, v)← ρu(u, v)
(u, v)← ρv(v, u)

output (v,w)

The spanning tree T is canonical because its construction depends only
on ρ, edge (s, t), and set E. Figure 1 shows an example of the spanning tree.

ρv3

ρv2

ρv1

ρt

= ( (s, t) (s, v1) (s, v2) )
= ( (t, s) (t, v3) (t, v1) )
= ( (v1, s) (v1, t) (v1, v3) (v1, v2) )
= ( (v2, s) (v2, v1) (v2, v3) )
= ( (v3, t) (v3, v2) (v3, v1) )

ρs

ρ = {ρs, ρt, ρv1
, ρv2

, ρv3
}

v1 v2

v3

t

s

Figure 1: Spanning tree T for G (bold edges) and rotation function ρ. The
rotation function arranges the edges in clockwise order around each vertex.

Except for the computation of the distances, the algorithm works in
logspace. We have to store the values of d, k, u and v, and the position
of w, plus some extra space for doing calculations. By Theorem 4.1, the
canonical spanning tree can be computed in UL ∩ coUL by Lemma 2.1.

Step 2: Computation of a canonical list of all edges

We show that the following problem can be solved in logspace.

• Input: An undirected graph G = (V,E), a rotation scheme ρ for G, a
spanning tree T ⊆ E of G, and a designated edge (s, t) ∈ T .

• Output: A canonical list L of all edges in E.
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Recall that by a canonical list we mean that the order of the edges as
they appear in L does not depend on the input representation of ρ, G or T ,
any representation will result in the same list.

The idea is to traverse the spanning tree in a depth-first manner. At
each vertex visit all incident edges in breath-first manner according to ρ

until the next edge contained in the spanning tree is reached.
We start the traversal with edge (s, t) as the active edge (u, v). We write

(u, v) on the output tape and then compute the next active edge as follows:

• If (u, v) ∈ T then we walk depth-first in T from u to v, consider the
edge (v, u) and take its successor according to ρv, i.e., ρv(v, u) is the
new active edge.

• If (u, v) 6∈ T then we proceed breath-first with ρu(u, v) as the new
active edge.

This step is repeated until the active edge is again (s, t). Then we have tra-
versed all edges in E. Every undirected edge is encountered exactly twice,
once in each direction. The following pseudo-code summarizes the algo-
rithm.

(u, v)← (s, t)
repeat

output (u, v)
if (u, v) ∈ T then (u, v)← ρv(v, u)
else (u, v)← ρu(u, v)

until (u, v) = (s, t)

Clearly, the algorithm works in logspace. The list L is canonical because
its construction depends only on ρ, edge (s, t), and sets E and T . Since T is
canonical as well, L depends actually only on ρ, (s, t), and E. The following
figure shows an example for L.

v1 v2

v3

t

s

(s, v2)(v2, v1)(v2, v3)(v2, s)

(s, v1)(v1, t)(v1, v3)(v1, v2)(v1, s)

(s, t)(t, v3)(v3, v2)(v3, v1)(v3, t)(t, v1)(t, s)L =
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Step 3: Renaming the vertices

The last step is to rename the vertices in the list L such that they get
independent of the names they have in G. This is achieved as follows:
consider the first occurrences (from left) of node v in L. Let k − 1 be the
number of pairwise different nodes to the left of v. Then all occurrences
of v are replaced by k. Recall that L starts with the edge (s, t). Hence all
occurrences of s get replaced by 1, all occurrences of t get replaced by 2,
and so on. Call the new list code(G, ρ, s, t).

Given L as input, the list code(G, ρ, s, t) can be computed in logspace.
We start with the first node v (which is s) and a counter k, that counts
the number of different nodes we have seen so far. In the beginning, we set
k = 1.

• If v occurs for the first time, than we output k and increase k by 1.

• If v occurs already to the left of the current position, then we have to
determine the number, v got at its first occurrence. It is not hard to
see that this can be done in logspace.

Then we go to the next node in L.
Consider the example from above. The code constructed from list L

for G is as follows.

L = (s, t) (t, v3) (v3, v2) (v3, v1) (v3, t) (t, v1) (t, s)
code(G, ρ, s, t) = (1, 2) (2, 3) (3, 4) (3, 5) (3, 2) (2, 5) (2, 1)

sequel of L (s, v1) (v1, t) (v1, v3) (v1, v2) (v1, s)
sequel of code (1, 5) (5, 2) (5, 3) (5, 4) (5, 1)

sequel of L (s, v2) (v2, v1) (v2, v3) (v2, s)
sequel of code (1, 4) (4, 5) (4, 3) (4, 1)

The renaming algorithm works in logspace. It remains to argue that the
new names of the nodes are independent of their names in G. Let H be a
graph which is isomorphic to G, and let ϕ be an isomorphism between G

and H. Note that ρ◦ϕ is a rotation scheme for H. Consider the computation
of the code for graph H with rotation scheme ρ ◦ ϕ and designated edge
(ϕ(s), ϕ(t)). The spanning tree computed in step 1 will be ϕ(T ) and the list
computed in step 2 will be ϕ(L). Now the above renaming procedure will
give the same number to node v in L and to node ϕ(v) in ϕ(L). For example
nodes ϕ(s) and ϕ(t) will get number 1 and 2, respectively. It follows that
code(G, ρ, s, t) = code(H, ρ ◦ ϕ,ϕ(s), ϕ(t)). We summarize:
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Theorem 3.2 Let G and H be connected undirected graphs, let ρG be a
rotation scheme for G and (s, t) be an edge in G. Then G and H are
isomorphic iff there exists a rotation scheme ρH for H and an edge (u, v)
in H such that code(G, ρG, s, t) = code(H, ρH , u, v).

This completes the proof of Theorem 3.1 except for the complexity bound
on computing distances in planar graphs. This is done in the next section.

4 Computing Distances in Planar Graphs

In this section we show that distances in planar graphs can be computed in
unambiguous logspace.

Theorem 4.1 The distance between any two vertices in a planar graph can
be computed in UL ∩ coUL.

Bourke, Tewari, and Vinodchandran [BTV07] showed that the reacha-
bility problem for planar directed graphs is in UL∩coUL. Their algorithm
is essentially based on two results:

1. Allender, Datta, and Roy [ADR96] showed that the reachability prob-
lem for planar directed graphs can be reduced to grid graph reachabil-
ity. Grid graphs are graphs who’s vertices can be identified with the
grid points in a 2-dimensional grid with the edges connecting only the
direct horizontal or vertical neighbors.

2. Reinhard and Allender [RA00] showed that the NL-complete reacha-
bility problem for directed graphs is in UL∩coUL if there is a logspace
computable weight function for the edges such that for every pair of
vertices u and v, if there is a path from u to v, then there is a unique
minimum weight shortest path between u and v.

Bourke, Tewari, and Vinodchandran [BTV07] provide such a weight function
for grid graphs. This gives the result.

We modify this algorithm in order to determine distances between nodes
in the given planar graph G by the Reinhard-Allender algorithm applied to
the weighted grid graph computed from G. Here, we only describe the
changes that have to be made in the cited references.

We start by considering the reduction from reachability for a planar
graph G to a grid graph Ggrid [ADR96]. The construction inserts a bunch
of nodes and edges into G such that reachability between any two nodes
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of G is maintained and the nodes and edges can be embedded into a grid.
For our purpose it suffices to note that one can modify the construction and
mark the original edges of G in Ggrid . Hence if we consider paths in Ggrid

and count only the marked edges, we get distances in G.
The next step is to define a weight function such that shortest paths

in Ggrid with respect to marked edges are unique. Bourke, Tewari, and
Vinodchandran [BTV07] defined the following weight function. For an edge e

let

w0(e) =











n4, if e is an east or west edge,

n4 + i, if e is a north edge in column i,

n4 − i, if e is a south edge in column i.

Let p be a path in Ggrid . The weight w0(p) is the sum of the weights of
the edges on p and can be written as a + bn4. Clearly, b is the number
of edges on p. Also, it is easy to see that if another path p′ with weight
w0(p

′) = a′ + b′n4 has the same weight as p, i.e.. w0(p) = w0(p
′), then a = a′

and b = b′. This enforces that when we consider shortest paths between
two nodes, these paths must have the same number of edges. The crucial
part now is the value of a. Let p and p′ be different simple paths connecting
the same two vertices. Then Bourke, Tewari, and Vinodchandran [BTV07]
showed that a 6= a′. It follows that the minimum weight path with respect
to w0 is always unique.

Now we modify the weight function in order to give priority to the marked
edges. That is, we define

w(e) =

{

w0(e) + n8, if e is marked,

w0(e), otherwise.

Clearly, minimum weight paths must minimize the number of marked edges.
The next parameter to minimize is the number of all edges on a path. Fi-
nally, by the same argument as above, the a-values of different simple paths
that connect the same two vertices will be different. Therefore, it follows
that the minimum weight path with respect to w is always unique.

Reinhard and Allender [RA00] extended the counting technique of Im-
merman [Imm88] and Szelepcsényi [Sze88]. In addition to the number of
nodes within distance k from some start node s, they also sum up the length
of the shortest paths to these nodes. If the shortest paths are unique then
they show that the predicate d(s, v) ≤ k is in UL ∩ coUL. The distance d

now refers to Ggrid because this is the input of the algorithm. By augmenting
the algorithm with a counter for marked edges we also can refer to distances
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in G by construction of the weight function w. This suffices for our purpose
because by several invocations of this procedure with different k’s we can
determine d(s, v) for any s and v in UL ∩ coUL, where d is the distance
in G.

5 Oriented Graph Isomorphism

In the previous sections we have considered planar graphs, where the planar
embedding is provided by a rotation scheme. It is also interesting to consider
arbitrary (undirected) graphs with a rotation scheme that induces some
orientation, i.e. cyclic order, on the edges. In the isomorphism problem for
oriented graphs we have given two graphs, each with a rotation scheme.
One has to decide whether there is an isomorphism between the graphs that
respects the orientation.

Miller and Reif [MR91] proved that the isomorphism problem for ori-
ented graphs is in AC1. We improve the complexity bound to NL. The
proof goes along the same lines as for planar-GI: compute a canonical form
for each of the graphs according to the given rotation schemes such that
precisely in the isomorphic case, these canonical forms are equal.

Theorem 5.1 The oriented graph isomorphism problem is in NL.

It suffices to analyse the complexity of computing a canonical form for
a graph G and a rotation scheme ρ. If G is not connected, then we deter-
mine the connected components in logspace [NTS95, Rei05] and compute
canonical forms for each of them. Then we sort these canonical forms lexi-
cographically and write them onto the output tape. Thus, we may assume
that G is connected.

The three steps to compute a canonical form for a planar graph were
all in logspace, except for the subroutine to compute distances, which was
in UL ∩ coUL. Without planarity, the best upper bound for computing
distances in a graph is NL: to determine if d(u, v) ≤ k simply guess a path
of length ≤ k from u to v. This proves Theorem 5.1.

6 Hardness of Planar 3-Connected GI

Lindell [Lin92] proved that tree isomorphism (TI) is in L. In fact, TI is
complete for L [JKMT03]. Since trees are planar graphs, it follows that
planar-GI is hard for L. We show that the problem remains hard for L
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even when restricted to planar 3-connected graphs. All the hardness and
completeness results in this section are with respect to AC0-many-one re-
ductions.

Theorem 6.1 Planar 3-connected graph isomorphism is hard for L.

We reduce from the known L-complete problem Ord which is defined
as follows.

Order between Vertices (Ord)
Input: a directed graph G = (V,E) that is a line, and s, t ∈ V .
Decide whether s < t in the total order induced on V by G.

We first describe the reduction from Ord to TI [JKMT03]. Let v1, . . . , vn

be the nodes of G in the order they appear on the line in G. In particular,
v1 is the unique node with in-degree 0 and vn is the unique node with out-
degree 0. Let s = vi and t = vj. W.l.o.g. assume that i 6= n (otherwise map
the instance to a non-isomorphic pair of trees). The (undirected) tree T

constructed from G has two copies u1, . . . , un and w1, . . . , wn of the line
of G, and there is an additional node r that is connected to u1 and w1.
Up to this point, we have constructed one long line. Now the trick is to
interrupt this line: take out the edge (ui, ui+1) and instead put the edge
(wi, ui+1). Let T be the resulting tree.

u1 u2 ui ui+1 un

r

w1 w2 wi wi+1 wn

v1 v2 vi vi+1 vn

TG

Note that there is a unique non-trivial automorphism for T : exchange
ui+1 and wi+1, . . . , un and wn, and map the other vertices onto themselves.
We construct two trees T1 and T2 from T . With respect to T , tree T1 has
two extra nodes x0, x1 which are connected with node uj, and T2 has extra
nodes y0, y1 which are connected with node wj. The extra edges enforce
that an isomorphism between T1 and T2 has to map uj to wj , because these
are the only nodes of degree 4 (for j < n). Now, if vi < vj , then the above
automorphism of T yields an isomorphism between T1 and T2. On the other
hand, if vi ≥ vj, then there is no isomorphism between T1 and T2.

We modify T to a graph H that is no longer a tree, but planar and 3-
connected. Split each node v of degree 1 or 2 in T into three nodes v0, v1, v2.
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Connect these nodes via edges (v0, v1) and (v1, v2). If v has degree 1, then
additionally put the edge (v0, v2). Now, if (u, v) is an edge in T , where u

and v have degree 1 or 2, then we have edges (u0, v0), (u1, v1), and (u2, v2)
in H. The following picture illustrates the situation. In (a), node v has
degree 2, in (b), node v has degree 1.

u0

u1

u2

v0

v1

v2

u0

u1

u2

v0

v1

v2

u v

(a) (b)

A special case is node wi which has degree 3. For wi we need a gadget
with 9 nodes which are connected as a 3 × 3 grid. The connections to the
other nodes are shown in the following picture. The edges of the gadget
have bold lines.

w2
1

w1
1

w0
1

u0
n

u1
n

u2
nu2

i+1

u1
i+1

u0
i+1

w1
i+1

w0
i+1

w2
i+1

w1
i−1

w2
i−1

w0
i−1

r1 r2r0

u2
1

u1
1

u0
1

u2
i

w1
n

w2
n

w0
n

u1
i

u0
i

H

Now it suffices again to mark the nodes corresponding to vj . That is,
define graph H1 as graph H plus the edge (u0

j , u
2
j ), and H2 as H plus the edge

(w0
j , w

2
j ). Note that H1 and H2 are planar and 3-connected. Furthermore,

any isomorphism between H1 and H2 has to map u0
j to w0

j , u1
j to w1

j , and

u2
j to w2

j . Again, this is only possible iff vi < vj . This completes the proof
of Theorem 6.1.

A final observation is about oriented trees. An oriented tree is a tree with
a planar rotation scheme. It is not hard to see that one can adapt Lindell’s
algorithm to work for oriented trees, so that the corresponding isomorphism
problem is in L. We show that it is also hard for L.
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Theorem 6.2 Oriented tree isomorphism is complete for L.

We reduce Ord to the oriented tree isomorphism problem. Let G be
the given line graph and consider again the trees T1 and T2 from above
constructed from G in the proof of Theorem 6.1. For nodes of degree 1 or 2
there is only one rotation scheme. Therefore we only have to take care of
the nodes of degree 3 and 4, i.e. wi, wj, and uj.

• The rotation scheme for wi is easy to handle: output the edges
around wi for T1 in an arbitrary order, and choose the opposite or-
der for wi in T2. This definition fits together with the only possible
isomorphism that should exchange ui+1 and wi+1.

• In the rotation scheme for wj the order of edges to the neigh-
bors can be chosen as wj−1, y0, wj+1, y1, and around uj in order
uj−1, x0, uj+1, x1. Because of the symmetry of the parts (uj , x0)
and (uj , x1) in T1 and of (wj , y0) and (wj , y1) in T2 an isomorphism
mapping wj to uj can be defined such that it respects the rotation
schemes for these nodes.

Now the same argument as for Theorem 6.1 shows that the oriented trees T1

and T2 are isomorphic iff vi < vj . This proves the theorem.

Open Problems

The most challenging task is to close the gap between L and UL ∩ coUL

for the planar 3-connected graph isomorphism problem. Another goal is to
extend the isomorphism test to arbitrary planar graphs. If the graph is not
connected, we can compute the connected components and consider them
separately. Hence, we may assume that the graph is connected. Then we
can determine the articulation points and the separating pairs and get the
1- and 2-connected components of the graph. For sequential algorithms to
compute a canonical form for these graphs see for example [KHC04]. Miller
and Reif [MR91] provide an AC1-reduction from planar graphs to planar
3-connected graphs. We ask whether one can compute a canonical form for
planar graphs in logspace.
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