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Abstract

We study the polynomial reconstruction problem for low-degree multivariate polynomials overF[2].
In this problem, we are given a set of pointsx ∈ {0, 1}n and target valuesf(x) ∈ {0, 1} for each of
these points, with the promise that there is a polynomial over F[2] of degree at mostd that agrees withf
at 1 − ε fraction of the points. Our goal is to find a degreed polynomial that has good agreement with
f . We show that it is NP-hard to find a polynomial that agrees with f on more than1− 2−d + δ fraction
of the points for anyε, δ > 0. This holds even with the stronger promise that the polynomial that fits the
data is in fact linear, whereas the algorithm is allowed to find a polynomial of degreed. Previously the
only known hardness of approximation (or even NP-completeness) was for the case whend = 1, which
follows from a celebrated result of Håstad [Hås01].

In the setting of Computational Learning, our result shows the hardness of (non-proper)agnostic
learning of parities, where the learner is allowed a low-degree polynomial overF[2] as a hypothesis.
This is the first non-proper hardness result for this centralproblem in computational learning. Our
results can be extended to multivariate polynomial reconstruction over any finite field.
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1 Introduction

In the generic polynomial reconstruction problem, we are given points{xi}mi=1 and target valuesf(xi) at
those points. The goal is to find a low-degree polynomial thathas good agreement withf . In addition to be-
ing a very natural problem, polynomial reconstruction has found applications in several areas of theoretical
computer science including computational complexity, coding theory, derandomization and computational
learning. Several important advances in Probabilistically Checkable Proofs (PCPs) and List Decoding rely
on highly efficient algorithms to solve the polynomial reconstruction problem. This work addresses the com-
plexity of the polynomial reconstruction problem for low-degree multivariate polynomials over finite fields.
This version of polynomial reconstruction is encountered in several of the settings mentioned above. We
elaborate on some applications of polynomial reconstruction in coding theory and computational learning.

Coding Theory: An important family of error-correcting codes known as Reed-Muller codes is obtained
from low-degree multivariate polynomials over finite fields. In the Reed-Muller code RM(d, n), the mes-
sages correspond to all polynomials of degree at mostd in n variables, and the encoding is the vector of
evaluations of the polynomial at points inFn. Hadamard codes are a class of Reed-Muller codes obtained
by taking the messages to be all linear functions overF

n. In the Reed-Solomon code RS(d, n), the messages
correspond to degreed univariate polynomials (d is super-constant), and the codewords are evaluations of
the polynomial at somen points in the finite fieldF. The decoding problems for all these codes are instances
of the polynomial reconstruction problem.

A series of influential results give highly efficient list-decoding algorithms for such codes, which pro-
duce a list of all codewords that have significant agreement with the received word. The first such algo-
rithm was given for Hadamard codes by Goldreich and Levin [GL89], and subsequently by Kushilevitz
and Mansour [KM91] and Goldreich, Rubinfeld and Sudan [GRS00]. List decoding algorithms for Reed-
Muller codes were given by Goldreich, Rubinfeld and Sudan [GRS00], Arora and Sudan [AS03] and Sudan,
Trevisan and Vadhan [STV01]. For Reed-Solomon codes, list decoding algorithms were given by Sudan
[Sud97] and Guruswami and Sudan [GS99]. Recent advances on capacity-achieving list-decodable codes
by Parvaresh and Vardy [PV05] and Guruswami and Rudra [GR06]use variants of Reed-Solomon codes
These results have had great impact on both coding theory andcomputational complexity. In particular
Reed-Muller codes have numerous applications including proof-checking and the hardness of approxima-
tion [ALM +98, AS98, AS03], hardness amplification [STV01], cryptography [GL89] and derandomization
[TSZS01]; see [Tre04, Gur04] for more applications. Various applications require various parameter set-
tings, for instance in PCPs, on inputs of sizeN , one takes|F| = (log N)O(1) andn = O( log N

log log N ).
Indeed, known algorithms for some of these codes are believed to be optimal and it is an important

open problem to prove matching computational and combinatorial lower-bounds. The decoding problem
for a specific code is polynomial reconstruction with an important restriction: the set of points is known to
the algorithm in advance, it is only the labelsf(x) that can be generated adversarially. However, several
decoding algorithms do in fact solve the general reconstruction problem [Sud97, GS99].

Computational Learning: The problem of learning parity functions over{0, 1}n in the presence of classi-
fication noise is a central problem in computational learning; this is another instance of multivariate polyno-
mial reconstruction. Two kinds of noise models have been studied: in the random classification noise model,
the label of each example is flipped independently with probability η < 1

2 before it is given to the learner.
In the agnostic learning model which allows worst-case noise, an adversary changes the labels of someη
fraction of the points in{0, 1}n before the points are presented to the learner. This problemis equivalent to
the well-studied problem of decoding random linear codes incoding theory.

While both these problems are widely believed to be hard, there is a considerable gap in our under-

1



standing of their complexity. For random classification noise, the best known algorithm due to Blum, Kalai
and Wasserman runs in time2O(n/ log n) for any distribution [BKW03]. A2O(n/ log n) algorithm for learning
parity with adversarial noise under the uniform distribution was given recently by Feldmanet al.[FGKP06].
Their algorithm is a proper learning algorithm which produces a parity as hypothesis. The question of
whether sub-exponential agnostic learning of parity is possible under other distributions is wide open. On
one hand, Håstad shows the proper learning of parities withadversarial noise is NP-complete [Hås01]. But
this does not exclude the possibility of a non-proper learning algorithm which uses some other hypothesis,
such as a low-degree polynomial. Indeed, proper learning ofmonomials with adversarial noise is known to
be NP-hard [Fel06], whereas Kalaiet al.[KKMS05] give a2O(

√
n) non-proper learning algorithm for all dis-

tributions which produces the sign of a real polynomial as its hypothesis. Feldmanet al.asked whether parity
with adversarial noise is hard to learn even using low-degree F[2] polynomials as hypothesis [FGKP06].

The problem of polynomial reconstruction arises naturallyin the context of learning the circuit class
AC0, which consists of circuits of AND, OR and NOT gates having polynomial-size and constant-depth.
Linial, Mansour and Nisan showed that such circuits are learnable under the uniform distribution in quasi-
polynomial time [LMN93]. The question of whether these circuits are PAC-learnable is wide open. A
possible approach to this problem is suggested by the results of Razborov and Smolensky, who show that
such circuits withn inputs can be approximated by multivariate polynomials of degree(log n)O(1) overF[p]
under any distribution [Raz87, Smo87]. Thus even a weak learning algorithm for such polynomials overF[p]
with adversarial noise under arbitrary distributions would have important consequences for computational
learning. It would imply a PAC-learning algorithm forAC0, and in fact for the larger classAC0[p], where
MOD-p gates are also allowed. Currently,AC0[p] circuits are not known to be learnable even under the
uniform distribution. This problem of proper learning of polynomials under arbitrary distributions with
adversarial noise is a generalization of the reconstruction problem which we address.

Hardness Results: In contrast with the tremendous progress on the algorithmicside, relatively few negative
results are known for polynomial reconstruction. For linear polynomials inn variables, a tight hardness
result follows from the celebrated work of Håstad on solving linear equations over finite fields [Hås01].
For d = 2 and higher, we are unaware of even an NP-completeness resultfor F[2] or even polynomial-
sized fields. Goldreichet al.show that the polynomial reconstruction problem is NP-complete for univariate
polynomials over exponentially large fields [GRS00]. The problem of Reed-Solomon decoding was recently
shown to be NP-complete [GV05] by Guruswami and Vardy, againover large fields. Cheng and Wan show
some connections between Reed-Solomon decoding and the discrete log problem over finite fields [CW04].

1.1 Our Results

We consider the Polynomial Reconstruction problem POLYREC(d, n) for multivariate polynomials inn
variables overF[2] of degree at mostd, for d constant. The input to this problem is a set of point-value pairs
{xi, f(xi)}mi=1 wherexi ∈ F[2]n andf(xi) ∈ F[2] and a degree boundd. Our goal is to find the multivariate
polynomialP (X1, . . . ,Xn) of degree at mostd that satisfiesP (xi) = f(xi) for most pointsxi. We will
allow the possibility that the same vectorx is repeated multiple times (but with the same labelf(x)).

If there is a polynomialP (X1, . . . ,Xn) such thatP (xi) = f(xi) for all i, it can be found using poly-
nomial interpolation. Assume that some polynomial agrees with f(x) on 1 − ε fraction of the points. Can
we find a polynomial with good agreement? Our main result is that this problem is hard to approximate.

Theorem 1 For any ε, δ > 0, given an instance ofPOLYREC(d, n) over F[2], it is NP-hard to distinguish
between the following cases:
1. YES INSTANCE: There is a linear polynomial satisfyingP (xi) = f(xi) for 1− ε fraction of the points.
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2. NO INSTANCE: Every polynomial of degree at mostd satisfiesP (xi) = f(xi) for at most1− 2−d + δ
fraction of the points.

In the cased = 1, our result matches the tight bound of1
2 + δ for linear equations which follows from

Håstad’s work [Hås01], but via a very different proof technique. To our knowledge, ford ≥ 2, this is the first
hardness of approximation or even NP-completeness for a fixed field. Theorem 1 gives a strong guarantee
in the YES case: the polynomial fitting the data is linear. This impliesthe NP-hardness of agnostic learning
of parity even if the learning algorithm is allowedF[2] polynomials of degreed for any constantd, making
significant progress on the problem raised in [FGKP06].

Theorem 1 suggests limits to PAC-learningAC0 via polynomial reconstruction, by showing that there
are distributions under which the reconstruction problem is NP-hard. It implies the hardness of proper
learning for low-degree polynomials, even if the learning algorithm is allowed to ask queries. Recently,
Gopalanet al. [GKRZ07] have given a list-decoding algorithm that decode RM(d, n) codes polynomials up
to an error-radius1−2−d +δ overF[2]n. This shows that degreed polynomials can be learnt up to error-rate
1 − 2−d + δ under the uniform distribution with queries. Indeed, the soundness factor of1 − 2−d in our
result comes from the minimum distance of orderd Reed-Muller codes overF2 (which is2−d).Thus, unlike
for univariate reconstruction, where the specific subset ofpointsS ⊆ F (or equivalently, the distribution on
points) does not affect the number of errors that can be corrected by known algorithms [Sud97, GS99], the
point-setS ⊆ F

n is crucial in the multivariate case.
Our results can be extended to any finite fieldF[q]. Let s(d, q) denote the maximum over all non-zero

polynomialsP (X1, . . . ,Xn) in F[q] of degreed of the probability thatP is 0 at a random point inF[q]n.
By the Schwartz-Zippel lemma, ifd = a(q − 1) + b for 0 ≤ b ≤ q − 1, thens(d, q) = 1− q−b

qa+1 . Note that
the minimum distance of the orderd Reed-Muller code RMq(d, n) overF[q] is precisely1− s(d, q).

Theorem 2 For any ε, δ > 0, given an instance ofPOLYREC(d, n) over F[q], it is NP-hard to distinguish
between the following cases:
1. YES INSTANCE: There is a linear polynomial satisfyingP (xi) = f(xi) for 1− ε fraction of the points.
2. NO INSTANCE: Every polynomial of degreed satisfiesP (xi) = f(xi) for at mosts(d, q) + δ fraction of
the points.

The proof of Theorem 2 is presented in Appendix A. We note thatthe difficulty in proving hardness
depends on the relative sizes ofd andq. Whend < q− 1, one can prove a hardness of1− ε versusd+1

q + δ
using a simple reduction from linear equations overF[q] which we present in Appendix B.

An interesting open problem is to improve the soundness to1
2 + δ for all degrees overF[2], and 1

q over
F[q]. However it seems that this will call for some substantiallynew techniques or a different approach to
this work.

2 Overview of the Reduction

The main technical contribution of our work is to apply the machinery of PCPs to the polynomial recon-
struction problem. Our result is proved by a reduction from LABELCOVER (see Section 6 for the definition
of LABELCOVER). However, the fact that polynomial reconstruction ford ≥ 2 is not a CSP in the usual
sense means that there are several obstacles to overcome. Todo so, we introduce some new primitives such
as Dictatorship Testing for Polynomials and Consistency Testing via Folding which we believe could be
useful in other contexts. For simplicity, let us consider polynomials overF[2].
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Dictatorship Testing for low-degree Polynomials: Like most reductions from LABELCOVER, our first
goal is to give adictatorship testfor low-degree polynomials, using constraints of the form〈x, f(x)〉 for
x ∈ {0, 1}k . Our goal is that the polynomialsXi for i ∈ [k], which we think of as the dictatorship ofi
will pass this test with good probability. On the other hand,for every polynomialP (X1, . . . ,Xk) of degree
d which passes the test with good probability, we wish todecodeit to a dictatorship. While this may not
always be possible, we will settle for a list of indices from[k] whose length is constant (independent ofk).

We propose the following test: we sample a random vectorη ∈ {0, 1}k where eachηi is 1 with prob-
ability ε, and check thatP (η) = 0. In other words, polynomials passing the test must be noise-stable at
0k. Dictatorships pass this test with probability1 − ε. But there are several polynomials that will do well,
for instanceX1X2 will pass with probability1 − ε2. While this polynomial iscloseto a dictatorship, the
polynomialX1(X2 + . . . + Xk) which depends on allk variables passes w.p. close to1 − ε

2 . Indeed, any
polynomial which can be written as

P (X1, . . . ,Xn) = X1P1(X1, . . . ,Xn) + . . . + XcPc(X1, . . . ,Xn)

where thePis are arbitrary polynomials of degreed − 1 will pass the test w.p1 − cε. If we view the set of
monomials as a hypergraph on[k], polynomials whose hypergraphs have small vertex covers will be noise
stable at0k. We will use this as our notion of beingcloseto a dictatorship. We prove an inverse theorem:
if P (X1, . . . ,Xk) passes our test with good probability, the corresponding hypergraph must have a small
maximum matching and hence a small vertex cover. We view thisas a list-decoding ofP (X1, . . . ,Xk).

It is unclear why this decoding should be of any use: indeed running the decoding a second time on the
same hypergraph might produce a different matching. Note however that the vertex sets of any two maximal
matchings must have some intersection. Indeed, the usefulness of this decoding procedure stems from the
fact that given anyd + 1 vertex covers in ad-regular hypergraph, some two will intersect.

It is interesting to contrast this dictatorship test with Fourier based dictatorship testing [Hås01, KKMO04].
In those tests, one is allowed to query the function being tested in two or more points, but in our setting we
are allowed justonequery. What makes this possible however is the promise that the function being tested
is a low-degree polynomial, as opposed to an arbitrary Boolean function. In a departure from Fourier based
dictatorship testing, our analysis uses only basic facts about polynomials. However, giving a test with better
might require new algebraic techniques.

Consistency Testing via Folding: Our strategy for reducing from LABELCOVER is the following: to each
vertexv in the LABELCOVER instance, we assign variablesXv

1 , . . . ,Xv
k wherek is the number of labels

possible. In the YES case, if the labelling of vertices is given byl : V → [k], then we want the polynomial
∑

Xv
l(v) to satisfy most of the constraints. Further, given any polynomial Q that satisfies sufficiently many

constraints, we want to be able to decode it to a label for eachvertex. To assign a label for vertexv, we
consider the restriction ofQ to the variablesXv

1 , . . . ,Xv
k obtained by setting the other variables to0, which

we denote byQ(Xv). We then run the decoding procedure for the dictatorship test on it and pick a random
label from the list. Our hope is that this will assign labels in a way that satisfies a constant fraction of the
LABELCOVER constraints.

The next gadget we need is a way of testing whether two vertices have been assigned consistent labels.
For this, let us consider a toy problem where there are just two vertices and we want to test if they are
assigned the same label. Following the outline above, we associate them with variablesX1, . . . ,Xk and
Y1, . . . , Yk respectively. We want a test that passes the polynomialsXi+Yi. Further, we want to assign labels
to each vertex based onU(X1, . . . ,Xk) = Q(X1, . . . ,Xk,0

k) andV (Y1, . . . , Yk) = Q(0k, Y1, . . . , Yk)
respectively. IfQ passes our test, these labels should be the same with constant probability (independent
of k). We can run the dictatorship test on eachU using vectors of the form(η,0k) and similarly onV .
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Assuming they pass these tests, we want to check that they areidentical polynomials after settingXi = Yi.
The obvious approach is to taker←− {0, 1}k and check thatQ(r, r) = 0. But in fact this will not do, since
we have no control on monomials of the formXiYj . Indeed, for any choice of restrictionsU andV , one
can adjust the coefficients of theXiYj terms so that the polynomialQ satisfiesQ(r, r) = 0. This strongly
suggests that a different approach is necessary to enforce consistency.

Our solution is to enforce the consistency constraints via what we call global folding. Let us write the
vector(x1, . . . , xk, y1, . . . , yk) ∈ {0, 1}

2k in a different basis as(x1 +y1, . . . , xk +yk, y1, . . . , yk). Observe
that in this basis, the polynomialsXi + Yi that pass the test only depend on the firstk co-ordinates. We
will enforce this condition on every polynomial. In place ofthe point-value pair〈(x,y), f(x,y)〉, we add
the point-value pair〈(x1 + y1, . . . , xk + yk), f(x,y)〉. Clearly, this does not hurt the completeness of the
test. However, one could hope for better soundness, since wehave restricted the space of polynomials from
all polynomials inXis andYjs to those that only depend onXi + Yi. Equivalently, we are forcing the
adversary to pick a polynomial that is constant on cosets of the subspaceH defined byXi + Yi = 0. To
analyze the probability that some polynomialP of k variables passes this new test, weunfold it and write
it asQ(X1, . . . ,Xk, Y1, . . . , Yk) = P (X1 + Y1, . . . ,Xk + Yk). Note that this enforces the constraint that
mappingXi to Yi sendsU to V . Thus in fact, ifP passes the dictatorship tests, then our decoding will
assign the same labels tou andv with some probability.

Similarly, we enforce all the LABELCOVER constraints via a suitable folding. If a solution to the LA-
BELCOVER instance exists, it will give a linear polynomial that lies in a low dimensional subspace of all
linear functions on{0, 1}nk . This sub-space is defined by linear equations that encode the constraints of the
LABELCOVER instance. We identify this sub-space and perform the dictatorship test for every vertex after
projecting points onto it. Assume that some polynomialP in this low dimensional subspace passes our tests
with good probability. To decodeP , we unfold it to a polynomialQ in nk dimensions. The polynomial
Q has some nice symmetry properties which encode the constraints of the label-cover instance. We exploit
these symmetries to show that our decoding procedure will find a good solution to the LABELCOVER in-
stance. The novelty of our approach is that the LABELCOVER constraints are enforced via the folding and
unfolding, and not through explicit consistency tests.

This is an idealized view of our reduction, which brushes over several technical issues. The constraints
that we must enforce are more complicated than equality constraints (or even permutations), they are defined
in terms of projection maps. For technical reasons, we use a hypergraph version of LABELCOVER, as
opposed to the usual bipartite graph version. Also, we need to ensure that the polynomials passing our
dictatorship tests are not0, this is done by another kind of folding which we call local folding. Readers
familiar with Håstad’s PCP will note the similarity between the folding used there and local folding.

3 Dictatorship Testing for Low-Degree Polynomials

Linear polynomials are polynomials of degree1 with no constant. By degreed multivariate polynomials, we
mean all polynomials of degree at mostd. In particular it includes linear polynomials. OverF[2] we assume
that all polynomials are multilinear. Let0k and1k denote the all0s and all1s vector respectively. We use
η

ε
←− {0, 1}k to denote samplingη from theε-biased distribution, where eachηi = 1 independently w.p.

ε. We will useη ←− {0, 1}k to denote sampling from the uniform distribution.
We analyze the following test on polynomialsP (X1, . . . ,Xk) of degree at mostd:
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Algorithm 1 BASIC DICTATORSHIP TEST:
Pick η

ε
←− {0, 1}k and test if P (η) = 0.

Note that the zero polynomial passes the present test with probability 1; later we will modify the test to
ensure that the polynomial in non-zero. We use the followingfact about low-degree polynomials:

Fact 3 LetP (X1, . . . ,Xk) be a non-zero polynomial of degreed overF[2]. Then

Pr
η←−{0,1}k

[P (η) = 0] ≤ 1− 2−d.

Given a polynomialP (X1, . . . ,Xk), we will associate it with a hypergraphH(P ), with vertex set is[k]
and edge setE. E contains the hyperedgee ⊂ [k] if the monomial

∏

i∈e Xi is present inH(P ). The degree
bound ofd implies that|e| ≤ d. If we denote the constant term byc ∈ {0, 1}, thenP (X1, . . . ,Xk) =
∑

e∈E

∏

i∈e Xi + c. A matching in a hypergraph is a set of independent edges (with no common vertices).
It is easy to see that taking all the vertices in a maximal matching gives a vertex cover for the hypergraph.

Theorem 4 LetP (X1, . . . ,Xk) be a degreed polynomial overF[2] that passes the Basic Dictatorship Test
with probability1− 2−d + δ for someδ > 0. Then the largest matching in the hypergraphH(P ) is of size

C
(2ε)d whereC depends only onδ. Further the constant termc in P (X1, . . . ,Xk) is 0.

Proof: Rather than setting eachXi to 1 with probability ε, we will do a two-step sampling procedure,
which will have the same effect:
1. Set every variableXi to 0 independently with probability1− 2ε.
2. Independently set each remaining variable to a random{0, 1} value.

It is clear that this induces theε-biased distribution onη. LetS ⊂ [k] be the set of indices corresponding
to variables that are not set to0 in step 1. LetXS denote the set of these variables. The resulting polynomial
P ′(XS) consists of the hypergraph induced by the vertex setS. Also

Pr
η

ε←−{0,1}k
[P (η) = 1] = Pr

η′←−{0,1}|S|
[P ′(η′) = 1]

If P ′(XS) is non-zero, then since it has degree at mostd, Pr[P ′(η′) = 1] ≥ 2−d. Now if c = 1, thenP ′

also has the constant term1, hence it is a non-zero polynomial, soPr[P (η) = 1] = Pr[P ′(η′) = 1] ≥ 2−d,
which is a contradiction.

Now assume that the hypergraphH(P ) contains a matchingM of size|M | ≥ C
(2ε)d where the constant

C will be fixed later. For each hyperedgee ∈M , the probability that all its vertices are chosen to be inS is
(2ε)|e|. Also, sinceM is a matching, these events are independent for various edges. Thus the probability
that none of these edges occurs in the hypergraph induced byS is bounded by

∏

e∈M

(1− (2ε)|e|) ≤ (1− (2ε)d)
C

(2ε)d < e−C .

Hence, with probability1 − e−C , the subgraph induced byS is non-empty. Conditioned on this event,
P ′(XS) is a non-zero polynomial of degree at mostd, henceP ′(η′) = 1 with probability at least2−d. Thus

Pr[P (η) = 1] ≥ (1− e−C) · 2−d

For sufficiently largeC, this contradicts the fact thatPr[P (η) = 1] ≤ 2−d − δ.
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Theorem 4 suggests the following decoding procedure:

Algorithm 2 DECODING PROCEDURE FOR THEBASIC DICTATORSHIP TEST:
1. Pick a maximal matching M in H(P ).
2. Output a list L of all vertices in this matching.

Clearly the setL is a small vertex cover forH(P ). The usefulness of this decoding procedure is because
of the following simple lemma.

Lemma 5 LetH(P ) be a non-empty hypergraph with some edge of sized. LetL1, . . . , Ld+1 bed+1 vertex
covers forH(P ). Then some pairLi, Lj wherei 6= j has a non-empty intersection.

If all the vertex covers are obtained by taking all the vertices of some maximal matching, then in fact
any two of them have non-empty intersection. This is impliedby the following Lemma:

Lemma 6 Let H(P ) be a non-empty hypergraph. LetM1 andM2 be maximal matchings inH(P ). Then
the vertex sets ofM1 andM2 must intersect.

To see why this is useful in the decoding procedure, considerthe following toy problem:
Graph Decoding: Carol has a graphG on k vertices. She relabels the verticesσ(1), . . . , σ(k) for some
permutationσ ∈ Sk and gives the (relabelled) graphσ(G) to Alice. She relabels vertices according to
π ∈ Sk and givesπ(G) to Bob. Alice and Bob need to produce verticesi andj so thatσ−1(i) = π−1(j).
They do not knowσ andπ, and they are not allowed to communicate.

While in general, it is hard for Alice and Bob to succeed, suppose they are promised that the maximum
matching in the graphG is at mostC for C << k. Then Alice and Bob can each pick a maximal matching
A andB respectively in their graphs and output a random vertex fromthe vertex set. It is easy to see from
Lemma 6 that the strategy succeeds with probability at least1

4C2 .

4 Consistency Testing via Folding

In this section, we introduce the technique of folding polynomials over affine subspaces, which we use to
enforce the label-cover constraints.

Definition 1 P (X1, . . . ,Xk) is 0-folded overh ∈ {0, 1}k if for all x ∈ {0, 1}n, P (x + h) = P (x).

Every polynomial is0-folded over0. It is clear that the set of all such vectorsh forms a subspace of{0, 1}k

which we denote byH. We say thatP (X1, . . . ,Xk) is 0-folded overH.

Lemma 7 Let dim(H) = t. A polynomialP (X1, . . . ,Xk) is 0-folded overH iff it can be written as
P (λ1, . . . , λk−t) whereλi = λi(X1, . . . ,Xk) is a linear polynomial and

H = {x ∈ {0, 1}k |λi(x) = 0 for 1 ≤ i ≤ k − t}.

Proof: Firstly, consider a polynomial of the above form. Note thatλi(h) = 0, so by linearityλi(x + h) =
λi(x) for all h ∈ H. Hence

P (x + h) = P (λ1(x + h), . . . , λk−t(x + h)) = P (λ1(x), . . . , λk−t(x)) = P (x).
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For the converse, assumeP is 0-folded overH. Pick a basish(1) . . . ,h(t) for H. Complete this to a
basis for{0, 1}k by addingk − t vectorsf(1), . . . , f(k − t). We can write everyx ∈ {0, 1}k as

x =
k−t
∑

i=1

λif(i) +
t

∑

j=1

µjh(j).

The co-ordinates(λ1, . . . , λk−t) specify the coset ofH in whichx lies, whileµ1, . . . , µt specify its position
inside the coset. We can rewriteP as a polynomial in these new variables. We claim thatP now depends
only on P (λ1, . . . , λk−t). Assume for contradiction thatP depends onµ1. Then we can find a point
x = (λ1, . . . , λk−t, µ1, . . . , µt) ∈ {0, 1}

k whereP is sensitive toµ1, meaning that

P (λ1, . . . , λk−t, µ1, . . . , µt) = 1 + P (λ1, . . . , λk−t, 1 + µ1, . . . , µt)

In the standard basis, flippingµ1 is equivalent to addingh(1). Thus we haveP (x) 6= P (x + h(1)) which
is a contradiction.

Definition 2 P (X1, . . . ,Xk) is 1-folded overg ∈ {0, 1}k if for all x ∈ {0, 1}k , P (x + g) = 1 + P (x).

It is easy to see that the set of all suchg (if it is non-empty) is a coset ofH. This is because ifP is
1-folded overg and0-folded overH, then it is in fact1-folded overg + H. Conversely, ifP is folded over
g andg′, then it is0-folded overg + g′ sinceP (x + g + g′) = 1 + P (x + g) = P (x).

Henceforth, when we say thatP is folded overg + H, we mean that it is0-folded overH and1-folded
overg + H.

Lemma 8 A polynomialP (X1, . . . ,Xk) is folded overg+H iff it can be written asP ′(λ1, . . . , λk−t−1)+
λk−t whereλi = λi(X1, . . . ,Xk) is a linear polynomial and

g + H = {x ∈ {0, 1}k |λi(x) = 0 for 1 ≤ i ≤ k − t− 1 andλk−t(x) = 1} (1)

H = {x ∈ {0, 1}k |λi(x) = 0 for 1 ≤ i ≤ k − t} (2)

Proof: Given a polynomial of this form, it is easy to see thatP (x+h) = 0 for h ∈ H, whereasP (x+g′) =
1 + P (x) for anyg′ in g + H.

For the converse, assumeP is folded overg + H. Pick a basish(1) . . . ,h(t) for H. Complete this to a
basis for{0, 1}k by addingg andk − t− 1 vectorsf(1), . . . , f(k − t− 1). We can writex ∈ {0, 1}k as

x =

k−t−1
∑

i=1

λif(i) + λk−tg +

t
∑

j=1

µjh(j).

It is clear that in this basis,g + H andH are described by Equations 1 and 2 respectively. By Lemma 7,P
can be written asP (λ1, . . . , λk−t). Further, the conditionP (x + g) = P (x) + 1 implies that

P (λ1, . . . , λk−t) = P (λ1, . . . , λk−t−1, 0) + λk−t.

We can check this by substituting values forλk−t. SettingP ′(λ1, . . . , λk−t−1) = P (λ1, . . . , λk−t−1, 0)
proves the claim.
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4.1 Testing Equality via Folding

Our next goal is to design a test to check if two vertices have been assigned the same labels. We will do
this using folding. Given verticesu andv, each with a label in[k], we wish to check if they have the same
label. We assign variablesX1, . . . ,Xk to vertexu, Y1, . . . , Yk to v. If both vertices have the labeli assigned
to them we expect the polynomialXi + Yi; so our test should accept all such polynomials. The decoding
procedure labelsu by looking at the restriction ofQ to X1, . . . ,Xk, and labelsv by looking at the restriction
to Y1, . . . , Yk. If the test accepts some polynomialQ with non-trivial probability, we want the same label
assigned to both the vertices.

Define the polynomialDi = Xi+Yi and letD denote the set of all such polynomials. These polynomials
are0-folded over the subspaceH of {0, 1}2k which is defined byXi + Yi = 0 for all i, which consists of
the vectors(z, z) for z ∈ {0, 1}k. We want to enforce this condition on the polynomials being tested, which
means they should have the form stated in Lemma 7.

This is done by a suitable projection. Pick a basish(1), . . . ,h(k) for H and complete it to a basisF of
{0, 1}2k by addingf(1), . . . , f(k). We can write(x,y) ∈ {0, 1}2k in this basis as(λ1, . . . , λk, µ1, . . . , µk).
Our test will be on polynomialsP (λ1, . . . , λk) of degreed. We will run the basic dictatorship test on each
vertex. Our test proceeds by generating points in{0, 1}2k , writing them in theF -basis and projecting onto
(λ1, . . . , λk) and testing the polynomialP at these points in{0, 1}k.

Algorithm 3 EQUALITY TEST:
1. For vertex u, pick η

ε
←− {0, 1}k.

2. Write (η,0k) = (λ1, . . . , λk, µ1, . . . , µk) and test if P (λ1, . . . , λk) = 0.
3. For vertex v, pick η′

ε
←− {0, 1}k.

4. Write (0k, η′) = (λ1, . . . , λk, µ1, . . . , µk) and test if P (λ1, . . . , λk) = 0.

In order to analyze the test, weunfold P and rewrite it as a polynomial inX1, . . . ,Xk, Y1, . . . , Yk by
substituting for eachλi. We observe that folding enforces the following symmetry onP :

Claim 9 The polynomialP satisfiesP (x,y) = P (y,x) for x,y ∈ {0, 1}k .

Proof: By Lemma 7,P is folded overH, and(x,y) + (y,x) = (x + y,x + y) ∈ H. Hence(x,y) and
(y,x) lie in the same coset ofH.

Algorithm 4 DECODING PROCEDURE FOR THEEQUALITY TEST:
1. Rewrite P (λ1, . . . , λk) as a polynomial in X1, . . . ,Xk, Y1, . . . , Yk.
2. Run Algorithm 2 on P (X1, . . . ,Xk,0k) to get list L(u).
3. Run Algorithm 2 on P (0k, Y1, . . . , Yk) to get list L(v).
4. Assign l(u)←− L(u) and l(v)←− L(v).

In order to analyze this procedure, let us define the polynomialsU(X1, . . . ,Xk) = P (X1, . . . ,Xk,0k),
andV (Y1, . . . , Yk) = P (0k, Y1, . . . , Yk). The key observation is thatP being independent ofH forces the
polynomialsU andV to be identical.

Lemma 10 We haveU(Z1, . . . , Zk) = V (Z1, . . . , Zk).
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Proof: The polynomialsU andV each define a functions{0, 1}k → {0, 1} given by

U(z) = P (z,0k), V (z) = P (0k, z).

By Claim 9,P (z,0k) = P (0k, z), henceU = V as functions, and hence also as polynomials.

Theorem 11 LetP (λ1, . . . , λk) be a degreed polynomial that passes the Folded Tests for bothu andv with
probability at least1− 2−d + δ. Thenl(u) = l(v) with constant probability (depending ond, δ).

Proof: Recall that forQ(X1, . . . ,Xk), H(Q) denotes the hypergraph on[k] corresponding to the mono-
mials inQ. By Lemma 10,H(U) = H(V ). Performing the basic dictatorship test onU(X1, . . . ,Xk) is
equivalent to testing ifP (η,0k) = 0, which is the same as testing thatP (λ1, . . . , λk) = 0 for (η,0k) =
(λ1, . . . , λk, µ1, . . . , µk). Similarly, the basic dictatorship test onV (Y1, . . . , Yk) is the same as testing
whetherP (0k, η′) = 0. Since both these tests succeed with probability1−2−d +δ, each ofL(U) andL(V )
is a maximal matching inH(U) = H(V ) of constant size. Thus by Lemma 6 choosing a random label from
each results in a common label with constant probability.

4.2 Enforcing non-Emptiness

We show how one can use folding to ensure that the polynomialsthat pass the dictatorship test and the
equality test are non-zero.

For the dictatorship test, observe that the polynomialsXi are1-folded overg = 1k. To enforce this
condition on every polynomial, choose a basis{f(1), . . . , f(k − 1),g} for {0, 1}k . We write vectors in this
basis as

x =

k−1
∑

i=1

λif(i) + λkg.

Polynomials which are folded overg can be written asP (λ1, . . . , λk−1) + λk. This suggests the following
test:

Algorithm 5 FOLDED DICTATORSHIP TEST:
1. Sample η

ε
←− {0, 1}k, and write it as η = (λ1, . . . , λk).

2. Test if P (λ1, . . . , λk−1) = λk.

To analyze this test, we define the unfolded polynomialQ(X1, . . . ,Xk) = P (λ1, . . . , λk−1) + λk.

Theorem 12 The polynomialQ(X1, . . . ,Xk) is folded. The probability thatP (λ1, . . . , λk−1) passes the
Folded Dictatorship Test equals the probability thatQ(X1, . . . ,Xk) passes the Basic Dictatorship Test.

Proof: If x = (λ1, . . . , λk), thenx + 1k = (λ1, . . . , λk−1, 1 + λk). Hence

Q(x + 1k) = (1 + λk) + P (λ1, . . . , λk−1) = 1 + Q(x)

soQ is folded over1k. In fact by Theorem 4,Q has no constant term, soQ(0k) = 0, Q(1k) = 1.
To show thatQ passes the Basic Dictatorship Test, note that

P (λ1, . . . , λk−1) = λk ⇐⇒ P (λ1, . . . , λk−1) + λk = 0 ⇐⇒ Q(η) = 0.

10



In the Equality test, we want to ensure that the polynomialsU(X1, . . . ,Xk) andV (Y1, . . . , Yk) are both
non-zero. DefineH = (z, z) as before and letg = (1k,0k). The polynomialsXi + Yi are folded over the
cosetg + H. We wish to enforce this condition on the polynomials that are being tested, which means they
should have the form stated in Lemma 8. Pick a basisF = {f(1), . . . , f(k − t− 1),g,h(1), . . . ,h(t)} for
{0, 1}2k and let

(x,y) =

k−t−1
∑

i=1

λifi + λk−tg +

t
∑

j=1

µjh(j).

Given a point(λ1, . . . , λk, µ1, . . . , µk) in this basis, we test ifP (λ1, . . . , λk−1) = λk. Thus the test is on
polynomials ink − 1 variables.

Algorithm 6 FOLDED EQUALITY TEST:
1. For vertex u, pick η

ε
←− {0, 1}k.

2. Write (η,0k) = (λ1, . . . , λk, µ1, . . . , µk) and test if P (λ1, . . . , λk−1) = λk.
3. For vertex v, pick η′

ε
←− {0, 1}k.

4. Write (0k, η′) = (λ1, . . . , λk, µ1, . . . , µk) and test if P (λ1, . . . , λk) = 0.

Define the unfolded polynomialQ(X1, . . . ,Xk, Y1, . . . , Yk) = P (λ1, . . . , λk−1) + λk. We denote the
restriction ofQ to X1, . . . ,Xk by U andY1, . . . , Yk by V .

Theorem 13 The polynomialsU(X1, . . . ,Xk) andV (Y1, . . . , Yk) are both folded over1k. If P (λ1, . . . , λk−1)
passes the Locally Folded Equality Test for bothu andv with probability1−2−d+δ, then bothU(X1, . . . ,Xk)
andV (Y1, . . . , Yk) pass the Basic Dictatorship Test with probability1− 2−d + δ.

Proof: The proof thatU andV pass the Dictatorship test follows that of Theorem 12.
Observe that the polynomialQ is folded overg + H, which contains the pointsg = (1k,0k) and

g′ = (0k,1k). Thus

U(x + 1k) = Q((x,0k) + g) = 1 + Q((x,0k)) = 1 + U(x).

Similarly one can useg′ to show thatV is folded over1k.

5 Consistency Testing

We will consider the following consistency problem: there are two verticesu andv, each of them is assigned
a labell(u), l(v) ∈ [k] respectively. The vertexu is assigned a projection functionπ : [k] → [t], while the
vertexv is assigned a projection functionσ : [k] → [t]. The goal is to check whether the labelsl(u) and
l(v) satisfyπ(l(u)) = σ(l(v)). We want a test that accepts all polynomials of the formXi + Yj where
π(i) = σ(j). Let us denote the set of all such polynomials byD. The test will specify target values for
points of the form(x,y) ∈ {0, 1}2k projected onto a certain lower dimensional subspace.

We start by constructing a subspaceH on which every polynomial inD vanishes. Consider the subspace
H defined by the equations

Xi + Yj = 0, π(i) = σ(j) (3)

We would like a parametric description of this subspace, forwhich we need the following definition [Hås01].
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Definition 3 Given a projection functionπ : [k]→ [t], for z ∈ {0, 1}t, we define the vectorz ◦ π ∈ {0, 1}k

by (z ◦ π)i = zπ(i).

This gives a linear map from{0, 1}t → {0, 1}k since

(z1 + z2) ◦ π = z1 ◦ π + z2 ◦ π.

Lemma 14 The subspaceH contains the vectors(z ◦ π, z ◦ σ) for z ∈ {0, 1}t.

Proof: We need to check that(x,y) = (z ◦ π, z ◦ σ) satisfiesxi + yj = 0 for all π(i) = σ(j). But

xi = (z ◦ π)i = zπ(i), yj = (z ◦ σ)j = zσ(j) hencexi = yj.

In fact a simple dimension argument shows thatH = {(z ◦ π, z ◦σ) | z ∈ {0, 1}t} but we will not need this
fact.

Let g = (1k,0k). Every polynomial inD is folded overg + H. We pick a basish(1), . . . ,h(t) for H
and complete this to a basisF of {0, 1}2k given byF = {f(1), . . . , f(2k − t − 1),g,h(1), . . . ,h(t)} for
some suitable choice off(i)s. Setg = 2k − t. Then

(x,y) =

g−1
∑

i=1

λif(i) + λgg +
t

∑

j=1

µjh(j)

Algorithm 7 FOLDED CONSISTENCY TEST:
1. For vertex u, pick η

ε
←− {0, 1}k.

2. Write (η,0k) = (λ1, . . . , λg, µ1, . . . , µt) and test if P (λ1, . . . , λg−1) = λg.

3. For vertex v, pick η′
ε
←− {0, 1}k.

4. Write (0k, η′) = (λ1, . . . , λg, µ1, . . . , µt) and test if P (λ1, . . . , λg−1) = λg.

Algorithm 8 DECODING PROCEDURE FOR THEFOLDED CONSISTENCYTEST:
1. Let Q(X1, . . . ,Xk, Y1, . . . , Yk) = P (λ1, . . . , λg−1) + λg.
2. Run Algorithm 2 on Q(X1, . . . ,Xk,0k) to get list L(u).
3. Run Algorithm 2 on Q(0k, Y1, . . . , Yk) to get list L(v).
4. Assign l(u)←− L(u) and l(v)←− L(v).

As before we define the polynomialsU(X1, . . . ,Xk) = Q(X1, . . . ,Xk,0
k) and V (Y1, . . . , Yk) =

Q(0k, Y1, . . . , Yk). The relation between the two polynomials enforced by folding is a bit more intricate.
The key observation is that theirprojectionsin Z1, . . . , Zt obtained by replacingXi by Zπ(i) in U andYj

by Zσ(j) in V are the same.

Lemma 15 Define the projected polynomials

Uπ(Z1, . . . , Zt) = U(Zπ(1), . . . , Zπ(k)), Vσ(Z1, . . . , Zt) = U(Zσ(1), . . . , Zσ(k)).

ThenUπ(Z1, . . . , Zt) = Vσ(Z1, . . . , Zt).
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Proof: We can viewUπ andVσ as functions{0, 1}t → {0, 1} given by

Uπ(z) = Q(z ◦ π,0k), Vσ(z) = Q(0k, z ◦ σ).

Since the polynomialQ is folded overH, it satisfiesQ(z ◦ π,0k) = Q(0k, z ◦ σ) since

(z ◦ π,0k) + (0k, z ◦ σ) = (z ◦ π, z ◦ σ) ∈ H.

HenceUπ(z) = Vσ(z) as functions, henceUπ(Z1, . . . , Zt) = Vσ(Z1, . . . , Zt) as polynomials.

We can now analyze Algorithm 8.

Theorem 16 Define the projections of the listsL(u) andL(v) asLπ(u) = {π(i) | i ∈ L(u)} andLσ(v) =
{σ(j) | j ∈ L(v)}.

1. BothLπ(u)) andLσ(v) are vertex covers for the hypergraphH(Uπ) = H(Vσ).

2. The polynomialsUπ andVσ are each folded over1t.

3. The probability thatP (λ1, . . . , λg−1) passes the folded consistency test for vertexu equals the prob-
ability that U(X1, . . . ,Xk) passes the Basic Dictatorship Test.

Proof: The hypergraphH(Uπ) is obtained fromH(U) by identifying the vertices inπ−1(`) for each
` ∈ [t]. The edges in this hypergraph are those which have an odd number of pre-images inH(U). Thus
the projection of any vertex cover forH(U) is also a vertex cover forH(Uπ). From Algorithm 2,L(u) is a
vertex cover forH(U), soLπ(u) is a vertex cover forH(Uπ). Similarly Lσ(v) is a vertex cover forH(Vσ).
By Lemma 15, sinceUπ = Vσ, both polynomials define the same hypergraph.

By the same argument used for Theorem 13, we can show thatU andV are folded over1k. But

Uπ(z + 1t) = U((z + 1t) ◦ π) = U(z ◦ π + 1k) = 1 + U(z ◦ π) = 1 + Uπ(z).

SoUπ is folded over1t and similarly forVσ. This shows that the hypergraphH(Uπ) = H(Vσ) is non-empty.
The proof of Part 3 follows that of Theorem 12.

Thus, if P passes the test thenL(u) andL(v) are small in size, their projections are vertex-covers for
the same (non-empty) hypergraph. It is natural to ask if choosing l(u) ←− L(u) andl(v) ←− L(v) gives
π(l(u)) = σ(l(v)) with some probability. This might not be the case. The reasonis that while the vertex
coverL(u) obtained by taking all the vertices of a maximal matching, the projectionLπ(u) need not have
this structure. ThusLπ(u) andLσ(v) might be disjoint vertex covers of the same hypergraph. However,
the fact that they are both vertex covers together with Lemma5 will suffice for our analysis. We note
however that ifd = 1, then the vertex covers will intersect, so the random decoding succeeds. This gives an
alternative proof of Hastad’s result ford = 1.

6 The Reduction from Label Cover

An instance of LABELCOVER(d + 1) for d ≥ 1 consists of ad + 1-regular hypergraph(V,E) with vertex
setV = {vi}

n
i=1 and an edge setE = {ej}

m
j=1, where|ej | = d + 1. The hypergraph is connected, and any

S ⊂ V of sizeδn induces a constant fractionγ(δ)m of edges. Every vertex inV is to be assigned a label
l(v) ∈ [k]. Every hyperedgee = (ve

1, . . . , v
e
d+1) is associated with ad-tuple of projection functions{πi}

d+1
i=1
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whereπi : [k]→ [t] andt < k. A vertex labelling strongly satisfies edgee if πi(l(v
e
i )) = πj(l(v

e
j )) for every

ve
i , v

e
j ∈ e. A vertex labelling weakly satisfies edgee if πi(l(v

e
i )) = πj(l(v

e
j )) for some pairve

i , v
e
j ∈ e.

This is a slightly non-standard hypergraph version of labelcover. A similar kind of acceptance predicate
is used by Feige in proving the hardness of set-cover [Fei98]. The only reason we cannot use his result
directly is because we need to condition that large subsets of vertices induce many edges. The following
theorem is proved using a simple reduction from the standardbipartite version of LABELCOVER. We give
a proof in Appendix C for completeness.

Theorem 17 For anyβ > 0, given an instance ofLABELCOVER(d+1), it is NP-hard to distinguish between
the following cases:
1. YES INSTANCE : There is some vertex labelling that strongly satisfies everyedge.
2. NO INSTANCE : There is no vertex labelling that weakly satisfiesβ fraction of the edges.

We need some notation in order to describe the reduction to POLYREC(d, n). To each vertexv ∈ V ,
we assignk variablesXv

1 , . . . ,Xv
k . Since there are a total ofnk variablesXv1

1 , . . . ,Xvn

k , our points will
be innk dimensions, partitioned inton groups, one for each vertex, and each group havingk dimensions,
one for each possible vertex label. Givenx ∈ zonk, we usexv to denote the vector in{0, 1}k obtained by
projecting onto the co-ordinates assigned to vertexv. To a labellingl of vertices, we associate the polynomial
Ql(X

v1
1 , . . . ,Xvn

k ) =
∑

v Xv
l(v).

Our first goal is to identify a subspaceH such that ifl satisfies all the LABELCOVER constraints, thenQl

is0-folded overH. Unlike for the simple tests considered so far, we do not knowwhat the set of polynomials
Ql is, or whether it is non-empty. However, one can identify vectors that must lie inH from the constraints
of the LABELCOVER instance.

Lemma 18 Consider a pair of verticesu,w that lie ine ∈ E. Suppose the projections associated with them
by e areπ andσ respectively. Givenz ∈ {0, 1}t, define the vectorh = h(z, e, u, w) ∈ {0, 1}nk where

hv =











z ◦ π if v = u

z ◦ σ if v = w

0k otherwise.

(4)

If l satisfiesπ(l(u)) = σ(l(v)) thenQl(h) = 0.

Proof: Note that
Ql(h) =

∑

v∈V

hv
l(v) = hu

l(u) + hw
l(w).

Also
hu

l(u) = (z ◦ π)l(u) = zπ(l(u)), hw
l(w) = (z ◦ σ)l(w) = zσ(l(w)).

But π(l(u)) = σ(l(w)), hencehu
l(u) + hw

l(w) = 0.

We takeH to be the span of all the vectorsh above, over all choices ofe ∈ E, u,w ∈ e andz ∈ {0, 1}t.
Let g(v) =

∑k
i=1 ev

i be the indicator for the co-ordinates of the vertexv. Let g = g(v1). Observe that
every polynomial associated to a labelling satisfiesQl(g(v)) = 1.

Lemma 19 The affine subspaceg + H contains the vectorsg(v) for all v ∈ V .

Proof: Assume thatu,w ∈ e for somee ∈ E. Let π andσ denote the associated projections. Then
g(u) + g(w) ∈ H, since this vector is obtained by settingz = 1t in Equation 4. Since the hypergraph is
connected, it follows that all the vectorsg(v) lie in the same coset ofH.
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We will ensure that the polynomials we test are folded overg + H. Let the dimension of the spaceH
beh, and select a basis{h(j)}hj=1 for it. Complete this to a basisF of {0, 1}nk by addingg and some other
vectorsf(1), . . . , f(nk − h− 1). Let g = nk − h. One can write anyx ∈ {0, 1}nk as

x =

g−1
∑

i=1

λif(i) + λgg +

h
∑

j=1

µjh(j)

Let η(v) denote the random variable where each co-ordinate corresponding to vertexv is sampled from
theε-biased distribution and all other co-ordinates as0. We now state the reduction.

Algorithm 9 LABELCOVER TEST

1. Compute the basis F described above.
2. Pick a vertex v ←− V and sample the vector η(v).
3. Write η(v) = (λ1, . . . , λg, µ1, . . . , µh).
4. Test if P (λ1, . . . , λg−1) = λg.

We give a decoding procedure that uses the polynomialP to assign labels to every vertex. IfP passes
the test with good probability, then the resulting labelling is guaranteed to weakly satisfy a good fraction
of constraints. This implies that if we reduce from a NO instance of LABELCOVER then no polynomial
passes the test. Given a polynomialQ(Xv1

1 , . . . ,Xvn

k ), for each vertexv ∈ V , we useQ(Xv) to denote the
restriction ofQ to the variables{Xv

i }
k
i=1, obtained by setting all other variables to0.

Algorithm 10 DECODING PROCEDURE FOR THELABELCOVER TEST

1. Set Q(Xv1
1 , . . . ,Xvn

k ) = P (λ1, . . . , λg−1) + λg.
2. For every vertex v ∈ V ,
2a. Run Algorithm 2 on Q(Xv) to get list L(v).
2b. Set l(v)←− L(v).

Theorem 20 Assume thatP (λ1, . . . , λg−1) passes theLABELCOVER test with probability1 − 2−d + 2δ
for δ > 0. Then the labellingl(v) weakly satisfiesγ′ fraction of the constraints in expectation for some
γ′(ε, δ, d).

Proof: By an averaging argument, for aδ fraction of vertices inV , the probability of passing the LABEL-
COVER test is at least1− 2−d + δ; denote this set byS and call such verticesgood. Thegoodset of edges
E(S) induced byS is at least aγ fraction of all edges for some constantγ(δ).

Pick an edgee ∈ E(S), and pick any two verticesu,w ∈ e. Both these will be good vertices. Let
Q(Xu,Xw) denote the restriction of the polynomialQ(Xv1

1 , . . . ,Xvn

k ) to the variables{Xu
i ,Xw

j }
k
i,j=1

obtained by setting the other variables to0. This polynomial is0-folded over the set of vectorsH ′ =
(z◦π, z◦σ). It is folded overg+H ′ whereg = (1k,0k). So we can apply Theorem 16 to conclude that the
projections of the polynomialsQ(Xu) andQ(Xw) underπ andσ respectively are identical, andπ(L(u))
andσ(L(w)) each give a vertex cover for the (non-empty) hypergraphH of this projected polynomial. Fur-
ther, sinceu andw are good vertices, by Theorem 4 bothL(u) andL(w) are small. Hence their projections
Lπ(u) andLσ(w) are also small.
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Since this is true for any pair of vertices ine, we haved + 1 vertex covers ofH. But each edge ofH
has size at mostd, so by Lemma 5 some two of them intersect, assume that these areπ(L(u)) andσ(L(v)).
In other words, there are labels`1 ∈ L(u) and`2 ∈ L(v) so thatπ(`1) = σ(`2). Since each of these lists
is of constant size (depending only onε, δ, d), there is a constant probabilityp = p(ε, δ, d) that these are
the labels chosen foru andv respectively by the random decoding in Step 2b. In this case,the constraint is
weakly satisfied. Thus the expected number of satisfied constraints isγ′(ε, δ, d) = p · γ.

By taking the soundnessβ of the label cover instance to be a sufficiently small constant, we conclude that
in the NO case, there is no polynomial that satisfies the LABELCOVER test with probability1−2−d +δ, else
we would reach a contradiction. Finally, we need to massage the LABELCOVER test to produce an instance
of POLYREC(d, n). The LABELCOVER test produces a distributionD on polynomially many constraints
of the form〈x, f(x)〉. If for somex, 〈x, 0〉 and〈x, 1〉 each occur with non-zero probability, then transfer
all the probability mass forx to the label0/1 that has more weight underD. It is easy to see that the
completeness and soundness can only change byε. We now repeat eachx sufficiently many times to
simulate the distribution, to get an instance of POLYREC(d, n). This proves Theorem 1.

7 Towards Optimal Inapproximability

It would be very interesting to try and improve the soundnessguarantee in Theorem 1 to12 +δ. This problem
looks to be fairly hard.

The first step is finding a better dictatorship test/analysisfor low-degree polynomials, which is interest-
ing in its own right and might require some new techniques. Consider the cased = 2, where the soundness
of our test is3

4 . Our analysis is tight: the quadratic fromQ1 = (X1 + . . . + Xk/2)(Xk/2+1 + . . . + Xk)

passes the test w.p.34 and does not have a small vertex cover. However, this polynomial is not folded
over 1k, and we only need our test to work for folded polynomials. There are folded quadratic forms
with no small vertex cover that pass the test with good probability: assumek/2 is even and setQ2 =
(X1 + . . . + Xk/2)(Xk/2+1 + . . . + Xk) + Xk+1. One can show thatQ2 is folded, it passes our test with
probability close to3

4 , and it does not have a small vertex cover. However, it seems natural that the decoding
of Q2 ought to be the labelk + 1. This suggests the need for a new decoding algorithm.

The next step would be to design a consistency test that solves the Graph Decoding problem from
Section 3, and can also handle more sophisticated constraints involving projections (see Section 5). While
the UNIQUE GAMES CONJECTUREusually gives a way to translate dictatorship tests to a hardness result, it
does not help in our setting since the approach of folding theconsistency constraints crucially needs perfect
completeness. Indeed, translating the dictatorship teststo a hardness result might require LABELCOVER

instances where the projections have special properties, which seem out of the reach of current techniques.
It would be interesting to see whether the ideas in this papercan be applied to the problem of univariate

polynomial reconstruction and Reed-Solomon decoding. A first step might be to consider the setting where
the field size is larger but the number of variables in logarithmic in the input sizen.
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A Extension to Arbitrary Finite Fields

We now sketch the proof of Theorem 2. The reduction follows the same scheme as in the case of polynomials
overF[2]. Here we describe the Dictatorship Test and the ConsistencyTest for polynomials overF[q].

Dictatorship Testing

Analogous to theF[2] case, we useη
ε
←− F[q]k to denote samplingη from the distribution, where eachηi is

independently set to0 with probability1− ε and with probabilityε is selected uniformly fromF[q]− {0}.
The Basic Dictatorship Test in this case is as follows,

Algorithm 11 BASIC DICTATORSHIP TEST:
Pick η

ε
←− F[q]k and test if P (η) = 0.

This test is analyzed using the following form of the Schwartz-Zippel lemma.

Fact 21 Let P (X1, . . . ,Xk) be a non-zero polynomial of degreed overF[q], such thatd = a(q − 1) + b,
for 0 ≤ b ≤ q − 1. Then

Pr
η←−F[q]k

[P (η) = 0] ≤ s(d, q)

wheres(d, q) = 1− q−b
qa+1 .

For a polynomialP over F[q], we have a corresponding hypergraphH(P ), similar to theF[2] case. For
every monomial

m = c ·
∏

i∈T⊆[k]

xei

i (c 6= 0)

of P , H(P ) contains a hyperedge consisting of the verticesxi with multiplicity ei for i ∈ T . Analogous to
theF[2] case, we obtain the following theorem:

Theorem 22 Let P (X1, . . . ,Xk) be a degreed polynomial overF[q] that passes the Basic Dictatorship
Test with probabilitys(d, q) + δ for someδ > 0. Then the largest matching in the hypergraphH(P ) is of
sizeC ′(q, ε, δ, d). Further the constant termc in P (X1, . . . ,Xk) is 0.

Proof: Our proof proceeds in a similar manner to theF[2] case. For convenience, we defineε′ =
(

q−1
q ε

)

.

We do a two step sampling procedure forη :
1. Set every variableηi to 0 independently with probability1− ε′.
2. Independently set each of the remaining variables to a value fromF[q].

Clearly this induces anε-biased distribution onη. LetXS denote the set of these variables. The resulting
polynomialP ′(XS) consists of the hypergraph induced by the vertex setS. Also

Pr
η

ε←−F[q]k
[P (η) 6= 0] = Pr

η′←−F[q]|S|
[P ′(η′) 6= 0]

If P ′(XS) is non-zero, then since it has degree at mostd, Pr[P ′(η′) 6= 0] ≥ 1 − s(d, q). Now if
c 6= 0, thenP ′ also has the non zero constant term, hence it is a non-zero polynomial, soPr[P (η) 6= 0] =
Pr[P ′(η′) 6= 0] ≥ 1− s(d, q), which is a contradiction.
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Now assume that the hypergraphH(P ) contains a matchingM of size|M | ≥ C
(ε′)d where the constant

C will be fixed later. For each hyperedgee ∈ M , the probability that all its vertices are chosen to be inS
is at least(ε′)|e|. Also, sinceM is a matching, these events are independent for various edges. Thus the
probability that none of these edges occurs in the hypergraph induced byS is bounded by

∏

e∈M

(1− (ε′)|e|) ≤ (1− (ε′)d)
C

(ε′)d < e−C .

Hence, with probability1 − e−C , the subgraph induced byS is non-empty. Conditioned on this event,
P ′(XS) is a non-zero polynomial of degree at mostd, henceP ′(η′) 6= 0 with probability at leastq−d. Thus

Pr[P (η) 6= 0] ≥ (1− e−C) · (1− s(d, q)).

For sufficiently largeC, this contradicts the fact thatPr[P (η) = 0] ≥ s(d, q) + δ.

Consistency Testing

We consider the following consistency problem as describedin Section 5. There are two verticesu andv,
each of them is assigned a labell(u), l(v) ∈ [k] respectively. The vertexu is assigned a projection function
π : [k]→ [t], while the vertexv is assigned a projection functionσ : [k]→ [t]. The goal is to check whether
the labelsl(u) andl(v) satisfyπ(l(u)) = σ(l(v)). We want a test that accepts all polynomials of the form
Xi + Yj whereπ(i) = σ(j). Let us denote the set of all such polynomials byD. The test will specify target
values for points of the form(x,y) ∈ F[q]2k projected onto a certain lower dimensional subspace. Firstwe
need the following definition,

Definition 4 Given a projection functionπ : [k] → [t], for z ∈ {0, 1}t, we define the vectorz ◦ π ∈ F[q]k

by (z ◦ π)i = zπ(i).

We construct a subspaceH on which every polynomial inD vanishes. Consider the subspaceH defined by
the equations

Xi + Yj = 0, π(i) = σ(j) (5)

As before, we have the following analogous lemma.

Lemma 23 The subspaceH contains the vectors(z ◦ π,−z ◦ σ) for z ∈ {0, 1}t.

Proof: We need to check that(x,y) = (z ◦ π,−z ◦ σ) satisfiesxi + yj = 0 for all π(i) = σ(j). But

xi = (z ◦ π)i = zπ(i), yj = −(z ◦ σ)j = −zσ(j) hencexi = −yj.

Let g = (1k,0k). Every polynomial inD is folded overg + H. We pick a basish(1), . . . ,h(t) for
H and complete this to a basisF of F[q]2k given byF = {f(1), . . . , f(2k − t− 1),g,h(1), . . . ,h(t)} for
some suitable choice off(i)s. Setg = 2k − t. Then

(x,y) =

g−1
∑

i=1

λif(i) + λgg +

t
∑

j=1

µjh(j)
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Algorithm 12 FOLDED CONSISTENCYTEST:
1. For vertex u, pick η

ε
←− F[q]k.

2. Write (η,0k) = (λ1, . . . , λg, µ1, . . . , µt) and test if P (λ1, . . . , λg−1) = λg.

3. For vertex v, pick η′
ε
←− F[q]k.

4. Write (0k, η′) = (λ1, . . . , λg, µ1, . . . , µt) and test if P (λ1, . . . , λg−1) = λg.

Algorithm 13 DECODING PROCEDURE FOR THEFOLDED CONSISTENCY TEST:
1. Let Q(X1, . . . ,Xk, Y1, . . . , Yk) = P (λ1, . . . , λg−1) + λg.
2. Run Algorithm 2 on Q(X1, . . . ,Xk,0k) to get list L(u).
3. Run Algorithm 2 on Q(0k, Y1, . . . , Yk) to get list L(v).
4. Assign l(u)←− L(u) and l(v)←− L(v).

We define the polynomialsU(X1, . . . ,Xk) = Q(X1, . . . ,Xk,0k) andV (Y1, . . . , Yk) = Q(0k, Y1, . . . , Yk).
As before, we have the following analogous lemma which we state here without proof.

Lemma 24 Define the projected polynomials

Uπ(Z1, . . . , Zt) = U(Zπ(1), . . . , Zπ(k)), Vσ(Z1, . . . , Zt) = U(Zσ(1), . . . , Zσ(k)).

ThenUπ(Z1, . . . , Zt) = Vσ(Z1, . . . , Zt).

The following analysis of the Folded Consistency Test proceeds in a similar manner as before.

Theorem 25 Define the projections of the listsL(u) andL(v) asLπ(u) = {π(i) | i ∈ L(u)} andLσ(v) =
{σ(j) | j ∈ L(v)}.

1. BothLπ(u) andLσ(v) are vertex covers for the hypergraphH(Uπ) = H(Vσ).

2. The polynomialsUπ andVσ are each folded over1t.

3. The probability thatP (λ1, . . . , λg−1) passes the folded consistency test for vertexu equals the prob-
ability that U(X1, . . . ,Xk) passes the Basic Dictatorship Test.

Proof: Consider an assignmentz to the variablesZ1, . . . , Zt such thatzi = 0 for all i ∈ Lπ(u). Now,
Uπ(z) = U(z ◦ π). We have(z ◦ π)j = zπ(j) = 0 for all j ∈ L(u) sincezi = 0 for all i ∈ Lπ(u), and
π(j) ∈ Lπ(u) for all j ∈ L(u). SinceL(u) is a vertex cover forH(U), therefore, by setting all the variables
in L(u) to zero, we obtainU(z ◦ π) = 0. Hence,Uπ(z) = 0. Sincez was an arbitrary assignment which
set variables inLπ(u) to zero,Uπ(Z1, . . . , Zt) vanishes over all such assignments. Therefore, a variable of
Lπ(u) is present in every monomial ofUπ(Z1, . . . , Zt), and soLπ(u) is a vertex cover forH(Uπ). Similarly,
L(Vσ) is a vertex cover forH(Vσ). By Lemma 24, sinceUπ = Vσ, H(Uπ) = H(Vσ).
Using arguments similar to Theorem 13, we can show thatU andV are folded over1k, and since

Uπ(z + λ1t) = U((z + λ1t) ◦ π) = U(z ◦ π + λ1k) = λ + U(z ◦ π) = λ + Uπ(z).

SoUπ is folded over1t and similarly forVσ. This shows that the hypergraphH(Uπ) = H(Vσ) is non-empty.
The proof of Part 3 follows that of Theorem 12. We omit the details here.

The reduction from LABELCOVER(d + 1) proceeds along similar lines as Theorem 20. We omit the
details.
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B Reduction from MAX-LIN

In this section, we consider the polynomial reconstructionproblem POLYREC(d, n) over any finite field
F[q], whered < q. We prove a hardness result for the reconstruction problem via a simple reduction from
Håstad’s result for linear equations.

The MAX-LIN(n, q) problem consists of point-value pairs{xi, f(xi)}mi=1 with xi ∈ F[q]n andf(xi) ∈
F[q]. Our goal is to find a linear polynomial, which satisfies the maximum number of points. The following
theorem is due to Håstad [Hås01],

Theorem 26 For anyε, δ > 0, given an instance ofMAX-LIN (n, q), it is NP-hard to distinguish between
the following cases:
1. YES INSTANCE: There is a linear polynomial that satisfies1− ε fraction of the points.
2. NO INSTANCE: Every linear polynomial satisfies at most1

q + δ fraction of the points.

We use this to prove a hardness of1− ε versusqd+q−d
q2 + δ for POLYREC(d, n). Note that sinced < q,

the soundness lies betweend/q and(d + 1)/q.

Theorem 27 For anyε, δ > 0, given an instance ofPOLYREC(d, n) overF[q] with d < q, it is NP-hard to
distinguish between the following cases:
1. YES INSTANCE: There is a linear polynomial satisfyingP (xi) = f(xi) for 1− ε fraction of the points.
2. NO INSTANCE: Every polynomial of degreed < q satisfiesP (xi) = f(xi) for at most qd+q−d

q2 + δ
fraction of the points.

Proof: Let the instance of MAX-LIN(n, q) be given by〈xi, f(xi)〉 for i = 1, . . . ,m. Our instance of
POLYREC(d, n) is given by the point-value pairs〈λxi, λf(xi)〉 for everyλ ∈ F[q] and everyi ∈ [m].

If the MAX-LIN instance is a YES instance, then there is a linear polynomialP (X1, . . . ,Xn) that
satisfiesP (xi) = f(xi) for 1− ε fraction. It is easy to see that the same polynomial satisfiesat least1− ε
fraction of the constraints for the POLYREC(d, n) problem.

Suppose that MAX-LIN instance is a NO instance. Assume that there is a degreed polynomial
P (X1, . . . ,Xn) that satisfiesqd+q−d

q2 + δ fraction of the points. We call a pointx good if P satisfies at

leastd + 1 of the pairs〈λx, λf(x)〉 over all values ofλ ∈ F[q]. By an averaging argument, at least1
q + γ

fraction of the points are good, for some constantγ. SinceP satisfies at leastd+1 of the pairs〈λx, λf(x)〉,
the univariate polynomial inλ given byP (λx) − λf(x) hasd + 1 roots inF[q]. However, it has degree at
mostd, so it must be the zero polynomial. Equating the coefficientsof λ on both sides, we getP ′(x) = f(x)
for every good point, whereP ′ is the linear part ofP . ThusP ′ is a linear polynomial satisfying1q + γ frac-
tion of the constraints of the original MAX-LIN instance. Taking the soundness of the MAX-LIN instance
sufficiently small, we get a contradiction.

C Hardness for LABELCOVER(d + 1)

In this section we give a reduction from the standard LABELCOVER instance to the LABELCOVER(d + 1)
instance as defined in section 6, whered is a fixed constant.

Definition 5 A LABELCOVER instanceL(G(U, V,E), [t], [k], {πv,u}{u,v}∈E) is a bipartite graphG with
bipartition U , V and edge setE with a projectionπv,u : [k] 7→ [t], for every{u, v} ∈ E, with u ∈ U
andv ∈ V . Moreover, every vertex inU has the same degree and every vertex inV has the same degree.
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A vertex labellingl(w) for all w ∈ U ∪ V , satisfies an edge{u, v} ∈ E, (whereu ∈ U and v ∈ V ) iff
πv,u(l(v)) = l(u).

The following theorem is a consequence of the PCP Theorem [ALM+98, AS98] and Raz’s Parallel
Repetition Theorem [Raz98].

Theorem 28 For every constantβ > 0, given an instanceL of LABELCOVER, it is NP-hard to distinguish
between the following cases:
1. YES INSTANCE : There is some vertex labelling that satisfies all the edges ofL.
2. NO INSTANCE : There is no vertex labelling that satisfiesβ fraction of edges ofL.

We now give a reduction from LABELCOVER to the LABELCOVER(d + 1) problem which will prove
Theorem 17.

Proof: Given an instance of LABELCOVER, L(G(U, V,E), [t], [k], {πv,u}{u,v}∈E) , we construct an in-
stanceL′ of LABELCOVER(d + 1) in the following manner:

1. The vertex set ofL′ is V ′ = V .

2. A hyperedgee′ is added in the following manner. Pick a randomu ∈ U and pick verticesv1, v2, . . . , vd+1,
uniformly at random from the neighbors ofu in G. Sete′ = {vi}

d+1
i=1 , and the associatedd + 1-tuple

of projections to be{πi}
d+1
i=1 , whereπi = πvi,u for all 1 ≤ i ≤ d + 1.

3. Add all such hyperedges possible to the edge setE′.

Consider a subsetS ⊆ V ′ = V of sizeδ|V ′|. Let u be any vertex inU of the instanceL. Let pu be
the fraction of neighbors ofu in S. Since, every vertex ofU has the same degree and every vertex ofV
has the same degree,Eu∈RU [pu] = δ. The way edge setE′ of L′ is constructed implies that the fraction of
hyperedges inE′ induced byS is the probability that alld + 1 vertices uniformly chosen at random from
neighbors of a vertexu (which is chosen uniformly at random fromU ), lie in S. For a givenu ∈ U , the
probability thatd + 1 vertices chosen uniformly at random from its neighbors lie in S is pd+1

u . Therefore
the fraction of edges ofE′ induced byS is Eu∈RU [pd+1

u ] ≥ (Eu∈RU [pu])d+1 = δd+1. Hence, a constant
fraction of hyperedges inE′ are induced by a subsetS of constant fraction of vertices inV ′.

Note that by applying Parallel Repetition on LABELCOVER we can increase the degrees of vertices
in U arbitrarily while reducing the soundness. Sinced + 1 is a fixed constant, we can arbitrarily reduce
the fraction of hyperedges of LABELCOVER(d + 1) which have repeated vertices and hence remove these
hyperedges from the instance.

If L is a YES instance, then there is a labellingl that satisfies all the edges ofL. Clearly, the labellingl
restricted toV will strongly satisfy all the hyperedges ofL′.

If L is a NO instance, then there is no labelling that satisfiesβ fraction of the edges ofL. Now, suppose
that there is a labellingl that weakly satisfiesα fraction of hyperedges ofL′. For every vertexu ∈ U ,
definequ to be the probability that two (distinct) random neighbors of u are labelled consistently byl. Since
every vertex inU has equal degree and every vertex ofV has equal degree, and by union bound, we obtain,
Eu[qu] ≥ α/

(d+1
2

)

. Let 2α′ = α/
(d+1

2

)

. Call a vertexu ∈ U ‘good’ if qu ≥ α′. By averaging, at least
α′ fraction of verticesU are good. Letu ∈ U be a ‘good’ vertex, i.e.l labels at leastα′ fraction of pairs
{vi, vj} consistently wherevi andvj are neighbors ofu. Again, by averaging, there must be a neighborv′ of
u which is consistently labelled with at leastα′/2 fraction of neighbors ofu. Now, extending the labelling
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l to u, by settingl(u) = πv′,u(l(v′)) will satisfy at leastα′/2 fraction of edges incident onu in L. By
labelling every ‘good’ vertex in a similar manner, we obtaina labellingl that satisfies at leastα′2/2 fraction
of edges ofL. Sinced + 1 is a fixed constant, for anyα > 0, choosingβ to be small enough, we get a
contradiction. So, there is no labelling ofL′ that weakly satisfiesα fraction of the hyperedges.
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