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Abstract

We give an explicit construction of pseudorandom generators against low degree
polynomials over finite fields. We show that the sum of 2d small-biased generators
with error ε2O(d)

is a pseudorandom generator against degree d polynomials with error
ε. This gives a generator with seed length 2O(d) log (n/ε). Our construction follows
the recent breakthrough result of Bogadnov and Viola [BV07]. Their work shows that
the sum of d small-biased generators is a pseudo-random generator against degree d
polynomials, assuming the Inverse Gowers Conjecture. However, this conjecture is only
proven for d = 2, 3. The main advantage of our work is that it does not rely on any
unproven conjectures.

1 Introduction

We are interested in explicitly constructing pseudorandom generators (PRG) against
low degree polynomials over small finite fields. A pseudorandom generator against a
family T of tests is a function G mapping a small domain into a (much) larger one,
such that any test T ∈ T cannot distinguish with high probability a random element in
the large domain from an application of G on a random element in the small domain.
We say a PRG requires R random bits, if the size of the small domain is 2R.

In our case, let F be a finite field, and a test is a polynomial p(x1, ..., xn) over
F. The image of the PRG is a small subset of F

n, and it is pseudorandom against
p(x1, ..., xn) if the distribution of the outcome of p when applied to a random element
in the small subset is close to the distribution of the outcome of p when applied to a
uniform element in F

n. We are interested in PRG that are pseudorandom against all
degree d polynomials, and use as few random bits as possible.

The case of pseudorandom generators against linear polynomials, usually called
small-bias generators (or epsilon-biased generators, a term we will not use in this
paper to avoid confusion), was first studied (over F = F2) by Naor and Naor ([NN90])

1Faculty of Mathematics and Computer Science, The Weizmann Institute of Science, POB 26, Rehovot
76100, Israel. Email: Shachar.Lovett@weizmann.ac.il. This research was supported by grant 1300/05 from
the Israel Science Foundation.

1

Electronic Colloquium on Computational Complexity, Report No. 75 (2007)

ISSN 1433-8092




and later by [AGHP92]. Them and others gave explicit constructions, which were
later generalized for any finite field. These constructions have seed length which is
up to a constant optimal. The construction of small-bias generators was a major tool
in derandomization, PCP’s and lower bounds (see [BSVW03] for details and more
references regarding small-biased generators). The generalization of the problem for
constant degree polynomials was first studied by Luby, Veličković, and Wigderson (see
[LVW93]). Their construction required exp(O(

√

log n/ε)) random bits.
Bogdanov ([Bog05]) constructed a PRG that works when the field size is not too

small. He presented a construction which converts a hitting set generator to a pseu-
dorandom generator, which combined with a construction for a hitting set yields a
PRG. The minimal field size required for his construction to work is a polynomial in
the degree, the required error and log the number of the variables. In this setting
(field size not too small), his construction achieves better parameters than ours, where
the dependence on d in the seed length is polynomial instead of exponential in our
construction. His construction uses techniques and results from Algebraic Geometry.

Recently, Bogdanov and Viola ([BV07]) presented a novel approach for constructing
PRG for low degree polynomials over small fields. Their construction is the sum of d
small-biased generators. They show, under the Inverse Gowers Conjecture, that such
a sum is a PRG for degree d polynomials. However, the Inverse Gowers Conjecture is
currently only known to hold for degrees 2 and 3, which means that their construction
is provably correct only for quadratic and cubic polynomials.

1.1 Our Contribution

Our work is inspired by the recent work of Bogdanov and Viola [BV07]. We start by
describing in high level their work, since our work shares and follows some of the ideas
in their work. The analysis of [BV07] depends on analyzing the Gowers Norm of a
polynomial. We will start by defining it, before describing their construction and proof
technique.

The d-th Gowers Norm of a polynomial p(x) looks at derivatives of p in d ran-
dom directions, and measure how close these derivatives are to being always 0. In
other words, we look on the average value of p on random d-dimensional affine sub-
spaces of F

n. Assume currently for simplicity that F = F2, and we shorthand p(x) for
p(x1, ..., xn). The derivative of p(x) in direction y is given by:

py(x) = p(x + y) − p(x)

Notice that the degree of py is one less than the degree of p. More generally, taking
k derivatives in directions y1, ...,yk reduces the degree by k, where the derivative is
given by:

py1,...,yk
=

∑

S⊂{1,...,k}

(−1)k−|S|p(x +
∑

i∈S

yi)

The d-th Gowers Norm of p is defined as:

Ud(p) =
(

Ex,y1,...yd∈F
n
2

[

(−1)py1,...,yd
(x)

])
1

2d

2



Assume p is a degree d−1 polynomial. Taking d derivatives from it returns the zero
polynomial, so py1,...,yd

≡ 0 for any choice of y1, ...,yd and consequently Ud(p) = 1.
The Inverse Gowers Conjecture aims to show that if Ud(p) is somewhat large, then
there is a degree d − 1 polynomial that is correlated to p. This can be thought of as
a generalization of Fourier analysis, which measures the correlation of a function to a
linear function. Actually, the 2-nd Gowers Norm U2 is tightly related to the Fourier
coefficients of the polynomial. The Inverse Gowers Conjecture is currently only proven
for U3, and even there the results are far from what is believed to be true (see [GT05]
and [Sam07] for a more detailed discussion on the Gowers norm, and a proof of the
Inverse Gowers Conjecture for U3).

Returning to the argument in [BV07], they analyze the Gowers Norm of a degree-
d polynomial p(x), and show a win-win situation for the case when it is small or
large. In the first case, when the Gowers Norm is small, they show that the sum of
d small-bias generators is pseudorandom against p(x), by relating the distribution of
p(x1 + ...+xd) to the Gowers Norm of p. In the second case, when the Gowers Norm is
large, and assuming the Inverse Gowers Conjecture, p(x) is correlated to some degree-
d − 1 polynomial q(x). They use q(x) in order to construct a circuit that computes
p(x) for almost all x’s. The inputs to this circuit are all degree d− 1 polynomials, and
thus they show that a PRG for degree d − 1 polynomials with small enough error is
also pseudorandom against p(x).

Our construction follows similar lines, however instead of analyzing the Gowers
norm of p(x), we analyze its Fourier coefficients. We also divide our treatment into two
cases - when p has some large Fourier coefficient, and when all the Fourier coefficients
of p are small.

In the first case, when p(x) has no large Fourier coefficients, we look on inputs to
p of the form x + y, where x and y are independent. we consider the polynomial

∆p(x′,x′′,y′,y′′) = p(x′ + y′) − p(x′ + y′′) − p(x′′ + y′) + p(x′′ + y′′)

We prove that it is enough to be pseudorandom against ∆p in order to be pseu-
dorandom against p(x + y), and also that in order to do so, it is enough to have
x,x′,x′′,y,y′ and y′′ come from a PRG that is pseudorandom against degree d−1 poly-
nomials. The reason is that ∆p contains no degree d terms in just one of x′,x′′,y′

or y′′. In the second case, when there is some large Fourier coefficient, we know that
p(x) is correlated to some linear function. Similarly to the second case in the work of
[BV07], we also show in that case, or more generally when p(x) is correlated to some
lower degree polynomial, a PRG for degree d − 1 polynomial with small enough error
is also pseudorandom against p(x). However, our proof technique is much more direct
than the one used in [BV07], which results in better parameters and also a simpler
analysis.

We compare now the parameters obtained by [BV07] and by our construction.
Assume we want a PRG against degree d polynomials with error ε (for exact definition,
see the Preliminaries Section). The construction of [BV07] requires d independent
small-bias generators. The required error from the small-biased generators depends on
the parameters in which the Gowers Inverse Conjecture can be proven. If we assume
optimal results for the Gowers Inverse Conjecture, each of the small-bias generators
should have error ε2O(d)

. So, the PRG has seed length of d(O(log n) + 2O(d) log(1/ε)).
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However, the Gowers Inverse Conjecture is currently only proven for d = 2 and
d = 3. The case of d = 2 is exactly Affinity Testing, and near optimal results can be
proved using Fourier Analysis (see for example [BLR93]). In the case of d = 3, the
proven relation between U3(p) and the proximity of p to quadratic polynomials is far
worse than what is believed to be true. This results in making the seed length of the
PRG of [BV07] for cubic polynomials much worse than what it might be.

Our PRG construction is the sum of 2d small-bias generators with error ε2O(d)
. This

gives a PRG with seed length 2O(d) log(n/ε). This is worse than the seed length in the
[BV07] construction assuming optimal parameters in the Inverse Gowers Conjecture,
but for the parameter range of ε < 1/poly(n) the constructions are equivalent up to a
constant.

Summarizing, our construction has the following advantages: First, it is uncondi-
tional, and relies on no unproven conjectures. Second, even in the case of U3 (i.e. PRG
against cubic polynomials), the proven parameters for the Inverse Gowers Conjecture
are probably far worse than what is believed to be true, which results in much worse
seed length of the PRG of [BV07] than the one we get. Third, we present a much
simpler analysis for the case when p(x) is correlated to some lower degree polynomial.
Notice that this analysis can also be applied for analyzing the construction of [BV07],
but it still falls short from proving their construction, because the Inverse Gowers
Conjecture must also be proven.

2 Preliminaries

We work over an arbitrary finite field F. Let U = Un be the uniform distribution over
F

n. We fix e : F → C to be any (non-trivial) character. For example, in a prime field
Fp we can have e(x) = wx for w root of unity of order p.

When we talk about a degree of a multivariate polynomial, we always mean its
total degree. We mark elements of F

n by x = (x1, ..., xn).

Definition 1. A distribution D over F
n is said to pseudorandom against a polynomial

p(x1, ..., xn) with error ε if

|Ex∈D[e(p(x))] − Ex∈U [e(p(x))]| < ε

Definition 2. A distribution D is said to be pseudorandom against degree d polyno-
mials with error ε, if for every degree d polynomial p(x1, ..., xn), D is pseudorandom
against p with error ε.

This notion of pseudorandomness is tightly related to other notions. For example
we give the following simple lemma without proof.

Lemma 1. Let D be a distribution that is pseudorandom against degree d polynomials
with error ε. Let p(x1, ..., xn) be a polynomial of degree at most d. Let XD ∈ F be
the random variable of applying p on D, and XU ∈ F similarly the random variable of
applying p on U . Then the variation (L1) distance between XD and XU is bounded by:

|XD − XU |1 ≤ (|F| − 1)ε
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We will use in the paper the following basic properties of characters:

1. For every x, y ∈ F , e(x)e(y) = e(x + y).

2. For every x ∈ F, e(−x) = e(x), the complex conjugate of e(x)

We use Fourier analysis in our analysis. We define now the basic facts required for
our analysis in the paper.

Definition 3. The Fourier coefficients of a function f : F
n → C are defined by

f̂α = Ex∈U [f(x)e(−〈α,x〉)]

where α = (α1, ..., αn) ∈ F
n and 〈α,x〉 = α1x1+ ...+αnxn is the inner product between

α and x. It is well known that set of functions e(〈α,x〉) is an orthonormal basis over
F

n, and that

f(x) =
∑

α∈Fn

f̂αe(〈α,x〉)

For a polynomial p(x) ∈ F[x1, ..., xn] we define p̂α to be the α Fourier coefficient
of the function e(p(x)). We will also use the following simple fact, which follows from
Parseval’s identity and because |e(p(x))| = 1 for all x ∈ F

n:

Fact.
∑

α∈Fn

|p̂α|
2 = 1

The base of our analysis are PRG for degree-1 polynomials, a.k.a linear polynomials.
PRG for this family have been studied extensively, and are usually referred to as small-
bias generators or distributions. Formally we define:

Definition 4. A distribution D is called small-bias over F
n with error δ, if for all linear

polynomials p(x) = a1x1 + ... + anxn we have:

|Ex∈D[e(p(x))] − Ex∈U [e(p(x))]| < δ (1)

Constructions of small-bias distributions have first been studied in [NN90], and
optimal up to constant constructions can be found in [AGHP92]. Such constructions
require O(log(n/ε)) random bits for the seed (this means they are functions from
{0, 1}O(log(n/ε)) → F

n). We now state our main theorem.

3 Main theorem

We now state our main theorem:

Theorem 2. Let D be a small-biased distribution over F
n with error O(ε)4

d

. The sum
of 2d independent copies of D is pseudorandom against degree d polynomials with error
ε. In particular, this gives a pseudorandom generator for degree d polynomials with
error ε using 2O(d) log(n/ε) random bits for seed.
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Our analysis will basically be a case analysis whether p has some large Fourier co-
efficient or not. We will show that when a degree d polynomial p(x) has some large
Fourier coefficient, then a PRG for degree d − 1 with a somewhat better error is also
pseudorandom against p, while if p are no large Fourier coefficients it is ”pseudoran-
dom” in some sense, and then the sum of two PRG for degree d − 1 is pseudorandom
against p.

We divide the proof into two technical lemmas, dealing with the cases whether p
has some large Fourier coefficient, or not.

Lemma 3. Let p(x1, ..., xn) be a degree d polynomial over F
n, such that for all α ∈ F

n,
|p̂α| < ε2/10. Let D be a distribution that is pseudorandom against degree d − 1
polynomials with error ε4/400. Then x + y, where x,y are independently chosen from
D, is pseudorandom against p with error ε.

Lemma 4. Let p(x1, ..., xn) be a degree d polynomial over F
n, such that |p̂α| ≥ ε2/10

for some α ∈ F
n. Let D be a distribution that is pseudorandom against degree d − 1

polynomials with error ε3/10. Then D is pseudorandom against p(x) with error ε.

Assuming those two lemma, our main theorem now follows directly, by also using
the following simple observation. This observation allows us to add ”extra” small-bias
distributions without harming our PRG construction.

Observation 5. Let D be a distribution that is pseudorandom against degree d poly-
nomials with error ε. Let D′ be any other independent distribution. Then D + D′ is
also pseudorandom against degree d polynomials with error ε.

The remaining of the paper is organized as follows. Lemma 3 is proven in Section 4.
Lemma 4 in Section 5.

4 Case I: No large fourier coefficients

In this section we prove Lemma 3. We assume throughout this section that all the
Fourier coefficients of e(p(x)) are small, i.e. |p̂α| < ε2/10 for all α ∈ F

n.
We start by defining a derivation polynomial.

Definition 5. Let p(x) : F
n → F be a polynomial. We define its derivation polynomial

∆p : (Fn)4 → F as:

∆p(x′,x′′,y′,y′′) = p(x′ + y′) − p(x′′ + y′) − p(x′ + y′′) + p(x′′ + y′′)

The following lemma is crucial in our construction, and uses in part a lemma from
[BV07]. We relate the distribution of p on the sum of two independent inputs, to that
of ∆p.

Lemma 6. Let p : F
n → F. Let D be a distribution over F

n. Let x,y be independently
chosen from D, then

|Ex,y∈D[e(p(x + y))]|4 ≤ Ex′,x′′,y′,y′′∈D[e(∆p(x′, x′′, y′, y′′))]

where x
′,x′′,y′,y′′ are also independent.
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Proof. The proof is essentially applying the Cauchy-Schwartz inequality twice. We
start by showing:

|Ex,y∈D[e(p(x + y))]|2 ≤ Ex,y′,y′′∈D[e(p(x + y′) − p(x + y′′))]

and then continue to show:

|Ex,y∈D[e(p(x+y))]|4 ≤ Ex′,x′′,y′,y′′∈D[e(p(x′+y′)−p(x′′+y′)−p(x′+y′′)+p(x′′+y′′))]

which is what we want to prove, by the definition of ∆p. We prove the first part
by applying the Cauchy-Schwartz inequality:

|Ex,y∈D[e(p(x + y))]|2 ≤ Ex∈D|Ey∈D[e(p(x + y))]|2 =

Ex∈DEy′∈D[e(p(x + y′))]Ey′′∈D[e(p(x + y′′))] =

Ex,y′,y′′∈D[e(p(x + y′) − p(x + y′′))]

We prove the second part by applying the Cauchy-Schwartz inequality again:

|Ex,y∈D[e(p(x + y))]|4 ≤ |Ex,y′,y′′∈D[e(p(x + y′) − p(x + y′′))]|2 ≤

Ey′,y′′∈D|Ex∈D[e(p(x + y′) − p(x + y′′))]|2 =

Ex′,x′′,y′,y′′∈D[e(p(x′ + y′) − p(x′ + y′′) − p(x′′ + y′) + p(x′′ + y′′))]

In particular the following correlation follows:

Corollary 7. Ex′,x′′,y′,y′′∈D[e(∆p(x′,x′′,y′,y′′))] ≥ 0

We analyze the expression Ex′,x′′,y′,y′′∈D[e(∆p(x′,x′′,y′,y′′))] in two cases, when
D = U is the uniform distribution, and when D is a PRG for degree d−1 polynomials.
We show that in both cases it is at most ε/2. Combining this with Lemma 6 yields the
required result. We start our analysis in the uniform case.

We begin by showing the (well-known) connection between the average value of ∆p
to the Fourier coefficients of p, regarding ∆p as a linearity-test for p. See for example
[BLR93] for a similar analysis in more depth.

Lemma 8.

Ex′,x′′,y′,y′′∈U [e(p(x′ + y
′) − p(x′ + y

′′) − p(x′′ + y
′) + p(x′′ + y

′′))] =
∑

α∈Fn

|p̂α|
4

Proof. We can write e(p(x)) in the Fourier basis as:

e(p(x)) =
∑

α∈Fn

p̂αe(〈α,x〉)

Notice that:
e(−p(x)) = e(p(x)) =

∑

α∈Fn

p̂αe(−〈α,x〉)
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We expand now all four terms of p in

e(p(x′ + y′) − p(x′ + y′′) − p(x′′ + y′) + p(x′′ + y′′))

This is equal to:

∑

α1,α2,α3,α4∈Fn

p̂α1
e(

〈

α1,x′ + y′
〉

)p̂α2
e(−

〈

α2,x′ + y′′
〉

)

p̂α3
e(−

〈

α3,x′′ + y′
〉

)p̂α4
e(

〈

α4,x′′ + y′′
〉

)

Remember we are interested in the expected value over uniform x′,x′′,y′,y′′ ∈ F
n,

i.e. in:

Ex′,x′′,y′,y′′∈U [e(p(x′ + y′) − p(x′ + y′′) − p(x′′ + y′) + p(x′′ + y′′))]

We now use the Fourier expansion, and group elements by their related values.
After doing so, the above expectation is equal to:

∑

α1,α2,α3,α4∈Fn

p̂α1
p̂α2

p̂α3
p̂α4

Ex′∈U [e(
〈

α1 − α2,x′
〉

)]Ex′′∈U [e(
〈

α4 − α3,x′′
〉

)]

Ey′∈U [e(
〈

α1 − α3,y′
〉

)]Ey′′∈U [e(
〈

α4 − α2,y′′
〉

)]

The term inside the sum for α1, ..., α4 is zero unless α1 = α2 = α3 = α4 = α, and
in that case its contribution is |p̂α|

4. This finishes the proof of the lemma.

We now use this relation between between ∆p and the Fourier coefficients of p to
show that the expected value of ∆p is small.

Lemma 9. |Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| < ε4/100

Proof. We use Lemma 8. We have:

Ex′,x′′,y′,y′′∈U [e(p(x′ + y′) − p(x′ + y′′) − p(x′′ + y′) + p(x′′ + y′′))] =
∑

α∈Fn

|p̂α|
4

We combine now the fact that
∑

α∈Fn

|p̂α|
2 = 1 and our assumption that |p̂α| < ε2/10

for all α ∈ F
n, to yield the required bound.

Combining Lemmas 6 and 9 we get that:

|Ex,y∈U [e(p(x + y))]| <

(

ε4

100

)1/4

< ε/2

We now turn to handle the pseudorandom case. We start by the following obser-
vation:

Observation 10. The polynomial ∆p(x′,x′′,y′,y′′) has total degree d, but has no degree
d terms which have variables from only one of x

′,x′′,y′,y′′. So, the total degrees of
variables from x

′ in each term is at most d − 1. The same is true also for x
′′,y′ and

y
′′.
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We now show that if D is a distribution that is pseudorandom against degree d− 1
polynomials, then it also pseudorandom against ∆p. We use a hybrid argument similar
to the one in [BV07].

Lemma 11. Let D be a distribution that is pseudorandom against degree d − 1 poly-
nomials with error δ. Then:

|Ex′,x′′,y′,y′′∈D[e(∆p(x′,x′′,y′,y′′))]−

Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| < 4δ

Proof. We will change the inputs x′,x′′,y′ and y′′ one by one from U to D, and we will
show that the expected value of e(∆p) changes by at most δ in each step, accumulating
to a total of at most 4δ. Formally, let Hk (k = 0..4) be the joint distribution of
x′,x′′,y′,y′′, when the first k are taken from D and the last 4 − k taken from U . For
example, H1 is the distribution where x′ ∈ D and x′′,y′,y′′ ∈ U , where x′,x′′,y′,y′′

are independent.
We prove that the distance between e(∆p) under Hk−1 and Hk is at most δ, for all

k = 1, 2, 3, 4. For the sake of clarity, we will focus on the proof for k = 1. The proof
for the other three cases is essentially identical.

For k = 1, we want to show that:

|Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))] − Ex′∈D,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| < δ

The joint distribution of x′′,y′,y′′ is identical in both terms, so we have:

|Ex′,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))] − Ex′∈D,x′′,y′,y′′∈U [e(∆p(x′,x′′,y′,y′′))]| ≤

Ex′′,y′,y′′∈U |Ex′∈U [e(∆p(x′,x′′,y′,y′′))] − Ex′∈D[e(∆p(x′,x′′,y′,y′′))]|

Now, for any fixing of values for x′′ = a,y′ = b,y′′ = c, ∆p(x′, a, b, c) is a polynomial
just in x′. Observation 10 tells us it is a polynomial of degree at most d − 1. Since
D is pseudorandom against degree d − 1 polynomials, the inequality follows for every
fixing of x′′,y′,y′′, and so also for the expected value.

If we take D to be PRG for degree d−1 polynomials with error ε4/400, and combine
this with Lemmas 6 and 9, we get that:

|Ex′,x′′,y′,y′′∈D[e(∆p(x′,x′′,y′,y′′))]| <
ε4

100
+ 4

ε4

400
=

ε4

50

and so using Lemma 6 we get that:

|Ex,y∈D[e(p(x + y))]| < (
ε4

50
)1/4 < ε/2

This finishes the proof of Lemma 3.
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5 Case II: There is some large Fourier coeffi-

cient

In this section we prove Lemma 4. We assume throughout this section that p has some
large Fourier coefficient of p. To be precise, there is some α ∈ F

n s.t:

|p̂α| ≥ ε2/10

Let l(x) be the corresponding linear function, i.e. l(x) = 〈x, α〉. Define:

η = p̂α = Ex∈U [e(l(x) − p(x))]

η is a measure for the approximation of p(x) by l(x). By our assumption on p̂α, we
know that |η| ≥ ε2/10.

For any constant a ∈ F
n define the polynomial:

qa(x) = p(x) − p(x + a) + l(x + a)

Notice that qa(x) has degree at most d − 1, because l(x + a) is linear (and so of
degree less than d), and the degree-d terms in p(x) and p(x + a) cancel out.

We can think of qa(x) as using l(x), which approximates p(x) non-uniformly, and
the derivative of p(x) in a random direction a, to build a random degree d−1 polynomial
which approximates p(x) uniformly. In order to show this formally, we define νx(a) =
1
ηe(qa(x)). We will see that νx(a), taken on a random a ∈ F

n value, is exactly e(p(x)).

Lemma 12. For every x ∈ Fn, Ea∈U [νx(a)] = e(p(x)).

Proof. Ea∈U [νx(a)] = 1
ηe(p(x))Ea∈U [e(l(x + a) − p(x + a))] = e(p(x))

Effectively, we have shown that p(x) can be approximated uniformly by a (random)
degree d − 1 polynomial qa(x). We can now use this to show that a distribution that
is pseudorandom against degree d − 1 polynomials, is also pseudorandom against p.
First, we prove the following lemma:

Lemma 13. Let D be a distribution that is pseudorandom against degree d − 1 poly-
nomials with error δ. For every a ∈ Fn:

|Ex∈D[νx(a)] − Ex∈U [νx(a)]| <
δ

|η|

Proof. |Ex∈D[νx(a)]−Ex∈U [νx(a)]| = 1
|η| |Ex∈D[e(qa(x))]−Ex∈U [e(qa(x))]| < δ

|η| , where
we use the fact that qa is a polynomial of degree at most d−1, and so D is pseudorandom
against qa with error δ.

We now conclude by proving Lemma 4
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Proof. (of Lemma 4) Let D be a distribution that is pseudorandom against degree d−1
polynomials with error ε3/10. Then:

|Ex∈D[e(p(x))] − Ex∈U [e(p(x))]| =

|Ex∈DEa∈U [νx(a)] − Ex∈UEa∈U [νx(a)]| ≤

Ea∈U |Ex∈D[νx(a)] − Ex∈U [νx(a)]| <
ε3/10

|η|
≤ ε
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