Electronic Colloguium on Computational Complexity, Report No. 69 (2007)

Low-end uniform hardness vs. randomness
tradeoffs for AM

Ronen Shaltiel Christopher Umaris
Department of Computer Science Department of Computer Science
University of Haifa California Institute of Technology
Mount Carlel, Haifa 31905, Israel. Pasadena, CA 91125.
ronen@aifa.ac.il umans@s. cal t ech. edu.

July 25, 2007

Abstract

In 1998, Impagliazzo and Wigderson [IW98] proved a hardiwsssrandomness tradeoff for BPP
in the uniform settingwhich was subsequently extended to give optimal traddoffthe full range of
possible hardness assumptions by Trevisan and Vadhan [TW0& slightly weaker setting). In 2003,
Gutfreund, Shaltiel and Ta-Shma [GSTSO03] proved a unifcandhess vs. randomness tradeoff for AM,
but that result only worked on the “high-end” of possibledrass assumptions.

In this work, we give uniform hardness vs. randomness trifsifmy AM that are near-optimal for the
full range of possible hardness assumptions. Followingl[&&], we do this by constructing a hitting-
set-generator (HSG) for AM with “resilient reconstructiorOur construction is a recursive variant
of the Miltersen-Vinodchandran HSG [MVO05], the only knowrS8 construction with this required
property. The main new idea is to have the reconstructionquiore operate implicitly and locally on
superpolynomially large objects, using tools from PCPsi{ttegree testing, self-correction) together
with a novel use of extractors that are built from Reed-Mudledes [TSZS06, SUO5b] for a sort of
locally-computable error-reduction.

As a consequence we obtain gap theorems for AM (andAdbAM) that state, roughly, that either
AM (or AM N coAM) protocols running in time(n) can simulate all of EXP (“Arthur-Merlin games
are powerful”), or else all of AM (or AMN coAM) can be simulated in nondeterministic tiraén)
(“Arthur-Merlin games can be derandomized”), for a neatirapl relationship betweet(n) ands(n).
As in [GSTS03], the case of Ah coAM yields a particularly clean theorem that is of speaidiest
due to the wide array of cryptographic and other problemisligaén this class.

1 Introduction

A fundamental question of complexity theory concerns the@gyoof randomized algorithms: Is it true that
every randomized algorithm can be simulated determimigievith small (say, subexponential) slowdown?
Ideally, is a polynomial slowdown possible — i.e., is BRPP? The analogous question regarding the
power of randomness in Arthur-Merlin protocols is: Is itdrthat every Arthur-Merlin protocol can be

*This research was supported by BSF grant 2004329.
fThis research was supported by NSF grant CCF-0346991, BSft 8004329, an Alfred P. Sloan Research Fellowship, and
an Okawa Foundation research grant.

ISSN 1433-8092

simulated by a nondeterministic machine with small slowd®ws a polynomial slowdown possible —i.e.,
does AM = NP? We refer to efforts to answer the first set of questiongtipely as “derandomizing
BPP” and efforts to answer the second set of questions yalgitas “derandomizing AM”. Recent work
[IKWO02, KI04] has shown that derandomizing BPP or AM entagileving certain circuit lower bounds that
currently seem well beyond our reach.

The hardness versus randomness paradigm

An influential line of research initiated by [BM84, Yao82, Nb4] tries to achieve derandomizatiander the
assumptiorthat certain hard functions exist, thus circumventing teechfor proving circuit lower bounds.
More precisely, we will work with hardness assumptions eoning the circuit complexity of functions
computable in exponential timhe Derandomizing BPP can be done with lower bounds againets$i}
deterministic circuits while derandomizing AM typicallgquires lower bounds against siZ¢) nondeter-
ministic circuits, where? is the input length of the hard function. Naturally, strongesumptions — higher
values ofs(¢) — give stronger conclusions, i.e., more efficient derandation. There are two extremes of
this range of tradeoffs: In the “high end” of hardness asgionp one assumes hardness against circuits of
very large sizes(¢) = 29 and can obtain “full derandomization,” i.e., BRP P [IW97] or AM = NP
[MVO05]. While in the “low-end” one assumes hardness agasmsaller circuits of sizes(¢) = poly(¢)
and can conclude “weak derandomization,” i.e., simulatiohBPP (resp. AM) that run in subexponential
deterministic (resp. nondeterministic subexponentiedet{BFNW93, SUO5b]. Today, after a long line of
research [NW94, BFNW93, Imp95, IW97, AK0O1, KvM02, MV05, IDA, SU05b, Uma03, SU05a, Uma05]
we have optimal hardness versus randomness tradeoffstfoBIRP and AM that achieve “optimal param-
eters” in thenon-uniformsetting (see the discussion of non-uniform vs. uniform&lo

Pseudorandom generators and hitting set generators

The known hardness versus randomness tradeoffs are atvadhby constructing pseudorandom gener-
ator (PRG). This is a deterministic functiod which on inputm, produces a small set df m-bit strings
in time poly(T"), with the property that a randomly chosen string from thiscemnot be efficiently distin-
guished from a uniformly chosem-bit string?. In this paper we are interested in a weaker variant of a
pseudorandom generator callethitiing set generatofHSG). A functionG is a HSG against a family of
circuits onm variables, if any circuit in the family which accepts at leB&3 of its inputs also accepts one of
them-bit output strings of7 (when run with inputn). Itis standard that given a HSG against deterministic
(resp. co-nondeterministic) circuits of size pply) one can derandomize RP (resp. AM) in time galy
by simulating the algorithm (resp. protocol) on all strirggput by the HSG, and accepting if at least one
of the runs accepts

The proofs of the aforementioned hardness versus randsnmaeieoffs are all composed of two parts:
first, they give an efficient way to generate a set of strifgs ¢utput of the PRG or HSG) when given access
to some functionf. Second, they give eeductionshowing that if the intended derandomization using this
set of strings fails, then the functighcan be computed by a small circuit, which then contradictdgrthial

1This type of assumption was introduced by [NW94] whereasitihi@l papers [BM84, Yao082] relied on cryptographic as-
sumptions. In this paper we are interested in derandomi&Mgvhich cannot be achieved by the “cryptographic” line ofdir@ess
versus randomness tradeoffs.

2An alternative formulation is to think off as a function that takesta= log 1" bit “seed” as input and outputs the element in
T indexed by the seed.

3By [ACR96, ACRT99], HSGs for deterministic circuits alsdfize to derandomize two sided error BPP.

hardness assumption when takifigp be the characteristic function of an EXP complete problfa now
focus on the reduction part. An easy first step is that an infftat the randomized algorithm or AM protocol)
on which the intended derandomization fails gives rise tmalkcircuit D, that “catches” the generator,
i.e., D, accepts at least 1/3 of its inputs, but none of the stringsdrgenerator output. (The obtained circuit
D, is a deterministic circuit when attempting to derandomi&PBand a co-nondeterministic circuit when
attempting to derandomize AM). The main part of all the psdsfto then give a reduction that transforms
this circuit D, into a small circuitC' that computed'.

Uniform hardness versus randomness tradeoffs

All the aforementioned hardness versus randomness tfadeehonuniform tradeofféecause the reduc-
tion in the proof is nonuniform: give®, it only shows the existence of a small circtditthat computes
f, but doesn’t give an efficient uniform procedure to produceln other words, the reduction relies on
nonuniform advice when transforming,. into C'). We remark that all the aforementioned results are “fully
black-box” (meaning that they do not use any properties eftitard functionf or circuit D,) and it was
shown in [TV02] that any hardness versus randomness trathafis “fully black box” cannot have a
uniform reduction.

A non-black boxuniform reduction for derandomizing BPP in the low-end wa®ig in [IW98]. This
reduction gives ainiformrandomized poly-time algorithm (sometimes callecte@onstruction algorithin
for transforming a circuitD,, that catches the generator into a cirafiithat computes the functiofi. It
follows that if the intended derandomization fails, andufthermore one cafeasibly generat@n inputx
on which it fails (by a uniform computation), then one can tigeuniform reduction to construct the circuit
C in probabilistic polynomial time, which in turn implies thd is computable in BPP. (This should be
compared to the non-uniform setting in which one would get this in P/poly). An attractive feature
of this result is that it can be interpreted as a (low-egap theorenfor BPP that asserts the following:
Either randomized algorithms are somewhat weak (in theesas they can be simulated deterministically
in subexponential time on feasibly generated inputs) @& thsy are very strong (in the sense that they can
compute any function in EXPY.Obtaining a high-end version of this result is still open[TW02] it was
shown how to get a high-end tradeoff in the slightly weakéiirsgwhere the hard functiofi is computable
in polynomial space rather than exponential time.

Uniform hardness versus randomness tradeoffs for AM

A non-black-box uniform reduction for derandomizing AM inet high-end was given in [GSTS03]. It
yields gap theorems for both AM and ANIcoAM. The gap theorem for AM is analogous to that of [IW98]
(except that it concerns the high-end and not the low endgsiérts: Either Arthur-Merlin protocols are very
weak (in the sense that they can be simulated non-detetioatig in polynomial time on feasibly generated
inputs) or else they are somewhat strong (in the sense timatctim simulate E= DTIME (29 in time
20())5 The gap theorem for ANh coAM gives the same result with “AM” replaced by “AM coAM.”
The statement is in fact cleaner for AMcoAM because it does not mention feasibly generated inpats,
instead applies tall inputs

“To state this result formally one needs a precise definitiotfemsibly generated inputs”. The actual result also imesl
“infinitely often” quantifiers which we will ignore in this fiormal introduction.

The notions of feasibly generated inputs in [GSTS03] is inparable to that in [IW98] and follows the “pseudo” notion
introduced in [Kab01]).

The result of [GSTSO03] relies on identifying a certain “hesicy property” of an HSG construction of
[MVO05] (constructed for the nonuniform setting) and on tarsce checking” [BK95], which was previously
used in this context by [BFL91, BFNW93, TV02]. While it givasigh-end result it does not generalize to
the low-end because the HSG construction of [MV05] worksy amlthe high end. We remark that there is
an alternative construction (in the nonuniform setting]205b] that does work in the low-end but does
not have the crucial resiliency property.

Our result: low-end uniform hardness versus randomness trdeoffs for AM

In this paper we obtain a resilient HSG (with a uniform redutiproving its correctness) that works over
a larger domain of parameters and covers a wide range of éssdissumptions (coming very close to the
absolute low-end). Using our result we extend the gap timesref [GSTSO03] as follows (for a formal
statement of the two Theorems below see Theorems 2.4 and 3dction 2):

Theorem (informal) 1.1. Either E = DTIME(2°) is computable by Arthur-Merlin protocols with time
s(¢) or for any AM languagel. there is a nondeterministic machidé that runs in time exponential iA

and solved. correctly onfeasibly generated inputs lengthn = s(¢)©(1/(les-loglogs(6)*),

The second Theorem below achieves a clean statement this$ veoorall inputs (rather than feasibly
generated inputs). However, this is only achieved for AMdoAM.

Theorem (informal) 1.2. Either E = DTIME(ZO(Z)) is computable by Arthur-Merlin protocols with time
s(¢) or for any AMN coAM languagel there is a nondeterministic (and co-nondeterministic) hiae M

that runs in time exponential ifand solves. correctly onall inputs of lengthn = s(¢)©(1/(log (-loglog s(0)*)

Note that in the two theorems above we use a nonstandard wagasuring the running time of the ma-
chine M. This is because it is not possible to express the running ¢ifd/ as a function of its input length
in a closed form that covers all the possible choices(éj. It may be helpful to view the consequences
for some particular choices 6f¢) and then express the running time of the nondeterministichina as a
function of the length oits input.

e Fors({) = 222(8) (the high-end) the nondeterministic machine runs in paiyiabtime in the length of
its input. This is exactly the same behavior as in [GSTSOBLST our results truly extend [GSTSO03].

We comment that the techniques of [GSTSO03] don’t work wheh < Ve,

e Fors(¢) = 2¢° and constand > 0, the nondeterministic machine runs in timep((log n)°1/9) on
inputs of lengthn.

e Fors(¢) = 200°e") and constant > 3, the nondeterministic machine runs in time subexponeintial
the length of its input. The > 3 requirement is suboptimal as we can hope to get the sameibehav
even wheru > 1 (which is the absolute low-end).

A discussion regarding the best possible parameters thdtecaxpected in hardness versus randomness
tradeoffs appears in [ISWO06]. Our results are suboptimélersense that one could hope toget 3(6)9(1)
whereas we only get = s(¢)2(1/(los t-loglog s(£)*) - Note that this is indeed optimal in the high-end, where
s(0) = 22, However, it becomes suboptimal wheft) is smaller. Another effect of this problem is that
while we can hope for hardness versus randomness tradaffstart working as soon ag() = 2<(log?)

(the “absolute low-end”), our results only start workingems(¢) > o(log 0)°

Our techniques

The source of our improvement over [GSTSO03] is that we repthe hitting set generator of [MVO05] (that
only works in the high-end) with a new construction of a gat@t The new generator and its proof of
correctness build on the previous construction of [MVO5]levintroducing several new ideas. We give a
detailed informal overview of the ingredients and ideas tioane up in our construction in Section 5.2.

On a very high level we can identify three new ideas in our trasion. First, we use techniques from
PCPs (low-degree testing and self-correction) to speedetin steps in the reduction establishing the
correctness of [MV05], so that they run in sublinear timehia $ize of their input. Although it has long been
observed that there is some similarity between aspects Bfd@@structions and aspects of PRG and HSG
constructions, this seems to be the first time primitives ldw-degree testing have proven useful in such
constructions. Second, we run both the [MV05] constructiod the associated reduction recursively, in a
manner reminiscent of [ISW06, Uma05] (although the low leletails are different). Finally, we introduce
a new primitive calledocal extractors for Reed-Muller codewhich are extractors that are computable in
sublinear time when run on inputs that are guaranteed to bd-Rtiller codewords. A construction of such
an object can be deduced from [SUO5b]. They play a crucialirothe improved constructions, and may be
of interest in their own right. In Section 5.2 we give a detdilnformal account of our construction and the
way the new ideas fit into the proof.

Motivation

Uniform hardness vs. randomness tradeoffs represent sbthe most involved proofs of non-trivial rela-
tionships amongst complexity classes, using “currentrteldyy.” Pushing them to their limits gives new
results, but also may expose useful new techniques, as vesd#his work does. Moreover, the complexity
classes we study, AM and AMcoAM, contain a rich array of important problems, from hardlgems upon
which cryptographic primitives are built, to group-thetiwgroblems, to graph isomorphism, and indeed all
of the class SZK (Statistical Zero Knowledge).

A second motivation is the quest fonconditionalderandomization results. In [GSTSO03] it was shown
that if one can prove a low-end gap theorem for AM that worksdib inputs rather than just feasibly
generated inputs, then it follows that AM can be derandothide a weak sensejnconditionally (the
precise details appear in [GSTS03]). In this paper we comgeclto achieving this goal by achieving a
low-end version of [GSTS03].

Organization of the paper

In Section 2 we restate our main theorems formally usingipeatotation. In Section 3 we describe some
ingredients that we use as well as the new “local extractansl some new variants of AM protocols that
we will use as sub-protocols. In Section 4 we give the newrsdoel HSG and the statement of the main
technical theorem. In Section 5 we give the proof of the maaibical theorem. In Section 6 we derive our
main results from the main technical theorem.

2 Formal statement of results

In this section we formally state Theorems 1.1 and 1.2. Ireotd do so we need to precisely define the
notion of “derandomization on feasibly generated inputs”.

2.1 Feasibly generated inputs

Following [GSTS03] we will use the notions defined in [KabOLlposely speaking, we say that two lan-
guagesl, M areindistinguishableif it is hard to feasibly generate inputs on which they disggrFor this
paper it makes sense to allow the procedure trying to comeithpsweh inputs (which is calledrafuterin
the terminology of [Kab01]) to use nondeterminism. We firséd the following definition.

Definition 2.1. Let L1, L, be two languages and letbe a string. We say thdt; and L, disagree one if
x € (Ll \ L2) U (LQ \ Ll).

We now define the notion of a refuter, which is a machine attergpo distinguish between two languages.

Definition 2.2 (Distinguishability of languages). We say that a nondeterministic machiRgthe refutel)
distinguishesbetween two languages;, L, C {0,1}* on input lengthn if on every one of its accepting
computation path$2(1™) outputs some: of lengthn on whichZ, and L, disagree.

With this notation we can formally capture the informal stagnts in the introduction. More specifically,
when given a languagé € AM, a nondeterministic maching/ running in timet(n) < 2" succeeds on
feasibly generated inputs if for any refutBrrunning in timet(n), R does not distinguistL from L(M).%

2.2 Formal restatements of Theorems 1.1 and 1.2

We now restate our main theorems formally. We first requieg the functions(¢) (which measures hard-
ness) is a “nice” function in the standard way:

Definition 2.3 (time-constructible function). A functions(¢) is time-constructiblef:
e 5(/) <s(f+1),and
e s(¢) is computable frond in timeO(s(¢)).

The following Theorem is the formal restatement of Theoreth INote that we state the theorem
for both classes E= DTIME(2°) and EXP= DTIME(2/°"") (the parameter choices for EXP are
slightly different and appear in parenthesis). The statgsigelow also use the notion of complete languages
for E and EXP. Here we follow the standard convention and detapess for E is with respect to linear
time reductions, whereas completeness for EXP is with r#gpgoolynomial time reductions.

Theorem 2.4. There exists a languagé complete for E (resp. EXP) such that for every time-consitrlec
function? < s(¢) < 2¢, either:

e A has an Arthur-Merlin protocol running in time(¢), or

e for any languagel. € AM there is a nondeterministic machiré that runs in time2°®) (resp.
2¢°“y on inputs of lengthy = s(¢)©(1/(est=loglogs())*) (ragp 1 = 5(£)@((1/1080%)) guch that for
any refuterR running in times(¢) when producing strings of lengththere are infinitely many input
lengthsn on whichR does not distinguisti from L(M).

®The statement in [GSTS03] uses a formal notation borrowedh ffKab01] that in the situation above reads AM
[pseuddNTIME (¢(n)))]-NTIME(t(n)) where the first occurrence of NTIMEn)) stands for the class of the refuter and the
second one for the class of the machine We choose not to use this notation as it complicates thersgaits of our results
and makes them less clear. However we stress that our resgitexactly the same meaning of feasibly generated inputs as
[GSTS03, Kab01].

We remark that the hidden constants in the statement ab@anden the languagk. The following
Theorem is the formal restatement of Theorem 1.2.

Theorem 2.5. There exists a languagé complete for E (resp. EXP) such that for every time-consitslec
function? < s(¢) < 2¢, either:

e A has an Arthur-Merlin protocol running in time(¢), or

e for any languagel. € AM N coAM there is a nondeterministic machiné that runs in time2°)
2
(resp. 2°°”) on inputs of lengthy = s(¢)©(1/(eat=leglozs(0)*) (yregp. 5, = 5(¢)©((1/1080%)) gych
there are infinitely many input lengthson whichL and L(M) are equal.

Following [GSTS03] we can also reverse the order of “infigiteften” in Theorem 2.5 and achieve:

Theorem 2.6. There exists a languagé complete for E (resp. EXP) such that for every time-consitrlec
function? < s(¢) < 2¢, either:

e A has an Arthur-Merlin protocol running in time(¢) which agrees withL on infinitely many inputs.
(On other inputs the Arthur-Merlin protocol does not neeeitg have a non-negligible gap between
completeness and soundness), or

o for any languagel. € AM N coAM there is a nondeterministic machiné that runs in time29(%)
2
(resp. 2¢°”) on inputs of lengt = s(¢)©(1/(est—loglogs(0)*) (regp 5 = 5(¢)®((1/1080%)) sych
that L = L(M).

3 Preliminaries

We assume that the reader is familiar with the definition of AMe remark that by [GS86, BM88, FG\89]
we can assume that AM is defined by an Arthur-Merlin protocidhywublic coins, two rounds and perfect
completeness. In this paper we also refer to such protobatsrtin in times(¢) on inputs of lengtl¥ and
by that we mean that the total length of messages sent durmgrbtocol and the time of Arthur’s final
computation is bounded by(?).

3.1 Nondeterministic and co-nondeterministic circuits

We will be working with nondeterministic and co-nondetanmisiic circuits. Anondeterministic circuiis an
ordinary Boolean circui€”’ with two sets of inputsy andy. We say that acceptsnputz if 3y C(z,y) =1
and thatC' rejectsinput = otherwise. We refer to a stringon whichC(z,y) = 1 asa witnessshowing
that C' acceptse. A co-nondeterministic circuihas the opposite acceptance criterioradteptsnput z if
Yy C(z,y) = 1 andrejectsinput x otherwise. We refer to a stringon whichC'(z, y) = 0 as awitnessthat
C rejectszr.

3.2 Low degree testing and self correctors

The key to our results is that in many places we wipnplicitly with functions that are supposed to be
low-degree polynomials — of course this is the central cphocePCPs as well. Just as with PCPs, we need
the ability to locally test whether an implicitly suppliedriction is of the “correct” form: namely, we need
to check whether it is (close to) a low-degree polynomial.ifdstandard, once we have determined that an

7

implicitly supplied function is close to a low-degree ones van “access” the nearby low-degree function
locally using a self-corrector.

Low-degree testerand self-correctorsare standard primitives in the PCP literature. In fact for ou
intended use of these primitives, we do not need delicatéraloof the parameters; we only need to be
able to operate od-variate functions over a field in time poly(|F|,d) (hence making at most that many
gueries), while handling constant relative distance, aitd eonstant soundness error for both primitives.
The formal definitions, and the known results that we will make of follow:

Definition 3.1 (low-degree tester).A low-degree testewith parametersh, J, € is a probabilistic oracle
machineM that has oracle access to a functighn F¢ — F, and for which

e if deg(f) < hthenM/ accepts with probability 1, and

o if every polynomialy with deg(g) < h satisfiesPr,[f(z) # g(z)] > €, thenM/ rejects with proba-
bility at leastJd.

Lemma 3.2 ([FS95]). There exists a (non-adaptive) low-degree tester with patamsh, §, ¢ = 24, running
in poly(|F|, d) time, providedF| > ch, 6 < o, for universal constants and .

Definition 3.3 (self-corrector). A self-correctorwith parameters, §, ¢ is a probabilistic oracle machine
M that has oracle access to a functign F¢ — T, and for which

o if there exists a polynomiaj of total degreeh, for whichPr,[g(z) # f(x)] < ¢, then for allz
Pr[M7(z) = g(x)] > 1 4.
Lemma 3.4 ([BF90, Lip89]). There exists a (non-adaptive) self-corrector with paraeret, 6 = O(1/(e|F))), €,
running in poly(|F|, d) time, providedt < (1 — h/|F|).

We remark that for both low-degree testers and self-casrecit is possible decrease the soundness
error from a constant t2~¢ by repeating the protoc@(t) times.

3.3 Instance checkers

Another tool that we use is instance checkers (introducd8k®5]). These are probabilistic oracle ma-
chines that are able to “check” that the oracle is some glestifunction in the sense that when given an
“incorrect” oracle the machine will either fail or computeetprescribed function.

Definition 3.5. Let f : {0,1}* — {0, 1} be a function. An instance checkBt' for f with soundness error
0 is a probabilistic oracle machine for which:

e for everyz € {0,1}*, Pr[IC/(z) = f(z)] = 1, and
e for every functiory # f and everyr € {0,1}*, Pr[IC9(x) € {f(z),L}] > 1—4.

We say that an instance checkit' makes queries of length(¢) on inputs of lengtt? if for every input
x € {0,1}* and for every oraclg all the queries made b¥C to its oracle are for strings of length(¢).

Note that by repeating the executiéxit) times the soundness error of instance checkers can be ceduce
from a constant t@ . In this paper we use the fact that languages complete for &XFE have instance
checkers. This was achieved by a sequence of works [LFKNB298& BFL91, BFLS91]. The reader is
referred to [TVO02] for further details.

Theorem 3.6 (c.f. [TV02] Theorems 5.4 and 5.8). 1. There is a language in EXP that is complete for
EXP under polynomial time reductions and its charactezigtinction f has a polynomial-time in-
stance checker that makes queries of lengh = ¢©(1).

2. There is a language in E that is complete for E under linéaretreductions and its characteristic
function f has a polynomial-time instance checker that makes quefiemgthv(¢) = O(¢).

3.4 Local extractors for subsets

The final object we will use to perform local computations oniraplicitly supplied function is what we
call a “local extractor for subsets”. The notion of “locallpmputable extractors” was introduced in [Lu04,
Vad04] in the context of encryption in the bounded-storagmleh Loosely speaking, it requires that the
extractor is computable in time sublinear in the length $fiitst input. In our construction we require such
extractors for very low “entropy thresholds”. However, YWad [Vad04] proved that it is impossible to have
such extractors unless the entropy threshold is very higi.this purpose we introduce a new variant of
local extractors in which the first input comes from some gribed subset (rather than the $6t1}") and
exploit the fact that we intend to run the extractor on inghtt are codewords in an error-correcting code.
It turns out that the construction of [SUO5b] can be compirndiame polynomial in the output when applied
on the Reed-Muller code, even when shooting for low entropgsholds. The formal details follow:

Definition 3.7 (local extractor for subsets).A (k, ¢) local C-extractor is an oracle functiod : {0,1}! —
{0, 1}™ for which the following holds:

e for every random variableX distributed onC with minentropy at leastk, EX (U;) is e-close to
uniform, and

e Erunsin polym,t) time.

Definition 3.8 (Reed-Muller code). Given parameters, h and a prime power; we define RM;, , to be
the set of polynomials : F” — [F over the field withy elementsF, having degree at moét

The construction of [SU05b] gives the following local extiar for the Reed-Muller code (we have made
no attempt to optimize the constants):

Lemma 3.9 (implicit in [SUO5Db]). Fix parameters: < h, and letC = RM,;, , be a Reed-Muller code. Set
k = h®. There is an explicitk, 1/k) local C-extractor E with seed lengthh = O(r log ¢) and output length
m=h =k,

The following proposition follows from the definition.

Proposition 3.10.LetE : {0,1}* — {0,1}™ be a(k, ¢) local C-extractor, and letD be a subset of0, 1}™.
Then at mose* elements: € C satisfy: Pr,[E*(y) € D] > IZ%I + €.

We will use local extractors in the following way. We will betérested in the set

{x Pr[E*(y) € D] = 1},

"The minentropy of a random variahk is min,csuppx) — log(Pr[X = z]).

and we would like to be able to check whether saime C' is in this set by performing a local computation
on z. This is not possible in general but a relaxation of this gealf we perform the probabilistic test of
checking whetheF”(y) € D for a randony, then we will accept alk in the set, and not accept too many
otherx, because by the above proposition, the set ef C' on which this test accepts with high probability
is “small” — it has size at mo$¥*. This relaxation will turn out to be sufficient for our intezuiapplication.

3.5 Commit-and-evaluate protocols

We now define several variants of AM protocols that we will uspeatedly as subprotocols when con-
structing standard AM protocols. Let us start with some tiarta An ¢ round AM protocol is a protocol in
which Arthur and Merlin receive a common inputand at each round Arthur sends public random coins
and Merlin replies. At the end of the protocol Arthur outpatgalue (not necessarily Boolean), denoted by
out(w, M, x), that is a random variable defined relative tstimtegy)/ for Merlin; i.e., M is a function that
describes Merlin’s response given a history of the intevacto far. The running time of the protocol is the
running time of Arthur. A protocol may take an auxiliary comminputy, which we will variously think of
as a “commitment” or an “advice string”. In this case we dertbe output by oytr, M, x, y). The output
L (which is intended to be output by Arthur when he detects hatiest Merlin) is a distinguished symbol
disjoint from the set of intended output values.

With this notation we can define the notion of AM protocolstthatput values:

Definition 3.11 (AM protocols that output values). Given an AM protocolr and an input domaird, we
say thatr with auxiliary inputy:

e is PSV(partially single valued) over with soundness errot if there exists a functiop defined over
1, such that for allz € I, and all Merlin strategies\/

Prlout(m, M, z,y) € {g9(x), L}] > 1 —s.

e conformswith a functionf defined over with completenessif for all x € I, there exists a Merlin
strategyM for which
Prlout(r, M, z,y) = f(x)] > c.
e computesa function f over domain/ with soundness erras and completenessif 7 with auxiliary
inputy is PSV over with soundness and conforms witty’ with completeness

We may sometimes omsitand ¢ in which case they are fixed to their default values 1/3 andc = 2/3.
We also omitf when it is clear from the context.

Note that such a polynomial time AM protocol computes theratizristic function of some language
Lifand only if L. € AM N coAM. We will be interested in protocols that are composethaf phases, and
operate over the domaih= {0,1}". The first phase is called tr@®mmit phaseThis is an AM protocol
whose input isl™, and whose auxiliary input is an advice stringhat depends only on. The role of this
phase is to generate an auxiliary input to the second phémesdcond phase is called #nvaluation phase
This is an AM protocol whose input is € I, and whose auxiliary input is the output of the commit phase
protocol. The reason we distinguish between two differéaises is that we make the additional requirement
that there is a function computed by the combined protocdlthat this function is completely determined
at the end of the commit phase (thabeforeMerlin knows the inputr). The exact details appear below.

10

Definition 3.12 (commit-and-evaluate protocols).A commit-and-evaluate protoct a pair of AM proto-
colsm = (mcommit Teval)- Givens and an input domaid = {0, 1}", we say thatr with advicea:

e conformswith a functionf defined over if there exists a Merlin strateg¥/commitfor which

Pr[meva With auxiliary input outmcommis Meommis 17,) conforms withf] = 1.

e isv-resilientover [if for all Merlin strategiesM commis

e runs in timet(n) for some function if both mcommitand meva run in time bounded by(n).
We may sometimes omitin which case it is fixed to its default valge= 2/3.

We argue that completeness, soundness and resiliency afrait@nd-evaluate protocol can be ampli-
fied from their default values by parallel repetiti®n.

Proposition 3.13 (amplification of commit-and-evaluate potocols). Letm = (7commis Teval) b€ @ commit-
and-evaluate protocol that is resilient and conforms wftlwith completeness, resiliency2/3 and sound-
nessl /3. Furthermore, assume thatommitis a two round protocol. Them can be transformed (by parallel
repetition) into a commit-and-evaluate protocd| = (75ommic Teva) that is resilient and conforms witf,
with completeness, resiliencyl — 2~ and soundnes®~t. The transformation multiplies the running time
and the output length of the commit protocol ®y¢), and the running time of the evaluation protocol by
O(t?). The transformation preserves the number of rounds for i@lcommit protocol and the evaluation
protocol.

Proof. The new commitment protocal,, . Simply runs the old commitment protocotommitt’ = ©(t)
times in parallel, producing the commitmeris , uo, . .., uy). Note that the Merlin strateg¥// ., that
executes the honestl;ommit Strategy for each repetition resultsemeryu,; being a commitment for which
Teval With auxiliary inputu; conforms withf with completeness. The new evaluation protocat,, runs,
for eachi, the old evaluation protocoatey t' = ©(t) times in parallel withu; as auxiliary input. If for all
commitmentsu; all the repetitions ofreva With advicew; output the same valuethenn, ,, outputsv and
otherwise it outputsL.

Note that by the perfect completenessmgfy if Merlin executes the “honestiMg 4 Strategy on each
of the repetitions using adviceg the resulting strategy causes Arthur to outp(t) with probability one.
Thus,n’ conforms withf.

For resiliency note that agommitis @ two round protocol then with probability at le@gB over Arthur’s
choice of coins, every possible reply of Merlin results irgadd” commitment: (i.e., one for whichreyy iS
PSV). It follows that when making/ invocations ofrcommi, With probability at leasl — 27 there exists an
7* on which Arthur sends coin tosses for which every possitgéy/raf Merlin leads to a “good” commitment
u;=. We claim that whenever this event happens the protefg| is PSV when using advicey, . .., uy,
which establishes the claimed resiliency.

8n the next proposition we only claim amplification for protds where the commit protocol has two rounds and the evatuat
protocol has perfect completeness. We make these relagdigrause all protocols constructed in this paper have firegperties.
However, a more careful argument can get the same conclusibaut these two assumptions. This follows along the sanes|
that parallel repetition of multi-round AM protocols anfigs soundness (see for example [Gol98, p.145-148])).

11

We have that fou;~ there exists a function such that for any Merlin strategV/eyal,
Pr[out(ﬂ'evah Me\/a], x, ul*) S {g(m), _L}] 2 2/3

It is folklore (see e.g. [Gol98, p.145-148]) that parallgpetition of (multi-round) AM protocols reduces
the soundness error exponentially. Thereforergs runsmeva t’ times with the commitment;- it follows
that any strategy of Merlin imr’, ,, has probability at most—* to output a value that is not ify(z), L} in
all t’ repetitions ofreval With commitmentu;-. In particular, no Merlin strategy fory, , can make Arthur

eva
output a value different thag(z) with probability larger tha—¢, which is the claimed soundness errof]

3.5.1 Usefulness of commit and evaluate protocols

Note that after running the commitment protoagbmmit it is possible to run the evaluation protocalyq
(with the auxiliary input that is output by.ommi) Mmany times on many different inputs in We will typi-
cally perform these invocations ety in parallel, and after suitably amplifying soundness (Wiagd@sition
3.13, we can be sure that all evaluations agree with the ctiedrtio function (with high probability). Note
also that ay-resilient commit-and-evaluate protocol that conform#hwi does not necessarily “compute”
f in any meaningful way. This is because in the commit phasaliMmay not cooperate, causing the
evaluation phase to receive an auxiliary input leading itdmpute a function different fronf. However,
Merlin cannot choose this function in a way that depends enrtput to the evaluation protocol.

To demonstrate the usefulness of this notion we mentiorfoiatving [GSTS03] it is possible to trans-
form an AM protocol thatonforms resilientlywith an E-complete or EXP-complete function into one that
computeshe function. Thus to construct a (standard) AM protocollémguages in E or EXP it is sufficient
to construct commit-and-evaluate protocols that confasiliently with a complete problem.

On a more technical level, commit-and-evaluate protocelusmeful because the commit phase can be
executedbeforethe inputx is revealed, and following the commit phase it is guaranteatdMerlin is com-
mitted tosomefunction f. This allows Arthur to make “local tests” on the functign For concreteness let
us demonstrate this approach on low-degree testing (thesting whetheyf is close to a low degree poly-
nomial). Consider the following protocol: Arthur and Merplay the commit phase of the protocol (which
determines a functiorf). Then Arthur sends randomness for a low-degree test whi¢hrh determines
querieszy, ..., z., to f. On each one of the queries, Arthur and Merlin play the evaluation protocol (in
parallel) and in the end Arthur checks that the low-degreepasses with the obtained evaluations. Note
that no matter how Merlin plays he cannot make Arthur accdphation f that is far from a low degree
polynomial.

4 A recursive HSG construction

In this section we present a recursive version of the Mi#lerginodchandran (MV) generator [MV05], that
receives a polynomial (which can be thought of as the encoding of a hard funcfioend outputs a multiset
of m-bit strings. We also state the theorem asserting that iksvas intended.

4.1 The construction

LetIF be a field withg elements. We need one definition before giving the construct

Definition 4.1 (grouping variables and MV lines). Given a functiorp : F" — F and a parameter! that
dividesr we defineB = F"/¢ and identifyp with a function fromB< to F.

12

Given a pointz € B? andi ¢ [d] we define thdine passing through in directioni to be the function
L: B — Bgiven byL(z) = (z1,...,2i_1, 2, Tit1, ... ,24). This is an axis-parallel, combinatorial line,
which we call anMV line for short.

Given a functiorp : F” — F and an MV lineL we define a functiop;, : B — F bypr(z) = p(L(2)).

Note that ifp : F” — F is a polynomial them;, : F"/¢ — F is also a polynomial with degree bounded
by that ofp. We present our construction in Figure 1.

Input A multivariate polynomiap : F; — [, of degreeh.

Output A multiset ofm bit strings.

—+

Parameters and requirements We require that- is a power ofd and thath is a prime power. We sg
q = h'% andm = /190,

Ingredients The (k, 1/k) local C-extractorE' from Lemma 3.9 for Reed Muller cod€ = RM,. /4, -
Note thatk = h®, the extractor uses seed leng¥i(r /d) - log ¢) and it outputsn bits.

Operation of RMV, 4(p) :
o SetB = F//?. Foreveryz € Béandi € [d], let L : B — B¢ be the MV-line passing
throughz in directioni. Note thatpy, is an element of the Reed-Muller code RM, ,-
ComputeEPz (y) for all seedsy. Let H, denote the set of these bit strings, asL ranges

over all MV lines.

e If r = d then outputH,,.

e If > d then for each MV linel. make a recursive call to RMV;(pr,). Note that while the
dimension ofp wasr, the dimension opy, is r/d. Each one of these recursive calls retufns
a multiset ofm bit strings that we will callif;,. Output the union off,, and H, asL ranges
over all MV lines.

Figure 1: Recursive MV generator RM\Vi(p)

Lemma 4.2. The construction RMY;(p) runs in timeg®(™ and outputs at mosgi®(") strings.

Proof. Letr = d'. We show by induction onthat the running time and number of output strings is bounded
by ¢¢" for some universal constant

For the base case, when= d', the number of MV lines is at most, and the number of output strings
produced from each line is at magt”/¢ for some universal constant. We are using the fact that the
specified localC-extractor has at most paly’/?) seeds, wherg”/¢ is the blocklength of cod€. In total
the the running time and the number of strings is at most /4 < ¢°.

In general, whenr = d?, the number of MV lines is at mogt” and for each line, we produeg’”/?
strings. By induction the recursive call generated for éawd has running time and number of strings
bounded above by“"/¢. So we have an overall bound @ft¢"/? 4 ¢ ¢/ \which is less tham®" for a
suitably chosen universal constant O

13

4.2 The main technical theorem

Recall that the proof that a construction is indeed a HSGst#ée form of a protocol for computing the
hard function if the HSG fails. We will specify a commit-asdaluate protocok = (mcommit Teval) that
takes advicex = D (whereD is a co-nondeterministic circuit) and attempts to comphbte golynomial
p. We will prove that wheneveb catches the generator RMY(p) then the protocolr conforms withp
resiliently. (Note that this does not mean thatomputes. However, in our application we will be able
to user to construct a protocol thatoes compute). Our main theorem is stated below. In fact, following
[GSTSO03], we prove a slightly stronger statement in whighrdsiliency of the protocol follows regardless
of whetherD catches RMY, 4(p) as long asD rejects few inputs. This will be useful later on.

Theorem 4.3. Letd, h,r,m,q be as in Figure 1. Lep : F, — F, be a polynomial of degree at most
h. Then there is a commit-and-evaluate protogok (mcommis Teval) With advicea = D, whereD is a
co-nondeterministic circuit of size pdly), that satisfies:

Conformity If D rejects every element of RMY(p) thent conforms wittp.
Resiliency If D rejects at most a /3-fraction of its inputs them is resilient.
Efficiency « runs in timeh®(@1°ga") and haslog, r rounds.

Moreover,meva has completeness 1, angommitis a two round protocol.

The proof of Theorem 4.3 is described in Section 5. Our maialte (Theorems 2.4 and 2.5) then follow
from Theorem 4.3 largely using machinery already workedim{6STS03]. An explanation is in Section
6.

5 The reduction

In this section we describe the reduction that proves Tmedr8.

5.1 Miltersen-Vinodchandran consistency test

We first abstract a certain primitive from the original Miken-Vinodchandran construction [MV05], and
prove conformity and resiliency for it. This primitive, tether with the three primitives in Sections 3.2 and
3.4 will be the main ingredients in the reduction provingreotness of the new generator. The main point
of the abstraction is that the test makes sense when tha™lai¢he original MV construction are replaced
by what we are calling “MV lines,” which are more general. \We&d one definition first:

Definition 5.1 (MV paths and S-boxes). Givenz € B and a setS C B we define a sequence dkets
Ti,...,Ty called theMV path toz usingS. Each of these sets contains MV lines as follofiscontains all
MV lines through pointg (z1, ..., x;, Si+1,---,54) : Si+1,---,8q¢ € S} in directioni. We say that a lind.

appears in the MV path i. € U;7;. Note that for|S| > 1 there arex¢_,|S|"~! < |S|¢ MV lines appearing
in the MV path. Given a sé&t C B, an.S-boxis a functiona : S4 T,

Figure 2 describes a test that we call the "MV consistency.tekhe usefulness of this procedure is
captured in the following lemmas:

14

Input A point z € B?, a subsetS C B, and anS-boxa : S — F. Also, the following collection of
functions: for every linel appearing in the MV path to usingS, a functiong;, : B — F.

Operation LetTh,...,T,; be the MV path tac usingS. The MV consistency test passes if the two tgsts
below pass:

e (agreement with th&-box) For every lineL in 73 andz € S, we check thay(z) =
a(L(z)).

¢ (agreement at intersection points) For every pair of libes 7; and L, € T; for somesi, j:
if Ll(zl) = LQ(ZQ) for somezq, 22, We check thayLl (21) =JL, (22).

Figure 2: MV consistency test

Lemma 5.2 (conformity of MV consistency test).Fix a functionp : B¢ — F, anz € B?, and a subset
S C B. The MV consistency test passes when given as inp6t the S-boxa : S — T defined by
a(sy,...,sq) = p(s1,--.,54), and the collection of functions;, ranging over all MV linesL in the MV

path. Furthermore, if_ is the single line ifly, thenpr (z4) = p(x).

Proof. Since all of the functiong; and theS-box a agree with a single, underlying functign it is clear
that these inputs pass the MV consistency test. The secemdd@lows from the definition of ;. O

Lemma 5.3 (resilience of MV consistency test)Let Z be a set of at mosk” functions where each one is
a function fromB to F and assume that for any two functiogs go € Z, with g1 # g2, Pr.eplgi(z) =
g2(z)] < B. Then with probability at leasty over the choice of a random subsgtC B with |S| >
(21log K +1og(1/(1 —7)))/log(1//3) the following event holds: for eve§rboxa : S — I and for every
x, there is at most one collection of functions fréhthat passes the MV consistency test.

Proof. Let us call a subsef C B of the specified size “good” if it separates the functigns Z; i.e., for all
g1 # g2, there is some € S for which g1 (s) # g2(s). Itis a standard calculation to see that the probability
a randomly chosel of the specified size is not “good” is at mast 5151, which is at mosti — ~ by our
choice of|S|.

Now fix an S-box a and somer. Let Ty, Ts, ..., Ty be the MV path tor using.S. By the definition of
“good,” for each MV lineL € T1, there is at most one functiayn, € Z satisfyinggz(s) = a(L(s)) for all
seS.

The crucial observation is that for each MV lilg € T5, the union of the intersections @k, with the
MV lines in T} is exactly Lo (.S). Therefore (again using the definition of “good”) for eath € T5, there
is at most one functiop;,, € Z for which gz, (s) agrees with the functions associated with line$irat all
s € S (since we already argued that these functions are unigheyfexist at all).

In general, each MV lind; € T; intersects the union of the MV lines ifi_; at exactlyL;(S). So by
the same argument, for eaély € T;, there is at most one functiay,, € Z for which gz, (s) agrees with
the functions associated with linesh_; atalls € S.

We conclude that if5' is “good,” then there is at most one collection of functiohattpasses the MV
consistency test, as required. O

15

5.2 Overview of the construction and proof

In this section we survey and motivate the main ideas thahtgpthe construction and proof of our main
technical theorem, while highlighting the new ideas in thaper that allow us to improve the previous work
of [MV05, GSTS03]. The reader may skip this informal explkama at any time and go directly to the

formal proof (that appears in Section 5.3).

The original MV generator

We start with describing the original Miltersen-Vinodckaan generator (using some of our language).

Given a polynomiap : F¢ — F of degreeh the construction setgandm to be slightly larger that
and (the standard choice is say= ¢ = 2h). For every MV lin€ L it outputs the vectot;, = (pr(t))icr
— the restriction op to the lineL.

Given a co-nondeterministic circui® such thatD rejects every output of the generator we would like
to show that there is a commit-and-evaluate protocgthat receivesD as advice) and conforms with
resiliently. We need to make the additional assumption thegjects very few — sagmé — strings of length
m overall. In the context of AM derandomization this can beiewatd by amplifying the AM protocol
we are attempting to derandomize using dispersers. Wesstieghis will be important later on, that this
amplification can only achieve a constant § < 1 efficiently.

We now describe the commit-and-evaluate protocol for etadgp. In the commit phase Arthur sends a
uniformly chosen se$ of sizev ~ h? and Merlin replies with ar$-box that is supposed to be the “correct”
S-box a(s1,...,sq4) = p(s1,...,84). Inthe evaluation phase the two parties are given a poiat F?
and Arthur wants to evaluatg(xz). Arthur and Merlin first compute the MV path tousing S (this path
has at mosv? MV lines) and for each MV line in the path, Merlin sends Artluunivariate polynomial
gr : F — T (that is supposed to be the polynomia)) by sending itsh + 1 coefficients. Arthur performs
the following tests:

Small-set test Arthur asks Merlin to supply withnesses showing thhatejectsg;, for all MV lines L on the
MV path. (Note that Merlin can do this d3 is a co-nondeterministic circuit).

Consistency testArthur performs the MV consistency test using the polyndsya sent by Merlin.

If both the tests pass then Arthur decides fi{at) equalsg, (x4) whereL is the single line in the séf;.

The conformity and resiliency properties of this protoaaldw from Lemmas 5.2 and 5.3. More pre-
cisely, an honest Merlin can indeed confornptby following the protocol. A cheating Merlin has the free-
dom to choose af-box a that is incorrect and in this case the evaluation protocekdmt necessarily con-
form with p. However the evaluation protocol is (with high probabilityer the choice of) PSV as Lemma
5.3 guarantees that there is at most one collection of fometirom the small seét = {z : D rejectsz} that
passes the consistency test. This means that once Merlimitsro theS-box a he cannot make Arthur
output two different values on a given inptit

We stress that this argument uses the structure of polyt®rnniza very weak way. To perform the
argument we only need that the set of vectors- {z;, : L is an MV line} is an error-correcting code, as is
stated precisely in Lemma 5.3. In the present construcliaf the z;, are sequences aof > h evaluations
of a degreéh univariate polynomial and so thg, are codewords of a Reed-Solomon code.

We now turn our attention to the running time of the protoddiere are roughly? MV lines on the MV
path and for each one of them Merlin needs to serd1 coefficients to define eaghy,. Thus, overall the

®For the definitions of MV lines and MV paths to make sense, we se d and B = F for the moment.

16

time is abouthv?. For Lemma 5.3 we need to setv m® ~ h° (this comes from the bound we have on the
setZ, which in turn comes from the initial amplification of the ANigtocol we are derandomizing). Overall
the running time is about’®. Specifying the polynomiap explicitly requires roughly:? coefficients and
thus the protocol achieves something non-trivial sincaririn time that is only some constant roothdf

Goal: achieve the low end

The parameters achieved by the construction outlined abarrespond to the “high-end” of hardness as-
sumptions. In the application we will be given an E completeguage and set : {0,1}* — {0,1} be
the characteristic function of this language (restricedputs of length¥). When given such a Boolean
function f over ¢ bits we encode it as & = O(1) variate polynomial (the low-degree-extension ¢f)
with h,m =~ 2¢/¢. We get that if we obtain a co-nondeterministic circlitthat rejects all outputs of the
generator thep (and thereforef and the complete language) have an AM protocol that confaeritiisthem
resiliently! Let us turn our attention to the parameters. The protocol@liten gives us exactly the kind
of parameters one wants; i.e., it runs in time polynomiahimoutput lengthyn, of the generator.

However, this relationship is only achieved at the “high’etildat is whenm = 22 and in fact the
construction fails completely whein becomes significantly smaller. Our goal is to achieve the/-émd”
so we must modify the construction of the generator so thagetex running time of polyn) for anym,
ideally all the way down tan = poly(¥).

Reducing the degreeh and distinguishing betweenr, d

A very natural idea (that has been useful in previous workkimarea, e.g., [STV01, SU05b]) is to encode
the functionf using a polynomiap with more than a constant number of variables. This will émakbe
encoding to use smaller degree. Note however that becaaseuthber of variables increases when the
degree decreases, the running time of the protocol we cmtstt does not benefit from reducing the degree
h, as the gain over the trivial protocol depends onlydamhich cannot be smaller than a constant. Thus, at
this point it is not clear what we can gain from reducing thgrde.

We will attempt to circumvent this problem by achieving tHeest of both worlds”. having a small
degree while keeping the number of variables a constantchieee a behavior with that flavor we distin-
guish between two parameterfthe number of variables) antithe number of “grouped variables”). More
precisely, we now encode the functigras a polynomiap : F” — F for super-constant (at the absolute
low-end we will user as large ag/ log ¢ which allows the degree to go downko= poly(¢)). While doing
so we keepl as a constant and identiy’ with B, whereB = /¢, as in Definition 4.1.

We can now run the original MV generator just as before bykihip of p as a functiorp : B¢ — F.
This follows from our observation that we only need the M\&brto form an error-correcting code, and here
for every MV line L, the associated functioy, : F’/¢ — F is a Reed-Muller codeword. In the commit-
and-evaluate protocol fgrthat we already saw, we only need to alter one thing: Merlihrveied to supply
coefficients forp;, which is now a degreé polynomial inr/d variables and has about/? coefficients (as
compared ta: coefficients previously).

At first glance it may seem that we have made progress and cateha much smaller than the original
MV construction required, but this is not the case. Forithdo form a code (which is needed for Lemma
5.3 to apply), we need to output > h'/¢ evaluations, and thus overall we do not gain (we were homing t

1We have only argued that the protocol conforms resilientihyw, so we don't yet have an AM protocol fmomputingp.
However, it turns out that we can transform this protocab iatprotocol that computes This part of the argument appears in
Section 6.

17

takem only slightly larger tharh, not 2’/%.). However, intuitively we did make some progress as variou
guantities in the protocol (such as the size of $hkox and the length of the MV path) depend dfwhich
is constant) rather than on

Reducingm by using local extractors for Reed-Muller codes

We will reducem by modifying the generator construction further. For eadhlMe L, instead of outputting
enough evaluations gf;, to induce an error-correcting code, we will use an extradtbore precisely, we
take F to be an extractor with output length ~ h, and we output the stringg'(zr,,y) for all possible
seeds,.

Then, in the AM protocol, we can replace the small-set te#lt wiprobabilistic small-set test: check
that D rejectsE(zr,y), for a randomy. All of the z;, that formerly passed the small-set test will still do
S0, since by assumption all of the outputs of the generatat faus all of the outputs df run on inputzy)
are rejected by). At the same time, by the extractor property, there can bg @shall number (say&m2)
of strings that pass the new probabilistic test with reatengrobability. This ensures that Lemma 5.3 still
applies to this modified generator and protocol.

However, our goal was to reduee and have the protocol run in time pdiy). But even invoking the
extractor once for the probabilistic small-set test take® inear in its input lengtt’/¢, which is much
larger thanm.

The crucial realization at this point is that we are only emggrested in running the extractor on strings
z1, that are evaluations of low-degree polynomials! We can teptaceE with a local extractor for the
Reed-Muller code, and consequently reduce the runningdirtiee extractor to polftn) when given oracle
access to its input.

So, we can do the small-set test in time daly, given oracle access tg,. For our choice of parameters,
the MV consistency test also runs in time ppty) given oracle access g,. However one hurdle remains:
the step in which Merlin sends the coefficients of the polyiadsrp;, still requiresh’/¢ > m time to send
the h"/? coefficients ofpz,, while we are shooting for polyn) time.

Sending the polynomialsp;, implicitly

Let us assume at this point that for some reason we already Wmeg for everyl the polynomialpy,
has a commit-and-evaluate protocol that conforms with stliemtly and that this protocol runs in time
poly(m). Then instead of having Merlin send the polynomigjsexplicitly, Arthur and Merlin could play
the commitment phase of the protocol fgr, after which Merlin will be able to assist Arthur on evalunai
pr, On any input that Arthur wishes.

However, we have now exposed the protocol to the possibiiay Merlin may cheat by committing to
a function that is not a low-degree polynomial, and thendast) two things break: the local extractor for
Reed-Muller codes may be run with access to an oracle that ia Reed-Muller codeword, destroying the
extractor property needed for the integrity of the smalltest; and, the resiliency of the MV consistency
test relies on all of the received functions having larg¢adice.

The solution is to run a low-degree test on each function Medmmits to, verifying that it is indeed
a low-degree polynomial. This test can be done locally, withicle access to the function, and the fact that
Merlin is committedtio a function (and cannot alter the requested evaluationa gpeing the randomness
of the test) ensures the validity of the test.

Let us summarize our current positioif. we knew that for every MV-linel. the polynomialp;, had
a poly(m) time commit-and-evaluate protocol that conformed wittegiliently, then we would be able to

18

produce a commit-and-evaluate protocol that conforms witsiliently, and more importantly, runs in time
poly(m) (which is our goal).

Using recursion to obtain the protocol forpy,

It is important to note that when trying to construct a protdor a polynomialp with r variables, we need
to assume the existence of a protocol polynomiglsvith a smaller number;/d, of variables. This will
allow us to use recursion. The base case will be the stand&rdevierator, where = d. For the base case
we already showed how to construct an AM protocol that rurigre poly(m).

To give us the protocol on MV lines needed in the recursive,stee modify the construction of the
generator, finally arriving at the construction in Figurelf.this construction, in addition to the original
output of our modified MV generator run gnwe also output all the outputs of our modified MV generator
run on the polynomialg;, for all MV lines L, and continue with this recursively. The inputs to the remar
calls are sufficiently smaller than the original input sotthe do not increase the set of outputs of the
generator by more than a polynomial factor. Now, a cir@nithat rejects all the outputs of our generator
can be used as advice to play the protocol on all the polyremijathat we will ever be interested in.

The final commit-and-evaluate protocol will invoke the il now available for MV lines it needs to
access, continuing this recursively down to the base case.

We stress that the resiliency property plays a crucial mdéde the recursion (in addition to its role as
described in Section 6). Specifically, the resiliency propef the protocol forp;, says that following the
commitment phase, Merlin is committed to some function, @ulis what prevents Merlin from cheating
when doing the local tests (such as the low degree test)wHsn't for resiliency then Merlin would be able
to choose outputs fagr;, after seeing the queries of the low degree test which would make#teiseless.

Losses suffered in the recursion

While we can reducen using the ideas outlined above, there are also some costng this recursive
argument. First, each recursive step in the protocol pigkiswo additional rounds and thus we end up with
a protocol with2 log,; » rounds. Such protocols can be transformed into two roungbpots but the running
time suffers a blowup which is slightly super-polynomialhelrunning time also suffers as each recursive
step multiples the running time of the protocol by pgeh). When taking these two factors into consideration
and transforming to a two round AM protocol we get that thistpcol has running timen©(logir) rather
thanm ™). This accounts for the slight non-optimality of our main gagorems.

5.3 The recursive protocol

In Figure 3 we formally present the protoeolised to prove Theorem 4.3, incorporating the ideas disdusse
in Section 5.2. Our main lemma regarding this protocol is:

Lemma 5.4 (Correctness ofr). Letd, h,r,m,q be as in Figure 1. Lep : F" — F be a polynomial of
degree at mosk. Let D be a co-nondeterministic circuit of size poly). Let7 = (Tcommis Teva)) D€ @
commit-and-evaluate protocol such that for every MV liner with advice(D, L) conforms resiliently to
py, (with completeness, soundnes@ 19" and resiliencyl — 2-10v"). Furthermore assume thagommitis

a two round protocol. Then the following hold:

Conformity If D rejects every element &f, theno with adviceD conforms withp with completeness.

19

Our protocol is paired with the construction in Figure 1 asdsithe parameters of that construction.

Ingredients The protocol relies on commit-and-evaluate protacauch that for every MV lind., ~ with advice
(D, L) conforms resiliently with the functiopy,. In the final proof, this protocol will exist by recursion.

Operation of the commit phaseoommit

The input is1'°¢ Fa| and the auxiliary input is the co-nondeterministic circbit

Arthur sends a random sgtC B of sizev = k2.

Merlin replies with anS-boxa : S¢ — .
e Arthur outputs(S, a, D).

Operation of the evaluation phasereyg

e Theinputisr € BY(= [F), and the auxiliary input is the output of the commit phase.

e Arthur and Merlin computd?, ..., T, the MV path toz usingS. For each MV lineL on the MV
path (note that the number of such lines is boundedQywe perform the following actions (i
parallel for all linesL):

Inner commitment Arthur and Merlin play the commit protocel,mmit with advice(D, L) which
outputs a commitmenty,.
At this point Arthur and Merlin hold the auxiliary input, required to play the evaluation prg
tocol 7y for the MV line L on any inputz € B. To simplify the notation we use, below
as if it were a function, with the understanding that any ‘“€tion evaluation”r;,(z) actually
invokes the evaluation protocal,g on inputz € B, with commitmenty, as its auxiliary input.
Note that if the commit-and-evaluate protoeois resilient, then with high probability over th
randomness of the commit phasg is indeed a fixed function when given the commitmegnt

Low-degree test Let M| pt be the machine associated with the low degree test of Lem2haith
e = 1/10 andd = - 100" (which can be achieved by amplification as explained in $adti
3.2). Arthur chooses randomness fdi pt, and then Arthur and Merlin rud/|"5; with that
randomness. If the low degree test fails then Arthur stoplsoartputs.L..
If we get to this point in the protocol, we are ensured (withhhprobability) thatr;, is close to
a low-degree polynomial. We would like to access that netolydegree polynomial for the
remainder of the protocol, and we will use self-correction that purpose. Lef\/gc be the
machine associated with the self-corrector of Lemma 3dgusi= 1/5 andd = g2-10v" (again
this can be achieved by amplification).

Small-set test Arthur chooses at random seegs. . . , y100,« for the localC-extractorE, and then

TL
Arthur and Merlin computeyy, ; = EMSC(yj). Finally Merlin supplies witnesses showing that
for all j, D rejectswy, ;.

1)

17

e MV consistency test: Arthur and Merlin perform the evaluations (using the selfrectorMgc) of
the variousr;, required for the MV consistency test (see Figure 2), withuinp S, the S-boxa. (By
that we mean that/Z¢ plays the role of the functiog;, needed for performing the test.)

e Arthur stops and outputd if any of the tests fail. Otherwise, Arthur and Merlin comput =
MgLC(xd) whereL is the single MV line inT;, and Arthur outputsv.

Figure 3: Commit-and-evaluate protoeoWith adviceD, for use with recursive MV generator RMV,(p)

20

Resiliency If D rejects at most /3 of its inputs therw with adviceD is 9/10-resilient, with the soundness
error set to 1/10.

Efficiency If 7 runs in timet and has2i rounds thens runs in timeth®@ and has2(i + 1) rounds.
Furthermore,ocommitis @ two round protocol.

Proof. (Conformity) In the commit phaseéommit Arthur sends a sef C B of sizev and Merlin replies
with an S-box a. We need to show that for every choice of $etC B of sizewv there exists arb-box a
and a Merlin strategy/ for oeyy such that oUeva, M, z, (S, a, D)) = p(z). Fix some subsef of sizew.
Define anS-boxa by a(si,...,sq) = p(s1,. .., sq). Merlin will senda in ocommit We define a collection of
polynomialsgy, = pr,, one for each lind. in the MV path tor usingS. By Lemma 5.2 the MV consistency
test passes with these choices. We now define a Merlin sfridegeyq as follows: in the inner commitment
step, Merlin will “play honestly” and use the strategy theatantees that thag,, conforms withp;, given
the commitment;, generated in the commit phase. (Note that Merlin has suctategy which succeeds
with probability one by the conformity af). Merlin can now pass the low degree test by simply following
the protocol (ap;, is indeed a low degree polynomial). For the small-set testhatice that by assumption
D rejects all elements aff,, and soD rejectsEPZ (y) for every MV line L and every seeg. Thus, Merlin
can pass the small-set test. Finally we observe using Lem2tadt the outputy when Merlin follows this
strategy is indeegd(x) as required. Note that the strategy we described succeddsaompleteness.

(Resiliency) We need to show that for a uniformly chosen SeC B of sizewv, with high probability,
for every S-box a the protocoloeyg is PSV when played with auxiliary inputS, a, D). The protocol
Oeval iINVOkes the commitment protocel.mmit once for every MV line on the MV path and there are at
mostv? such MV lines. We now argue that by our requirement on thdieesly of - we have that with
probability greater thaf9,/100 over the coin tosses of Arthur in the invocationg@fnmit all commitments
cr, obtained in the inner commitment step have the propertyrthatwith auxiliary inputcy, is PSV. To see
that we note thatcommit is @ two round protocol and therefore with probability- 2-19°* over Arthur's
choice of coins, every reply of Merlin results in a commitrstiing on whichreyg is PSV. It follows by a
union bound that with probability at leagt /100 all coin tosses of Arthur in the invocations Qmmit have
the aforementioned property.From now on we assume that this event happens and this all®westhink
of 77, (the invocation ofre g With auxiliary inputcy) as functions. Note that Merlin still has the liberty to
play any strategy that he wants in the commitment phaseanfd thus has many different choices for what
partial function to commit to. We will show that there is atshone choice that passes all tests.

We claim that if Arthur does not halt during the low-degrest ttep then with probability larger than
99/100 (over Arthur’s random choices for the low-degree test) rgli@ee L on the MV path is close to a
polynomialg;, of degree at mosk, and the self-correctak/sc accesses thig;. The follows from a union
bound and the fact that the error for the low-degree testrisost2 10"

We now define the sef to be all polynomialg : F*/¢ — F such thaPr,[D rejectsE9(y)] > 1/2. We
use Proposition 3.10 to argue that] < 2F = 2h° This follows by having the seb of Proposition 3.10
be the set of inputs on which co-nondeterministic cirduitejects, and by noticing thab|/2™ + € < 1/2
(where here = 1/k < 1/10 is the error of the extractaF).

We claim that if Arthur does not halt during the small-set teen with probability larger thaf9 /100,
for every L on the MV path,g;, € Z. This is because if;, ¢ Z then the probability (over the choice of
seeds for the extractor and randomness for the self corjebtt the small set test passes loiis at most

Mwe remark that although the argument above uses the fact @it is a two round protocol, the proof also goes through
without this assumption.

21

25" and by a union bound over all MV lines in the MV path we have thatprobability that this event
occurs for any, on the MV path< 1/100.

Finally, we claim that if Arthur does not halt during the MVrmistency test then by Lemma 5.3 there
is at most one choice for a collection of functions frdfrthat pass the MV consistency test. To use the
Lemma we must check that= |S| is large enough compared 6 = 2* which is the bound we have on
the size ofZ. Indeed, takingy = 99/100 and3 = 1/10 we have thatS| = v > (2log K + log(1/(1 —
v)))/ log(1/5) as required. We conclude that any Merlin strategy on whidhu#rdoes not halt and output
1, with probability at leas®/10 must end up defining this unique collection of functigis In particular,
there is at most one choice for the functign for the single MV lineL. € Ty, and as this function defines
the output uniquely, there is at most one possible valueAhhur can output and the protocol is resilient
with probability 9/10 and soundnes$g10.

(Efficiency) We go over the steps one by one. The MV path contains at nfolstV lines. For each
such MV line Arthur and Merlin perform computations thateakne poly(q, r, m, v*) < h°@ when given
oracle access tg.. Thus, overall the running time ofis bounded byv?h°@ = thRC(d) \We now turn our
attention to the number of rounds. The number of rounds dbpoboeyq is precisely the number of rounds
of 7. This is because to actually executg, Arthur picks all the randomness for the various low-degree
tests, and the randomness to run the self-corrector on tleagions required for all the other tests. Then
Arthur and Merlin play all the requested invocationsrgf z) for the various lined. and evaluation points
z, in parallel. Merlin includes witnesses for the various Breat tests in his final message to Arthur.

Finally, we note thatrcommit has two rounds and therefore the total number of roundsi®the number
of rounds ofr plus two as required. O

We now show that Theorem 4.3 follows from Lemma 5.4.

Proof. (of Theorem 4.3) LetD be a co-nondeterministic circuit. Recall that we only allpalynomials
p: F" — F with » = jd wherej > 1 is an integer. We prove the Theorem by inductionjon

(Base caspWe start with the base cage= 1. In this case the output of RMV;(p) is simply H,. For
the base case to follow from Lemma 5.4 we only need to suppbmamit-and-evaluate protocelmeeting
the requirements in Figure 3. We use the trivial protocol mol Merlin sends to Arthur a polynomial (by
specifying all coefficients) that is supposed toghe More formally, in the commit protocat.ommii Arthur
sends nothing and Merlin replies with a strimghat encodes a polynomia}, : F — F (the honest Merlin
will sendpy). In the evaluation protocatyy Arthur can evaluate;, on an input by himself without the help
of Merlin. It is immediate that this protocot,s meets the requirements of Figure 3 and the assumptions
of Lemma 5.4, and therefore the base case follows. Noterthata two round protocol (actually it is
a nondeterministic protocol rather than an AM protocol athidr does not send any random messages).
Furthermore, note thatruns in time polyh).

(Induction step) Let 5 > 1. We assume by induction that we already have a commit-aatlse
protocol 7 = (Tcommit, Teval) that meets the requirements of Theorem 4.3 for eyeoyerr = (j — 1)d
variables. Furthermore, we assume by induction thlahs completenesksand thatrcommit IS @ two round
protocol. We observe that such a protocol meets the reqgairesvof Figure 3 as well as the requirements
of Lemma 5.4. This follows because we can amplify soundnedsesiliency errors to the level required
in Lemma 5.4 with slowdown©(@ = r9() Furthermore, for the conformity part we observe that since
D rejects every element of RMV,(p) it in particular rejects every element i,. Thus, the induction step
follows from Lemma 5.4. Any recursive level multiplies thenning time by a factor oi©(9) and adds two
rounds. There arlg, r such recursion levels and the Theorem follows. O

22

6 Obtaining our main results

In this section we show how our main results (Theorems &A4édhd 2.6) follow from Theorem 4.3. The
argument for this part is essentially the argument in [GS[®Qcept that now we use the new generator
RMV (Figure 1) rather than the generator of [MV05]. We giveigihhlevel overview of the argument in the
next subsection. For completeness we also provide a futidbproof that appears in the remainder of this
section.

6.1 High level overview of the argument

In this subsection we give a high level overview of how to abtaur main theorems. We start with Theo-
rem 2.4. Letf be the characteristic function of a language completeFfdhat is instance-checkable (via

Theorem 3.6). We are given a functien= s(¢). Fix £ and setn = s(¢)©(1/(osl-loglogs(®)*) " consider
a languagel, in AM and leto be a (standard, two round) AM protocol fér with perfect completeness
(without loss of generality [FGWM89]). We will design a nondeterministic machidé running in time
exponential in¢ and show that if for each, M does not agree witlh, on anm-bit string « produced by
a uniform nondeterministic procedufe (“the derandomization fails on feasibly generated inputsien f
can becomputedby an AM protocol running in time(¢). We start by defining the maching’, which uses
the generator RMV from Figure 1:

The generator and the derandomization

Seth = m!%, ¢ = h'%, and set to be a large constant amd= O(¢/log h). It is standard that there is a
polynomialp : F* — T (thelow degree extensiofBF90]) of total degree at mogt overr = O(¢/log h)
variables such that for every € {0,1}¢, p(y) equalsf(y). Furthermore, the coefficients pfcan be
computed in time°®),

Given the polynomialp we run RMV,, 4(p) in time ¢®") = 20() to generate a self of at most
¢©(" = 200 strings of lengthn. The nondeterministic machin¥ is defined as follows: for every string
h € H we simulate the protocet onx with h used as Arthur’s randomness and guess an answer for Merlin.
We accept if all of the simulated runs of the protocol accdgbte that) is indeed a nondeterministic
machine that runs in time exponentialdn

The reduction

Assume thatM disagrees withl, on z. Becauser has perfect completeness this can only happen when
x ¢ L and yetM acceptse. Define the co-nondeterministic circuit, (y) that rejects if on input;, Merlin
has areply to Arthur's messagédin the AM protocols for L) that causes Arthur to accept. By the efficiency
of protocolo, D, has size polym), and by the soundness of protoeglwe have thaD, rejects at most a
third of its inputs. Finally sincé/ acceptedr, D, must reject every € H.

Note that we can now use the protoeol= (7commit, Teval) Of Theorem 4.3 with advic®, and we get
that = conforms withp resiliently and runs in timen©(@1°ga") However, the protocok only conforms
resiliently withp does not necessaritomputef, as discussed at the end of Section 3.5.

Using instance checkers

To solve this problem we will use instance checkers (in theesaay they are used in [BFNW93, TV02,
GSTS03]). Recall that we chose a functigrthat has an instance checker. For an instance-checlable

23

a “commit and evaluate” protocol that conforms resiliendlith f can be converted into a standard AM
protocol for f:12

Theorem (informal) 6.1. Let f be a function that is instance checkable. ket= (mcommis Teval) bE @
commit-and-evaluate protocol that conforms wjthesiliently. Then there is an AM protocel that com-
putesf and runs in time comparable to that of,4 using two additional rounds.

Proof. (sketch) We describe the AM protocel. Given inputz, Arthur and Merlin execute the commitment
protocol mcommit- BY the resiliency ofr following this phase with high probability Merlin is comrét to
some (partial) functiory (which may be different fromyf). Arthur chooses randomness for the instance
checker and sends it to Merlin. The two parties then simulaénstance checker on inputwhere oracle
calls are simulated by playing the evaluation protocgly. Arthur outputs the recommendation of the
instance checker regarding the valuefdf:). The theorem follows immediately from the properties of
instance checkers. O

We conclude thaff has an AM protocol that computes it in time®(°&7) that usesO(log r) rounds
(recall thatd is a constant). This protocol can be transformed into a twmdagprotocol running in time
mOUe’r) and the parameters are set so that the time is at a{és@s required. Thus, we obtain a two
round AM protocol that computes an E-complete problem iretid).

The case of AMN coAM

We now explain the idea for Theorem 2.5. A natural idea to nenbe restriction to feasibly generated in-
puts is to have Merlin supply the inpaut(rather than having it supplied by some external uniforncpdure
R). The only part of the above argument that might fail is thataan no longer be sure that, rejects
at most1/3 of its inputs, and then the resiliency of the protoeois not guaranteed. However, if Arthur
can verify thatz ¢ L, then the corresponding circui?, must reject at most a third of its inputs, and the
resiliency ofr follows. In general, Arthur has no way to check thatz L, but whenZ € AM N coAM
Merlin can convince Arthur that ¢ L.

In the next three subsection we give the precise detailh#atgument outlined in Section 6.1.

6.2 Nondeterministic simulation of AM protocols

We start with describing how to use a hitting-set generagaiirest co-nondeterministic circuits to perform
nondeterministic simulation of AM protocols. This is stand, but we go through it in order to set parame-
ters for the next part. The first observation is that given &hlanguagel and an inputc, the behavior of
the AM protocol onx can be captured by a co-nondeterministic cir@njtwhich receives the random coin
tosses of Arthur as input.

Lemma 6.2. For any languagd. € AM there is a constant > 0 such that for any input: € {0, 1}" there
is a co-nondeterministic circuib,, of sizem = n° such that:

e If x € LthenD, rejects all inputs.

e If z ¢ L thenD, rejects at most a /3-fraction of its inputs.

2A technicality is that instance checkers may query inpuis dne longer than their input. As a result some care is nestied
stating the next theorem formally. The precise details apfethe formal proof.

24

e Circuit D, can be produced in polynomial time fram

Proof. By [FGM*89] we can assume that the AM protocol fbrhas perfect completeness. Consider
the following deterministic circuiD,(y, a): simulate Arthur’s computation with coin togsand Merlin’'s
response: and flip the final answer. This deterministic circuit can biefipreted as a co-nondeterministic
circuit D, (y) that fulfils all the requirements abov&. O

When given a hard problem we use the low-degree extensiof(JB® transform it into a low degree
polynomial as follows:

Lemma 6.3 (low degree extension)Let f : {0,1}* — {0,1} be a function/ be an integerh < (°() be
a prime power, ang = h°("). There is a polynomigh : F* — F of total degree over a fieldF of sizeq
with r = O(¢/ log h) variables such that:

e There is an injective mapping: {0, 1}* — F” that is computable in polynomial time.

o Foreveryy € {0,1}", f(y) = p(I(y))-
e pcan be computed in tin#’(®) when given oracle access fo
The polynomiap is called thelow-degree extension gf at length? with degreeh.

The proof of Lemma 6.3 is standard (see e.g., [Uma03]).

To prove Theorems 2.4,2.5, and 2.6 we need to construct eetemanistic machine that attempts to
simulate a given AM languagé. Figure 4 describes how to use the generator RMV from Figure 1
construct such a nondeterministic machivig. We observe the following properties of the machivie.

Lemma 6.4. Let L be a language in AM, and lét/;, f, ¢, andv(¢) be as specified in Figure 4.

o If fis computable in time’”"" anduv(¢) = (°(1) then the machin@/;, runs in nondeterministic time
2¢°Y on inputs of lengthn.

e If fis computable in time®®) andv(¢) = O(¢) then the machiné/;, runs in nondeterministic time
200 on inputs of lengthn.

e If zis an input on which.(M) and L disagree, then: & L.

Proof. We have thain < s(¢) < 2¢. Therefore we can neglect operations that take time polyaidmum.
The machinel/;, needs to compute the low degree extensiaf f. By Lemma 6.3 this takes timz’(®)
when given oracle access fo The other main factor in the running time is computing RM\W IBeEmma
4.2 this takes timg®(") = 20(v()) givenp. The first two items of the lemma follow. The third item follew
from Lemma 6.2 as for every € L we have thatD,, rejects all inputs and in particular rejects all outputs
of RMV. O

To finish up the argument and prove our main theorems we shatgiten an input: on which My,
fails to simulateL correctly we can give an AM protocol for the supposedly hamttion f. This is done
in the next subsection.

Bt is indeed more natural to think db,, as a nondeterministic circuit (without flipping the answate reason we speak about
co-nondeterministic circuit is that the definition of hiigi set generators is not symmetric in zeroes and ones anden fmr meet
this definition we need to flip the output. In this choice wdédai [MV05, GSTSO03].

25

Our procedure uses the construction and parameters ofeFlgur

Ingredients

e An AM languageL. This is the language to be derandomized.

e Afunction f : {0,1}* — {0, 1}. Thisis the “hard function” supplied to the derandomizatio
procedure.

e An time constructible integer functioh< s(¢) < 2¢ (see definition 2.3). This is a function
which measures how hard is the functifn

e An integer functionv(¢) > ¢. The functionv(¢) determines the length of queries made|by
an instance checker fgton inputs of lengtt!. By Theorem 3.6 we have that¢) = ¢(©()
when f is computable in EXP and(¢) = O(¢) when f is computable in E.

Parameter: A constantc’.
Input: A string z of lengthn.
Operation of My, on input x

e Letc be the constant guaranteed by Lemma 6.2fand setn = n®.

o Compute the smallest integérsuch thats(¢)<'/(egv(f)—loglogs(0)* > 1, Sinces is time-
constructible, this can be found efficiently by binary sbar®Note that this is exactly th
relationship between, ¢ andm andn that we need to fulfill in our main theorems. We can
assume without loss of generality that® > v(¢). OtherwiseM|, can just decidd. by
brute-force simulation in timg© (‘) = 200™) which is at moseP® if m!%0 < v(¢).

1%

e Seth to be the smallest prime power larger that’® andg = r'%C. Letp be the low degree
extension off at lengthv(¢) over the field withg elements. We have that: F* — Fis a
polynomial withr = O(v(¢)/log h) variables over a field of sizg

e Setd = 2 and computdd = RMV), 4(p), which is a multi-set ofr. bit strings.

e For every stringz € H guess a witness showing tha,(z) rejects. Recall thaD, is a
co-nondeterministic circuit, so it has short witnessegdgection.

e Finally, acceptr if and only if for everyz € H the guessed witness proves that() rejects.

Figure 4: The nondeterministic machiné; (x) which attempts to decide the AM languafe

6.3 Establishing the correctness of the nondeterministicisulation

We now suppose that the machiné&, disagrees with the AM language on some input: and show how
the protocolr from Theorem 4.3 yields an AM protocol that computes the fionc/ on all inputs of a
particular length that is a function of the lengthaaf We will use the fact that problems complete for E or
EXP have instance checkers. In Figure 5 we present the AM@pbt for computing the functioryf in the
event that\/, fails to decideL.

Our main lemma of this subsection asserts that protoaadleed computeg on all inputs of a particular
length when supplied with an advice strimgon which M, disagrees with the languade In fact, we will

26

Our protocol refers to the parameters and ingredients gbtbeedure in Figure 4.

Ingredients

e An instance checkefC for f that makes queries of lengtti¢) on inputs of lengtHt.

e The commit and evaluate protocol = (7commis eval) that is guaranteed in Theorem 4.

when using the polynomigh as defined in the construction of the machitg, using the
parameterd, h, r, m, g defined there. Recall thatis the low degree extension gfat length
v(¢) and that protocok expects as advice a co-nondeterministic circuit of sizg (po).

Input: A string y of length¢. The protocol is trying to computg(y).
Auxiliary input: A string x of lengthn.
Operation

e Arthur computes the circuib, defined in Lemma 6.2.

e Arthur and Merlin play the commit phasgqmmit Using advice stringd),. and they obtain aj
output a commitmentom.

At this point Arthur and Merlin hold the auxiliary inpubm required to play the evaluatiof
protocol ey ON @ny input tg. Note that ap is the low-degree extension pfat lengthv ()
We can usereyg to evaluatef at any input of length(¢) by using the mapping from Lemmal
6.3. Furthermore, we will show that protocelconforms resiliently withy and therefore the
reader can imagine thate,4 is a fixed function when used with the auxiliary inputn.

e Arthur chooses random coin tosses for the instance chdakewhen run on input; and
sends them to Merlin.

e Merlin simulates the run of C' on y using oraclef. Merlin sends the transcript of th
simulation to Arthur and for all querieg of lengthv(¢) made tof, Arthur and Merlin play
the protocolmeys 0N the inputy’ (in parallel). Arthur verifies that the output he obtains
consistent with the answer to the query provided by Merlin/an the transcript that Merlir}
sent. Arthur also verifies that the transcript is indeeddvalhen using the supplied orac
queries and answers. Arthur outputsand halts if he detects any inconsistency.

e Arthur outputs the output ofC(y) that appears in the transcript.

3

1

n

S

Figure 5: The protocot(y) which attempts to computg(y)

prove a stronger statement in which the soundnesshaids under the weaker condition thatz L. (This
is indeed a weaker condition by Lemma 6.4). This strongeestant will be helpful later on when proving

Theorem 2.5 and 2.6.
Theorem 6.5. Protocol 7 in Figure 5 satisfies:

completenesslif the machinel/;, does not agree witl, on inputz thenr with auxiliary inputx conform
with f on inputs of lengtlf with completeness.

soundnesslf z ¢ L thent with auxiliary inputz is PSV on inputs of length

27

S

efficiency Protocolr runs in timem@(egv()=loglogm) and hasO (log v(¢) — log log m) rounds.

Proof. The three items follow directly from Theorem 4.3; the datajpbpear below:

Completeness: We have that. and L(M,) disagree orx. By Lemma 6.4 it follows that: ¢ L. We con-
clude that)/;, did acceptr and in particular we have th#, rejects all the elementsin H = RMV}, 4(p).

By Theorem 4.3 we have that the protoaolvith advice D, conforms withp, with completeness 1. There-
fore, Merlin has a strategy forcommit SO that the commitment stringgm obtained by Arthur is such that
Teval With auxiliary input com conforms withp with completenesd. Thus, by simulating the instance
checker/ C correctly, Merlin can lead Arthur to outpift(y) as he can convince Arthur that the transcript of
the instance checker is correct.

Soundness: By Lemma 6.2 ifx ¢ L then D, rejects at most a/3-fraction of its inputs. By Theorem
4.3 we have that in this caseis resilient. It follows that no matter how Merlin plays inetttommit
phasercommit the outpuicom is such thatre, With auxiliary inputcom is PSV. It follows that there exists a
functiong : {0,1}*() — {0, 1} such such that for any inpyt to 7es N0 matter how Merlin plays he cannot
lead Arthur to accept a value different thafy’) with noticeable probability. In such a case (assumirig
sufficiently amplified using Proposition 3.13) we have thatrrstantiation ofreq in the protocolr answers
incorrectly. By the properties of instance checkers we lagewhen/C'(y) is run with oracle access to
g then with high probability (over the randomness for IC sigipby Arthur) the output is eithef(y) or
L. It follows that if Merlin is able to complete the executioh7othen with high probability Arthur outputs
f(y). Thus, the probability that Merlin can make Arthur outputadue different thary (y) is smaller than
the default soundness error bf3.

Efficiency: ComputingD, can be done in time poly) = mP® by Lemma 6.2. By Theorem 4.3 the
protocol 7 runs in timeh®(@°ga7) | Recall thatd = O(1), h = m®M andr = O(v(¢)/log h). It follows
that the running time is bounded by©(logv(t)—loglog™) The instance checker runs in tirfé(t) < mO®)
and therefore the number of queries (which controls the rurobinvocations ofr¢ommit is bounded by
mCPW). Overall, the running time of is indeedmn (g v()—loglogm) a5 required. All the invocations @fya
are done in parallel and therefordhas only two additional rounds oveg,, and the total number of rounds
is O(logy r) = O(log v(¢) — loglog m). O

6.4 Putting everything together

We are finally ready to prove Theorems 2.4,2.5, and 2.6. Thgsand parameter choice for the three
theorems is very similar so we will start by describing thenowon part of the three proofs.

The setup and parameters: Let s(¢) be an integer function satisfying the requirements of Téewsr
2.4,2.5, and 2.6. LeL be a language in AM. Lef be a characteristic function of a problem in E (resp.
EXP) that has an instance checke? that makes queries of lengih{¢) = O(¢) (resp. v(£) = ¢°M)).
Note that the existence of such a functipis guaranteed by Theorem 3.6. L, be the nondeterministic
machine defined in Figure 4. We first verify that the relatiopsetween the parametets? ands(¢) are
exactly as specified in the theorems.

Recall thatM [, receives inputs of length and the description o¥/;, fixes the parameten = n¢ (where
¢ is a constant that depends only on the AM languageAlso recall that)/;, choosed as a function of

28

m. More precisely, we chooséto be the smallest integer sugty)’/(logv(f)-loglogs(£)* > 4, where the
constani’ > 0 is a parameter. Thus, we have that s(¢)©(1/(logv(O)-loglogs(£)?) a5 required (where the
constants hidden inside the iydepend only on the constants’’). Note that by Lemma 6.4 the machine
M7, runs in nondeterministic timg®(®) (resp.2fo(1)) on inputs of lengtm. Thus, our choice of parameters
is as promised in Theorems 2.4,2.5, and 2.6.

In the proofs of the three Theorems we need to show thaijjffails to decideL (where the meaning
of this statement differs in the different theorems) theardhis an AM protocol that computgsand runs in
time s(¢). Let T be the Arthur-Merlin protocol defined in Figure 5. The highdkidea is that by Theorem
6.5 we are guaranteed thaindeed computeg when it is given an auxiliary input on whichL and L (M)
disagree. The difference between the three proofs is in h@stringx is obtained. Before going into this
issue let us first observe that the running time- @ indeed smaller thas(¢) for our choice of parameters.

By Theorem 6.5 protocot runs in timem©(logv(@)—loglogm) and hag)(log v(£) — log log m) rounds.
Given an Arthur-Merlin protocol that runs in timi€ and hasR rounds it is possible to collapse it into a
two round protocol that runs in tim&°(%) [BM88]. Thus we can get a two round protocol with running
time tomOUesv(t)-loglogm)? 'Recall that in the definition af/;, we chose’ to be the smallest integer such
s(¢)¢'/(ogv(t)~loglog s(£))* > 1y Therefore we have:

o O(log v(£)—log log m)?
) < 5(0°0) (1)

mO(IOg U(Z)_IOg log m)2 S (S(E) (log v(£)—log log s(£))2

where we are using the fact th@bg v(¢) — loglog m) = O(log v(¢) — log log s(¢)) which follows because
by the definition ofm:

(logv(f) —loglogm) = (logwv(¢)—loglogs(¢)) + 2log (log v(¢) — loglog s(¢)) + O(1)
< (14 0(1))(logv(¢) —loglog s(£)) + O(1).

We observe that th&(1) in the exponent o (¢) in Equation 1 (which depends an ¢ and the hidden
constants in Lemma 6.3 and Theorem 3.6) can be made to be aitiygaonstant by choosing to be a
sufficiently small constant.

We now split the proof into the cases of the three differeebtbms. We begin with the proof of Theorem
2.4. In this case there is an external machihé@he refuter) that supplies the auxiliary input

Proof. (of Theorem 2.4) Lef? be a nondeterministic machine as in Definition 2.2. We areaqeed that
for all but finitely many input lengths and for every accepting computation paft(1™) outputs a string
x of lengthn such thatl and L(M},) disagree orx. We will show thatf has a two round Arthur-Merlin
protocol running in times(¢) that computeg on inputs of lengtt. This will prove Theorem 2.4.

Consider the following Arthur-Merlin protocol: When givénput y € {0,1}¢, Arthur and Merlin
compute an integet so that/ is the integer chosen by the nondeterministic machifyfewhen given inputs
x of lengthn. Merlin then sends a string of lengthn with an accepting computation path 8{1") that
outputsz. The two parties then run the protoeobn inputy and auxiliary input.

By the properties of the refutek we have that. and L()}) disagree onx. By Lemma 6.4 we have
thatx ¢ L. By Theorem 6.5 this gives us the completeness and soungngssrties of protocot with
auxiliary inputz. We conclude that the protocol above compuytem all but finitely many input length&

The running time of the Arthur-Merlin protocol above is domied by the running time af which is
bounded bys(¢)'/19, Thus, the entire protocol runs in time smaller th&f) as required. O

29

In the case of Theorems 2.4 and 2.5 we have additionallyZitiatin coAM. When giveny € {0,1}*
we will now rely entirely on Merlin to send a stringof lengthn that will be used as auxiliary input for the
protocolr. Unlike the case of Theorem 2.4, we do not have the refutensare that Merlin indeed sends
anx ¢ L. We will therefore ask Merlin to also prove to Arthur thatZz L — which Merlin can do in this
case becausk is in coAM.

Proof. (of Theorem 2.5) We assume thatis also incoAM. We will show that if L and L(M},) disagree
for all but finitely many input lengths then f has a two round Arthur-Merlin protocol running in tine€/’)
that computeg. This will prove Theorem 2.5.

Consider the following Arthur Merlin protocol: When givenputy < {0,1}*, Arthur and Merlin
compute an integet so that/ is the integer chosen by the nondeterministic machiheshen given inputs
x of lengthn. Merlin sends a string of lengthn (that is supposed to be a string on whictand L(M7,)
disagree). Arthur and Merlin then play the AM protocol foe ttomplement of. on the inputz (note that
such a protocol exists as we are assuming thatcoAM and we can assume without loss of generality that
it has perfect completeness). By the completeness and sesmaf this protocol at the end of this protocol
Arthur is convinced with high probability that ¢ L. At this point Arthur and Merlin play protocat on
input y using auxiliary inpute.

An honest Merlin can indeed follow the protocol describedvagand using Theorem 6.5 it follows that
Arthur will output f(y) with probability one in this case. Furthermore, no mattew ierlin plays, Arthur
will reject (with high probability) unless Merlin sends¢ L, in which case the soundness of the protocol
follows by Theorem 6.5.

The running time of this protocol is dominated by the runniimye of 7. Thus, the protocol can be
collapsed into a two round protocol that runs in tis{é) as required. O

For Theorem 2.6 we are interested in the case Miatonly fails on infinitely many input lengths. In
this case we would like the protocol fgrto succeed on infinitely many input lengthsHowever, there is
a subtle point here. In both protocols above we instructatiukrand Merlin to compute as a function
of /. Note however, that there are many lengthwhich satisfy the relationshipr'is an integer so that
¢ is the integer chosen by the nondeterministic maclifiewhen given inputse of lengthn”. We were
not concerned with this previously because all lengthgere good for our purposes. However, now only
infinitely many lengths, are good. For this approach to work we need that for any lefgtich that there
is a good lengtn that satisfies the relation above, we can actually come uUpsmith a length.

We do not know how to do this in the setup of Theorem 2.4 (i.daenvthe refuter only succeeds on
infinitely many input lengths). However, we can do it in théupeof Theorem 2.5. We will now rely on
Merlin to send such a length. The soundness of the protocol férstill follows using Theorem 6.5 as
Merlin still has to send am that is not inL. However, the completeness is no longer guaranteed on all
lengths? as it is not necessarily the case that Merlin can come up withand anz such thatl, and L(M71,)
disagree orx. The formal proof appears below:

Proof. (of Theorem 2.6) We assume théatis also incoAM. We will show that if L and L(M}) disagree
on infinitely many input lengths then f has a two round Arthur-Merlin protocol running in timé&’) such
that on infinitely many input lengths the protocol compufed his will prove Theorem 2.5. Note that there
is no guarantee that there is a gap between completenesswamthess on “incorrect” lengthis

Consider the following Arthur Merlin protocol: When givemguty < {0, 1}¢, Merlin sends an integer
n and Arthur checks thatis the integer chosen by the nondeterministic machiffewhen given inputs:
of lengthn. Merlin then sends a string of lengthn (that is supposed to be a string on whictand L (M7,)

30

disagree). From here on the proof is similar to that of Thexees; namely: Arthur and Merlin play the AM
protocol for the complement df on the inputz. By the completeness and soundness of this protocol at the
end of the protocol Arthur is convinced with high probalilihatz ¢ L. At this point Arthur and Merlin
play protocolr on inputy using advicer.

An honest Merlin can indeed follow the protocol describedwvab(on infinitely many input length§
and using Theorem 6.5 it follows that Arthur will outpfity) with probability one in this case. Furthermore,
no matter how Merlin plays Arthur will reject (with high prability) unless Merlin sends ¢ L and the
soundness of the protocol follows by Theorem 6.5. In faainsoess is guaranteed on all lengths

Again, the running time of this protocol is dominated by tbaring time ofr. Thus, the protocol can
be collapsed into a two round protocol that runs in tis\€ as required. O

7 Conclusions and open problems

In this paper we give improved uniform hardness versus ram&gs tradeoffs for Arthur-Merlin games that

come very close to the “absolute low-end”. A very naturalropeoblem is to give a tradeoff that achieves

the absolute low-end, namely, one that achieves s(¢)®*(!) in Theorems 2.4,2.5, and 2.6 rather than the
; ; _ @(1/(logf—loglogs(£))2) _ @((1/ logZ)Q)

current bound which gives = s(¢) for E andn = s(/) for EXP. Our

current results are suboptimal because of the followingdesaccumulated in the recursion:

¢ In the recursive AM protocol that is constructed in the proof heorem 4.3 every instantiation of the
protocol at one level triggers pdly:) instantiations at the next level. As there @rélog ¢ — loglog s(¥))
levels we get that the running time of the protocahi§ (g {-loglog s(5)) rather than polym).

e Each recursive call also adds an additional round to theutdttherlin protocol. At the end we also
need to pay a penalty in the running time when collapsing dliads to give a standard two round
Arthur-Merlin protocol.

Another important open problem is to improve Theorem 2.hadthe result holds for all inputs, rather
than only inputs that are feasibly generated. FollowingTS&3] we already achieve such a clean statement
for AM N coAM. We remark that this can also be done for MA. As explainefl38TSO03], achieving this
goal for AM, for the absolute low-end, will give an uncondital (although weak) derandomization of AM.

8 Acknowledgements

We are grateful to Amnon Ta-Shma for helpful conversatiamsl the anonymous referees for their useful
comments.

References

[ACR96] A. E. Andreev, A. E. F. Clementi, and J. D. P. Rolim.ttiig sets derandomize BPP. Au-
tomata, Languages and Programming, 23rd Internationall@plium pages 357—368, 1996.

[ACRT99] A.E.Andreev, A. E. F. Clementi, J. D. P. Rolim, andTltevisan. Weak random sources, hitting
sets, and BPP simulationSIAM Journal on Computing8(6):2103-2116, 1999.

31

[AKO1]

[BF90]

[BFLO1]

[BFLS91]

[BFNW93]

[BK95]

[BM84]

[BM88]

[FGM+89]

[FS95]

[Gol98]

[GS86]

[GSTSO03]

[IKW02]

[Imp95]

[ISWO06]

V. Arvind and J. Kdbler. On pseudorandomness anduese-bounded measuréheor. Com-
put. Scj 255(1-2):205-221, 2001.

D. Beaver and J. Feigenbaum. Hiding instances inioraltle queries. I7th Annual Sympo-
sium on Theoretical Aspects of Computer Sciemokime 415 oL NCS pages 37—-48. Springer,
1990.

L. Babai, L. Fortnow, and C. Lund. Nondeterminiséigponential time has two-prover interac-
tive protocols.Computational Complexityi(1):3—40, 1991.

L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. €iiking computations in polylogarithmic
time. In Proceedings of the 23rd Annual ACM Symposium on Theory ofpGlimg, pages
21-31, 1991.

L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BRas subexponential time simulations
unless EXPTIME has publishable proofSomputational Complexifyd(4):307—318, 1993.

M. Blum and S. Kannan. Designing programs that chdwirtwork. Journal of the ACM
42(1):269-291, 1995.

M. Blum and S. Micali. How to generate cryptograpHigatrong sequences of pseudo-random
bits. SIAM Journal on Computindl3(4):850-864, November 1984.

L. Babai and S. Moran. Arthur-merlin games: A randaed proof system, and a hierarchy of
complexity classes). Comput. Syst. ScB6(2):254-276, 1988.

M. Furer, O. Goldriech, Y. Mansour, M. Sipser, and S. ZeclOn completeness and soundness
in interactive proof system&. Micali, editor, Advances in Computing Research 5: Ranmms
and Computationpages 429-442, 1989.

K. Friedl and M. Sudan. Some improvements to totateedgests. INSTCS pages 190-198,
1995.

O. Goldreich.Modern Cryptography, Probabilistic Proofs and Pseudoramhess Springer-
Verlag, Algorithms and Combinatorics, 1998.

S. Goldwasser and M. Sipser. Private coins versulicpedins in interactive proof systems. In
Proceedings of the 18th Annual ACM Symposium on Theory opGltiomg, pages 59-68, 1986.

D. Gutfreund, R. Shaltiel, and A. Ta-Shma. Unifdrandness versus randomness tradeoffs for
Arthur-Merlin games Computational Complexityl 2(3-4):85-130, 2003.

R. Impagliazzo, V. Kabanets, and A. Wigderson. laissh of an easy witness: exponential time
vs. probabilistic polynomial timel. Comput. Syst. S®5(4):672—-694, 2002.

R. Impagliazzo. Hard-core distributions for sonfawhard problems. 186th Annual Sympo-
sium on Foundations of Computer Sciengages 538-545, 1995.

R. Impagliazzo, R. Shaltiel, and A. Wigderson. Reidg the seed length in the nisan-wigderson
generatorCOMBINAT: Combinatorica26, 2006.

32

[IW97]

[IW98]

[Kab01]

[KI04]

[KVMO2]

[LFKN92]

[Lip89]

[Lu04]

[MVO5]

[NW94]

[Sha92]
[STVO1]

[SUO5a]

[SUO5b]

[TSZSO06]

[TV02]

[Uma03]

R. Impagliazzo and A. Wigdersor? = BPP if E requires exponential circuits: Derandomiz-
ing the XOR lemma. IfProceedings of the Twenty-Ninth Annual ACM Symposium oaryhe
of Computing pages 220-229, 1997.

R. Impagliazzo and A. Wigderson. Randomness vs. tibe-randomization under a uniform
assumption. 1189th Annual Symposium on Foundations of Computer Scigacges 734—743,
1998.

V. Kabanets. Easiness assumptions and hardnessTeading time for zero errot. Comput.
Syst. SGi63(2):236-252, 2001.

V. Kabanets and R. Impagliazzo. Derandomizing polyrial identity tests means proving cir-
cuit lower boundsComputational Complexifyi3(1-2):1-46, 2004.

A. R. Klivans and D. van Melkebeek. Graph nonisonugm has subexponential size proofs
unless the polynomial-time hierarchy collapseSIAM Journal on Computing31(5):1501—
1526, 2002.

C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Adfpraic methods for interactive proof
systems.J. ACM 39(4):859-868, 1992.

R. J. Lipton. Efficient checking of computations. @th Annual Symposium on Theoretical
Aspects of Computer Sciend®89.

C.-J. Lu. Encryption against storage-bounded ashmées from on-line strong extractors.
Cryptology 17(1):27-42, 2004.

P. Bro Miltersen and N. V. Vinodchandran. Derandomigarthur-merlin games using hitting
sets.Computational Complexify14(3):256—-279, 2005.

N. Nisan and A. Wigderson. Hardness vs. randomneksurnal of Computer and System
Sciences49(2):149-167, October 1994.

A. Shamir. IP = PSPACH. ACM 39(4):869-877, 1992.

M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandenergtors without the XOR lemma.
Journal of Computer and System Sciené&s236—266, 2001.

R. Shaltiel and C. Umans. Pseudorandomness foodpmate counting and sampling. IBEE
Conference on Computational Complexiages 212—-226, 2005.

R. Shaltiel and C. Umans. Simple extractors for ah-entropies and a new pseudorandom
generatorJ. ACM 52(2):172-216, 2005.

A. Ta-Shma, D. Zuckerman, and S. Safra. Extradtora reed-muller codesl. Comput. Syst.
Sci, 72(5):786—-812, 2006.

L. Trevisan and S. Vadhan. Pseudorandomness andga«ase complexity via uniform re-
ductions. InProceedings of the 17th Annual Conference on Computati®oaiplexity 2002.

C. Umans. Pseudo-random generators for all hasgsegournal of Computer and System
Sciences67:419-440, 2003.

33

[Uma05] C.Umans. Reconstructive dispersers and hittihgesgerators. IMPPROX-RANDOWMpages
460-471, 2005.

[Vad04] S. P. Vadhan. Constructing locally computable aotors and cryptosystems in the bounded-
storage modelJ. Cryptology 17(1):43—-77, 2004.

[Yao82] A. C. Yao. Theory and applications of trapdoor fuoies. InProceedings of the 23th Annual
Symposium on Foundations of Computer Scigpages 80-91, 1982.

34

ECCC ISSN 1433-809
http://eccc.hpi-web.de/

