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Abstract. We solve an open problem of Kushilevitz and Nisan (1997) in communication

complexity. Let R
pub
ε ( f ) and D

µ
ε ( f ) denote the randomized and µ-distributional communi-

cation complexities of f , respectively (ε a small constant). Yao’s well-known Minimax

Principle states that

R
pub
ε ( f ) = max

µ

{

D
µ
ε ( f )

}

.

Kushilevitz and Nisan (1997) ask whether this equality is approximately preserved if the

maximization is taken over product distributions only, rather than all distributions µ:

R
pub
ε ( f )

?
=

(

max
µ product

{

D
µ
ε ( f )

}

)O(1)

.

We refute this hypothesis in the strongest terms. Namely, we show the existence of a

function f : {−1,+1}n × {−1,+1}n → {−1,+1} for which maxµ product

{

D
µ
ε ( f )

}

= O(1) but

R
pub

1/3
( f ) = Ω(n). Furthermore, f has discrepancy O(2−n(1/2−ε)), which is almost the smallest

possible. In particular, f is a hardest function for every major model of communication.

Yet, the distributional method restricted to product distributions can certify at best an Ω(1)

communication lower bound for f .

Our result also gives an essentially optimal separation, Ω(1) vs. O(2−n(1/2−ε)), between

discrepancy under product and nonproduct distributions, improving on the author’s re-

cent result (Sherstov 2007). Finally, we give an essentially optimal separation, O(1) vs.

Ω(N1−ε), between the statistical-query complexity and sign rank of an N × N sign matrix.

This settles a open question recently posed by the author (Sherstov 2007) and completes

the taxonomy of the main complexity measures of sign matrices.

∗This paper has previously appeared as Technical Report TR-07-26 of The University of Texas at

Austin, Department of Computer Sciences, 15 May 2007.



1 Introduction

Among the primary models of communication complexity is the randomized

model [10, Chapter 3]. Let X and Y be finite sets. Two parties, Alice and Bob,

have access to disjoint parts x ∈ X and y ∈ Y of the input to a fixed function

f : X × Y → {−1,+1} and must therefore communicate to evaluate f (x, y). They

can use an unlimited number of shared random bits. On every input, the players

must compute the correct value with probability at least 2/3. The cost of a protocol

is number of bits exchanged in the worst case. The randomized complexity R
pub

1/3
( f )

of a function f is the cost of the best protocol for f .

A closely related notion is that of distributional complexity. Let µ be a proba-

bility distribution on X × Y. The µ-distributional communication complexity of f ,

denoted D
µ

1/3
( f ), is the cost of the optimal deterministic protocol for f with error

at most 1/3 with respect to µ. Using the Minimax Theorem for zero-sum games,

Yao [16] gave a simple proof that

R
pub

1/3
( f ) = max

µ

{

D
µ

1/3
( f )

}

,

where the constant 1/3 can be replaced by any other. Yao’s equation has been the

basis for essentially all lower bounds on randomized communication complexity:

one defines a probability distribution µ on X × Y and argues that the cost D
µ

1/3
( f )

of the best deterministic protocol with error at most 1/3 over µ must be high.

The main design question, then, is what distribution µ to consider. While prod-

uct distributions µ(x, y) = µX(x)µY (y) are easier to analyze, they do not always

yield the optimal lower bounds. A standard example of this phenomenon is the

set disjointness function DISJ on n-bit strings: every product distribution µ has

D
µ

1/3
(DISJ) = O(

√
n log n) (see [10]), although Rpub(DISJ) = Θ(n) (see [6, 14]).

Let

D×1/3( f )
def
= max
µ product

{

D
µ

1/3
( f )

}

.

The above considerations motivated Kushilevitz and Nisan (1997) to pose the fol-

lowing problem:

Research Problem (Kushilevitz and Nisan [10, p. 37]). Can restricting the distri-

bution µ to be a product distribution affect the resulting lower bound on Rpub( f ) by

more than a polynomial factor? Formally, is R
pub

1/3
( f ) = (D×

1/3
( f ))O(1)?

Since its formulation, this problem has seen little progress. Kremer, Nisan,

and Ron [9] studied its restriction to one-way protocols and obtained a separation

of O(1) vs. Ω(n) for the “greater than” function GT. Unfortunately, a function can
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have vastly different communication complexity in the one-way and usual (two-

way) randomized models. Such is the case of GT, whose two-way randomized

complexity is a mere O(log n).

Another step toward solving the Kushilevitz-Nisan question has been recently

taken by the author [15]. Namely, we gave an exponential separation between the

discrepancy under product and nonproduct distributions, for an explicit function.

In particular, we showed that the use of nonproduct distributions is indeed essential

to the discrepancy method, a common technique for communication lower bounds.

This paper solves the Kushilevitz-Nisan problem completely and in its original

form. We prove the existence of a function f : {−1,+1}n × {−1,+1}n → {−1,+1}
with D×

1/3
( f ) = O(1) and R

pub

1/3
( f ) = Ω(n). In fact, the prove the following more

delicate result:

Theorem 1.1. Let ε > 0 be an arbitrary constant. Then there exists a function

f : {−1,+1}n × {−1,+1}n → {−1,+1} with all of the following properties:

D×ε ( f ) = O(1),

R
pub

1/3
( f ) = Ω(n),

disc×( f ) = Ω(1),

disc( f ) = O(2−n( 1
2
−ε)).

The notation disc×( f ) stands for the smallest discrepancy of f under a product

distribution, by analogy with D×( f ).

A key aspect of Theorem 1.1 is that the function f in question has exponen-

tially small discrepancy. Indeed, its discrepancy essentially meets the Ω(2−n/2)

lower bound for any function on n bit strings (see Proposition 2.7 below). As a

result, f has communication complexity Ω(n) not only in the randomized model,

but also in the nondeterministic and various quantum models. Furthermore, the

communication complexity of f remains Ω(n) even if one simply seeks a random-

ized/quantum protocol with exponentially small advantage on every input (say,

2−n/4). Finally, it is clear from our proof (see Remark 3.4) that f has complex-

ity Ω(n) in the unbounded-error model [13], which has an even weaker success

criterion.

To summarize the previous paragraph, f has the highest communication com-

plexity in every major model. Yet, the distributional method restricted to product

distributions can certify at best an Ω(1) lower bound. In this sense, we refute the

hypothesis of the Kushilevitz-Nisan problem in the strongest possible terms.
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Finally, Theorem 1.1 also improves on our previously obtained [15] exponen-

tial separation for discrepancy. In that earlier work, we constructed an explicit

matrix A ∈ {−1,+1}2n×2n2

with disc×(A) = Ω(1/n4) and disc(A) = O(
√

n/2n/4).

Theorem 1.1 amplifies this gap to what is essentially optimal, although the func-

tion is no longer explicit.

We now consider a different contribution of this work, which pertains to the

complexity measures of sign matrices. This comparatively new area studies ma-

trices with ±1 entries from a complexity-theoretic point of view, focusing on their

algebraic rather than combinatorial structure. The study of sign matrices has strong

ties to classical complexity theory, computational learning, and functional analysis,

and has drawn considerable interest [1–5, 11, 12, 15].

Fundamental complexity measures of A are:

• disc×(A), the smallest discrepancy of A under a product distribution;

• sq(A), the statistical-query (SQ) dimension of A viewed as a concept class.

(This quantity arises in Kearns’ statistical query model of learning [7] and

turns out be be intimately linked with discrepancy.)

• dc(A), the dimension complexity of A, also known as “sign-rank”;

• mc(A), the margin complexity of A;

• disc(A), the smallest discrepancy of A under an arbitrary distribution.

Precise definitions of these quantities appear in Section 2. Among the early find-

ings is the following inequality due to Ben-David et al. [1]:

dc(A) 6 O(mc(A)2 log(M + N)) for every A ∈ {−1,+1}M×N .

Linial and Shraibman [11] showed that mc(A) and 1/ disc(A) are always within a

factor of 8. The author [15] has recently extended these two results to the following

picture:
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disc×(A)
=poly sq(A) 6poly dc(A) 6poly mc(A) ≈ 1

disc(A)

The symbols 6poly and =poly in the above diagram have their intuitive meaning; we

give precise statements in Section 2.2. The only missing piece from this diagram
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is the gap between sq(A) and dc(A), which is left as an open problem in [15]. We

solve this problem, showing that the gap between sq(A) and dc(A) can be arbitrary:

Theorem 1.2 (SQ dimension vs. dimension complexity). Let ε > 0 be an arbitrary

constant. Then there exists a matrix family A ∈ {−1,+1}N×N with

sq(A) = O(1)

and dc(A) = Ω(N1−ε).

It is easy to show (see Section 2.2) that dc(A) 6 min{M,N} for every A ∈
{−1,+1}M×N . In this light, Theorem 1.2 gives essentially the best gap that can exist

by definition. This completes our taxonomy to the following overall picture:
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Our Techniques. A key feature of our approach is to view a sign matrix both as

a communication problem and as a set of Boolean functions to learn (namely, the

matrix rows). This perspective invites the use of tools from communication com-

plexity and learning theory. One of the ingredients in our proofs is a simulation

due to Kremer, Nisan, and Ron [9] that links the one-way communication com-

plexity of a matrix to its VC dimension. We also recall a combinatorial fact due to

Ben-David et al. [1] about matrices with low VC dimension. To combine these two

results, we use the above taxonomy of complexity measures.

2 Preliminaries

This section surveys facts from communication complexity, sign matrices, and

learning theory that figure in our proofs.

2.1 Communication Complexity

We consider Boolean functions f : X×Y → {−1,+1}. Typically X = Y = {−1,+1}n,
but we also allow X and Y to be arbitrary sets, possibly of unequal cardinal-

ity. We identify a function f with its communication matrix A = [ f (x, y)]y,x ∈
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{−1,+1}|Y |×|X|. In particular, we use the terms “communication complexity of f ”

and “communication complexity of A” interchangeably (and likewise for other

complexity measures, such as discrepancy). The two communication models of

interest to us are the randomized model and the deterministic model, both reviewed

in Section 1.

For a fixed distribution µ over X × Y , the discrepancy of f is defined as

discµ( f ) = max
X′⊆X,
Y′⊆Y

∣

∣
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∣
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∣

∣

∑

(x,y)∈X′×Y′

µ(x, y) f (x, y)

∣

∣

∣

∣

∣

∣

∣

∣

.

We define disc( f ) = minµ{discµ( f )}. We let disc×( f ) denote the minimum dis-

crepancy of f under product distributions. The discrepancy method is a powerful

technique that lower-bounds the randomized and distributional complexity in terms

of the discrepancy:

Proposition 2.1 (Kushilevitz and Nisan [10, pp. 36–38]). For every Boolean func-

tion f (x, y), every distribution µ, and every γ > 0,

R
pub

1/2−γ/2( f ) > D
µ

1/2−γ/2( f ) > log2

γ

discµ( f )
.

A definitive resource for further details is the book of Kushilevitz and Nisan [10].

2.2 Sign Matrices

We frequently use “generic-entry” notation to specify a matrix succinctly: we write

A = [F(i, j)]i, j to mean that the (i, j)th entry of A is given by the expression F(i, j).

A (Euclidean) embedding of a matrix A ∈ {−1,+1}M×N is a collection of vectors

u1, . . . ,uM ∈ Rk and v1, . . . , vN ∈ Rk (for some k) such that 〈ui, v j〉 · Ai j > 0 for all

i, j. The integer k is the dimension of the embedding. The quantity

γ = min
i, j

|〈ui, v j〉|
‖ui‖ · ‖v j‖

is the margin of the embedding. The dimension complexity dc(A) is the smallest

dimension of an embedding of A. The margin complexity mc(A) is the minimum

1/γ over all embeddings of A.

Let ei denote the vector with 1 in the ith component and zeroes elsewhere.

The following is a trivial embedding of a sign matrix A = [ a1 | . . . | aN ] ∈
{−1,+1}M×N : label the rows by vectors e1, . . . , eM ∈ RM and the columns by
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vectors 1√
M

a1, . . . ,
1√
M

aN . It is easy to see that this embedding has dimension M

and margin 1/
√

M. By interchanging the roles of the rows and columns, we obtain

the following well-known fact:

Proposition 2.2. Let A ∈ {−1,+1}M×N . Then

1 6 dc(A) 6 min{M,N},

1 6mc(A) 6 min{
√

M,
√

N}.

We say that a matrix R ∈ RM×N sign-represents a matrix A ∈ {−1,+1}M×N , denoted

A = sign(R), if Ai jRi j > 0 for all i, j. Observe that the dimension complexity of a

sign matrix is the minimum rank of any real matrix that sign-represents it.

Let X be a finite set. For a family C of functions X → {−1,+1}, define its

statistical query (SQ) dimension sq(C ) to be the largest integer d for which there

are functions

f1, f2, . . . , fd ∈ C

and a probability distribution µ on X such that
∣

∣

∣

∣

∣

E
x∼µ

[ fi(x) f j(x)]

∣

∣

∣

∣

∣

6
1

d
for all i , j. (2.1)

For a sign matrix A ∈ {−1,+1}M×N , we define sq(A) to be the SQ dimension of the

rows of A viewed as functions {1, 2, . . . ,N} → {−1,+1}. It is a simple exercise to

show that any functions f1, f2, . . . , fd that satisfy (2.1) must be linearly indepen-

dent, and thus

sq(A) 6 rank(A) for all A. (2.2)

The SQ dimension is an important quantity in learning theory. It was originally

defined as a complexity measure in Kearns’ statistical query model of learning [7].

But, as we shall see shortly, it naturally fits in our taxonomy of complexity mea-

sures of sign matrices.

At this point, we have introduced five complexity measures of a sign matrix:

disc×(A), sq(A), dc(A), mc(A), and disc(A). They are related in an elegant way, as

follows:

1

disc×(A)
=poly sq(A) 6poly dc(A) 6poly mc(A) ≈ 1

disc(A)

This diagram summarizes work by different authors at different times. We now

traverse it left to right, giving precise quantitative statements.
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Theorem 2.3 (Sherstov [15, Thm. 7.1]). Let A be a sign matrix. Then

√

sq(A)

2
<

1

disc×(A)
< (2 sq(A))2.

Theorem 2.4 (Sherstov [15, Thm. 3.2]). Let A be a sign matrix. Then

sq(A) < 2 dc(A)2.

Theorem 2.5 (Ben-David, Eiron, and Simon [1]). Let A ∈ {−1,+1}M×N . Then

dc(A) 6 O(mc(A)2 log(M + N)).

Theorem 2.6 (Linial and Shraibman [11]). Let A be a sign matrix. Then

1

8
mc(A) 6

1

disc(A)
6 8 mc(A).

The following observation is immediate from Proposition 2.2 and Theorem 2.6:

Proposition 2.7. Let A ∈ {−1,+1}M×N . Then

disc(A) >
1

8 min{
√

M,
√

N}
.

2.3 Learning Theory

Let X be a finite set, such as X = {−1,+1}n. A concept class C is any set of

functions X → {−1,+1}. We identify C with the sign matrix A whose rows are

indexed by functions of C , columns indexed by inputs x ∈ X, and entries given by

A( f , x) = f (x). In other words, A’s rows are precisely the functions of C . In what

follows, we use C and its corresponding sign matrix interchangeably.

Let µ be a probability distribution over X. Then the following is a natural notion

of distance between functions:

∆µ( f , g)
def
= Pr

x∼µ
[ f (x) , g(x)].
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A concept class C is learnable to accuracy ε and confidence δ under distribution µ

from m examples if there is an algorithm L that, for every unknown f ∈ C , takes

as input i.i.d. examples x1, . . . , xm ∼ µ and their labels f (x1), . . . , f (xm), and with

probability at least 1 − δ produces a hypothesis h with ∆µ(h, f ) 6 ε. The latter

probability is over the random choice of examples and any internal randomization

in L.

For a sign matrix A (and thus its corresponding concept class), define its

Vapnik-Chervonenkis (VC) dimension vc(A) to be the largest d such that A fea-

tures a 2d ×d submatrix whose rows are the distinct elements of {−1,+1}d. The VC

dimension is a combinatorial quantity that exactly captures the learning complexity

of a concept class. This is borne out by the following classical theorem:

Theorem 2.8 (VC Theorem; see [8, Thm. 3.3]). Let C be a concept class and µ a

distribution. Then C is learnable to accuracy ε and confidence δ under µ from

O

(

1

ε
log

1

δ
+

vc(C )

ε
log

1

ε

)

examples.

Theorem 2.8 almost matches the information-theoretic lower bounds on the

number of examples necessary. These lower bounds come in different flavors; for

example, see [8, Thm. 3.5]. We will need the following specialized version, which

we state with a proof for the reader’s convenience.

Proposition 2.9 (Information-theoretic barrier). Let µ be a probability distribution

and C be a concept class such that ∆µ( f , f ′) > ε for every two distinct f , f ′ ∈ C .

Then learning C to accuracy ε/2 and confidence δ under µ requires log |C |+log(1−
δ) examples.

Proof. Let L be a learner for C that uses m examples. View L as a deterministic

function L(x1, y1, . . . , xm, ym, r) that takes training examples and a random string

as input and outputs a hypothesis. With this notation, we have:

E
f∈C

[

Pr
x1,...,xm,r

[

∆µ( f , L(x1, f (x1), . . . , xm, f (xm), r)) 6
ε

2

]

]

> 1 − δ.

Reordering the expectation and probability operators yields

E
x1,...,xm,r

[

Pr
f∈C

[

∆µ( f , L(x1, f (x1), . . . , xm, f (xm), r)) 6
ε

2

]

]

> 1 − δ.
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Thus, there is a fixed choice of x1, . . . , xm, r for which

Pr
f∈C

[

∆µ( f , L(x1, f (x1), . . . , xm, f (xm), r)) 6
ε

2

]

> 1 − δ. (2.3)

With x1, . . . , xm, r thus fixed, algorithm L becomes a deterministic mapping from

{−1,+1}m to the hypothesis space. In particular, L can output at most 2m different

hypotheses. Equation (2.3) says that L succeeds in producing an ε
2
-approximator

for at least (1−δ) |C | functions in C . Since no hypothesis can be an ε
2
-approximator

for two different functions in C , we have 2m
> (1 − δ) |C |. �

For a thorough introduction to computational learning theory, see the textbook

by Kearns and Vazirani [8].

3 Communication Gap

In this section, we prove our main results concerning communication under product

vs. nonproduct distributions. We first recall an elegant simulation that relates the

communication complexity of a sign matrix to its VC dimension.

Theorem 3.1 (Kremer, Nisan, and Ron [9, Thm. 3.2]). Let A be a sign matrix,

ε > 0 an arbitrary constant. Then D×ε (A) = O(vc(A)).

Proof (Kremer, Nisan, Ron [9]). Let X and Y be the finite sets that index the

columns and rows of A, respectively. Let µ = µX × µY be a given product dis-

tribution. Consider the following public-coin randomized protocol for A. Alice

and Bob use their public coin to pick points

x(1), x(2), . . . , x(m) ∈ X

independently at random, according to µX . Here m is a parameter we will fix later.

Next, Bob sends Alice the values

A(y, x(1)), A(y, x(2)), . . . , A(y, x(m)).

At this point, Alice identifies any y′ ∈ Y with

A(y′, x(1)) = A(y, x(1)),

A(y′, x(2)) = A(y, x(2)),

...

A(y′, x(m)) = A(y, x(m)),
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and announces A(y′, x) as the output of the protocol.

In learning-theoretic terms, the protocol amounts to Alice learning the un-

known row Ay of the matrix A from random labeled examples distributed according

to µX . By the VC theorem (Theorem 2.8), any row A′y consistent with m = O(vc(A))

labeled examples will, with probability ε/2, have ∆µX
(A′y, Ay) 6 ε/2. In particular,

Alice’s answer will be correct with probability at least 1− ε (with respect to µX and

regardless of Bob’s input y).

To summarize, we have obtained a public-coin randomized protocol for A with

cost O(vc(A)) and error at most ε over µ = µX × µY . By a standard averaging

argument, there must be a deterministic protocol with the same cost and error at

most ε. �

Our next ingredient is a combinatorial fact about sign matrices.

Definition 3.2 (Zarankiewicz matrices). Let Z (N, c) denote the set of N × N ma-

trices with ±1 entries that contain no submatrix of size c × c with all entries equal

to 1.

The key property of Z (N, c) for our purposes is the following result:

Theorem 3.3 (Ben-David, Eiron, and Simon [1, Thm. 12]). Let c > 2 be a fixed

integer. Then all but a vanishing fraction of the matrices in Z (N, c) have dimension

complexity Ω(N1− 2
c ).

We are now in a position to prove the main result of this section.

Theorem 1.1 (Restated from p. 2). Let ε > 0 be an arbitrary constant. Then there

exists a function f : {−1,+1}n × {−1,+1}n → {−1,+1} with all of the following

properties:

D×ε ( f ) = O(1),

R
pub

1/3
( f ) = Ω(n),

disc×( f ) = Ω(1),

disc( f ) = O(2−n( 1
2
−ε)).

Proof. Let c = 2d1/εe. Theorem 3.3 ensures the existence of A ∈ Z (2n, c) with

dc(A) = Ω(2n(1−ε)). Then

disc(A)
Thm. 2.6
6

8

mc(A)

Thm. 2.5
6 O

(√

n

dc(A)

)

= O

(

2−n( 1
2
−ε)

)

. (3.1)
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By Proposition 2.1, we immediately conclude that

R
pub

1/3
(A) = Ω(n). (3.2)

On the other hand, it is clear that every matrix in Z (2n, c) has VC dimension at

most 2c. Theorem 3.1 now implies that

D×ε (A) = O(1). (3.3)

In light of (3.3), Proposition 2.1 shows that

disc×(A) = Ω(1). (3.4)

The theorem follows from (3.1)–(3.4). �

Remark 3.4. It is clear from the proof that the function f in question satisfies

dc( f ) > 2Ω(n). This is equivalent to saying that f has communication complexity

Ω(n) in the unbounded error model of Paturi and Simon [13].

4 SQ Dimension and Dimension Complexity

The purpose of this section is to exhibit a large gap between the SQ dimension and

dimension complexity of an N × N sign matrix. We start with a technical lemma.

Lemma 4.1 (VC and SQ dimensions). Let C be a concept class. Then

sq(C ) 6 2O(vc(C )).

Proof. Let sq(C ) = d > 2.Our goal is to show that vc(C ) = Ω(log d).By definition

of the SQ dimension, there is a distribution µ and and functions f1, . . . , fd ∈ C such

that

∆µ( fi, f j) >
1

2
− 1

2d

for all i , j. In particular, ∆µ( fi, f j) > 1/4. Thus, the information-theoretic bar-

rier (Proposition 2.9) shows that learning C to accuracy 1/10 and confidence 1/2

requires

m > Ω(log d)

examples. Yet by the VC Theorem (Theorem 2.8), the number of examples needed

is at most

m = O(vc(C )).

Comparing these lower and upper bounds on m yields the desired result. �
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We are now prepared for the main result of this section:

Theorem 1.2 (Restated from p. 4). Let ε > 0 be an arbitrary constant. Then there

exists a matrix family A ∈ {−1,+1}N×N with

sq(A) = O(1)

and dc(A) = Ω(N1−ε).

Proof. Let c = 2d1/εe. By Theorem 3.3, there exists a matrix A ∈ Z (N, c) with

dc(A) = Ω(N1−ε). (4.1)

On the other hand, it is clear that every matrix in Z (N, c) has VC dimension at

most 2c. Therefore, Lemma 4.1 shows that

sq(A) 6 2O(c) = O(1). (4.2)

The theorem follows from (4.1) and (4.2). �

5 Further Notes on the VC and SQ Dimensions

In Section 4, we obtained a separation between between the SQ dimension and

dimension complexity. Instrumental to that result was the relationship between two

learning-theoretic quantities, the VC and SQ dimensions. This section concludes

with a closer look at them.

For a given sign matrix A, and let vc(AT) denote the VC dimension of the

columns of A when viewed as Boolean functions. Define sq(AT) analogously. It is

well-known that there are matrices A with an exponential gap between vc(A) and

vc(AT). For example, the 2n × n matrix IND whose rows are the distinct vectors in

{−1,+1}n satisfies:

vc(IND) = n, vc(INDT) = blog nc.

This gap is in fact the largest possible since

vc(AT) > blog vc(A)c for all A.

The reason for this inequality is as follows. If vc(A) = d, then A contains a

submatrix of size blog dc × 2blog dc whose columns are all the possible vectors in

{−1,+1}blog dc.
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By contrast, the gap between sq(A) and sq(AT) is always at most polynomial.

Specifically, the author has shown [15, Cor. 7.1.1] that

(

1

32
sq(C )

)1/4

< sq(C T) < 32 sq(C )4 for all A. (5.1)

This result follows from Theorem 2.3 and the fact that disc×(A) = disc×(AT).

Finally, we examine the relationship between the VC and SQ dimensions for

the same matrix. The result were are about to state is an extension of Lemma 4.1

above.

Proposition 5.1. Let A be a sign matrix. Then:

max{ 1
2

vc(A), vc(AT)} 6 sq(A) 6 2O(min{vc(A),vc(AT)}).

Proof. It is clear from the definitions that

sq(A) > vc(AT) and sq(A) > 2blog vc(A)c
>

1

2
vc(A).

On the other hand, Lemma 4.1 shows that

sq(A) 6 2O(vc(A)).

In view of (5.1), we also have

sq(A) 6 2O(vc(AT)).

These four inequalities complete the proof. �

We now show that Proposition 5.1 is best possible in that the quantity sq(A)

really can range anywhere between the stated lower and upper bounds.

• Consider the following sign matrix A of size 2n × 2n:

13



The 2n × n submatrix IND is as defined earlier. It is clear that vc(A) =

vc(AT) = n. By (2.2), we have sq(A) 6 rank(A) 6 2n.

• Consider now the 2n × 2n Hadamard matrix

A = [PARITY(x1 ∧ y1, . . . , xn ∧ yn)]x,y.

Here again one can show that vc(A) = vc(AT) = n. However, we now have

sq(A) = 2n since the rows of A are orthogonal.

To summarize, in both examples above we have vc(A) = vc(AT) = n, and thus

Proposition 5.1 implies that

n 6 sq(A) 6 2O(n).

In the first example it turns out that sq(A) 6 2n, while in the second sq(A) = 2n.

Hence, Proposition 5.1 cannot be strengthened in general.
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