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Abstract

We study the polynomial reconstruction problem for low-aegmultivariate polynomials ovét{2].

In this problem, we are given a set of poistsc {0, 1}™ and target valueg(x) € {0, 1} for each of
these points, with the promise that there is a polynomiat BY2 of degree at most that agrees witlf
at1 — ¢ fraction of the points. Our goal is to find a degrépolynomial that has good agreement with
f. We show that it is NP-hard to find a polynomial that agree& wion more thari — 2—< + § fraction

of the points for any, § > 0. This holds even with the stronger promise that the polyabthat fits the
data is in fact linear, whereas the algorithm is allowed td fipolynomial of degreé. Previously the
only known hardness of approximation (or even NP-compkgsywas for the case whén= 1, which
follows from a celebrated result of Hastad [Has01].

In the setting of Computational Learning, our result sholes hardness of (non-proper)agnostic
learning of parities, where the learner is allowed a lowrdegpolynomial oveif[2] as a hypothesis.
This is the first non-proper hardness result for this cergrablem in computational learning. Our
results can be extended to multivariate polynomial recantbn over any finite field.
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1 Introduction

In the generic polynomial reconstruction problem, we avemipoints{x‘}™ , and target valueg (x') at
those points. The goal is to find a low-degree polynomial tlagtgood agreement with In addition to be-
ing a very natural problem, polynomial reconstruction lasfl applications in several areas of theoretical
computer science including computational complexity,isgdheory, derandomization and computational
learning. Several important advances in Probabilisgic@heckable Proofs (PCPs) and List Decoding rely
on highly efficient algorithms to solve the polynomial restsaction problem. This work addresses the com-
plexity of the polynomial reconstruction problem for lovegiee multivariate polynomials over finite fields.
This version of polynomial reconstruction is encountenmedeéveral of the settings mentioned above. We
elaborate on some applications of polynomial reconstradti coding theory and computational learning.

Coding Theory: An important family of error-correcting codes known as Réédler codes is obtained
from low-degree multivariate polynomials over finite fielda the Reed-Muller code RM(n), the mes-
sages correspond to all polynomials of degree at rndastn variables, and the encoding is the vector of
evaluations of the polynomial at points#¥. Hadamard codes are a class of Reed-Muller codes obtained
by taking the messages to be all linear functions @%erin the Reed-Solomon code R&(), the messages
correspond to degregunivariate polynomialsd is super-constant), and the codewords are evaluations of
the polynomial at some points in the finite field@. The decoding problems for all these codes are instances
of the polynomial reconstruction problem.

A series of influential results give highly efficient listateling algorithms for such codes, which pro-
duce a list of all codewords that have significant agreemeétit thve received word. The first such algo-
rithm was given for Hadamard codes by Goldreich and Levin8€jl. and subsequently by Kushilevitz
and Mansour[I[KM91] and Goldreich, Rubinfeld and Sudan [GB}SQist decoding algorithms for Reed-
Muller codes were given by Goldreich, Rubinfeld and SudaR$80], Arora and Sudah [AS03] and Sudan,
Trevisan and Vadhan [STVD1]. For Reed-Solomon codes, ésbding algorithms were given by Sudan
[Sud97] and Guruswami and Sudan |G599]. Recent advanceapatity-achieving list-decodable codes
by Parvaresh and Vardi/ [PVI05] and Guruswami and Rudra [(GR&6€]variants of Reed-Solomon codes
These results have had great impact on both coding theorc@amgutational complexity. In particular
Reed-Muller codes have numerous applications includingfechecking and the hardness of approxima-
tion [ALM 798 [AS98[/AS0B], hardness amplification [STV01], cryptqima [GL89] and derandomization
[TSZS01]; seellTre04, GurD4] for more applications. Vasi@pplications require various parameter set-
tings, for instance in PCPs, on inputs of si¥eone takesF| = (log N)°™) andn = O(log’igN).

Indeed, known algorithms for some of these codes are bdliigvde optimal and it is an important
open problem to prove matching computational and combhiigtiower-bounds. The decoding problem
for a specific code is polynomial reconstruction with an imgot restriction: the set of points is known to
the algorithm in advance, it is only the labeléx) that can be generated adversarially. However, several
decoding algorithms do in fact solve the general recontmugroblem [Sud97, GS99].

Computational Learning: The problem of learning parity functions ovf, 1} in the presence of classi-
fication noise is a central problem in computational leagnthis is another instance of multivariate polyno-
mial reconstruction. Two kinds of noise models have beetliestii in the random classification noise model,
the label of each example is flipped independently with podita n < % before it is given to the learner.
In the agnostic learning model which allows worst-case eyad adversary changes the labels of sgme
fraction of the points if0, 1}™ before the points are presented to the learner. This proislequivalent to
the well-studied problem of decoding random linear codesiting theory.

While both these problems are widely believed to be hardgetia considerable gap in our under-



standing of their complexity. For random classificationsegithe best known algorithm due to Blum, Kalai
and Wasserman runs in tina€("/10g7) for any distribution [BKWOB]. A20("/1ogn) glgorithm for learning
parity with adversarial noise under the uniform distribativas given recently by Feldmanal. [FEGKP06].
Their algorithm is a proper learning algorithm which prodsi@a parity as hypothesis. The question of
whether sub-exponential agnostic learning of parity issfimde under other distributions is wide open. On
one hand, Hastad shows the proper learning of parities adtersarial noise is NP-complefe [Has01]. But
this does not exclude the possibility of a non-proper legyralgorithm which uses some other hypothesis,
such as a low-degree polynomial. Indeed, proper learningasfomials with adversarial noise is known to
be NP-hard[Fell6], whereas Kaktial. [KKMS05] give a2°(V™ non-proper learning algorithm for all dis-
tributions which produces the sign of a real polynomial afyipothesis. Feldmaat al.asked whether parity
with adversarial noise is hard to learn even using low-de§f2] polynomials as hypothesis [EGKE06].

The problem of polynomial reconstruction arises naturailyhe context of learning the circuit class
ACY, which consists of circuits of AND, OR and NOT gates havindypomial-size and constant-depth.
Linial, Mansour and Nisan showed that such circuits arenale under the uniform distribution in quasi-
polynomial time [[LMN93]. The question of whether these gits are PAC-learnable is wide open. A
possible approach to this problem is suggested by the sesuRazborov and Smolensky, who show that
such circuits withn inputs can be approximated by multivariate polynomialsefrée(log n)°() overF[p]
under any distributiorl [Raz8[7, Sma87]. Thus even a weakiegmlgorithm for such polynomials ovEfp]
with adversarial noise under arbitrary distributions vebbiave important consequences for computational
learning. It would imply a PAC-learning algorithm férC?, and in fact for the larger classC®[p], where
MOD-p gates are also allowed. CurrentyC°[p] circuits are not known to be learnable even under the
uniform distribution. This problem of proper learning oflymomials under arbitrary distributions with
adversarial noise is a generalization of the reconstmgiroblem which we address.

Hardness Results: In contrast with the tremendous progress on the algoritisidie, relatively few negative
results are known for polynomial reconstruction. For linpalynomials inn variables, a tight hardness
result follows from the celebrated work of Hastad on sadvimear equations over finite fields THa$01].
Ford = 2 and higher, we are unaware of even an NP-completeness festilf2] or even polynomial-
sized fields. Goldreickt al. show that the polynomial reconstruction problem is NP-cletiegfor univariate
polynomials over exponentially large fields [GR500]. Thelgem of Reed-Solomon decoding was recently
shown to be NP-complete [GV5] by Guruswami and Vardy, agaer large fields. Cheng and Wan show
some connections between Reed-Solomon decoding and tnetditog problem over finite fields [CWO04].

1.1 Our Results

We consider the Polynomial Reconstruction problemL¥YREC(d, n) for multivariate polynomials im
variables oveif'[2] of degree at most, for d constant. The input to this problem is a set of point-valuespa
{xt, f(x%)}™, wherex! € F[2]" andf(x") € F[2] and a degree bountl Our goal is to find the multivariate
polynomial P(X1, ..., X,,) of degree at mosf that satisfiesP(x?) = f(x?) for most pointsx’. We will
allow the possibility that the same vectois repeated multiple times (but with the same lapet)).

If there is a polynomialP(X1, ..., X,,) such thatP(x!) = f(x*) for all i, it can be found using poly-
nomial interpolation. Assume that some polynomial agreiéls ¥i(x) on 1 — ¢ fraction of the points. Can
we find a polynomial with good agreement? Our main resultas tiis problem is hard to approximate.

Theorem 1 For anye,§ > 0, given an instance dPoLy REC(d, n) over F[2], it is NP-hard to distinguish
between the following cases:
1. YESINSTANCE: There is a linear polynomial satisfying(x’) = f(x*) for 1 — ¢ fraction of the points.
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2. No INSTANCE: Every polynomial of degree at massatisfiesP(x') = f(x*) for at mostl — 2=% 4§
fraction of the points.

In the casel = 1, our result matches the tight bound %)f+ o for linear equations which follows from
Hastad's work([Has01], but via a very different proof taiciue. To our knowledge, fat > 2, this is the first
hardness of approximation or even NP-completeness for d fizkl. Theorenf]l gives a strong guarantee
in the YEs case: the polynomial fitting the data is linear. This impties NP-hardness of agnostic learning
of parity even if the learning algorithm is allowé&l2] polynomials of degreé for any constant/, making
significant progress on the problem raised in [FGKPO06].

TheorenTdL suggests limits to PAC-learning’® via polynomial reconstruction, by showing that there
are distributions under which the reconstruction problenNP-hard. It implies the hardness of proper
learning for low-degree polynomials, even if the learnihgodathm is allowed to ask queries. Recently,
Gopalaret al. [GKRZ07] have given a list-decoding algorithm that decodé(R, n) codes polynomials up
to an error-radiug — 2=+ overF[2]". This shows that degrekpolynomials can be learnt up to error-rate
1 — 2= 4 § under the uniform distribution with gueries. Indeed, tharsiness factor of — 2= in our
result comes from the minimum distance of orddkeed-Muller codes ovéf, (which is2~¢).Thus, unlike
for univariate reconstruction, where the specific subsebaftsS C F (or equivalently, the distribution on
points) does not affect the number of errors that can be cededy known algorithms [Sudd7, G$99], the
point-setS C F™ is crucial in the multivariate case.

Our results can be extended to any finite fié[d]. Let s(d, q) denote the maximum over all non-zero
polynomialsP (X1, ..., X,) in F[g] of degreed of the probability thatP is 0 at a random point iri[¢]".

By the Schwartz-Zippel lemma, if = a(¢ — 1) + bfor0 < b < g — 1, thens(d,q) =1 — ;{;bl. Note that
the minimum distance of the ordéReed-Muller code RM(d, n) overF|q] is preciselyl — s(d, q).

Theorem 2 For anye, § > 0, given an instance dPoLy Rec(d, n) over F[q|, it is NP-hard to distinguish
between the following cases:

1. YESINSTANCE: There is a linear polynomial satisfying(x’) = f(x*) for 1 — ¢ fraction of the points.
2. NO INSTANCE: Every polynomial of degreésatisfiesP (x?) = f(x*) for at mosts(d, ¢) + ¢ fraction of
the points.

The proof of Theorerl]2 is presented in Apperidix A. We note thatdifficulty in proving hardness
depends on the relative sizesdfindg. Whend < ¢ — 1, one can prove a hardnesslof e versus% +94
using a simple reduction from linear equations d¥gr} which we present in Appendix]B.

An interesting open problem is to improve the soundne%s%oé for all degrees oveF[2], and: over
Flq]. However it seems that this will call for some substantiaéw techniques or a different approach to
this work.

2 Overview of the Reduction

The main technical contribution of our work is to apply theamiaery of PCPs to the polynomial recon-
struction problem. Our result is proved by a reduction froaBEL COVER (see Sectiofl6 for the definition
of LABELCOVER). However, the fact that polynomial reconstruction & 2 is not a CSP in the usual
sense means that there are several obstacles to overcome sdpwe introduce some new primitives such
as Dictatorship Testing for Polynomials and Consistencstifig via Folding which we believe could be
useful in other contexts. For simplicity, let us considelypomials overF[2].



Dictatorship Testing for low-degree Polynomials: Like most reductions from ABELCOVER, our first
goal is to give alictatorship tesfor low-degree polynomials, using constraints of the fomm f(x)) for
x € {0,1}*. Our goal is that the polynomial); for i € [k], which we think of as the dictatorship of
will pass this test with good probability. On the other hafied every polynomialP(X, ..., X ) of degree
d which passes the test with good probability, we wisldécodeit to a dictatorship. While this may not
always be possible, we will settle for a list of indices frihwhose length is constant (independent:pf

We propose the following test: we sample a random vegtar {0, 1}* where eachy; is 1 with prob-
ability , and check thaP(n) = 0. In other words, polynomials passing the test must be reitgle at
0. Dictatorships pass this test with probability- <. But there are several polynomials that will do well,
for instanceX; X, will pass with probabilityl — 2. While this polynomial iscloseto a dictatorship, the
polynomial X (X + ... 4+ X}) which depends on alt variables passes w.p. closelte- 5. Indeed, any
polynomial which can be written as

P(Xl,...,Xn) :X1P1(X1,...,Xn)—I—...—i—XCPC(Xl,...,Xn)

where theP;s are arbitrary polynomials of degrde- 1 will pass the test w.p — ce. If we view the set of
monomials as a hypergraph @], polynomials whose hypergraphs have small vertex covdtbenoise
stable ai0*. We will use this as our notion of beirgjoseto a dictatorship. We prove an inverse theorem:
if P(X1,...,X)) passes our test with good probability, the correspondingefgraph must have a small
maximum matching and hence a small vertex cover. We viewathis list-decoding oP (X1, ..., Xk).

It is unclear why this decoding should be of any use: indeeding the decoding a second time on the
same hypergraph might produce a different matching. Noteelier that the vertex sets of any two maximal
matchings must have some intersection. Indeed, the usshilof this decoding procedure stems from the
fact that given anyl + 1 vertex covers in @-regular hypergraph, some two will intersect.

Itis interesting to contrast this dictatorship test withuRer based dictatorship testing [Has01, KKM®O04].
In those tests, one is allowed to query the function beinigdeim two or more points, but in our setting we
are allowed jusbnequery. What makes this possible however is the promise Hiesfuinction being tested
is a low-degree polynomial, as opposed to an arbitrary Bwofanction. In a departure from Fourier based
dictatorship testing, our analysis uses only basic faasigolynomials. However, giving a test with better
might require new algebraic techniques.

Consistency Testing via Folding: Our strategy for reducing fromABEL COVER is the following: to each
vertexv in the LABELCOVER instance, we assign variables’, ..., X}’ wherek is the number of labels
possible. In the ¥s case, if the labelling of vertices is given by V' — [k], then we want the polynomial
X ;’(U) to satisfy most of the constraints. Further, given any pamgial () that satisfies sufficiently many
constraints, we want to be able to decode it to a label for @adex. To assign a label for vertex we
consider the restriction @ to the variablesX?, ..., X} obtained by setting the other variable){avhich

we denote by)(X"). We then run the decoding procedure for the dictatorshipote# and pick a random
label from the list. Our hope is that this will assign labelsaiway that satisfies a constant fraction of the
LaBELCOVER constraints.

The next gadget we need is a way of testing whether two vertiage been assigned consistent labels.
For this, let us consider a toy problem where there are justugrtices and we want to test if they are
assigned the same label. Following the outline above, wecags them with variablex, ..., X, and
Y1,..., Y, respectively. We want a test that passes the polynomiglsY;. Further, we want to assign labels
to each vertex based di(Xy,...,X;) = Q(X1,..., X, 0F) andV (Yy,...,Y:) = Q(0*,Yq,....Y})
respectively. IfQ) passes our test, these labels should be the same with dopsthability (independent
of k). We can run the dictatorship test on edéhusing vectors of the fornin, 0¥) and similarly onV .
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Assuming they pass these tests, we want to check that thégemtical polynomials after setting; = Y;.
The obvious approach is to take— {0, 1}* and check thaf)(r, r) = 0. But in fact this will not do, since
we have no control on monomials of the forkY;. Indeed, for any choice of restrictioris and V', one
can adjust the coefficients of the;Y; terms so that the polynomi&} satisfies)(r,r) = 0. This strongly
suggests that a different approach is necessary to enfornsistency.

Our solution is to enforce the consistency constraints \natwve call global folding. Let us write the
vector(zy, ...,z Y1, .- ., yx) € {0,1}2% in a different basis agey +y1, . . ., Tk +Yrs Y1, - - - » Yi). Observe
that in this basis, the polynomials; + Y; that pass the test only depend on the firsto-ordinates. We
will enforce this condition on every polynomial. In placetb& point-value paif(x,y), f(x,y)), we add
the point-value paif(zy + y1,...,2x + yr), f(x,y)). Clearly, this does not hurt the completeness of the
test. However, one could hope for better soundness, sindeweerestricted the space of polynomials from
all polynomials inX;s andY}s to those that only depend oX; + Y;. Equivalently, we are forcing the
adversary to pick a polynomial that is constant on cosets@&tibspacé/ defined byX; +Y; = 0. To
analyze the probability that some polynomialof k variables passes this new test, wdold it and write
itasQ(Xy,..., Xk, Y1,...,Yx) = P(X1 + Y1,..., Xk + Yi). Note that this enforces the constraint that
mapping X; to Y; sendsU to V. Thus in fact, if P passes the dictatorship tests, then our decoding will
assign the same labels#candv with some probability.

Similarly, we enforce all the hBELCOVER constraints via a suitable folding. If a solution to the-L
BELCOVER instance exists, it will give a linear polynomial that liesa low dimensional subspace of all
linear functions or{0, 1}™*. This sub-space is defined by linear equations that encedeotistraints of the
LAaBELCOVER instance. We identify this sub-space and perform the dicthip test for every vertex after
projecting points onto it. Assume that some polynon#iah this low dimensional subspace passes our tests
with good probability. To decod®, we unfold it to a polynomial) in nk dimensions. The polynomial
() has some nice symmetry properties which encode the camstiithe label-cover instance. We exploit
these symmetries to show that our decoding procedure willdigood solution to the ABELCOVER in-
stance. The novelty of our approach is that theEL COVER constraints are enforced via the folding and
unfolding, and not through explicit consistency tests.

This is an idealized view of our reduction, which brushesr@averal technical issues. The constraints
that we must enforce are more complicated than equalityti@nts (or even permutations), they are defined
in terms of projection maps. For technical reasons, we usgpargraph version of ABELCOVER, as
opposed to the usual bipartite graph version. Also, we neezhsure that the polynomials passing our
dictatorship tests are nét this is done by another kind of folding which we call localding. Readers
familiar with Hastad’s PCP will note the similarity betwethe folding used there and local folding.

3 Dictatorship Testing for Low-Degree Polynomials

Linear polynomials are polynomials of degrewith no constant. By degreémultivariate polynomials, we
mean all polynomials of degree at mdstin particular it includes linear polynomials. OVEj2] we assume
that all polynomials are multilinear. L& and1* denote the alds and allls vector respectively. We use
n <— {0,1}* to denote sampling from thes-biased distribution, where eagh = 1 independently w.p.
e. We will usen «— {0, 1}* to denote sampling from the uniform distribution.

We analyze the following test on polynomia®& X1, . .., X} ) of degree at most:



Algorithm 1 BASIC DICTATORSHIP TEST.
Pick n+«— {0,1}* and test if P(n)=0.

Note that the zero polynomial passes the present test wottapility 1; later we will modify the test to
ensure that the polynomial in non-zero. We use the follovidag about low-degree polynomials:

Fact 3 Let P(X1,..., X)) be a non-zero polynomial of degréeverF[2]. Then

Pr [P(n) =0 < 1-274
e {al}k[ (n) =0] <
Given a polynomialP (X1, ..., X;), we will associate it with a hypergraphi (P), with vertex set igk]

and edge sek. E contains the hyperedgec [k] if the monomial] [, X; is present inff (P). The degree
bound ofd implies thatle| < d. If we denote the constant term byc {0,1}, thenP(Xy,..., X}) =

> ecr Llice Xi +c. Amatching in a hypergraph is a set of independent edgeh (wittommon vertices).
It is easy to see that taking all the vertices in a maximal hiatcgives a vertex cover for the hypergraph.

Theorem 4 Let P(X,,. .., Xx) be a degreel polynomial oveif[2] that passes the Basic Dictatorship Test
with probability 1 — 2~ + § for somes > 0. Then the largest matching in the hypergrafii P) is of size
c

oL whereC depends only on. Further the constant termin P(X;, ..., X) isO.

Proof: Rather than setting eacki; to 1 with probability ¢, we will do a two-step sampling procedure,
which will have the same effect:

1. Set every variabl&; to 0 independently with probability — 2¢.

2. Independently set each remaining variable to a ranflarh} value.

It is clear that this induces thebiased distribution on. LetS C [k] be the set of indices corresponding
to variables that are not set@an step 1. LetX denote the set of these variables. The resulting polynomial
P'(X?%) consists of the hypergraph induced by the vertexSsetlso

Pr [Pn)=1=  Pr  [P'(n)=1]
n={0,1}* 7' «—{0,1}I51

If P'(X?) is non-zero, then since it has degree at np$tr[P’(n') = 1] > 27¢. Now if ¢ = 1, thenP’
also has the constant terimhence it is a non-zero polynomial, Bo[P(n) = 1] = Pr[P'(¢) = 1] > 277,
which is a contradiction.

Now assume that the hypergraph( P) contains a matching/ of size|M| > % where the constant
C will be fixed later. For each hyperedgez M, the probability that all its vertices are chosen to bé&'iis
(25)‘€|. Also, sinceM is a matching, these events are independent for variouseddps the probability
that none of these edges occurs in the hypergraph induc&dslounded by

[T0-@)F) < (1)o7 < .

ecM

Hence, with probabilityl — e~ the subgraph induced b¥ is non-empty. Conditioned on this event,
P'(X%) is a non-zero polynomial of degree at mdshenceP’ (1) = 1 with probability at lease=¢. Thus

Pr[P(n)=1]>(1—e %) .27¢
For sufficiently largeC, this contradicts the fact th&[P(n) = 1] <279 — 6. n
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Theorenf# suggests the following decoding procedure:

Algorithm 2 DECODING PROCEDURE FOR THEBASIC DICTATORSHIP TEST.
1. Pick a maxi mal matching M in H(P).
2. Qutput alist L of all vertices in this matching.

Clearly the seL is a small vertex cover fak (P). The usefulness of this decoding procedure is because
of the following simple lemma.

Lemma5 Let H(P) be a non-empty hypergraph with some edge oféitetL, ..., Ls1 bed+1 vertex
covers forH (P). Then some paif;, L; wherei # j has a non-empty intersection.

If all the vertex covers are obtained by taking all the vediof some maximal matching, then in fact
any two of them have non-empty intersection. This is impbgdhe following Lemma:

Lemma 6 Let H(P) be a non-empty hypergraph. L&f; and M> be maximal matchings i (P). Then
the vertex sets df/; and M5 must intersect.

To see why this is useful in the decoding procedure, consigefollowing toy problem:

Graph Decoding: Carol has a graplr on k vertices. She relabels the vertice§l), ..., o (k) for some
permutations € Sy and gives the (relabelled) graph{G) to Alice. She relabels vertices according to
7 € Sy and givest(G) to Bob. Alice and Bob need to produce vertidgeand; so thato~1(i) = 7=1(5).
They do not knows andr, and they are not allowed to communicate.

While in general, it is hard for Alice and Bob to succeed, siggpthey are promised that the maximum
matching in the grapli” is at mostC for C' << k. Then Alice and Bob can each pick a maximal matching
A and B respectively in their graphs and output a random vertex filtenvertex set. It is easy to see from
Lemmd® that the strategy succeeds with probability at I%g;t

4 Consistency Testing via Folding

In this section, we introduce the technique of folding polyials over affine subspaces, which we use to
enforce the label-cover constraints.

Definition 1 P(X7,..., X}) is 0-folded overh € {0, 1}* if for all x € {0,1}", P(x + h) = P(x).

Every polynomial ig)-folded over0. It is clear that the set of all such vectdrorms a subspace ¢f), 1}*
which we denote byd. We say thatP(X, ..., X}) is 0-folded overH.

Lemma7 Letdim(H) = t. A polynomial P(X;,...,X}) is O-folded overH iff it can be written as
P(A1, ..., A\g—t) Where); = \;(X, ..., Xk) is a linear polynomial and

H={xec{0,1}f\(x)=0for1 <i<k—t}

Proof: Firstly, consider a polynomial of the above form. Note thgth) = 0, so by linearity\;(x + h) =
Ai(x) forallh € H. Hence

P(x+h) = P(\(x+h),..., \_e(x + h)) = PO (X),..., A_t(x)) = P(x).
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For the converse, assunieis 0-folded overH. Pick a basid(1)...,h(t) for H. Complete this to a
basis for{0, 1}* by addingk — ¢ vectorsf(1),...,f(k —t). We can write everx € {0,1}* as

k—t t
x =Y Af(i) + > psh(h).
i=1 j=1

The co-ordinate$\y, ..., \p_;) specify the coset off in whichx lies, whiley, . . ., i specify its position

inside the coset. We can rewrifé as a polynomial in these new variables. We claim tRatow depends
only on P(Aq,...,\x—). Assume for contradiction tha® depends on:;. Then we can find a point
X = (A1, os Moty 11, - - -, p1¢) € {0, 1}F whereP is sensitive tq.;, meaning that

P()\la"'aAk—taul)"'nu’t):1+P()‘1)'°°7)‘k‘—t51+H1)"'aﬂt)

In the standard basis, flipping is equivalent to addind(1). Thus we haveP(x) # P(x + h(1)) which
is a contradiction. .

Definition 2 P(X7,..., X}) is 1-folded overg € {0, 1}* if for all x € {0,1}*, P(x +g) = 1 + P(x).

It is easy to see that the set of all sugHif it is non-empty) is a coset off. This is because iP is
1-folded overg and0-folded overH, then it is in factl-folded overg + H. Conversely, ifP is folded over
g andg’, then it isO-folded overg + g’ sinceP(x+g+g') =1+ P(x+g) = P(x).

Henceforth, when we say théatis folded overg + H, we mean that it i§-folded overH and1-folded
overg + H.

Lemma 8 A polynomialP(Xy,..., X};) is folded overg + H iff it can be written asP’(Ay, ..., \p_¢t—1) +

A—t Where); = \;(X1, ..., Xy) is alinear polynomial and
g+H = {xec{0,1}*N(x)=0for1 <i<k—t—1 and\p_s(x) =1} (1)
H = {xec{0,1}*\(x)=0for1<i<k—t} 2)

Proof: Given a polynomial of this form, itis easy to see ti*dix+h) = 0 forh € H, whereas?(x+g’') =
1+ P(x) foranyg’ing + H.

For the converse, assuniis folded overg + H. Pick a basidi(1) ..., h(¢) for H. Complete this to a
basis for{0, 1}* by addingg andk — t — 1 vectorsf(1),...,f(k —t — 1). We can writex € {0,1}* as

k—t—1

x= > Af(i) + M—eg + Y ujh(j).

=1 j=1

It is clear that in this basig + H and H are described by Equatiofk 1 did 2 respectively. By Lefinka 7,
can be written a® (A1, ..., A\x_¢). Further, the conditio®(x + g) = P(x) + 1 implies that

P()\la"'a)‘k‘—t) = P()\l) 7)‘k‘—t—1)0) +)\k—t'

We can check this by substituting values for ;. SettingP’(A1,..., \k—t—1) = P(A1,..., Ak—4—1,0)
proves the claim. "



4.1 Testing Equality via Folding

Our next goal is to design a test to check if two vertices haenkassigned the same labels. We will do
this using folding. Given vertices andv, each with a label ifik], we wish to check if they have the same
label. We assign variableky, . .., X}, to vertexu, Y7, ..., Y} tow. If both vertices have the labgéhssigned

to them we expect the polynomi&l; + Y;; so our test should accept all such polynomials. The degodin
procedure labels by looking at the restriction af) to X, ..., X}, and labels by looking at the restriction
toYy,...,Y,. If the test accepts some polynomi@lwith non-trivial probability, we want the same label
assigned to both the vertices.

Define the polynomiaD; = X;+Y; and letD denote the set of all such polynomials. These polynomials
are(-folded over the subspadé of {0, 1}2* which is defined byX; + Y; = 0 for all 4, which consists of
the vectorgz, z) for z € {0, 1}*. We want to enforce this condition on the polynomials begsied, which
means they should have the form stated in Lerfiima 7.

This is done by a suitable projection. Pick a bas($), ..., h(k) for H and complete it to a basik of
{0,1}%* by addingf (1), ..., f(k). We can write(x,y) € {0, 1}2* in this basis ag\1, ..., i, i1, - - -, k)
Our test will be on polynomial® (A4, ..., \x) of degreed. We will run the basic dictatorship test on each
vertex. Our test proceeds by generating point§0ini }2*, writing them in theF-basis and projecting onto
(A1, ..., \) and testing the polynomidP at these points if0, 1}*.

Algorithm 3 EQUALITY TEST.

1. For vertex u, pick n<—{0,1}*.

2. Wite (9,0) = (\i,..., e, p1,...,p) and test if P(\g,...,\) =0.
3. For vertex v, pick 5/ < {0,1}*.

4 Wite (0k777/):()\17---7)\k7M17---7Mk) and test if P()\l,...,)\k):().

In order to analyze the test, wmfold P and rewrite it as a polynomial iXy,..., X;,Y1,...,Y; by
substituting for each;. We observe that folding enforces the following symmetryron

Claim 9 The polynomialP satisfiesP(x,y) = P(y,x) for x,y € {0,1}%,

Proof: By LemmdY,P is folded overH, and(x,y) + (y,x) = (x+y,x +y) € H. Hence(x,y) and
(y,x) lie in the same coset df. =

Algorithm 4 DECODING PROCEDURE FOR THEEQUALITY TEST.

1. Rewite P(\,...,\;) as a polynomal in Xy,...,Xx,Y1,...,Y%.
2. Run Algorithm@ on P(Xi,...,X,0%) to get list L(u).

3. Run Algorithm@ on P(0*Yy,...,Y;) to get list L(v).

4. Assign [(u) «— L(u) and I(v) «— L(v).

In order to analyze this procedure, let us define the polyats®i( Xy, ..., X;) = P(X1,..., X}, 0%),
andV(Y1,...,Y;) = P(0%,Yy,...,Y}:). The key observation is thd being independent off forces the
polynomialsU andV to be identical.

Lemma 10 We havdJ (71, ..., Zx) =V (Z1,..., Zy).



Proof: The polynomiald/ andV each define a function®, 1}* — {0, 1} given by
U(z) = P(z,0%), V(z) = P(0",2).

By Claim[@, P(z, 0%) = P(0*,z), hencell = V as functions, and hence also as polynomials. .

Theorem 11 Let P(\q,..., \;) be a degreel polynomial that passes the Folded Tests for ho#mndv with
probability at leastl — 2= + 6. Theni(u) = I(v) with constant probability (depending ahJ?).

Proof: Recall that forQ (X1, ..., Xx), H(Q) denotes the hypergraph ¢k corresponding to the mono-
mials in@. By LemmdD,H (U) = H(V). Performing the basic dictatorship test GiiX;, ..., X;) is
equivalent to testing i?(n, 0F) = 0, which is the same as testing thaf\,...,\;) = 0 for (n,0%) =
(AMyeeoy Ak i1, .-, ug). Similarly, the basic dictatorship test dn(Yi,...,Y,) is the same as testing
whetherP (0%, ') = 0. Since both these tests succeed with probability2~¢ + §, each ofL(U) and L(V)

is a maximal matching it/ (U') = H (V') of constant size. Thus by Lemria 6 choosing a random label from
each results in a common label with constant probability. "

4.2 Enforcing non-Emptiness

We show how one can use folding to ensure that the polynortfialspass the dictatorship test and the
equality test are non-zero.

For the dictatorship test, observe that the polynomigjsare 1-folded overg = 1*. To enforce this
condition on every polynomial, choose a baiél), ..., f(k — 1), g} for {0, 1}*. We write vectors in this
basis as

k—1
X = Z Nf (i) + Mg
=1

Polynomials which are folded overcan be written a$’(\q, ..., \x_1) + Ax. This suggests the following
test:

Algorithm 5 FOLDED DICTATORSHIP TEST.
1. Sample n«<—{0,1}*, and write it as n=(Aj,...,\).
2. Test if P()\l,...,)\kfl):)\k.

To analyze this test, we define the unfolded polynor@éK,, ..., X;) = P(A1,..., \g—1) + Ak

Theorem 12 The polynomial) (X7, ..., X) is folded. The probability thaP (A4, ..., \x—1) passes the
Folded Dictatorship Test equals the probability thiat X, . .., X;) passes the Basic Dictatorship Test.

Proof: If x = (Ay,...,\g), thenx +1% = (Ay,..., A\r_1,1 + \). Hence
Qx+1%) = (14 X) + P(A,- -, A1) = 1+ Q(x)

soQ is folded over1”. In fact by Theorerfill4Q has no constant term, §(0%) = 0, Q(1%) = 1.
To show that) passes the Basic Dictatorship Test, note that

P()\lw-w)\kfl):)\k <~ P()\l,...,)\k,1)+)\k=0 <~ Q(n):O.

10



In the Equality test, we want to ensure that the polynoniglX, ..., X;) andV(Y1,...,Yy) are both
non-zero. Defindl = (z,z) as before and leg = (1%, 0%). The polynomialsX; + Y; are folded over the
cosetg + H. We wish to enforce this condition on the polynomials thatlzeing tested, which means they
should have the form stated in Lemfda 8. Pick a basis {f(1),...,f(k —¢—1),g,h(1),...,h(¢)} for

{0,1}?* and let
k—t—1 t

(%¥) = Y Nifi+Nsg+ D ujh()).
i=1 j=1

Given a point(Ay, ..., Ag, i1, - . ., g) in this basis, we test iP(Ay, ..., \xk—1) = Ax. Thus the test is on
polynomials ink — 1 variables.

Algorithm 6 FOLDED EQUALITY TEST.

1. For vertex u, pick n<—{0,1}*.

2. Wite (,0F) = (Ai,..., Mk, pt1s-. ., ) and test if P, ..., 1) = M
3. For vertex v, pick 5 < {0,1}*.

4. Wite (0°,7)=(M,..., Mg, pt1,..., ) and test if P(A\,...,\) =0.

Define the unfolded polynomia (X1, ..., X;, Y1,...,Ys) = P(A1,..., Ak—1) + A\x. We denote the
restriction ofQ) to X4,..., X, byU andYy,..., Y, by V.

Theorem 13 The polynomial$/ (X1, ..., X;) andV(Y1,...,Y;) are both folded ovet”. If P(\y,..., A\x_1)
passes the Locally Folded Equality Test for botindv with probability 1 —2~94-§, then both/ (X1, . .., X)
andV (Y1, ...,Y;) pass the Basic Dictatorship Test with probability- 2= + 6.

Proof: The proof that/ andV pass the Dictatorship test follows that of Theoierh 12.
Observe that the polynomia) is folded overg + H, which contains the pointg = (1%,0%) and
g = (0%, 1%). Thus

Ux+1% =Q((x,0") +g) =1+ Q((x,0") =1+ U(x).

Similarly one can usg’ to show thaf/” is folded over1”. "

5 Consistency Testing

We will consider the following consistency problem: there &vo vertices, andv, each of them is assigned
alabeli(u),l(v) € [k] respectively. The vertex is assigned a projection function: [k] — [t], while the
vertexwv is assigned a projection functien: [k] — [t]. The goal is to check whether the labéls) and
l(v) satisfy7(I(u)) = o(l(v)). We want a test that accepts all polynomials of the foxi+ Y; where
m(i) = o(j). Let us denote the set of all such polynomialsy The test will specify target values for
points of the formx,y) € {0, 1}2* projected onto a certain lower dimensional subspace.
We start by constructing a subspadeon which every polynomial i® vanishes. Consider the subspace

H defined by the equations

X;+Y; =0, (i) = o(j) (3)

We would like a parametric description of this subspacewtuch we need the following definition [Has01].

11



Definition 3 Given a projection functiom : [k] — [t], for z € {0, 1}!, we define the vectaro = € {0, 1}*
by (Z o 7T)i = Zr(j)-

This gives a linear map froff0, 1}* — {0, 1}* since
(z1 +z2)om=z10om+2zg0T.
Lemma 14 The subspacé/ contains the vector& o m,z o o) for z € {0, 1}
Proof: We need to check thdk,y) = (z o 7,z o o) satisfiest; + y; = 0 for all 7(i) = o(j). But
T = (Z20T); = 2zs), Yj = (200); = 25 hencewr; = y;.

In fact a simple dimension argument shows tHat= {(zo 7,z o0) | z € {0,1}'} but we will not need this
fact. .

Letg = (1%, 0%). Every polynomial inD is folded overg + H. We pick a basi&(1),...,h(t) for H
and complete this to a basls of {0,1}?* given by F = {f(1),...,f(2k —t — 1),g,h(1),...,h(t)} for
some suitable choice @fi)s. Sety = 2k — t. Then

g—1 t
(x,y) =D _NE() + Agg+ Y uih())
=1

j=1

Algorithm 7 FOLDED CONSISTENCY TEST.

1. For vertex u, pick n<—{0,1}*.

2. Wite (7,0°) = (\,...,\g,p11,..., ) and test if P(A,..., 1) =\,
3. For vertex v, pick 5/ < {0,1}*.

4. Wite (05,7) = (A,..., g fi1,-.. ) and test if P(Ap,..., 1) = A,

Algorithm 8 DECODING PROCEDURE FOR THEFOLDED CONSISTENCY TEST.
1. Let Q(Xl, ey X, Y1, .- ,Yk) = P()\l, .. -7)\g—1) + )‘g-

2. Run Algorithm@ on Q(Xi,...,Xs, 0% to get list L(u).
3. Run Algorithm on Q0% Yy,...,Y;) to get list L(v).

4. Assign l(u) «— L(u) and I(v) «— L(v).

As before we define the polynomial$(Xy,...,X;) = Q(X1,...,X;,08) andV (Yy,...,Y;) =
Q(0%,Y1,...,Y}). The relation between the two polynomials enforced by fajdis a bit more intricate.
The key observation is that theirojectionsin Zi, ..., Z; obtained by replacing(; by Z.;) in U andY;
by Z,(;) in V are the same.

Lemma 15 Define the projected polynomials
Un(Z1y s Zt) = U(Zr1y, -5 Zn))s Vo213 Zi) = U(Zo(1ys -5 Zo(k))-
ThenU,(Z1,...,Zy) = Vo (21, ..., Zy).

12



Proof: We can viewU,; andV, as functions{0,1}* — {0, 1} given by
Ur(z) = Q(z o m, 0F), V,(z) = Q(0%,z00).
Since the polynomial is folded overH, it satisfiesQ(z o 7, 0%) = Q(0*,z o &) since
(zom, 0"+ (0%,z00) = (zom,z00) € H.

HenceU,(z) = V,(z) as functions, henc&(Z1,...,Z;) = V,(Z1,...,Z;) as polynomials. =

We can now analyze Algorithid 8.

Theorem 16 Define the projections of the lisfS(«) and L(v) asLr(u) = {7 (i) | ¢ € L(u)} and L,(v) =
{o(i) Ij € L(v)}.

1. BothL,(u)) and L,(v) are vertex covers for the hypergragh(U,) = H(V).
2. The polynomialé¢/, andV, are each folded ovet®.

3. The probability that?(\y, ..., As—1) passes the folded consistency test for ventexjuals the prob-
ability that U (X1, . .., X} ) passes the Basic Dictatorship Test.

Proof: The hypergrapht (U, ) is obtained fromH (U) by identifying the vertices inr—1(¢) for each
¢ € [t]. The edges in this hypergraph are those which have an oddetuhipre-images i (U). Thus
the projection of any vertex cover féf (U) is also a vertex cover fal (U ). From Algorithml2,L(u) is a
vertex cover forH (U), soL,(u) is a vertex cover foH (U ). Similarly L, (v) is a vertex cover foH (V).
By Lemmdb, sincé/,, = V,, both polynomials define the same hypergraph.

By the same argument used for Theolemh 13, we can showWthatdV are folded ovel”. But

Ur(z+ 1) =U((z+ 1) om) =U@zon+1%) =1+ U(zon) = 1 + Ux(2).

SoU, is folded overl’ and similarly forV,. This shows that the hypergragh(U.) = H (V) is non-empty.
The proof of Part 3 follows that of Theordml12. "

Thus, if P passes the test thdi(«) and L(v) are small in size, their projections are vertex-covers for
the same (non-empty) hypergraph. It is natural to ask if st/ (uv) «— L(u) andl(v) «— L(v) gives
m(l(u)) = o(I(v)) with some probability. This might not be the case. The reasdhat while the vertex
cover L(u) obtained by taking all the vertices of a maximal matching, ghojectionL . (u) need not have
this structure. Thud..(u) and L, (v) might be disjoint vertex covers of the same hypergraph. Hewe
the fact that they are both vertex covers together with LerBiwall suffice for our analysis. We note
however that it = 1, then the vertex covers will intersect, so the random dewpsiucceeds. This gives an
alternative proof of Hastad’s result fdr= 1.

6 The Reduction from Label Cover

An instance of lABELCOVER(d + 1) for d > 1 consists of al + 1-regular hypergrapliV, E') with vertex
setV = {v;}_, and an edge séf = {ej}g’;l, wherele;| = d + 1. The hypergraph is connected, and any
S C V of sizedn induces a constant fraction(d)m of edges. Every vertex iff is to be assigned a label

I(v) € [k]. Every hyperedge = (vf,...,vZ, ) is associated with &tuple of projection functiongr; } -
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wherer; : [k] — [t] andt < k. A vertex labelling strongly satisfies edgé m;({(vf)) = m;(I(v§)) for every
vf,v§ € e. A vertex labelling weakly satisfies edgéf m;(I(vf)) = 7;(I(v$)) for some paing, v € e.

This is a slightly non-standard hypergraph version of lalgkr. A similar kind of acceptance predicate
is used by Feige in proving the hardness of set-cdver [IFei%8E only reason we cannot use his result
directly is because we need to condition that large subgatertices induce many edges. The following
theorem is proved using a simple reduction from the stanbgartite version of lABELCOVER. We give
a proof in AppendiX_C for completeness.

Theorem 17 For anyg > 0, given an instance dfABELCOVER(d+1), itis NP-hard to distinguish between
the following cases:

1. YES INSTANCE: There is some vertex labelling that strongly satisfies egdge.

2. NO INSTANCE : There is no vertex labelling that weakly satisfiefaction of the edges.

We need some notation in order to describe the reductiorotor REC(d, n). To each vertex € V,
we assignk variablesX?, ..., X}/. Since there are a total aft: variablesX|", ..., X,™, our points will
be innk dimensions, partitioned int@ groups, one for each vertex, and each group havidgnensions,
one for each possible vertex label. Givere zo™*, we usex” to denote the vector if0, 1}* obtained by
projecting onto the co- ordinates assigned to vertelo a labelling of vertices, we associate the polynomial
QXP . XP) =Y, X

Our flrst goalisto |dent| a subspaofésuch that ifl satisfies all the BEL COVER constraints, they;
is 0-folded overH . Unlike for the simple tests considered so far, we do not kwiwat the set of polynomials
Q) is, or whether it is non-empty. However, one can identifytgexthat must lie i from the constraints
of the LABELCOVER instance.

Lemma 18 Consider a pair of vertices, w that lie ine € F. Suppose the projections associated with them
by e are m and o respectively. Givem € {0, 1}!, define the vectoh = h(z, e, u, w) € {0,1}"* where

zomifv=u
h*=<{zooifv=w (4)
0" otherwise

If [ satisfiesr(I(u)) = o(l(v)) then@;(h) =

Proof: Note that
=D hite) = hifuy + i)
veV

Also

h;L(u) = (Z © Tr)l(u) = Z?T(l(u))’ hlu(}w) = (Z © U)l(w) = Zo(l(w))-
Butr(l(u) = o(l(w)), hencehyy,, + Y

H(w) — .

We takeH to be the span of all the vectaisabove, over all choices efe E, u,w € e andz € {0, 1}".
Letg(v) = 327, e be the indicator for the co-ordinates of the vertesLetg = g(v;). Observe that

every polynomial assouated to a labelling satisfg&z(v)) = 1.
Lemma 19 The affine subspage+ H contains the vectorg(v) for all v € V.

Proof: Assume that,,w € e for somee € E. Letr ando denote the associated projections. Then
g(u) + g(w) € H, since this vector is obtained by setting= 1! in Equatior[#. Since the hypergraph is
connected, it follows that all the vectaggv) lie in the same coset df . n

14



We will ensure that the polynomials we test are folded gyer H. Let the dimension of the spadé
beh, and select a basi(j) ?:1 for it. Complete this to a basig of {0, 1}"* by addingg and some other
vectorsf(1),...,f(nk —h —1). Letg = nk — h. One can write anx € {0, 1}"* as

g—1 h
x =Y Af() + Agg+ Y p1h(j)
i=1 =1

Letn(v) denote the random variable where each co-ordinate comdsppto vertexv is sampled from
thee-biased distribution and all other co-ordinate€)asVe now state the reduction.

Algorithm 9 LABELCOVER TEST

1. Conpute the basis F described above.

2. Pick a vertex v«—V and sanple the vector n(v).
3. Wite n(w) = (A1, Ags b1y, Hn)-

4. Test if P(A\i,..., g—1) = Ag.

We give a decoding procedure that uses the polynofitd assign labels to every vertex. If passes
the test with good probability, then the resulting labgjlis guaranteed to weakly satisfy a good fraction
of constraints. This implies that if we reduce from & hstance of laABELCOVER then no polynomial
passes the test. Given a polynom@alX;", ..., X,"), for each vertex € V, we useQ(X") to denote the
restriction of@ to the variabled X?}*_,, obtained by setting all other variablestto

(2

Algorithm 10 DECODING PROCEDURE FOR THELABELCOVER TEST

1. Set Q(X{',....,X")=P(Ai,..., g—1) + Ay

2. For every vertex veV,

2a. Run Al gorithm@ on Q(X") to get list L(v).
2b. Set [(v) «— L(v).

Theorem 20 Assume thaf’(\q, ..., \,—1) passes thé. ABELCOVER test with probabilityl — 2-4 1 95
for § > 0. Then the labelling(v) weakly satisfies’ fraction of the constraints in expectation for some
v (€, 8, d).

Proof: By an averaging argument, forddraction of vertices i/, the probability of passing theABEL-
CoVER test is at least — 2~¢ + §; denote this set by and call such verticegood Thegoodset of edges
E(S) induced bysS is at least ay fraction of all edges for some constay(®).

Pick an edgee € E(S), and pick any two vertices, w € e. Both these will be good vertices. Let
Q(X", X™) denote the restriction of the polynomi@(X7*,..., X;") to the variables{X;ﬁ,X;r“}ifij:1
obtained by setting the other variables(to This polynomial isO-folded over the set of vectorsl’ =
(zom,zoo). Itisfolded overg + H' whereg = (1%, 0%). So we can apply Theoreml16 to conclude that the
projections of the polynomial§®(X*) and@Q(X™) underm ando respectively are identical, and L(u))
ando(L(w)) each give a vertex cover for the (non-empty) hypergrapbf this projected polynomial. Fur-
ther, sincex andw are good vertices, by Theordh 4 bditw) and L(w) are small. Hence their projections
L, (u) andL,(w) are also small.
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Since this is true for any pair of vertices énwe haved + 1 vertex covers off. But each edge off
has size at most, so by Lemma&l5 some two of them intersect, assume that thes¢afu)) ando(L(v)).
In other words, there are labéels € L(u) and/y € L(v) so thatr(¢1) = o(¢2). Since each of these lists
is of constant size (depending only ey, d), there is a constant probability = p(e, J, d) that these are
the labels chosen far andv respectively by the random decoding in Step 2b. In this dhgegonstraint is
weakly satisfied. Thus the expected number of satisfied @ntt isy' (e, d,d) = p - 7. "

By taking the soundnegsof the label cover instance to be a sufficiently small cortstaa conclude that
in the No case, there is no polynomial that satisfies th@EL COVER test with probabilityl —2~¢ 4§, else
we would reach a contradiction. Finally, we need to masdagéABEL COVER test to produce an instance
of POLYREC(d,n). The LABELCOVER test produces a distributig® on polynomially many constraints
of the form (x, f(x)). If for somex, (x,0) and(x, 1) each occur with non-zero probability, then transfer
all the probability mass fox to the label0/1 that has more weight undép. It is easy to see that the
completeness and soundness can only change bye now repeat eack sufficiently many times to
simulate the distribution, to get an instance afl® REC(d, n). This proves Theorefd 1.

7 Towards Optimal Inapproximability

It would be very interesting to try and improve the soundrigerantee in Theorehh 1 §)+5. This problem
looks to be fairly hard.

The first step is finding a better dictatorship test/anali@isow-degree polynomials, which is interest-
ing in its own right and might require some new techniquesasiiter the caseé = 2, where the soundness
of our test is%. Our analysis is tight: the quadratic fro@y = (X1 + ... + Xp/9)(Xp 241 + .- + Xi)
passes the test W.p% and does not have a small vertex cover. However, this poljalais not folded
over 1%, and we only need our test to work for folded polynomials. rEhare folded quadratic forms
with no small vertex cover that pass the test with good pritibabassumek /2 is even and sef); =
(X1 + .+ Xpyo) (X o1 + -+ + Xi) + Xpy 1. One can show thap, is folded, it passes our test with
probability close to}, and it does not have a small vertex cover. However, it seatsal that the decoding
of Q5 ought to be the labe! + 1. This suggests the need for a new decoding algorithm.

The next step would be to design a consistency test that stiee Graph Decoding problem from
SectiorB, and can also handle more sophisticated cortstiauolving projections (see Sectibh 5). While
the UNIQUE GAMES CONJECTUREUSually gives a way to translate dictatorship tests to artfemslresult, it
does not help in our setting since the approach of foldingtmsistency constraints crucially needs perfect
completeness. Indeed, translating the dictatorship testshardness result might requirakeL COVER
instances where the projections have special properti@shveeem out of the reach of current techniques.

It would be interesting to see whether the ideas in this papebe applied to the problem of univariate
polynomial reconstruction and Reed-Solomon decoding. sA $itep might be to consider the setting where
the field size is larger but the number of variables in logamit in the input sizex.
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A Extension to Arbitrary Finite Fields

We now sketch the proof of Theordih 2. The reduction follovessime scheme as in the case of polynomials
overF[2]. Here we describe the Dictatorship Test and the Consisteéestyfor polynomials oveF|q].

Dictatorship Testing

Analogous to thé[2] case, we usg «— F[q]k to denote sampling from the distribution, where eaap is
independently set t0 with probability 1 — e and with probabilitys is selected uniformly froni¥[q] — {0}.
The Basic Dictatorship Test in this case is as follows,

Algorithm 11 BASIC DICTATORSHIP TEST:
Pick n<—F[¢)* and test if P(n)=0.

This test is analyzed using the following form of the Scheatippel lemma.

Fact 21 Let P(X;,..., X)) be a non-zero polynomial of degrédeover F[q|, such thatd = a(q — 1) + b,
for0<b<g-—1.Then
Pr [P(n)=0] < s(d,q)

n—TF[q]"*

wheres(d, q) = 1 — 4.

For a polynomialP overF|q|, we have a corresponding hypergrafi{ P), similar to theF[2] case. For
every monomial
m=c- H zit (c#0)
i€TCk]
of P, H(P) contains a hyperedge consisting of the vertiegwith multiplicity e; for : € T. Analogous to
theF[2] case, we obtain the following theorem:

Theorem 22 Let P(X;,..., X)) be a degreel polynomial overF[q] that passes the Basic Dictatorship
Test with probabilitys(d, ¢) + ¢ for somed > 0. Then the largest matching in the hypergrafti P) is of
size(C’(q, ¢, ¢, d). Further the constant termin P(Xy,..., X}) is0.

Proof: Our proof proceeds in a similar manner to t{€] case. For convenience, we defirie= <%a)
We do a two step sampling procedure for
1. Set every variable; to 0 independently with probability — &’.
2. Independently set each of the remaining variables toweviabmF|[q].
Clearly this induces arbiased distribution on. Let X° denote the set of these variables. The resulting
polynomial P'(X ) consists of the hypergraph induced by the vertexSsetlso

Pr [Pm)#0/= Pr [P'(n)#0]
ne—F|q)* 7' —TF[q)'S!

If P/(X*®) is non-zero, then since it has degree at mhsPr[P' (') # 0] > 1 — s(d,q). Now if
¢ # 0, then P’ also has the non zero constant term, hence it is a non-zeyagolal, soPr[P(n) # 0] =
Pr[P'(n') # 0] > 1 — s(d, q), which is a contradiction.
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Now assume that the hypergraph( P) contains a matching/ of size|M| > ﬁ where the constant
C will be fixed later. For each hyperedge= M, the probability that all its vertices are chosen to b&'in
is at least(<)¢l. Also, sinceM is a matching, these events are independent for variousseddgwis the
probability that none of these edges occurs in the hypelngireguced bys is bounded by

[Ta- @) < a-EHer < e

ecM

Hence, with probabilityl — e~¢, the subgraph induced b§ is non-empty. Conditioned on this event,
P'(X%) is a non-zero polynomial of degree at mdshenceP’ (1) # 0 with probability at least~¢. Thus

Pr[P(n) # 0] 2 (1 — e ) - (1 - 5(d. q))-

For sufficiently largeC, this contradicts the fact th&c[P(n) = 0] > s(d, q) + 0.

Consistency Testing

We consider the following consistency problem as describegkction 5. There are two verticesandv,
each of them is assigned a labgl), [(v) € [k] respectively. The vertex is assigned a projection function
m : [k] — [t], while the vertex is assigned a projection functien: [k] — [t]. The goal is to check whether
the labeld (u) andi(v) satisfyn(l(u)) = o(I(v)). We want a test that accepts all polynomials of the form
X; +Y; wherer(i) = o(j). Let us denote the set of all such polynomialsIkyThe test will specify target
values for points of the fornix, y) € F[q]% projected onto a certain lower dimensional subspace. Wwast
need the following definition,

Definition 4 Given a projection functiom : [k] — [#], for z € {0,1}!, we define the vectaro 7 € Fq]"
by (z 0 7); = Zx(;)-

We construct a subspadé on which every polynomial irD vanishes. Consider the subspdéalefined by
the equations
Xi +Y; =0, (i) = o(j) (5)

As before, we have the following analogous lemma.
Lemma 23 The subspacé/ contains the vector& o m, —z o o) for z € {0, 1}".
Proof: We need to check thdk,y) = (z o m, —z o o) satisfiesr; 4 y; = 0 for all 7(i) = o(j). But
;= (z207); = 273), Yj = —(200); = —2,;) hencex; = —y;.

Letg = (1*,0%). Every polynomial inD is folded overg + H. We pick a basish(1),...,h(t) for
H and complete this to a basisof F[q]** given by F = {£(1),...,f(2k —t — 1),g,h(1),... ,h(¢)} for
some suitable choice @fi)s. Sety = 2k — t. Then

g—1 t
(x,¥) =D _Nf(D) + Agg+ Y pjh())
i=1

j=1
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Algorithm 12 FOLDED CONSISTENCYTEST.
1. For vertex u, pick n«<— Fg".
2. Wite (,0%) = (X\,...,A\g,pi1,..., ) and test if P(A,..., 1) =),
3. For vertex v, pick 5/ < Flg".
4. Wite (05,7) = (A1, s Agy i1,y pe) and test if P(Aq,...,A\—1) = A,

Algorithm 13 DECODING PROCEDURE FOR THEFOLDED CONSISTENCY TEST.
1. Let Q(Xl, cey X, Y1, .- ,Yk) = P()\l, .. -7)\g—1) + )‘g-

2. Run AlgorithmP on Q(Xi,...,X;,0%) to get list L(u).

3. Run Algorithm@ on Q0% Yy,...,Y;) to get list L(v).

4. Assign [(u) «— L(u) and [(v) «— L(v).

We define the polynomials (X1, ..., X;) = Q(Xy,..., X, 09 andV (Yy,...,Y;) = Q(0F, Y1,...,Y}).
As before, we have the following analogous lemma which wie $tare without proof.

Lemma 24 Define the projected polynomials
Un(Z1s..,20) = U(Zn(rys s Znr)s Vol Z1s o, Z0) = U(Zo(rys - -+ Zo(ry)-
ThenUx(Zy,...,2) = Vo (21, ..., Z).
The following analysis of the Folded Consistency Test pedsen a similar manner as before.

Theorem 25 Define the projections of the lisfS(u) and L(v) as L, (u) = {7 (i) | ¢ € L(u)} and L, (v) =
{o(i) Ij € L(v)}.
1. BothL,(u) and L, (v) are vertex covers for the hypergragh(U, ) = H(V}).

2. The polynomialé/,, andV,, are each folded ovet®.

3. The probability that”(\y, ..., A,—1) passes the folded consistency test for ventexjuals the prob-
ability that U (X1, . .., X} ) passes the Basic Dictatorship Test.

Proof: Consider an assignmentto the variablesZy, ..., Z; such thatz; = 0 for all i € L,(u). Now,
Un(z) = U(z o). We have(z o ); = z.;) = Oforall j € L(u) sincez; = 0 forall i € Ly (u), and
7(j) € Ly(u)forall j € L(u). SinceL(u) is a vertex cover foH (U), therefore, by setting all the variables
in L(u) to zero, we obtai/(z o 7) = 0. Hence,U,(z) = 0. Sincez was an arbitrary assignment which
set variables ir (u) to zero,U,(Z1, . .., Z;) vanishes over all such assignments. Therefore, a variéble o
L. (u)is presentin every monomial 6f.(Z1, ..., Z;), and sal,(u) is a vertex cover fof (U ). Similarly,
L(V,) is a vertex cover fof (V,,). By Lemmd2#, sincé/, =V, H(U,) = H(V,).

Using arguments similar to Theordml 13, we can showtthanhdV are folded ovell”, and since

Ue(z+ M) =U((z+ A1) o) =U(zom+ A1¥) = A+ U(zon) = A+ Ux(2).

SoU, is folded overl® and similarly forV,. This shows that the hypergraph(U,.) = H (V) is non-empty.
The proof of Part 3 follows that of Theordml12. We omit the detaere. .

The reduction from BWBELCOVER(d + 1) proceeds along similar lines as TheorEnh 20. We omit the
details.
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B Reduction from MAX-LIN

In this section, we consider the polynomial reconstructioblem ROLYREC(d, n) over any finite field
Flq|, whered < q. We prove a hardness result for the reconstruction probiena gimple reduction from
Hastad’s result for linear equations.

The MAX-LIN(n, g) problem consists of point-value paifg’, f(x*)}, with x’ € F[q]" andf(x’) €
[F[g]. Our goal is to find a linear polynomial, which satisfies thexmmum number of points. The following
theorem is due to Hastad [Ha$01],

Theorem 26 For anye, § > 0, given an instance dIAX-LIN (n, ¢), it is NP-hard to distinguish between
the following cases:

1. YESINSTANCE: There is a linear polynomial that satisfiés- ¢ fraction of the points.

2. No INSTANCE: Every linear polynomial satisfies at mdqstk o fraction of the points.

We use this to prove a hardnesslof ¢ versusth]#d + ¢ for PoLy REC(d, n). Note that sincel < g,
the soundness lies betweéfy and(d + 1) /q.

Theorem 27 For anye, § > 0, given an instance d?oLY REC(d, n) overF[q] with d < g, it is NP-hard to
distinguish between the following cases:

1. YESINSTANCE: There is a linear polynomial satisfying(x’) = f(x*) for 1 — ¢ fraction of the points.
2. No INSTANCE: Every polynomial of degreé < ¢ satisfiesP(x?) = f(x) for at mostqdfl#d +0
fraction of the points.

Proof: Let the instance of MAX-LINg, ¢) be given by(x, f(x%)) for i = 1,...,m. Our instance of
PoLYREC(d, n) is given by the point-value paifs\x‘, \f(x?)) for every\ € F[q] and everyi € [m].

If the MAX-LIN instance is a ¥es instance, then there is a linear polynom(Xy, ..., X,,) that
satisfiesP(x!) = f(x*) for 1 — ¢ fraction. It is easy to see that the same polynomial satisfiésastl — ¢
fraction of the constraints for thed®y REC(d, n) problem.

Suppose that MAX-LIN instance is adNinstance. Assume that there is a degdepolynomial
P(X1,...,X,) that satisfie% + § fraction of the points. We call a point goodif P satisfies at

leastd + 1 of the pairs(A\x, A\ f(x)) over all values of\ € F[q]. By an averaging argument, at Ieéqs{ﬂr ~
fraction of the points are good, for some constanbinceP satisfies at least+ 1 of the pairs(Ax, A f (x)),
the univariate polynomial ik given by P(Ax) — Af(x) hasd + 1 roots inF[q]. However, it has degree at
mostd, so it must be the zero polynomial. Equating the coefficiefitson both sides, we gét’(x) = f(x)
for every good point, wher@” is the linear part of?. ThusP' is a linear polynomial satisfying + ~ frac-
tion of the constraints of the original MAX-LIN instance. Kiag the soundness of the MAX-LIN instance
sufficiently small, we get a contradiction. .

C Hardness for LABELCOVER(d + 1)

In this section we give a reduction from the standardEL COVER instance to the ABELCOVER(d + 1)
instance as defined in section 6, whéris a fixed constant.

Definition 5 A LABELCOVER instanceL(G(U, V, E), [t], [k], {7"* }u,v}er) is @ bipartite graphG with
bipartition U, V' and edge seE with a projection7®* : [k] — [t], for every{u,v} € E, withu € U
andv € V. Moreover, every vertex ifi has the same degree and every verte¥ihas the same degree.
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A vertex labelling/(w) for all w € U UV, satisfies an edgéu,v} € E, (whereu € U and v € V) iff

7 (l(v)) = I(u).

The following theorem is a consequence of the PCP TheorenM[A®8,[AS98] and Raz's Parallel
Repetition Theoreni [RazBb8].

Theorem 28 For every constanB > 0, given an instancé& of LABELCOVER, it is NP-hard to distinguish
between the following cases:

1. YES INSTANCE: There is some vertex labelling that satisfies all the edges of

2. No INSTANCE : There is no vertex labelling that satisfigdraction of edges of.

We now give a reduction from ABELCOVER to the LABELCOVER(d + 1) problem which will prove
Theoren1J.

Proof: Given an instance of ABELCOVER, L(G(U,V, E), [t], [k], {m"" } {uv}cr) , We construct an in-
stancel’ of LABELCOVER(d + 1) in the following manner:

1. The vertex setof’isV’' = V.

2. Ahyperedge’ is added in the following manner. Pick arandamg U and pick vertice®1, vo, . .., Ug11,
uniformly at random from the neighbors ofin G. Sete’ = {vi}fill, and the associateti+ 1-tuple
of projections to be{m}?jll, wherer; = ¥ % forall1 <i<d-+ 1.

3. Add all such hyperedges possible to the edgdiset

Consider a subsef C V' = V of sized|V’|. Letu be any vertex irlU of the instanceC. Let p, be
the fraction of neighbors af in S. Since, every vertex off has the same degree and every verte¥ of
has the same degre®,c,.v[p.] = §. The way edge set’ of £’ is constructed implies that the fraction of
hyperedges i’ induced bysS is the probability that all + 1 vertices uniformly chosen at random from
neighbors of a vertex. (which is chosen uniformly at random frof), lie in S. For a giveru € U, the
probability thatd + 1 vertices chosen uniformly at random from its neighborsniiis p?+!. Therefore
the fraction of edges of’ induced byS is Eyc v [p%t!] > (Bucpupa])?t = 591, Hence, a constant
fraction of hyperedges i’ are induced by a subs8tof constant fraction of vertices ivi’.

Note that by applying Parallel Repetition orakeL COVER we can increase the degrees of vertices
in U arbitrarily while reducing the soundness. Sinte- 1 is a fixed constant, we can arbitrarily reduce
the fraction of hyperedges ofABELCOVER(d + 1) which have repeated vertices and hence remove these
hyperedges from the instance.

If £is a YESinstance, then there is a labellihghat satisfies all the edges 6f Clearly, the labelling
restricted tol” will strongly satisfy all the hyperedges &f.

If £is a No instance, then there is no labelling that satisfideaction of the edges of. Now, suppose
that there is a labelling that weakly satisfies fraction of hyperedges of’. For every vertex. € U,
defineq, to be the probability that two (distinct) random neighbdrs are labelled consistently ly Since
every vertex inJ has equal degree and every verteX/ofias equal degree, and by union bound, we obtain,
Eula.] > a/(“5h). Let2o/ = o/(*"). Call a vertexu € U ‘good’ if ¢, > o'. By averaging, at least
o/ fraction of verticedJ are good. Let, € U be a ‘good’ vertex, i.el labels at least’ fraction of pairs
{vs,v;} consistently where; andv; are neighbors of. Again, by averaging, there must be a neighiyaf
u which is consistently labelled with at least/2 fraction of neighbors of.. Now, extending the labelling
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I to u, by settingl(u) = 7¥“(I(v)) will satisfy at leasto’/2 fraction of edges incident on in £. By
labelling every ‘good’ vertex in a similar manner, we obtaitabelling! that satisfies at least? /2 fraction
of edges ofL. Sinced + 1 is a fixed constant, for ang > 0, choosings to be small enough, we get a
contradiction. So, there is no labelling 6f that weakly satisfiea fraction of the hyperedges. n
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