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Abstract

We give the first exponential separation between quantum and classical multi-party
communication complexity in the (non-interactive) one-way and simultaneous message
passing settings.

For every k, we demonstrate a relational communication problem between k parties
that can be solved exactly by a quantum simultaneous message passing protocol of cost
O (log n) and requires protocols of cost nc/3Dk2 , where c > 0 is a constant, in the classical
non-interactive one-way message passing model with shared randomness and bounded
error. Thus our separation of corresponding communication classes is superpolynomial

as long as k =3D o
(√

log n
log log n

)

and exponential for k =3D O (1).

1 Introduction

In this paper we study quantum computation from the perspective of communication com-
plexity. In the two-party model, defined by Yao [Y79], two players are to compute a function
of two variables x and y, each knowing only one of the variables. The complexity measure
is the number of bits they need to exchange in the worst case. In general players may use
shared randomness.

An important generalization is the multi-party communication complexity. In this paper
we shall study the most important version of multi-party communication, the number on a
forehead model, defined by Chandra, Furst and Lipton [CFL83]. In this case a function of
k variables x1, . . . , xk is computed by k players each knowing k − 1 of the variables, namely
player i knows x1, . . . , xi−1, xi+1, . . . , xk. The definition naturally generalizes to the case
of relational problems (or relations), where for a given input there may be several correct
outputs, or none.

Obviously, the case of k =3D 2 players coincides with the standard two-party model. On
the other hand, proving lower bounds for k > 2 players is usually much harder, since they
share some common information.
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It has been established that quantum communication is exponentially more efficient in a
number of versions of the two-party model, see [BCW98, R99, BCWW01, BJK04, GKKRW07,
G07]. The model of multi-party quantum communication has been defined by Kerenidis [K07].
In this paper we shall give the first exponential separation between quantum and classical
multi-party communication complexity.

We shall consider two versions of the non-interactive model. In the one-way message
passing model, the first k − 1 players send one message each to the k’th player. The latter
is supposed to give an answer based on the received messages and his portion of input.1 In
the simultaneous message passing (SMP) model, each of the k players sends a single message
to a referee, who is supposed to answer based solely on the received messages. Of course,
the model of SMP is, in general, weaker than the one-way model, because the answering side
(the referee) does not have free access to any piece of input.

We shall show an exponential separation between quantum and classical probabilistic
communication complexity in these models. Specifically, for every k we construct a relation
and a quantum protocol that uses O (log n) quantum bits to solve the problem exactly in
the SMP model, and prove that its classical probabilistic communication complexity is nΩ(1),
even if we allow bounded error.

The exponent in the lower bound decreases with the number of players as 1/3Dk2, as long
as k < c1 ·

√
log n, c1 > 0. Thus we get superpolynomial separation as long as the number of

players is in o
(

log n
log log n

)

, and exponential separation for constant number of players. The lower

bound still holds for the stronger model of classical non-interactive one-way communication,
even if we allow public randomness (our protocol, like any exact protocol, does not need
randomness).

2 Definitions and notation

We write log to denote the logarithmic function with base 2.
Let P ⊆ X1 × · · · × Xk × Z, where X1, . . . ,Xk ⊆ {0, 1}n are the domains of arguments

and Z ⊆ {0, 1}∗ is the range of the relation P . We say that a k-party protocol S solves P
with error bounded by ε if the following holds

• S describes behavior (i.e., which message is sent in every possible case, who produces
the answer, and when) by the k players and (optionally) the referee.

• If x1 ∈ X1, . . . , xk ∈ Xk are arguments to P such that the set
{

z ∈ Z
∣

∣(x1, . . . , xk, z) ∈ P
}

is not empty, and for 1 ≤ i ≤ k, the i’th player is given the values of x1, . . . , xi−1,
xi+1, . . . , xk, then the answer z0 ∈ Z produced by S is correct (i.e., (x1, . . . , xk, z0) ∈ P )
with probability at least 1 − ε.

The cost of S is the maximum possible total number of bits (classical or quantum) commu-
nicated before an answer is produced.

We call a protocol (non-interactive) one-way if the first k − 1 players send at most one
message each to the k’th player, and no other communication occurs; after that the player k
produces an answer.

1Note that we consider the non-interactive one-way model, as opposed to the following possible scenario:

Alice, Bob and Charlie use a protocol, where Alice sends a message to Bob, after that Bob sends a message

to Charlie, who in turn produces an answer. Cf. Section 5.
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We call a protocol simultaneous message passing (SMP) if each player sends at most one
message to the referee, and no other communication occurs; after that the referee produces
an answer.

We shall consider the following problem. The input consists of k − 1 indices α1, . . . , αk−1

and a string c of n bits. The indices jointly determine a matching on {1, . . . , n}. The parts
of the input are distributed among the k players as usual, thus each of the first k − 1 players
knows k − 2 indices and c, whereas player k knows all the indices, but does not know c. The
goal is to compute i1, i2, ci1 ⊕ ci2 , where (i1, i2) is an edge of the matching determined by the
indices.

Now we shall describe the problem formally. Let Mn =3D (m
(n)
i )

t(n)
i=3D1be a family of t(n)

edge-disjoint perfect matchings over n nodes and M =3D {Mn}n∈N . Since the matchings m
(n)
i

are disjoint, we have t(n) ≤ n.

Definition 1. Let 2 < k < log(t(n)), such that log(t(n)) is a multiple of k − 1, and let

r(n)
def
=3Dlog(t(n))

k−1 . Let c ∈ {0, 1}n and α1, . . . , αk−1 ∈ {0, 1}r(n). Denote by ◦ concate-

nation of binary strings; interpret α1 ◦ · · · ◦ αk−1 as an integer between 1 and 2(k−1)r(n).

Then
(

α1, . . . , αk−1, c, (i1, i2, ci1 ⊕ ci2)
)

∈ HMP
(n,k)
M if α1 ◦ · · · ◦ αk−1 ≤ t(n) and (i1, i2) ∈

m
(n)
α1◦···◦αk−1

.

3 A quantum protocol for HMP
(n,k)
M

Proposition 1. There exists a quantum k-party SMP communication protocol that exactly

solves HMP
(n,k)
M using O (log n) quantum bits for any M .

Proof. Recall that |Mn| ≤ n. Consider the following protocol.

• Player 1 sends the quantum state

1√
n

n
∑

i=3D1

(−1)ci |i〉

to the referee, which is dlog ne quantum bits.

• Player k determines (based on his input) the matching m
(n)
α1◦···◦αk−1

and sends its index
to the referee. That costs dlog (|Mn|)e ≤ dlog ne (classical) bits.

• The referee performs a projective measurement in the orthogonal basis

{

|i1〉 ± |i2〉
∣

∣

∣
(i1, i2) ∈ m

(n)
α1◦···◦αk−1

}

.

When he obtains |i1〉 + |i2〉 (|i1〉 − |i2〉), then ci1 ⊕ ci2 =3D 0 (ci1 ⊕ ci2 =3D 1, respectively),
and the answer is produced accordingly.

�
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4 Lower bound for solving HMP
(n,k)
M in the classical model

In this section we show that for some choice of M solving HMP
(n,k)
M in the classical non-

interactive one-way model allowing bounded error and shared randomness is expensive.

Lemma 4.1. For every ε1, ε2 > 0 there exists a constant C such that for every k and n
the following holds. If a one-way k-party protocol S of cost l uses shared randomness and

solves HMP
(n,k)
M with error bounded by ε1, then for any constant ε2 there exists a protocol

S′, satisfying

• S′ solves HMP
(n,k)
M with error at most ε1 + ε2, for every possible input;

• S′ has communication cost at most (log n)C · l;

• the senders (first k − 1 players) are deterministic, the recipient (k’th player) may use
private randomness.

Intuitively, the lemma says that we can “partially derandomize” the protocol S, preserving
its correctness in distribution-free setting (which would not be the case if we simply applied
the Min-Max Theorem).

Proof of Lemma 4.1. We shall apply a result of Newman [N91], Proposition 1.1, that shows
that the number of shared random bits can be reduced to constant time the logarithm of
the input size. More precisely, there exists absolute constants c1, c2 such that for every
ε, δ > 0, every protocol that uses l communication bits and solves the problem with error
ε can be replaced by a protocol that uses at most c1l communication bits, c2 log n random
bits (where n is the input size) and has error ≤ ε + δ. This theorem was proved only for the
two party communication complexity, however the proof is completely general and works for
any number of parties and essentially any special way of communication. In particular, the
constants c1, c2 do not depend on the number of players.

Let S be as suggested by the lemma. Applying Newman’s result we conclude that some
protocol S1 uses only O (log n) shared random bits (and no private randomness), has cost l

and solves HMP
(n,k)
M with error at most ε1 + ε2/3D2.

Then there exists a protocol S2 of cost l + O (log n), solving the problem with the same
error, but with public randomness shared only between the first k − 1 players (in S2, one of
the senders appends to his message the content of the random string).

Now let us consider the following communication task between the first k − 1 players:
They receive same input as the first k−1 players of S2, and their goal is to produce messages
which would, according to S2, cause the k’th player to produce a correct answer (the k’th
player is deterministic in S2, thus the problem is well-defined). Observe that all k−1 players
share the knowledge of c, so only the part of input which determines m ∈ Mn is not available
to each player separately. Note also that the protocol S2 (“restricted” to the first k − 1
players) solves this problem with error at most ε1 + ε2/3D2. Recall that |Mn| ≤ n. We apply
Newman’s theorem for the second time, concluding that there exists a protocol allowing the
first k − 1 players to accomplish their task with success probability at least 1− ε1 − ε2 using
O (log (log(|Mn|))) =3D O (log log n) shared random bits.
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Therefore, there exists a protocol S3 of cost l+O (log n) that solves HMP
(n,k)
M with error

at most ε1 + ε2, uses O (log log n) random bits shared between the first k − 1 players and no
other randomness.

Finally, let us derandomize the first k − 1 players of S3. They share O (log log n) random
bits, they can take one of (log n)O(1) possible values. Define S′ as follows. Let each of the
first k − 1 players send the sequence of messages which he would send, according to S3, with
respect to all possible values of random bits. The recipient (k’th player) randomly chooses
one possible value of the random bits, considers only those parts of the messages which
correspond to that value and acts according to S3. This protocol satisfies the requirement of
the lemma. �Lemma 4.1

4.1 On the families of perfect matchings

We will construct a family M ′ of perfect matchings that makes HMP
(n,k)
M ′ hard for the clas-

sical model. Our construction is based on some results in extremal graph theory concerning
the number of edges in graphs with forbidden subgraphs. Let

ex(n, {G1, . . . , Gj}),

denote the maximal number of edges that a graph on n vertices can have without containing
any of the graphs G1, . . . , Gj as (not necessarily induced) graphs. These numbers have been
studies especially for cycles Cd. By a result of Bondy and Simonovits [BS74]

ex(n, {C2d}) ≤ 90dn1+1/3Dd.

Lower bounds of the form

ex(n, {C3, C4, . . . , C2d}) =3D Ω(n1+2/3D(3d+ν)),

have been shown by Lubotzki, Phillips and Sarnak (with ν =3D 3) [LPS88] and Lazebnik,
Ustimenko and Woldar [LUW95] (with ν =3D −2 and ν =3D −3, depending on the parity of ν).
These bounds were obtained using explicit constructions. These constructions are, moreover,
bipartite regular graphs (i.e., the degrees of all vertices are equal).

Our main combinatorial lemma is an immediate corollary of these results.

Lemma 4.2. For every d and every prime power t there exist a number n and a bipartite
t-regular graph Gn,d on n vertices such that

1. n ≤ t
3
2
d,

2. Gn,d can be decomposed into t disjoint perfect matchings,

3. every set of edges E spans at least |E|1−1/3D(d+1)/3D90d vertices.

Proof. In [LUW95] Lazebnik et al. constructed t-regular bipartite graphs satisfying the first
condition and such that they do not contain C2d. It is well-known that regular bipartite
graphs can be decomposed into edge-disjoint perfect matchings. (Namely, one can easily
check that the assumption of Hall’s theorem is satisfied, hence the graph contains a perfect
matching. If we delete the edges of this matching the remaining graph is still bipartite and
regular.) The condition about forbidden cycles implies 3., according to the result of Bondy
and Simonovits [BS74]. �
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For our lower bound on k-party communication complexity we need the number of match-
ings be of the form t =3D 2r(k−1), therefore we shall consider only powers of 2. For a t of this
form, let n and Gn,2k be the number and the graph from the lemma. We shall define a family

of perfect disjoint matchings Mn,k =3D (m
(n,k)
i )ti=3D1to be the perfect matchings of Gn,2k. It

would be more natural to parametrize this family by r and k, since for each pair r and k we
have one such family of matchings (with t =3D 2r(k−1) and n ≤ 23k(k−1)r). We use n instead of
r, since it indicates the size of inputs. For future reference we note that

t ≥ n1/3D3k.

4.2 Lower bound for HMP
(n,k)
Mn,k

First we recall some properties of the mutual information of random variables that we shall
need in the proof. Let X and Y be random variables, then we define their mutual information
by

I(X;Y) =3D H(X) + H(Y) − H(X,Y) =3D H(X) − H(X|Y),

where H is entropy. We shall need the following facts:

1. H(X|Y) =3D
∑

y H(X|Y =3D y) · Pr(Y =3D y).

2. I(X;Y|Z) =3D
∑

z I(X;Y|Z =3D z) · Pr(Z =3D z).

3. If Y1, . . . ,Yn are independent, then

I(X;Y1, . . . ,Yn) ≥
∑

j

I(X;Yj).

The first fact follows from the definition by direct computation. The second one is a conse-
quence of the first one. To prove the third fact, write

I(X;Y1, . . . ,Yn) =3D H(Y1, . . . ,Yn) − H(Y1, . . . ,Yn|X).

Then express the first term as the sum of entropies and apply the subadditivity of entropy
to the second term.

We shall also use Markov’s inequality in the following form. If 0 ≤ X ≤ β and 0 ≤ α < β,
then

Pr(X ≥ α) ≥ E(X) − α

β − α
,

where E denotes expectation.

Theorem 4.3. For every ε > 0 there exists a constant γ > 0 such that for every k ≥ 2,

k =3D o
(√

log n
log log n

)

, any non-interactive one-way protocol solving HMP
(n,k)
Mn,k

with error 1
2 − ε

has to communicate at least nγ/3Dk2 bits of information.

Proof of Theorem 4.3. Let n be fixed. Recall that t ≥ n1/3D3kand r =3D log t/3D(k − 1).
Let S be a k-party protocol of cost l, satisfying the theorem requirement. Let 1/3D2− ε be

the guaranteed upper bound on the error probability of S. Let S′ be another protocol with
error at most 1/3D2 − ε/3D2, as guaranteed by Lemma 4.1.
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Let c ∈ {0, 1}n and consider the 2(k−2)r inputs of the form

(α1, . . . , αk−2,

k−2
∑

i=3D1

αi, c).

We interpret strings αi in the sum as vectors in GF r
2 . Notice that for any subset of k − 2

of the first k − 1 coordinates we get all 2(k−2)r values of the k − 2-tuples of strings. Let w
be concatenation of the strings of messages that the first k − 1 players send to player k for
these inputs, assuming they are using the protocol S′. Since each of these players can see
only k−2 coordinates from the first k−1 coordinates, the string w encodes all messages that
they ever send for the given string c.

Recall that by Lemma 4.1 the first k− 1 players in S′ are deterministic, and therefore for
every tuple (α1, . . . , αk−1) we can, using w, prepare the k− 1 messages which are received by
the k’th player when the input is (α1, . . . , αk−1, c) (and the input of the k’th player himself is
α1, . . . , αk−1, i.e., the encoding of the matching). Consequently, for each matching m ∈ Mn,k

it is possible to obtain, using the information contained in w, a triple (i1, i2, e), such that
(i1, i2) ∈ m and e =3D ci1 ⊕ci2 with probability at least 1

2 + ε
2 . Consider the following algorithm

that constructs a string of pairs of indices A and a string of bits B using w as the input.

1. Let A and B be empty strings initially.

2. Let m ∈ Mn,k, such that every edge in m has at most one endpoint in the support of
the pairs of A. If no such matching exists, halt.

3. Using w, get a triple (i1, i2, e), such that (i1, i2) ∈ m and e =3D ci1 ⊕ ci2 with probability
at least 1

2 + ε
2 (this is the answer that player k produces given the messages of the

players 1, . . . , k − 1 and the matching m).

4. Let A :=3D A ◦ {i1, i2} and B :=3D B ◦ e.

5. Return to Step 2.

It follows from the properties of Mn,k that if we take one edge from each m′ ∈ Mn,k

then at least t1−
1

2k+1 /3D180k vertices are touched by those edges. Therefore, as long as |A| <

t1−
1

2k+1 /3D180k, it is possible to find m ∈ Mn,k which satisfies the requirement of Step 2. On
the other hand, each iteration of the algorithm adds at most 2 new elements to A, therefore

the algorithm always performs at least 1
2t1−

1
2k+1 /3D180k iterations. Let s be the least number

of the steps of the algorithm (the lengths of the strings A and B), thus

s ≥ t1−
1

2k+1 /3D360k. (1)

We shall show that the mutual information between (A,B) and c is Ω(s). Intuitively it
seems clear, because the pairs A chosen by the algorithm form a tree, thus the bits ci1 ⊕ ci2

are independent, and e =3D ci1 ⊕ ci2 with probability at least 1
2 + ε

2 . Notice, however, that the
pairs in A and the bits in B are not independent, as we are choosing next matching according
to the outcome of the previous stage. Therefore a formal proof of this fact is needed.

Consider the following random variables.
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• C – the uniform distribution on the strings c ∈ {0, 1}n.

• W – the distribution on the strings w when the uniform distribution on the strings c
is uniform; thus W is a function of C.

• A and B – the distribution on the strings produced by the above algorithm when the
distribution on strings c is uniform; these random variables can be viewed as functions
of W and some random variable independent of C (the random bits of player k).

The assumption about A and B can be stated as follows. For every j =3D 1, . . . , s,

Pr(Bj =3D C(Aj)1 ⊕ C(Aj)2) ≥
1

2
+

ε

2
.

Our proof of the theorem is based on estimating I(A,B;C) in two ways. The upper
bound is easy:

I(A,B;C) ≤ I(W;C) ≤ H(W) ≤ |W|, (2)

since A,B are functions of the random variable W and a random variable independent of C.
To prove a lower bound on I(A,B;C), we consider two cases.

(1) H(C|A) < n− ξs. Here ξ > 0 is a sufficiently small fraction of ε that will be specified
later. In this case

I(A,B;C) ≥ I(A;C) =3D H(C) − H(C|A) > n − (n − ξs) =3D ξs.

(2) H(C|A) ≥ n − ξs. Observe that according to the chaining rule

I(A,B;C) =3D I(A;C) + I(B;C|A) ≥ I(B;C|A).

Hence it suffices to estimate I(B;C|A).
Let D be the random variable whose value is the number of indices j such that Bj =3D

C(Aj)1 ⊕ C(Aj)2 . The assumption about the correctness of the protocol implies that

E(D) ≥ (1/3D2 + ε/3D2)s,

Consider the mapping
A 7→ E(D|A =3D A)

as a random variable. Let

∆1(A) ≡df E(D|A =3D A) ≥ (1/3D2 + ε/3D4)s. (3)

By Markov’s inequality,

Pr(∆1(A)) =3D
∑

A;∆1(A)

Pr(A =3D A) ≥ε/3D2

1 − ε/3D2
≥ ε/3D2. (4)

Let

∆2(A) ≡df H(C|A =3D A) ≥ n −4
ε
ξs.
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In a similar fashion, we get

Pr(∆2(A)) ≥ 1 − ε

4
.

Whence
Pr(∆2(A) ∧ ∆2(A) ≥ ε/3D2 − ε/3D4 =3D ε/3D4.

By (4),

I(B;C|A) =3D
∑

a

I(B;C|A =3D A) · Pr(A =3D A) ≥ε

4
· min

A;∆1(A)∧∆2(A)
I(B;C|A =3D A). (5)

So it remains to estimate I(B;C|A =3D A) for A satisfying ∆1 ∧ ∆2.
Let such an A be fixed. Let C′

j be the random variables defined as follows. For j =3D
1, . . . , s, let C′

j =3D Ci1 ⊕ Ci2 where (i1, i2) is the j-th pair of a. For the rest of indices j, we
set each C′

j to be equal to Ci for some i, so that the variables C′
j are independent. Then

the information contained in C and C′ is the same, so we can replace the first by the second.
Thus

I(B;C|A =3D A) =3D I(B;C′|A =3D A) ≥
∑

j

I(B;C′
j |A =3D A) ≥

s
∑

j=3D1

I(B;C′
j|A =3D A) ≥

s
∑

j=3D1

I(Bj ;C
′
j|A =3D A).

By ∆1(A) (and Markov’s inequality again), there are at least ε
4s indices j, 1 ≤ j ≤ s,

satisfying

Pr(Bj =3D C′j|A =3D A) ≥1
2

+
ε

8
. (6)

By ∆2(A),

∑

j

H(C′
j|A =3D A) ≥ H(C′|A =3D A) =3D H(C|A =3D A) ≥ n −4ξ

ε
s.

Hence there are at least ≥ n − 8ξ
ε s indices j, 1 ≤ j ≤ n such that

H(C′
j|A =3D A) ≥ 1/3D2. (7)

Thus there are at least ε
4s − 8ξ

ε s indices j, 1 ≤ j ≤ s that satisfy both (6) and (7). Setting

ξ =3Dε
2

64 , this number is ε
8s. For such indices I(Bj ;C

′
j|A =3D A) ≥ δ, where δ > 0 depends only

on ε, whence

I(B;C′|A =3D A) ≥εδ
8

s.

By (5) and (1) we have

I(A,B;C) ≥ ε2δ

32
s ≥ ηt1−

1
2k+1 /3Dk. (8)

where η =3Dε2δ
32·360 . To get our lower bound on the communication complexity, we shall compare

the bounds (2) and (8). Recall that w consists of 2(k−2)r messages, each having length at
most (log n)C · l, for some constant C. Thus

I(A,B;C) ≤ |W| ≤ 2(k−2)r(log n)C · l =3D 2(k−2) log t

k−1 (log n)C · l =3D

9



t
k−2
k−1 (log n)C · l ≤ t1−

1
k−1 (log n)C · l.

Comparing this with the lower bound (8), we get

l ≥ ηt
1

k−1
− 1

2k+1

k · (log n)C
≥ ηn

1
3k ( 1

k−1
− 1

2k+1)

k · (log n)C
≥ ηn

1

6k2

k · (log n)C
≥ nγ/3Dk2 ,

for a sufficiently small constant γ, as k2 ∈ o
(

log n
log log n

)

. �Theorem 4.3

The theorem together with the protocol given in Proposition 1 for Proposition 1 leads to
the following corollary:

Corollary 4.4. For k(n) =3D o
(√

log n
log log n

)

, there exists a k-party relational communication

problem that can be solved exactly by a quantum simultaneous message passing protocol of cost
O (log n) and requires superpolynomially more expensive protocols in the model of probabilistic
non-interactive one-way communication with public randomness. For k =3D O (1) we get an
exponential gap.

5 Open problems

• Extend the statement of Corollary 4.4 to bigger values of k.

• Give a separation similar to the one shown here through a (partial) function. How
much can be saved by using quantum communication for total functions?

• Give a separation for the multi-party interactive setting. Even the case of three players
and one-way interactive message passing (i.e., Alice speaks to Bob, after that Bob
speaks to Charlie, who, in turn, responds) looks very interesting.
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