
Reductions to Graph Isomorphism

Jacobo Torán

Institut für Theoretische Informatik
Universität Ulm

D-89069 Ulm, Germany
jacobo.toran@uni-ulm.de

August 1, 2007

Keywords: Computational complexity, reducibilities, graph isomorphism.

Abstract

We show that several reducibility notions coincide when applied to
the Graph Isomorphism (GI) problem. In particular we show that if a
set is many-one logspace reducible to GI, then it is in fact many-one
AC

0 reducible to GI. For the case of Turing reducibilities we show that
for any k ≥ 0 an NC

k+1 reduction to GI can be transformed into an
AC

k reduction to the same problem.

1 Introduction

The Graph Isomorphism problem (GI) is one of the few problems in NP that
is neither known to be complete for this class nor known to be solvable in
polynomial time. Because of its special nature GI has been intensively stud-
ied and research on this problem has produced important results in several
areas of complexity theory going beyond the GI problem itself. Examples
for this are Arthur-Merlin games, interactive proof systems, descriptive com-
plexity or quantum algorithms. The importance of the problem is such, that
some authors have used the term GI-complete (see e.g. [5]) for the problems
that are equivalent to GI under polynomial time reductions, as if GI were a
complexity class. Often computational problems like for example SAT, the

1

Electronic Colloquium on Computational Complexity, Report No. 71 (2007)

ISSN 1433-8092

set of satisfiable Boolean formulas, or the Graph Reachability problem have
been identified with complexity classes. The difference here is that there in
no machine model known to characterize the complexity of GI.

In this paper we study several reducibilities to GI proving gap results
in the complexity of the models performing the reduction. The results we
obtain basically show that the GI problem is very robust under reductions
and that in some sense it behaves like a complexity class. We prove that
if a set A is reducible to GI under several kinds of reducibility, then the
complexity of the reduction can be reduced, and A is in fact AC0 reducible
to GI.

The motivation for studying the complexity of the reductions to GI is
twofold. On the one hand, only relatively weak hardness results for GI are
known. The strongest known result [10] is that GI is many-one AC

0 hard for
DET, the class of problems reducible to the Determinant [4], a class included
within NC2. Several attempts to extend these results to other complexity
classes like P, or even NC

2 or AC
1, have not been successful, even under the

consideration of reductions that can use more resources than AC
0. The study

of reductions to GI give some insight on why it is difficult to improve the
known hardness results.

On the other hand our results help to understand the nature of several
reducibility notions like for example the AC

k or NC
k+1 reducibilities. These

reducibilities are quite well understood and it is known that both notions
coincide when reducing to complexity classes like the NC and AC hierarchies
[11], L and NL [2], or NP [8]. We show here that they coincide also when
reducing to GI1. This is somehow surprising since GI is not a machine based
complexity class, and intuitively points to the following property of the re-
ducibilities: If the oracle set is strong enough to encode a logarithmic space
computation, then AC

k and NC
k+1 reducibilities to this set coincide.

Our results are based on a fact that is easy to state: Imagine we have
to decide whether two graphs are isomorphic, but the adjacency matrices of
these graphs are given in such a way that the 1’s and 0’s in the matrix are
given as pairs of isomorphic and non-isomorphic graphs2. How hard is it to
decide the isomorphism question then? We show in Lemma 3.2 that this

1Ogihara [8] even shows that both reducibilities coincide when performed to a com-
plexity class that is closed under non-deterministic conjunctive truth-table reducibility,
but it is not hard to see that the closure of GI under such reducibility is NP and therefore
Ogihara’s result cannot be applied here.

2A more formal version of the statement is given in Lemma 3.2.

2

problem is not harder that GI itself. This innocent looking fact has many
consequences roughly implying that for several reducibilities to GI, part of the
complexity of the reduction can be transferred to the isomorphism problem,
thus simplifying the reduction. In Section 3 we show that sets many-one NC1

or logarithmic space reducible to GI are in fact many-one AC
0 reducible to

GI. This result can be strengthen to reductions that as strong as the hardest
complexity class that can be reduced to GI. Observe that an even stronger
gap result is known to hold for SAT. SAT is known to be AC

0 hard for NP
(and even NC

0 hard [1]). Since every problem many-one polynomial time
reducible to SAT is in NP, it is therefore also many-one AC

0 reducible to
SAT. Again, the difference with our result is that we cannot build our proof
on a machine based characterization of the complexity class.

In Section 4 we study Turing reducibilities to GI. We show that the classes
FL(GI) and AC

0(GI) coincide. Using this fact and adapting a result from [2]
on AC and NC reductions to L to the case of GI we prove that for every k ≥ 0,
AC

k(GI) = NC
0(GI).

We conclude with a section of conclusions and open problems.

2 Preliminaries

We assume familiarity with basic notions of complexity theory such as can
be found in the standard textbooks in the area.

The elements of the sets we use are encoded as strings over the binary
alphabet {0, 1}. A Boolean circuit is an acyclic directed graph with nodes or
gates that can either be inputs x1, . . . , xn, constants 0 or 1 or are labeled with
the AND, OR or NOT functions. Some of the nodes are specified as output
nodes y1, . . . , ym. A circuit family {αn} computes a function f in the usual
way. The size of a circuit is the number of nodes it contains. The depth of a
circuit in the length of its longest path from an input node to an output node.
The NC and AC hierarchies contain all those functions that are computable
by bounded fan-in (resp. unbounded fan-in) circuits of polynomial size and
polylogarithmic depth satisfying a certain uniformity condition. Throughout
this paper we consider all circuits to be DLOGTIME uniform [9, 3]. Each
gate i of a circuit is described by a tuple 〈i, t, p1, p2, ..., pl〉 specifying the
name i of the gate, its type t and the name pj of its j-th input gate. For
k ≥ 0 we denote by NC

k (resp. AC
k) the class of functions computable by

uniform bounded fan-in (resp. unbounded fan-in) circuits of polynomial size

3

and depth O(logk n).
L and FL are the classes of set and functions computable by logarithmic

space bounded Turing machines.
The known relationships among the considered function classes are:

AC0 ⊆ NC1 ⊆ FL⊆ AC1 ⊆ . . . ⊆ NCk ⊆ ACk ⊆ NCk+1 . . .

2.1 Reducibilities

We deal with many-one and Turing reducibilities. For a function class F and
two sets A and B, we say that A is many-one F reducible to B (A ≤F

m B)
if there is a total function f ∈ F such that for every x ∈ {0, 1}∗, x ∈ A ⇔
f(x) ∈ B.

In order to perform Turing reductions, the NC and AC circuits can have
access to oracle gates which compute the value of a functional oracle f . For
AC circuits, oracle nodes have depth 1. For NC circuits, a oracle gate with m

inputs contributes log m to the depth of the circuit. This is the standard way
of counting the depth of oracle nodes [11]. For a complexity class of functions
F , we denote by NCk(F) and ACk(F) the class of functions computable by
NC rep. AC circuits of depth O(logk n) with oracle access to a function in
F . A Turing reduction to an oracle set A can be seen as a reduction to the
characteristic function of A.

For the case of FL we will only consider here sets as oracles. FL(A) is the
class of functions that can be computed in logarithmic space making queries
to an oracle set A. A closer description of this model is given when it is
needed in the proof of Theorem 4.2.

2.2 Graph Isomorphism

An isomorphism between two graphs G and H is a bijection between their
sets of vertices which preserves the edges. G ∼= H denotes that G and H are
isomorphic. GI is the problem

GI = {(G, H) | G and H are isomorphic graphs}

A central role in some of the proofs will be played by the set of graph
pairs ((G, H), (I, J)) with exactly one of the pairs consisting of isomorphic
graphs:

PGI = {((G, H), (I, J))| G ' H if and only if I 6' J}}.

4

It is not hard to see that GI is many-one reducible to PGI. But we need
a stronger kind of reducibility:

Definition 2.1 Let F be a class of functions. We say that a set A is strong
many-one F reducible to PGI if there is a total function f ∈ F that for every
x ∈ {0, 1}∗ f(x) = (G, H), (I, J) ∈ PGI and x ∈ A ⇔ G ∼= H .

It is known that every set in NC1, L, NL and in several other complexity
classes is strong many-one AC0 reducible to PGI [6, 10].

In some of the proofs we will talk about graphs with colored nodes. A
color is just a graph gadget or marking that forces the vertices of a color to
be mapped to vertices of the same color in every possible isomorphism (see
[7]).

For the proof of Lemma 3.2 the following result describing a parity check
construction is needed. This result appears implicitly in [10].

Lemma 2.2 Let G = (VG, EG) and H = (VH , EH) be two isomorphic graphs
containing the two sequences of node pairs {u1

G0
, u1

G1
}, {u2

G0
, u2

G1
}, . . . , {um

G0
, um

G1
} ⊆

VG, and {u1
H0

, u1
H1
}, {u2

H0
, u2

H1
}, . . . , {um

H0
, um

H1
} ⊆ VH so that any isomor-

phism between G and H maps pairs in the sequences to the corresponding
pairs, i.e. for all i, 1 ≤ i ≤ m, {ui

G0
, ui

G1
} is mapped to {ui

H0
, ui

H1
}. Then

from G and H we can construct within AC0 two new graphs G′, H ′ that are
isomorphic if and only if the set of “0 nodes” ui

G0
in G being mapped to “0

nodes” ui
H0

in H is even.

3 Many-one reducibility

Definition 3.1 Let A = (V, E) be an undirected graph with n vertices. A
PGI representation of A is sequence of

(

n

2

)

tuples of PGI graphs (given by
their adjacency matrices) (GA

i,j, H
A
i,j), (I

A
i,j, J

A
i,j), 1 ≤ i < j ≤ n, such that for

every i, j:

(i, j) ∈ E ⇒ GA
i,j

∼= HA
i,j and IA

i,j 6
∼= JA

i,j,

(i, j) 6∈ E ⇒ GA
i,j 6

∼= HA
i,j and IA

i,j
∼= JA

i,j.

Our results are based on the following lemma. Intuitively this result can
be understood as a version of the fact NP(NP ∩ coNP) = NP scaled down
from NP to Graph Isomorphism.

5

Lemma 3.2 Consider two undirected graphs A and B with n vertices each,
given in PGI representation. There is an AC0 circuit that on input these
representations produces the adjacency matrices of two graphs A′, B′ such
that A ∼= B if and only if A′ ∼= B′.

Proof: The idea of the proof is to consider as a basis for A′ and B′ two
cliques KA

n and KB
n with n vertices, and substitute each edge (i, j) in the

KA
n -clique by a graph gadget EA

i,j and every edge (k, l)in the KB
n -clique by a

gadget EB
k,l so that EA

i,j
∼= EB

k,l if and only if (GA
i,j

∼= HA
i,j and GB

k,l
∼= HB

k,l) or
(IA

i,j
∼= JA

i,j and IB
k,l

∼= JB
k,l). In other words, EA

i,j and EB
k,l are isomorphic if

and only if the edge (i, j) exists in A and edge (k, l) exists in B or both edges
do not exist. An isomorphism between A′ and B′ encodes then a mapping
from the vertices of A to the vertices of B (the mapping restricted to the
clique nodes) that guarantees that edges in A are being mapped to edges in
B and non-edges are being mapped to non-edges. This is an isomorphism
between A and B.

Let us define the graph gadgets. For every pair of indices a, b, 1 ≤ a < b ≤
n consider the component CA

a,b containing the four graphs GA
a,b, H

A
a,b, I

A
a,b, J

A
a,bs

connected in a ring as in Fig. 1. There are six new vertices u0,u1, w, x, y and
z in the component. A connection in the figure between a graph and one of
the new vertices means that there is an edge in CA

a,b between every vertex in
the graph and the new vertex.

GA
a,b HA

a,b

IA
a,b JA

a,b

�

��

���

u0 u1w

x y

z

HA
a,b GA

a,b

IA
a,b JA

a,b

�

��

	
�

u0 u1w

x y

z

Figure 1: The components CA
a,b and CA

a,b.

6

We define also the twisted component CA
a,b in the same way but inter-

changing the positions of the graphs GA
a,b and HA

a,b. The components CB
a,b

are defined in exactly the same way but using the graphs with superscript
B. Observe that since we are dealing with PGI graphs, for every a, b, Ca,b

is isomorphic to Ca,b (in both cases A and B). Such an isomorphism would
map vertex u0 in Ca,b either to u0 or to u1 in Ca,b depending on whether
Ga,b

∼= Ha,b or Ia,b
∼= Ja,b), exactly one of the two cases is always true.

We are now ready to define the gadgets EA
i,j and EB

i,j. Consider i, j with
1 ≤ i < j ≤ n. (For the case i > j, Ei,j is equal to Ej,i for both cases A and
B). EA

i,j consists basically of the sequence of components

CA
1,2, C

A
1,3, . . . , C

A
i,j, . . . , C

A
n−1,n, C

B
1,2, . . . , C

B
n−1,n.

This is the sequences of all the A components followed by all the B compo-
nents but with the twisted CA

i,j component. The components are connected
by merging the z vertex of one component and the w vertex of the next
component in the sequence. This means that the graph EA

i,j has just one
connected component. The gadget EB

i,j is defined in the same way, having all
the A components followed by the B components but including the twisted
component CB

i,j in the sequence instead of CA
i,j.

Consider now two gadgets EA
i,j and EB

k,l and let us observe that they are
isomorphic. An isomorphism between both graphs must map each component
in the EA graph to the same component in the EB graph. All components
are identical except for CA

i,j, twisted in the EA graph and straight in the EB

graph, and CB
k,l, straight in the EA graph and twisted in the EB graph. We

have mentioned that every component is isomorphic to its twisted version and
therefore EA

i,j and EB
k,l are always isomorphic. But the type of isomorphism

can tell us whether GA
i,j

∼= HA
i,j and whether GB

k,l
∼= HB

k,l. In case GA
i,j

∼= HA
i,j

the vertex u0 in CA
i,j is mapped to u0 in CA

i,j and otherwise this vertex is

mapped to u1. Analogously, if GB
k,l

∼= HB
k,l then vertex u0 in CB

k,l is mapped

to u0 in CB
k,l and otherwise this vertex is mapped to u1. Let s be the number

of u0 vertices in EA
i,j being mapped to u1 vertices in EB

k,l. s is either

s =







0 if GA
i,j

∼= HA
i,jand GB

k,l
∼= HB

k,l

1 if GA
i,j

∼= HA
i,j ⊕ GB

k,l
∼= HB

k,l

2 if GA
i,j 6

∼= HA
i,j and GB

k,l 6
∼= HB

k,l

This means that the number is even if and only the edges (i, j) in A and
(k, l) in B both exist or both do not exist. Since this is the condition we

7

need in order to allow an isomorphism between EA
i,j and EB

k,l we complete
the gadget connecting all the u0 and u1 vertices in EA

i,j with a parity check
construction as in Lemma 2.2 and doing the same thing with the u0 and
u1 vertices in EB

k,l. Finally we mark with a new color the 0-vertices in the
output part of the parity constructions of both graphs. This implies that an
isomorphism between gadgets EA

i,j and EB
k,l exists if an only if s is even.

Graphs A′ results from considering the n-clique Kn and substituting every
edge (i, j) by EA

i,j. Graph B′ is obtained in the same way but substituting
edge (i, j) by EB

i,j . If every graph in the input tuples (Gi,j , Hi,j), (Ii,j, Ji,j)
has at most m vertices, each gadget Ei,j has O(mn2) vertices and therefore
the size of A′ and B′ is bounded by O(mn4) which is polynomial in the input
size. Moreover the construction of A′ and B′ is completely local and can be
performed by an AC

0 circuit. �

This result can be used to turn part of the complexity of a reduction to
GI to the isomorphism problem itself.

Theorem 3.3 Let L be a set many-one reducible to GI via a function f :
{0, 1}∗ → {0, 1}∗ such that the set

Bitf = {〈x, i, b〉 |x ∈ {0, 1}∗, b ∈ {0, 1} and the i-th bit of f(x) is b}

is strongly many-one AC0 reducible to PGI. Then L is many-one AC0 re-
ducible to GI.

Proof: If L is many-one reducible to GI then we can consider that for every x

f(x) ∈ {0, 1}∗ is a string representing the adjacency matrices of two graphs A

and B, that are isomorphic if and only if x ∈ L. Each bit of f(x) corresponds
to one position in one of the adjacency matrices and it is 1 or 0 depending on
whether the corresponding edge exists or not. Since the set Bitf is strongly
many-one AC

0 reducible to PGI, there is an AC
0 circuit that produces for

each bit of the adjacency matrices two pairs of PGI graphs (G, H), (I, J)
with G ∼= H if the bit is 1 and I ∼= J if it is 0. This is exactly a PGI
representation of A and B and by Lemma 3.2 there is an AC0 circuit that
on input this representation produces an adjacency matrix representation of
two new graphs A′, B′ with A ∼= B iff A′ ∼= B′. Putting together the strong
many-one reduction from Bitf to PGI and the circuit constructing A′ and B′′

from the PGI representation of A and B, we have an AC0 circuit many-one
reducing L to GI. �

8

This result has several consequences. Basically, if we know that GI is AC0

hard for a complexity class, then a reduction to GI that uses the resources
of this class can be transformed into an AC0 reduction.

Corollary 3.4 For any set A, if A is many-one logarithmic space reducible
to GI then A is many-one AC0 reducible to GI.

Proof: If A is many-one logarithmic space reducible to GI via a function f ,
then the set Bitf belongs to L. The result follows from Theorem 3.3 since it
is known that every set in L is strongly many-one reducible to PGI [6, 10].
�

Wider gaps in the complexity of the reductions to GI are possible since
PGI is known to be hard for complexity classes above L [10]. Although we do
not know whether GI is hard for P, the following result relates this question
with the equivalence of the closure of GI under many-one reducibilities of
different strengths.

Corollary 3.5 The following statements are equivalent

i) GI is hard for P under logspace many-one reductions.

ii) the many-one AC0 and polynomial time closures of GI coincide.

Proof: We show that the first statement implies the second. Let L be a set
many-one reducible to GI via a function f computable in polynomial time.
The sets

Bit0

f = {〈x, i〉 |x ∈ {0, 1}∗, and the i-th bit of f(x) is 0}

and Bit1
f defined in a similar way are both in P. PGI is strongly many-one

AC0 hard for logarithmic space [10] and therefore, if GI is hard for P under
logspace many-one reductions, using Corollary 3.4, GI would be also hard
for P under AC0 reductions. Because of this, both sets Bit0

f and Bit1
f are

many-one AC
0 reducible to GI. Let h0 and h1 be the functions performing

these reductions. Then, for every x ∈ {0, 1}∗, i ∈ {1, . . . , |x|} and b ∈ {0, 1},
(hb(〈x, i〉), hb(〈x, i〉)) are two pairs of PGI graphs and define a strong many-
one AC

0 reduction from the set Bitf to PGI. Now using Theorem 3.3 we
conclude that L is in fact many-one AC0 reducible to GI.

9

For the other direction, let L be a set in P. L is trivially many-one
polynomial time reducible to GI. Since we we are supposing that the many-
one polynomial time and AC0 closures of GI coincide, L is many-one AC0

reducible to GI and therefore also reducible in logarithmic space to GI. �

Observe that logarithmic space reducibility in the first statement is not
really important for the proof of the result. The result would hold also for
any reducibility computed by a class of functions with bit sets Bitf strong
many-one AC

0 reducible to PGI.

4 Turing reducibility

Álvarez, Balcázar and Jenner [2] using a functional non-adaptive reduction
as an intermediate step, prove the following result:

Theorem 4.1 [2] For every set A and every k ≥ 0, ACk(FL(A)) = NC
k+1(FL(A)).

They prove this result for the oracle function class FL but it can be
observed that it relativizes to FL(A) for any set A queried by the function
in FL. In order to apply this result directly to GI (without the FL level) we
need the following theorem:

Theorem 4.2 FL(GI) = AC
0(GI).

Proof: Let f be a function in FL(GI) and M be a logarithmic space bounded
Turing machine computing f . A configuration of M contains a state, a po-
sition in the input tape and the contents of the work tape. Some of the
configurations are query configurations. These contain states of a special
kind. If M reaches a query configuration then the machine writes in the
following steps a query to GI in the oracle tape and when M enters a special
query state the oracle tape is deleted, one bit with the answer to the query
appears in it and the computation continues. Observe that the length of
the query is not affected by the logarithmic space bound of the work tape.
However, the query configuration (of logarithmic size) generating the query,
defines the query completely. With this configuration the query can be com-
puted in logarithmic space. Both the number of possible query configurations
and the length of f(x) are polynomially bounded in the length of the input
x. Consider the set

A = {〈x, K〉 | K is a possible query configuration on input x and

the query produced by this configuration belongs to GI}.

10

A is many-one logarithmic space reducible to GI and as a consequence of
Theorem 3.4 also many-one AC0 reducible to GI. Consider new machine M ′

that on input a string x and a set of of possible query configurations and
answer bits 〈x, K1, a1, K2, a2, . . . , Km, am〉 simulates M on input x and each
time M enters a query configuration K, M ′ looks whether K is part of its
input. If this is not the case then it produces some special output sequence
and halts. Otherwise M ′ just continues its computation taking the bit next
to K in its input as the answer to the corresponding query. Clearly M ′ is
logarithmic space bounded and computes some function g ∈ FL. If the set
of queries is complete and the set of answers is correct then M ′ computes
f . The set Bitg is then in L and therefore many-one AC0 reducible to GI [6].
We want to show that f can be computed in AC0(GI). In order to do so we
just have to put together the AC

0 circuits we already have. On input x the
circuit first produces all polynomially many possible query configurations of
M(x). Then using the reduction from A to GI, for every such configuration
the circuit produces a pair of graphs G, H and queries to the oracle set GI
whether they are isomorphic. With the answers the circuit constructs a list
of queries and correct answers x, K1, a1, K2, a2, . . . , Km, am. Finally using
the AC0 circuit reducing Bitg to GI, for each bit of f(x) a pair of graphs is
constructed. A second round of queries to GI gives the value of f(x) in the
form of a sequence of bits as output of the circuit.

The constructed circuit has constant depth, polynomial size and has two
levels of queries to GI.

�

We can now prove the main result of this section:

Theorem 4.3 For any k ≥ 0, AC
k(GI) = NC

k+1(GI).

Proof: The inclusion ACk(GI)⊆ NCk+1(GI) is straightforward. For the
other inclusion we just have to put together the previous two results. We
have NCk+1(GI) ⊆ NCk+1(FL(GI)) and by Theorem 4.1 this is equal to
ACk(FL(GI)). Using Theorem 4.2 this class is equal to ACk(AC0(GI)). Since
every query to AC0(GI) can be simulated by the ACk circuit making the
queries directly to GI, just by adding a constant number of levels to the
circuit, we have AC

k(AC
0(GI))=AC

k(GI).
�

We observe that the proofs of Theorems 4.2 and 4.3 can be extended to
any complexity class in the oracle that is many one AC

0 hard for L, and for
which the many-one AC

0 and logarithmic space closures coincide.

11

5 Conclusions and open problems

We have proven that several strengths of many-one and Turing reducibilities
to GI coincide thus showing that the isomorphism problem is very robust
and behaves in some sense as a machine based complexity class. Besides the
obvious questions on the complexity of GI there are several problems related
to the complexity of reductions that are worth considering:

We know that GI is not hard for NP unless the polynomial time hierarchy
collapses. Can one show some relation between the difficulty of showing
hardness of GI for a class like P and the hardness for NP? (Something like if
GI is P-hard then GI would be NP-hard.)

In this paper we have not talked about randomized reductions to GI. It
has been observed in [10] that the Matching problem is randomly reducible to
GI. Can also this reduction be simplified making it a deterministic reduction
to GI?

We have mentioned that Lemma 3.2 can be considered as a version of
the result NP(NP ∩ coNP) = NP scaled down to GI. If the input of the
problem given in the lemma instead of being encoded as PGI graphs were
just normal graph pairs, isomorphic when encoding a 1 and non-isomorphic
when encoding a 0, we would have something like a GI version of the second
level of the polynomial time hierarchy. Can one prove a collapse of this
hierarchy?

References

[1] M. Agrawal, E. Allender and S. Rudich, Reductions in Circuit Com-
plexity: An Isomorphism Theorem and a Gap Theorem. J. Comp. Syst. Sci.

57, 127–143, 1998.

[2] C. Álvarez, J. L. Balcázar and B. Jenner, Adaptive Logspace Re-
ducibilities and Parallel Time. Math. Systems Theory 28, 117–140, 1995.

[3] D. A. M. Barrington, N. Immerman, and H. Straubing, On uniformity
within NC1. Journal of Computer and System Sciences, 41:274–306, 1990.

[4] S. A. Cook, A taxonomy of problems with fast parallel algorithms. Infor-

mation and Control, 64(1):2–22, 1985.

[5] C. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism,

Springer LNCS 136, 1982.

12

[6] B. Jenner, J. Köbler, P.McKenzie and J. Torán, Completeness
results for graph isomorphism. Journal of Computer and System Sciences,
66: 549–566, 2003.

[7] J. Köbler, U. Schöning, and J. Torán, Graph Isomorphism: its Struc-

tural Complexity, Birkhäuser, Boston, 1992.

[8] M. Ogihara, Equivalence of NCk and ACk−1 closures of NP and other
classes, Information and Computation, 120,1, 1995, 55–58.

[9] W. Ruzzo, On uniform circuit complexity. Journal of Computer and System

Sciences, 22:365–383, 1981.

[10] J. Torán, On the hardness of Graph Isomorphism. SIAM Journal on

Computing, 33, 5: 1093–1108, 2004.

[11] C.B. Wilson, Decomposing NC and AC. SIAM Journal on Computing,
19, 2: 384–396, 1990.

13

http://eccc.hpi-web.de/

ECCC
 ISSN 1433-8092

